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Abstract—Heart rate variability (HRV) is an important
dynamical variable of the cardiovascular function. There
have been numerous efforts to determine whether HRV
dynamics are chaotic or random, and whether certain
complexity measures are capable of distinguishing healthy
subjects from patients with certain cardiac disease. In this
study, we employ a new multiscale complexity measure, the
scale-dependent Lyapunov exponent (SDLE), to characterize
the relative importance of nonlinear, chaotic, and stochastic
dynamics in HRV of healthy, congestive heart failure (CHF),
and atrial fibrillation subjects. We show that while HRV data
of all these three types are mostly stochastic, the stochasticity
is different among the three groups. Furthermore, we show
that for the purpose of distinguishing healthy subjects from
patients with CHF, features derived from SDLE are more
effective than other complexity measures such as the Hurst
parameter, the sample entropy, and the multiscale entropy.

Keywords—Heart rate variability, Cardiovascular system,
Multiscale analysis, Scale-dependent Lyapunov exponent.

INTRODUCTION

A cardiovascular system, being comprised of mul-
tiple subsystems with complicated nonlinear interac-
tions, is an outstanding example of multiscale systems.
An important dynamical variable of the cardiovascular
system is the heart rate variability (HRV), which refers
to the beat-to-beat alterations in heart rate. The most
salient feature of HRYV is its spontaneous fluctuation,
even if the environmental parameters are maintained
constant and no perturbing influences can be identi-
fied. This is evident in Fig. 1, where the RR intervals of
a normal young subject are shown. RR interval is the
time duration between two consecutive R waves in the
electrocardiogram (ECG). We observe from Fig. 1 that
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the RR interval data are highly nonstationary (in the
sense that the mean, variance, and other statistical
moments vary with time) and multiscaled, appearing
oscillatory for some period of time (Figs. 1b and 1d),
and then varying as a type of 1/f process whose power-
spectral-density (PSD) decays in a power law fashion
(Figs. 1c and le).

Since the observation that HRV is affected by vari-
ous cardiovascular disorders, many methods have been
proposed to analyze it. They include time domain and
frequency domain based methods (see Task Force of
the European Society of Cardiology and the North
American Society of Pacing & Electrophysiology,*” and
references therein), as well as methods derived from
chaos and random fractal theory.' 3:1821.23-28.30.34
Much of these efforts have been focused on determin-
ing whether HRV dynamics are chaotic or random, and
whether certain complexity measures can effectively
distinguish healthy subjects from patients with certain
cardiac disease. To shed new light on these problems,
we employ a new multiscale complexity measure, the
scale-dependent Lyapunov exponent (SDLE),*’ to
carry out a multiscale analysis of HRV of three types of
subjects: normal, congestive heart failure (CHF), and
atrial fibrillation (AF). We shall further compare SDLE
with other complexity measures in terms of how well
the metrics can be used to distinguish healthy subjects
from patients with CHF.

The remainder of the paper is organized as follows.
In “SDLE as a Multiscale Complexity Measure” sec-
tion, we briefly describe the SDLE, focusing on its
properties that are most relevant to HRV analysis. In
“HRV Analysis by SDLE” section, we use the SDLE to
analyze HRV, and consider how to distinguish healthy
subjects from patients with CHF. In “Distinguishing
Healthy Subjects from Patients with CHF Using Other
Complexity Measures,” we analyze HRV using other
complexity measures and compare their performance in
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FIGURE 1.
density (PSD) for the signals shown in (b, c).

distinguishing healthy subjects from patients with
CHF with that based on the SDLE. In “Concluding
Discussions,” we make a few concluding remarks.

SDLE AS A MULTISCALE COMPLEXITY
MEASURE

SDLE is defined in a phase space through consid-
eration of an ensemble of trajectories.*’ In the case of
a scalar time series x(1), x(2), ..., x(n), a suitable phase
space may be obtained by using time delay embed-
ding?>***! to construct vectors of the form:

Vi=[x(),x(i+L),....,x(i+(m—1L)], (1)

where m and L are called the embedding dimension
and the delay time, respectively. For chaotic systems,
m and L have to be chosen according to certain opti-
mization criterion.* For a stochastic process, which is
infinite-dimensional, the embedding procedure trans-
forms a self-affine stochastic process to a self-similar
process in a phase space, and often m = 2 is not only

Frequency f (Hz)

(a) The HRV data for a normal subject; (b, c) the segments of signals indicated as A and B in (a); (d, €) power spectral

sufficient, but also best illustrates a nonchaotic scaling
behavior from a finite dataset.*’

We now be more concrete. Denote the initial dis-
tance between two nearby trajectories by ¢y, and their
average distances at time ¢t and ¢t + At, respectively, by
€; and €, ;, Where At is small. The SDLE A(e,) is
defined by*’

In €r+At — In €

€At — Etei(E/)AT’ or ;L(G[) = A—l . (2)
Or equivalently by,
de dlne .
7; = Me)e, or 7 L= (). (3)

To compute SDLE, we can start from an arbitrary
number of shells,

EkSHVi_VjHSek—’_AEka k:172737"" (4)

where V;, V; are reconstructed vectors, ¢ (the radius of
the shell) and Ae¢ (the width of the shell) are arbitrarily
chosen small distances (A¢, is not necessarily a con-
stant). Then, we monitor the evolution of all pairs of



856 Hu et al.

points (V;, V;) within a shell and take average. Eq. (2)
can now be written as

o <1H || Viterar — Vj+z+Az|| —In || Vi — I/]+t||>
)“(61) - At )

(5)

where ¢ and Ar are integers in unit of the sampling
time, and the angle brackets denote average within a
shell. Note that this computational procedure is similar
to that for computing the so-called time-dependent
exponent curves.'0 2

Note that the initial set of shells serve as initial
values of the scales; through evolution of the dynamics,
they will automatically converge to the range of
inherent scales that define Eqs. (2) and (3). Also note
that when analyzing chaotic time series, the condition

=il = (m-1)L (6)

needs to be imposed when finding pairs of vectors
within a shell, to eliminate the effects of tangential
motions.* This condition is often also sufficient for an
initial scale to converge to the inherent scales.*

To better understand SDLE, it is instructive to
point out a relation between SDLE and the largest
positive Lyapunov exponent A, for true chaotic signals.
It is given by*

&

M= //l(e)p(e)de, (7)

0

where e* is a scale parameter (for example, used for re-
normalization when using Wolf e al.’s algorithm??),
p(e) is the probability density function for the scale e
given by

s (8)

where Z is a normalization constant satisfying
Jo p(e)de = 1,and C(e) is the well-known Grassberger—
Procaccia’s correlation integral.'*!°

SDLE has distinctive scaling laws for different types
of time series. Those most relevant to HRV analysis
are listed here.

1. For clean chaos on small scales, and noisy
chaos with weak noise on intermediate scales,

Ae) = 1. 9)
2. For clean chaos on large scales where memory

has been lost and for noisy chaos (including
noise-induced chaos>*!”) on small scales,

e) ~ —ylne, (10)

where y > 0 is a parameter. Recently, using
an ensemble forecasting approach, we have

proven that y = D/D(eg), where D and D(eg)
are the information dimension on infinitesimal
and an initial finite scale in ensemble fore-
casting.” When a noisy dataset is finite, due to
lack of data, D would soon saturate when m
exceeds certain value. However, if the finite
scale is quite large, D(eg) ~ m, for a wide range
of m. Therefore, y ~ 1/m when m exceeds cer-
tain value. The implications of this point to the
calculation of SDLE from HRV will be further
discussed later.

3. For white noise, when the evolution time ¢ <
(m — 1)L, where (m — 1)L is the embedding
window length, we have a scaling described by
Eq. (10)"*'3: when ¢ > (m — 1)L,

e) ~ 0. (11)

Note that noisy chaos usually has the scaling
of Eq. (10) on a much longer time scale range,
and therefore, noisy chaos is quite different
from white noise. Also note that Eq. (7) yields
A1 > 0 for white noise, when ¢ < (m — 1)L and
€ < 1. This implies that 4; > 0 obtained using
Wolf et al.’s algorithm™*® is not a sufficient
indicator of chaos.

4. For random 1/A7"! processes, where 0 <
H <1 is called the Hurst parameter which
characterizes the correlation structure of the
process: depending on whether H is smaller
than, equal to, or larger than 1/2, the process is
said to have anti-persistent, short-range, or
persistent long-range correlations,*®

Ae) ~ eV, (12)

Note the standard Brownian motion corre-
sponds to H = 1/2, and generally H < 1/2 for
HRYV 11823

To facilitate HRV analysis, we now discuss an
important concept, the characteristic scale (or limiting
scale), e.., which is defined by the scales where SDLE is
close to 0. It is closely related to the total variation or
the energy of the signal. For example, for a chaotic
system, €., defines the size of the chaotic attractor. If
one starts from ¢y < ey, then, regardless of whether
the data are deterministically chaotic or simply ran-
dom, ¢, will initially increase with time and gradually
settle around e... Consequentially, A(e,) will be positive
before ¢, reaches e... On the other hand, if one starts
from €y > €, then ¢, will simply decrease, yielding
negative A(¢,), again regardless of whether the data are
chaotic or random. When ¢, ~ e.., then A(e,) will stay
around 0. Note that typically e.. is different from the
inherent scales mentioned earlier: the latter are the
scales that define Egs. (2) or (3), but not necessarily
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imply A(¢;) =~ 0. However, in the case of white noise-
like signals, usually the only resolvable scale is the
characteristic scale, and therefore, the inherent scales
reduce to the characteristic scale. Not only so, the
range of the characteristic scale usually will be very
narrow. As we will see later, HRV of AF case belongs
to such a case.

HRV ANALYSIS BY SDLE

We examine two sets of HRV data downloaded
from the PhysioNet, http://www.physionet.org/physio
bank/database/#ecg. Detailed information on the data
analyzed in this study is summarized in Table 1. One
set contains 18 healthy subjects and 15 subjects with
CHF. The other set contains three types of HRYV,
normal, CHF, and AF, each with five subjects. The
second set is specifically designed for the December 15,
2008 special issue of Chaos, entitled Controversial
Topics in Nonlinear Science. Is the Normal Heart Rate
Chaotic? In the following analysis, we used the raw
HRYV data instead of the data with outliers filtered out.
This is because outliers contribute little to the inherent
scales in the reconstructed phase space, and therefore
do not affect calculation of SDLE. Being able to
directly work on raw HRV data without any prepro-
cessing is one of the merits of SDLE.

We have found (and will show momentarily) that
HRYV data are mostly stochastic, in the sense that the
scaling described by Eq. (9) is not observed in any
significant scale range in any of the HRV datasets, no
matter what embedding parameters are used. The
noisy nature of HRV suggests that it is best to con-
struct a phase space with m = 2, L = | when analyz-
ing a finite dataset. Below, we first discuss the general
behaviors of SDLE for HRV of the three types of
subjects, then summarize the effects of embedding
parameters and data length on the behaviors of SDLE.

Figure 2al illustrates the scaling of SDLE for HRV
of healthy subjects in general. We clearly observe the
scaling described by Eq. (10) on the smallest scales.

When Fig. 2al is re-plotted in log-log scale, as shown
in Fig. 2a2 (see Fig. 3 for an expanded scaling of the
linear region), we observe a linear-like relation on
larger scales (corresponding to where A(e) is slightly
positive), with a Hurst parameter H = 1/6.93 =~ 0.14.
Therefore, the dynamics of normal HRV also contain a
1/f-like behavior described by the scaling of Eq. (12).
Note that the scale-range where Eq. (12) holds is nec-
essary short, since H here is very small.

The behavior of SDLE for HRV of CHF subjects is
markedly different from that of normal HRV. A typ-
ical result is shown in Fig. 2bl, in semi-log scale. Note
that the value of A(e) is now much closer to zero, and
the pattern of A(e) is somewhat oscillatory. Inability to
resolve the dynamics on scales with /(¢) markedly
different from zero is a signature of high-dimensional
system.* Therefore, the dimension of HRV dynamics
in CHF subjects is much higher than that in normal
subjects. When Fig. 2bl is replotted in log—log scale, as
shown in Fig. 2b2, an approximate linear relation
emerges, almost on all scales. This suggests that HRV
in CHF subjects behaves as a 1/f process described by
Eq. (12). The slope in the figure gives a Hurst param-
eter H = 1/5.19 =~ 0.19. At this point, it should be
emphasized that the pattern of SDLE in Figs. 2a2 and
2b2 is quite different from that of fractional Brownian
motion (fBm) processes.*’” Two reasons may be that
fBm processes are linear, monofractal random pro-
cesses, while HRV dynamics are nonlinear’”** and
multifractal.'®

Finally, we examine SDLE for HRV of AF patients.
A representative result is shown in Fig. 2cl and 2c2,
in semi-log and log-log scale, respectively. We only
observe A(e) ~ 0. Bear in mind that for white noise, we
also only observe A (¢) ~ 0 (Eq. 11) when ¢ is larger
than the embedding window length. Furthermore, the
scale range resolved from HRYV of AF patients is much
narrower than those for normal and CHF HRVs,
indicating that €, defined in an average sense, is always
in an equilibrium-like state for HRV of AF subjects. In
this case, it is not meaningful to assign a scaling rela-
tion for the data. Therefore, the dynamics in HRV of

TABLE 1. A description of the data analyzed in this study.

Dataset 1 Dataset 2
Normal CHF Normal CHF AF
Number of subjects 18 15 5 5 5
Number of segments analyzed per subject 1 1 1 1 1
Segment analyzed First 30k points  First 30k points Whole data Whole data Whole data
Sampling frequency (Hz) 128 250 128 250 128
Time duration (h) ~25 ~20 ~24 ~24 ~24

The sampling frequency is for the ECG signals where RR intervals were derived.
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FIGURE 2. J(¢) curves for HRV of (a1, a2) normal, (b1, b2) CHF, and (c1, c2) AF subjects. Plots in the left panel are in semi-log
scale, while those in the right panel are in log-log scale. For better comparison, results for datasets n1rr.txt, cirr.txt, and a3rr.txt
are shown here, since they have similar length (99,791, 75,543, and 85,304 points, respectively). The results are similar when only

part of these data is used.

AF subjects are like white noise. This suggests that the
dimension of HRV of AF subjects is the highest among
the three groups.

We now summarize the effects of data length and
embedding dimension on calculating SDLE from
HRYV: (i) With fixed embedding parameters, for a long
HRYV dataset, SDLE curves corresponding to different
shells defined by Eq. (4) often do not collapse on one
another, but are parallel; similarly, the scaling of
Eq. (10) may shift horizontally when the data length

changes. However, y remains quite stable. An example
is shown in Fig. 4. (ii)) For a dataset of finite fixed
length, change of the delay time L almost has no effect
on the SDLE curve. An example is shown in Fig. 5.
(iii) For a dataset of finite fixed length, when the
embedding dimension m becomes bigger, the scale
range defining the scaling of Eq. (10) becomes shorter;
also, as pointed out when discussing Eq. (10), y is
roughly inversely proportional to m when m is large.
An example is shown in Fig. 6. (iv) The scaling of
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FIGURE 4. The variation of SDLE with data length, where
m =4, L =1. Notice the horizontal shifting of the SDLE
curves.

Eq. (12), while becoming less well defined when a
dataset becomes shorter, is independent of the
embedding dimension. This is clearly shown in Fig. 7.
Logically, this result has to hold; otherwise, H becomes
meaningless.

Next, we discuss how to distinguish between heal-
thy subjects and patients with CHF from HRV
analysis. For this purpose, we focus on the set of
HRYV with 18 normal and 15 CHF subjects. Based on
Figs. 2al and 2bl, we have devised two simple mea-
sures, or features. One is to characterize how well
the linear relation between A(e) and In € is defined.
We have quantified this by calculating the error
between a fitted straight line and the actual A(e) vs.
In e plots of Figs. 2al and 2bl. The second feature is

0.25
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0.151

0.05

-0.05 :
107" 10

FIGURE 5. The variation of SDLE with delay time L, where a
normal HRV dataset of length 10,000 is used. Different L al-
most does not change the SDLE curves.
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~0.05 —
107 10™

FIGURE 6. The variation of SDLE with m, where a normal
HRYV dataset of length of 10,000 is used. Note that when m = 4,
y ~ 1/m, as expected from our theory.

to characterize how well the characteristic scale e., is
defined. This is quantified by the ratio between two
scale ranges: the first is the scale range where Eq. (10)
is defined (roughly, from the second to the sixth point
of the A(e) curves—the first point, corresponding to
the embedding window length (m — 1)L =1, is
excluded); the second scale range is an estimation of
the width of the characteristic scale (to cope with
oscillatory behavior in this scale range, we used the
7th to the 11th point of the A(e) curves). The mean
and standard deviation of the first scale range for the
normal subjects is 0.1217 and 0.0222, respectively,
while the mean and standard deviation of the same
scale range for the CHF subjects is 0.0572 and 0.0326,
respectively. The mean and standard deviation of the
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second scale range for the normal subjects is 0.0143
and 0.010, respectively, while the mean and standard
deviation of the same scale range for the CHF

1
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€
FIGURE 7. Independence of the 1/f scaling (Eq. 12) with m,

based on a CHF dataset of length 10,000.
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subjects is 0.0433 and 0.016, respectively. The receiver
operating characteristic (ROC) curves using these two
features for distinguishing healthy subjects from
patients with CHF are shown in Fig. 8, where true
positive rates (TPR) and the false positive rates (FPR)
are defined, respectively, as the number of subjects
correctly and falsely classified divided by the number
of subjects in the corresponding group (either normal
or CHF group), when the feature parameter is set at
certain threshold value. Recall that a perfect ROC
curve is a step function, meaning TPR is always one,
while FPR linearly increases when the feature
parameter is increased. We observe that the ROC
curve for the second feature is perfect while that for
the first feature is close to perfect. Therefore, these
two features are excellent in distinguishing healthy
subjects from patients with CHF. For ease of com-
parison with other metrics to be discussed in the next
section, in Table 2, we have listed TPR values corre-
sponding to five cases of FPR, <5%, <10%, <20%,
<30%, and <40%.

(),
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FIGURE 8. Receiver operating characteristic (ROC) curves using the two features (one is to characterize how well the linear
relation between /i(c) and In ¢ is defined, and the other to characterize how well the characteristic scale c.. is defined, see “HRV
Analysis by SDLE” section for more details) derived from the SDLE (in logy, scale) in distinguishing healthy subjects from patients
with CHF: the value of feature 1(a) and feature 2(b) decrease from —0.75 to about —1.75 and from 0.40 to about —0.50 when FPR

increases from 0 to 1.

TABLE 2. Evaluation of the effectiveness of different metrics for distinguishing healthy subjects from patients with CHF.

H parameter Sample entropy Multiscale entropy
TPR TPR TPR
(threshold) (threshold) (threshold)

SDLE
Feature 1 Feature 2
TPR TPR

FPR, % (threshold) (threshold)
<5 93.33% (—0.86) 100.00% (0.39)
<10 93.33% (—0.91) 100.00% (0.38)
<20 100.00% (—1.13) 100.00% (0.32)
<30 100.00% (—1.20) 100.00% (0.25)
<40 100.00% (—1.26) 100.00% (0.17)

46.67% (0.20)
53.33% (0.16)
66.67% (0.15)
80.00% (0.12)
80.00% (0.10)

5.56% (1.82)
5.56% (1.76)
38.89% (1.19)
50.00% (1.17)
88.89% (0.96)

66.67% (1.30)
83.33% (1.19)
94.44% (1.00)
94.44% (0.88)
94.44% (0.81)

The threshold values for the parameters corresponding to the given TPR and FPR are given within the parentheses.
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DISTINGUISHING HEALTHY SUBJECTS
FROM PATIENTS WITH CHF USING
OTHER COMPLEXITY MEASURES

To evaluate the effectiveness of distinguishing
healthy subjects from patients with CHF using features
derived from the SDLE, it is important to compare
their performance with those based on other com-
plexity measures. For this purpose, we again focus on
the set of HRV with 18 healthy and 15 CHF subjects,
and consider three complexity measures, the Hurst
parameter, the sample entropy,”® and the multiscale
entropy (MSE),? which are among the most promising
complexity measures proposed for the analysis of
HRV.

Fractal Analysis of HRV Using the Hurst Parameter

One of the simplest multiscale analyses is the
structure-function based multifractal formulation.*® It
is especially convenient for the study of the ubiquitous
1/f noise, which is among the earliest and most elegant
models for HRV.?® In the literature, HRV data,
denoted as x(n), n =1, ..., are considered ‘“‘random
walk™ processes, and one examines whether the
following scaling-law holds or not,

FO () = (i) = x()[)" /0 ~ w9 (13)

where H(g) is a function of real value ¢, and
the average is taken over all possible pairs of
(x(i + m), x(i)). Large positive and negative ¢ values
emphasize large and small differences in x(7), respec-
tively. When the scaling laws described by Eq. (13)
hold, the process under investigation is said to be a
fractal process. Furthermore, if H (g) is not a constant,

(@-3

10
Iog2 m

FIGURE 9.
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the process is a multifractal; otherwise, it is a mono-
fractal. The case of ¢ = 2 is of special interest. It
characterizes the correlation structure of the dataset.
In fact, when Eq. (13) holds, the autocorrelation r(k)
for the ‘increment” process, defined as w(i) =
x(i + 1) — x(i), decays as a power-law, r(k) ~ k> ~2,
as k — oo, while the PSD for x(n), n=1,... is
EJf) ~ 1)//7@*1 H(2) is often called the Hurst
parameter, and simply denoted as H. In parallel,
F®(m) is often written as F(m), and the method based
on Eq. (13) is called fluctuation analysis (FA).

We estimated the Hurst parameter from the same
HRYV datasets analyzed by the SDLE. One typical log,
F(m) vs. logo m curve of HRV data for a normal
subject is shown in Fig. 9a. We observe that the power-
law relation is not well defined. This is because the data
sometimes appear oscillatory, as shown in Figs. 1b and
1d. If we nevertheless fit a straight line to the plot in
Fig. 9a, we find that the Hurst parameter H for the
healthy subjects is smaller than 0.5 and generally
smaller than those for the patients with CHF, consis-
tent with published results."'®* However, the accu-
racy of H as a discriminator for separating healthy
subjects from patients with CHF is not very high. This
is shown by the ROC curve in Fig. 9b and the TPR
values in Table 2.

There are many ways to estimate the Hurst
parameter, including variance-time plot, detrended
FA, and wavelet multiresolution analysis (for an in
depth discussion of these and other methods, we refer
to Gao er al.*®). While they are equivalent when
characterizing simulated random fractal processes,
some are more effective than others in characterizing
real world data. For HRV data, however, we have
found that H values estimated by different methods are

b), -

© o o
IS o o

True positive rate

o
o

0.4 0.6 0.8 1
False positive rate

0 0.2

(a) A typical log, F(m) vs. logom curve for HRV. (b) The ROC curve using the Hurst parameter in distinguishing healthy

subjects from patients with CHF. The Hurst parameter decreases from 0.22 to about 0.02 when TPR and FPR increase from 0.27 to 1

and from 0 to 1, respectively.
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always consistent with those estimated by FA. There-
fore, the low accuracy of using H to distinguish healthy
subjects from patients with CHF suggests that raw
HRYV data are not ideally fractal processes, but are
highly nonstationary, just as we have observed in
Fig. 1.

Entropy Analysis

Entropy characterizes creation of information in a
dynamical system. For a chaotic system, one of the
most important measures is the Kolmogorov entropy.
For a given finite time series, to get better statistics, the
Kolmogorov entropy is often estimated through its
tight-lower bound, the correlation entropy K>(e), by
using Grassberger—Procaccia’s algorithm'*!?:

 InCM(e) — In CH (¢
Kafe) = fim I INETTH,

(14)

where 47 is the sampling time, C"(e) is the correlation
integral based on the m-dimensional reconstructed
vectors V; and V,

N,—1 N,

. 2
Cc"(e) = A}linmmz > 0(e— Vi Vill),

(15)

i=1 j=i+1

where N is the length of the original data, N, =
N — (m — 1)L is the number of reconstructed vectors,
®(y) is the Heaviside function (1 if y >0 and 0 if y
< 0). C"*Y(e) can be computed similarly based on
the m + 1)-dimensional reconstructed vectors. When
one evaluates K, (¢) at a finite fixed scale ¢ (say 15%
or 20% of the standard deviation of the data), one
obtains the sample entropy Se.>*

(a) 1F
0.8

0.6

047}

True positive rate

027}

—

False positive rate

0 0.2 0.4 0.6 0.8 1

Next we explain MSE analysis.” Given a time series
X = {x;:t=1,2,...}, one constructs a new time series

X<b“):{xgb"):t:1,2,3,...}, hy=1,23,...,

by averaging the original series X over nonoverlapping
blocks of size by,

X = (X opr + ot xw) /by 1= 10 (16)

Note by is often called the coarse-graining parameter.
MSE involves calculating the sample entropy from the
coarse-grained time series X*), where b, = 1 corre-
sponds to the original time series.

Following Costa et al.,® we have estimated the
sample entropy at ¢ = 15% of the standard deviation of
the original HRV data and the MSE with the
smoothing scale b ranging from 1 to 20. The ROC
curve for the sample entropy is shown in Fig. 10a,
while that for the MSE at b; = 10 is shown in Fig. 10b
(See also a few TPR values listed in Table 2). Note that
the ROC curves for the MSE at other b, values are
either similar to Fig. 10b or in between Figs. 10a and
10b. We observe that the accuracy of sample entropy
as a discriminator for separating healthy subjects from
patient with CHF is as bad as (or even worse than) that
of the Hurst parameter. The MSE has major
improvements over the Hurst parameter and the
sample entropy. However, it is still much worse than
the two features derived from SDLE.

CONCLUDING DISCUSSIONS

To shed new light on determining whether HRV is
chaotic or stochastic, as well as deriving new metrics

(b)
0.8
0.6

0.4

True positive rate

0.2

0 0.2 0.4 0.6 0.8 1
False positive rate

FIGURE 10. The ROC curves using the sample entropy (a) and multiscale entropy (b) in distinguishing healthy subjects from
patients with CHF. In (a), the value of the sample entropy decreases from 1.85 to about 0.35 when TPR and FPR increase from 0.06
to 1 and from 0 to 1, respectively; in (b), the value of the decreases from 1.48 to 0.48 when TPR and FPR increase from 0.5 to 1 and

from 0 to 1, respectively.
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that can effectively distinguish healthy subjects from
patients with cardiac disease, in this paper, we have
employed SDLE to characterize HRV. We have not
observed the chaotic scaling described by Eq. (9) on
any significant scale ranges from any of the HRV
datasets analyzed here. Instead, we have found that the
dynamics in HRV of healthy subjects are characterized
by scalings of Eq. (10) and (12) on different scale
ranges, the dynamics of HRV in CHF patients are
mostly like 1/f processes, while that in AF patients are
like white noise. While none of the three types of HRV
is low-dimensional, the dimension increases from
normal to CHF to AF.

We have also considered the important problem of
distinguishing healthy subjects from patients with
CHF through HRV analysis. We have derived two
features from the SDLE, one is to characterize how
well the linear relation between A(¢) and In € is defined,
and the other to characterize how well the character-
istic scale €., is defined. We have shown that both
features are very effective in achieving this goal. The
same task is evaluated using other complexity mea-
sures, including the Hurst parameter, the sample
entropy, and the MSE. We have shown that the sample
entropy and the Hurst parameter are very in-effective.
Although MSE is a major improvement over the
sample entropy and the Hurst parameter, it is still
much less effective than the two features derived from
the SDLE.

It is important to understand the relative effective-
ness of these complexity measures in separating heal-
thy subjects from patients with CHF. While the
in-effectiveness of the Hurst parameter and the sample
entropy in distinguishing healthy subjects from
patients with CHF is, to a large extent, due to the
nonstationarity in the HRV data, it also signifies that
the HRV dynamics are neither entirely random nor
simply chaotic. Such a picture is consistent with the
scaling law of the SDLE described by Eq. (10) for
healthy subjects: the HRV dynamics for normal sub-
jects are like noisy dynamics. The MSE improves on
the sample entropy, because it contains an additional
parameter, the scale b; for smoothing, and therefore,
provides a better characterization of HRV dynamics.
However, it is still not as effective as the two features
derived from the SDLE, because the SDLE can classify
all the known types of complex time series encountered
so far, while MSE cannot.

Finally, we comment on how SDLE may deal with
nonstationarity and its potential limitations. In Gao
et al* and Hu ef al.,'® we have shown that when a
chaotic or fractal 1/f'signal is mixed with an oscillatory
signal, the positive part of SDLE will not be affected
much. This means SDLE can readily deal with certain
types of nonstationarity. The fact that SDLE can be

readily computed from raw, rather than filtered HRV
data, and that the y parameter is very insensitive to the
data length (Fig. 4) re-affirms this. Another feature
related to nonstationarity is to detect dynamical
changes in complex systems, such as to detect epileptic
seizures from EEG recordings. This may be achieved
by partitioning (long) dataset into short segments,
either with or without overlap, and computing SDLE
from each short segment. When the underlying
dynamics change, the metrics derived from the SDLE
may indicate the dynamical transitions. While these are
all attractive features of SDLE, we would like to cau-
tion that when little is known about a dataset,
improper choice of embedding parameters, or short-
ness of a dataset may prevent one from observing the
underlying scaling relations. In such situations, a safe
rule of thumb would be to systematically vary the
embedding parameters. However, if the shortness of a
dataset is the major problem, then one has to try other
methods such as random fractal theory-based
approaches.*
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