
Sketching Concepts and Computational Model ofTROLL lightM. Gogolla�, S. Conrad�, and R. Herzig�TU Braunschweig, Informatik, Abt. DatenbankenPostfach 3329, D-38023 Braunschweig, GERMANYe-mail: gogolla@idb.cs.tu-bs.deAbstractThe speci�cation language TROLL light is intended to be used for conceptualmodeling of information systems. It is designed to describe the Universe ofDiscourse (UoD) as a system of concurrently existing and interacting objects,i.e., an object community.The �rst part of the present paper introduces the various language conceptso�ered by TROLL light . TROLL light objects have observable properties mod-eled by attributes, and the behavior of objects is described by events. Possibleobject observations may be restricted by constraints, whereas event occurrencesmay be restricted to speci�ed life-cycles. TROLL light objects are organizedin an object hierarchy established by sub-object relationships. Communicationamong objects is supported by event calling.The second part of our paper outlines a simpli�ed computational model forTROLL light . After introducing signatures for collections of object descriptions(or templates as they are called in TROLL light) we explain how single states ofan object community are constructed. By parallel occurrence of a �nite set ofevents the states of object communities change. The object community itself isregarded as a graph where the nodes are the object community states reachablefrom an initial state and the edges represent transitions between states.1 Introduction

Proc. Int. Conf. Design and Implementation of Symbolic Computation Systems (DISCO'93)A. Miola (Ed.), Springer, Berlin, LNCS (1993)

Formal program speci�cation techniques have been receiving more and more attentionin recent years. Several approaches to speci�cation are studied nowadays, for exam-ple: Speci�cation of functions (VDM, Z [Jon86, BHL90]), abstract data types [EM85,EGL89, EM90, Wir90, BKL+91], predicate logic and extensions like temporal andmodal logic, semantic data models [HK87], and process speci�cation (CCS [Mil80],CSP [Hoa85], petri nets [Rei85]). But for di�erent reasons, none of the above ap-proaches seems to meet in isolation all the requirements needed for the conceptualmodeling of information systems: The speci�cation of functions and abstract data�Work reported here has been partially supported by the CEC under Grant No. 6112 (COMPASS)and BMFT under Grant No. 01 IS 203 D (KorSo).1

types does not adequately support persistent objects or the interactive nature of infor-mation systems, predicate logic seems to be too general, semantic data models do nottake into account the evolution of information systems, and process speci�cations donot reect structural aspects.The paradigm of object-orientation seems to o�er more natural ways to model systemsand to develop modular software. The two areas formal speci�cation and object-orientation are brought together by object-oriented speci�cation. In particular, object-oriented speci�cation tries to take advantage of several speci�cation techniques by com-bining their capabilities. For this extremely current research �eld semantic foundationsof object-oriented speci�cations are given for instance in [EGS90, SE91, Mes92b]. Butin addition to semantic foundations, concrete speci�cation languages for objects areneeded as well. As far as we know OBLOG [SSE87, CSS89, SSG+91, SGG+91, SRGS91]was the �rst proposal. Based on experience with this language and on results achievedin the ESPRIT BRWG IS-CORE the language TROLL [JSHS91, JSS91] was devel-oped. Other speci�cation languages for objects are ABEL [DO91], CMSL [Wie91],MONDEL [BBE+90], OS [Bre91], and � [Gab93].We did not want to re-invent the wheel, and therefore took the speci�cation languageTROLL as a basis for our language. The richness of concepts in TROLL allows us tomodel the Universe of Discourse (UoD) as adequately as possible. With this aim inmind even some partially redundant language concepts are o�ered by TROLL. Thus itwas necessary to evaluate which concepts are redundant and could be disregarded forour language. Other concepts of TROLL, like temporal logic, have been excluded forpragmatical reasons (so as to simplify animation and to make veri�cation manageable).Finally, we obtained a language with a small number of concepts and hence called itTROLL light .However, TROLL light is not just a subset of TROLL. Some details have been addedor modi�ed in order to round o� TROLL light . This was necessary because we neededa clear and balanced semantic basis for our speci�cation language. In particular wewant to stress the fact that in TROLL light classes are understood as composite objectshaving the class extension as sub-objects. Therefore in contrast to TROLL an extranotion of class is not needed in TROLL light . This leads to a more orthogonal use ofobject descriptions. Over and above that concepts like class attributes, meta-classes,or heterogeneous classes are inherent in TROLL light while they had to be introducedin TROLL by additional language features. Second TROLL light incorporates a querycalculus providing a general declarative query facility for object-oriented databases.For instance, terms of this calculus may be used in object speci�cations to describederivation rules for attributes, or to query object communities in an ad hoc manner.The paper is organized as follows. Section 2 shortly introduces the various languageconcepts o�ered by TROLL light . A more detailed presentation of TROLL light canbe found in [CGH92]. In Section 3 a simpli�ed computational model for TROLL lightis outlined. The last section discusses future work and gives some concluding remarks.2 Concepts of TROLL lightTROLL light is a language for describing static and dynamic properties of objects. Asin TROLL object descriptions are called templates in TROLL light . Because of their2

pure declarative nature templates may be compared with the notion of class found inobject-oriented programming languages. In the context of databases however, classesare also associated with class extensions so that we settled on a fresh designation.Templates show the following structure.TEMPLATE name of the templateDATA TYPES data types used in current templateTEMPLATES other templates used in current templateSUBOBJECTS slots for sub-objectsATTRIBUTES slots for attributesEVENTS event generatorsCONSTRAINTS restricting conditions on object statesVALUATION e�ect of event occurrences on attributesDERIVATION rules for derived attributesINTERACTION synchronization of events in di�erent objectsBEHAVIOR description of object behavior by a CSP-like processEND TEMPLATE;To give an example for templates let us assume that we have to describe authors. Forevery author the name, the date of birth, and the number of books sold by year haveto be stored. An author may change her name only once in her life. An appropriateTROLL light speci�cation would hence be:TEMPLATE AuthorDATA TYPES String, Date, Nat;ATTRIBUTES Name:string; BirthDate:date;SoldBooks(Year:nat):nat;EVENTS BIRTH create(Name:string, BirthDate:date);changeName(NewName:string);storeSoldBooks(Year:nat, Number:nat);DEATH destroy;VALUATION [create(N,D)] Name=N, BirthDate=D;[changeName(N)] Name=N;[storeSoldBooks(Y,NR)] SoldBooks(Y)=NR;BEHAVIOR PROCESS authorLife1 =(storeSoldBooks -> authorLife1 |changeName -> authorLife2 |destroy -> POSTMORTEM);PROCESS authorLife2 =(storeSoldBooks -> authorLife2 |destroy -> POSTMORTEM);(create -> authorLife1);END TEMPLATE;Data types are assumed to be speci�ed with a data speci�cation language. In theKorSo project we use SPECTRUM [BFG+92] as a reference language, but other pro-posals like ACT ONE [EFH83], PLUSS [Gau84], Extended ML [ST86], or OBJ3 [GW88]will do their job just as good. With the DATA TYPES section the signature of data typesis made known to the current template. For example, referring to Nat means that thedata sort nat, operations like + : nat x nat -> nat, and predicates like <= : natx nat are visible in the current template de�nition. Note that we employ a certain con-3

vention concerning the naming of data types, templates and associated sorts. We usenames starting with an upper case letter to denote data types and templates whereasthe corresponding sort names start with a lower case letter.Attributes denote observable properties of objects. They are speci�ed in the ATTRI-BUTE section of a template by a [([p1:]s1; : : : ; [pn:]sn)]:d, where a is an attributename generator, d is a sort expression determining the range of an attribute, ands1; : : : ; sn (n � 0) denote optional parameter sorts (data or object sorts). To stress themeaning of parameter sorts, optional parameter names pi might be added. The sortexpression d may be built over both data sorts and object sorts by applying prede�nedtype constructors. We have decided to include the type constructors tuple, set, bag,list, and union. Of course other choices can be made. Thereby, complex attributescan be speci�ed, e.g., data-valued, object-valued, multi-valued, composite, alternativeattributes, and so on. The interpretation of all sort expressions contains the unde�nedelement?, and therefore all attributes are optional by default. Attribute names may beprovided with parameters. For example, by the declaration SoldBooks(Year:nat):nata possibly in�nite number of attribute names like SoldBooks(1993) is introduced. Wedemand that in a given state of an object only a �nite number of attributes takes valuesdi�erent from ? such that only these attributes have to be stored. A parametrizedattribute a(s1; : : : ; sn) : s can also be viewed as an attribute a : set(tuple(s1; : : : ; sn; s)),but clearly the formerly inherent functional dependency would have to be described byan explicit constraint. The same works for parametrized sub-object constructors to bediscussed later.Incidents possibly appearing in an object's life are modeled by events. Events arespeci�ed in the EVENT section of a template by e[([p1:]s1; : : : ; [pn:]sn)], where e denotesan event generator and s1; : : : ; sn (n � 0) represent optional parameter sort expressions.To underline the meaning of parameters, optional parameter names pi may be added.Event parameters are used to de�ne the e�ects of an event occurrence on the currentstate of an object (see the explanation of the VALUATION section below), or they areused to describe the transmission of data during communication (see the explanation ofthe INTERACTION section below). Special events in an object's life cycle are the BIRTHand DEATH events with which an object's life is started or ended. Several birth or deathevents may be speci�ed for the same object. A template may have no death event, butwe require a it to have at least one birth event.The e�ect of events on attribute values is speci�ed in the VALUATION section of atemplate de�nition by valuation rules, having the following form.[{precondition}] [event descr] attr term = termSuch a rule says that immediately after an event occurrence belonging to the eventdescriptor event descr , the attribute given by the attribute term attr term has the valuedetermined by destination term. The applicability of such a rule may be restricted bya precondition, i.e., the valuation rule is applied only if the precondition is true. Itis important to note that the precondition as well as both terms are evaluated in thestate before the event occurrence. Thereby all these items may have free variableswhich however must appear in the event descriptor. An event descriptor consists of anevent generator and a (possibly empty) list of variables representing the parameters ofan event. By a concrete occurrence of such an event, these variables are instantiatedwith the actual event parameters in such a way that the precondition and the otherterms can be evaluated. 4

�� � �� �-? ?? ?- authorLife1storeSoldBooks storeSoldBookschangeNamecreate destroy destroyauthorLife2
Figure 1: Behavior of authorsTo summarize we can say that a valuation is a proposition stating that after theoccurrence of a certain event some attributes shall have some special values. Thefollowing frame rule is assumed: Attributes which are not caught by a suitable valuationrule of a given event remain unchanged. Before the birth event, all attributes of anobject are assumed to be unde�ned. Thus if the event in question is a birth event,some attributes may remain unde�ned. It is important to note that an attribute canonly be a�ected by local events, i.e., events which are speci�ed in the same templatein which the attribute is speci�ed.In the BEHAVIOR section the possible life-cycles of objects are restricted to admissibleones by the means of behavior patterns. Using an abstract characterization, behav-ior patterns are given by an event-driven machine, which will be called o-machine(o for object) in the sequel. This machine has a �nite number of behavioral states(cf. [SM92]). However, regarding an object together with its attributes we shall gener-ally get an in�nite number of object states. To achieve a compact notation within theBEHAVIOR section such an o-machine is represented by process descriptions. By processdescriptions event sequences, which an object must go through, can be speci�ed aswell as event dependent branchings. Event sequences always lead back into processes,and event alternatives, which produce the same o-machine state transitions, can belisted separated by commas. The possibility of providing every state transition with aprecondition allows for guarded events (cf. CSP [Hoa85]). We have used the keywordPOSTMORTEM within the behavior speci�cation to denote that the object vanishes. InFigure 1 the behavior of authors is visualized by the corresponding o-machine repre-sentation. Within an object description the behavior section may be missing. In thatcase life-cycles are unrestricted, i.e., it is only required for life-cycles to start with abirth event and possibly end with a death event.After dealing with the TROLL light features for simple objects we now turn to com-posite objects. In order to combine several authors in a higher-level object, classes areusually introduced as containers in object-oriented databases. Here, TROLL light doesnot support an explicit class concept. Classes are viewed as composite objects instead,and therefore classes have to be described by templates as already mentioned in thelast section. However, the means of describing the relationship between a container ob-ject and the contained objects must be added. This is done by introducing sub-objectrelationships denoting (exclusive) part-of relationships. The following example givesthe format of container objects for authors.TEMPLATE AuthorClassDATA TYPES String, Date, Nat;TEMPLATES Author;SUBOBJECTS Authors(No:nat):author;5

ATTRIBUTES DERIVED NumberOfAuthors:nat;EVENTS BIRTH createClass;addObject(No:nat,Name:string,BirthDate:date);removeObject(No:nat);DEATH destroyClass;CONSTRAINTS NumberOfAuthors<10000;DERIVATION NumberOfAuthors=CNT(Authors);INTERACTION addObject(N,S,D) >> Authors(N).create(S,D);removeObject(N) >> Authors(N).destroy;END TEMPLATE;Within the TEMPLATES section, other (existing) templates can be made known to thecurrent template. We assume templates to induce corresponding object sorts. Hencereferring to Author means that the object sort author, and the attributes and theevent generators of Author are visible in AuthorClass.An object of sort authorClass will hold �nitely many author objects as private com-ponents or sub-objects. In order to be able to distinguish several authors from a logicalpoint of view, an explicit identi�cation mechanism is needed. One way to install sucha mechanism would be to assign a unique name for each sub-object, e.g., MyAuthor,YourAuthor, : : : . Indeed, such a name allocation could be expressed in TROLL lightas followsSUBOBJECTS MyAuthor:author; YourAuthor:author; ...;But clearly, in the case of a large number of authors such a procedure is not practicable.A solution is given by parametrized sub-object constructors as shown in the example.As with parametrized attributes, a possibly in�nite number of logical sub-object nameslike Authors(42) can be de�ned by the sub-object name declaration for authors, butnot the author objects themselves. The declaration only states that in context of anobject of sort authorClass, author objects are identi�ed by a natural number. Insemantic data models the parameter No would be called a key . But the parametersneed not be related to any attributes of the objects they identify. Each logical sub-object name corresponds to an object of the appropriate object sort. Analogously toattributes, we demand that in each state only a �nite number of de�ned sub-objectsexists.Interaction rules are speci�ed in the INTERACTION part of the template de�nition.During the lifetime of an author class there will be events concerning the insertionor deletion of authors. In AuthorClass, the insertion of an author should always becombined with the creation of a new author object. In the template de�nition this isexpressed by an event calling rule addObject(N,S,D) >> Authors(N).create(S,D),where N denotes a natural number, S a string, and D a date. The general event callingscheme is expressed as[{precondition}] [src obj term.]src event descr >> [dest obj term.]dest event term .Such a rule states that whenever an event belonging to the source event descriptorsrc event descr occurs in the source object denoted by src obj term, and the precondi-tion holds, then the event denoted by the destination event term dest event term mustoccur simultaneously in the destination object denoted by dest obj term. If one of theobject terms is missing, then the corresponding event descriptor (respectively eventterm) refers to the current object. The source object term is not allowed to have free6

�� --- -�libraryworld
bookauthorAuthors(nat) Books(author,string)bookClassauthorClassAuthorIndex BookIndex

Documents(string)documentlibraryLibA documentDocuments(string)libraryLibB
Figure 2: Instance of sort libraryworldvariables, but the destination object term, the destination event term, and the precon-dition are allowed to have free variables, which however have to occur in the sourceevent descriptor. As already mentioned in the explanation of valuation rules, these freevariables are instantiated by an event occurrence corresponding to the event descriptorin such a way that the precondition and the other terms can be evaluated. In almostall cases the objects to be called for must be alive. The one and only exception is whena parent object calls for the birth of a sub-object. In this case it is even a requisitethat the destination object does not exist already.In addition to the mentioned language features TROLL light o�ers some further, moresophisticated concepts which will be mentioned only briey: Possible object states canbe restricted by explicit constraints, which are speci�ed in the CONSTRAINTS sectionof a template. Constraints are given by closed formulas. For example, an author con-tainer of sort authorClass may only be populated by less than 10000 authors. Deriv-able attributes can be speci�ed by stating derivation rules which, in fact, are closedterms. In the example we declared the attribute NumberOfAuthors of authorClassas derived. We employed the function CNT which counts the elements of a multi-valued term. Please remember that in the derivation rule Authors is a term of sortset(tuple(nat,author)). So NumberOfAuthors does not need to be set by explicitvaluation rules.Up to now we have only dealt with the description of objects (i.e., templates). In orderto attain object instances we must choose one template as the schema template, andone �xed object of the corresponding object sort as the schema object . Because theschema object is not a sub-object of any other speci�ed object it has no logical objectname. Therefore, we give the special name INIT to this object. Then we can make useof templates to derive all other object names by means of a term algebra construction.This will be shown in the next section.In Figure 2 we give an example of a possible embedding of an object of sort authorClass.The considered world consists of an object representing a library world which has two7

libraries, an author index and a book index as sub-objects. The author index andthe book index are modeled as class objects having authors respectively books as sub-objects. The libraries have (disjoint sets of) documents as sub-objects. In the �gure,objects are represented by rectangles with the corresponding object sorts standing inthe upper left corner and the logical sub-object name standing outside. Thereby, sub-object relationship is represented by putting the rectangles of the sub-objects into therectangle of their common superobject. A similiar approach for representing objectstructures graphically can be found [KS91].Within the �gure dashed lines are used to state another kind of relationship. In thespeci�cation these relationships are given by object-valued attributes. For instance,each document refers to a corresponding book, and each book refers to (a list of)authors. Thereby, object sharing is possible because several books can have com-mon authors. Furthermore, object-valued attributes can change in the course of timewhereas sub-object relationships are �xed. Therefore, object-valued attributes providea exible mechanism to model arbitrary relationships between objects.3 Simpli�ed Computational Model forTROLL lightIn this section we will outline a simpli�ed computational model for TROLL light .Indeed this model is just one of many possible models. Unluckily it is beyond thescope of this paper to discuss a general notion of model for speci�cation of templates.Our computational model serves as a basis for an animation system of the language.For this reason, we use concrete set- and graph-theoretical concepts to describe it.We will not go into detailed technicalities, but we will give an overview and a generaltaste how the computational model works by means of examples. We assume that acollection of TROLL light templates together with one distinguished (schema) templateis given. We �rst de�ne the data part of our model.De�nition 3.1: Data signature and data algebraA data signature �D = (SD;
D;�D) is given by� a set SD of data sorts,� a family of sets of operation symbols
D =<
D;ws >ws2S�D�SD , and� a family of sets of predicate symbols �D =< �D;w >w2S�D .We assume a data signature is interpreted by one �xed term-generated data algebraDA 2 ALG�D . The set EDA = ftL = tR j tL; tR 2 T�D ; tDAL = tDAR g denotes theequations induced on �D-terms by DA. 2The algebra DA is assumed to be speci�ed with a data speci�cation language. Nextwe de�ne signatures for template collections where the names of object sorts, and thenames and parameters of sub-object constructors, attributes, events, and o-machinestates are given.De�nition 3.2: Template collection signatureA template collection signature �O = (SO; SUBO;ATTO;EVTO;OMSO) is given by8

� a set SO of object sorts | from now on we assume S := SD [SO |,� a family of sets of sub-object symbols SUBO =< SUBO;ows >ows2SO�S��SO ,� a family of sets of attribute symbols ATTO =< ATTO;ows >ows2SO�S��S,� a family of sets of event symbols EVTO =< EVTO;ow >ow2SO�S�, and� a family of �nite sets of o-machine states OMSO =< OMS o >o2SO .The notation u : o � s1 � ::: � sn ! s stands for u 2 SUBO;os1:::sns. We assume ananalogous notation for attribute symbols, event symbols, and o-machine states. 2Example 3.3:For our running example we have the following template collection signature.SO = f author, authorClass gSUBO = f Authors : authorClass � nat ! author gATTO = f Name : author ! string,BirthDate : author ! date,SoldBooks : author � nat ! nat,NumberOfAuthors : authorClass ! nat gEVTO = f create : author � string � date,changeName : author � string,storeSoldBooks : author � nat � nat,destroy : author,createClass : authorClass,addObject : authorClass � nat � string � date,removeObject : authorClass � nat,destroyClass : authorClass gOMSO = f authorClasslife : authorClass,authorLife1, authorLife2 : author g 2After having �xed the syntax of our template collections we can de�ne a name spacefor possible objects to be considered.De�nition 3.4: Universe of possible object namesWe construct the universe of possible object names by considering the term algebragenerated by data operations in �D, sub-object operations in SUBO, and a specialconstant INIT for the object sort of the distinguished (schema) template. Additionallywe factorize this term algebra by the equations EDA:UNIV :=< T�D+SUBO+INIT;EDA;o >o2SO . 2Example 3.5:For our running example template AuthorClass is the schema template and thereforeINIT is a constant for object sort authorClass.UNIVauthorClass = f INIT gUNIVauthor = f ..., Authors(INIT,23), Authors(INIT,42), ... g 29

�� �INIT �� ��� ��� � ?�����������) PPPPPPPPPPPqAuthors(INIT,52)Authors(INIT,42)Authors(INIT,23)Figure 3: Objects in example object community stateUp to now we have only considered the template signatures. Now we will assumethat families of constraints, valuation formulas, derivation rules, interaction rules, andbehavior descriptions constitute the template speci�cations. We �rst de�ne how objectcommunity states, i.e., snapshots describing the shape of the object community aftera number of events occurred, look like.De�nition 3.6: Object community stateAn object community state is a �nite tree (N;E) with root INIT (provided N 6= ;) suchthat the conditions given next are satis�ed.� The nodes N are given as an SO-indexed family of �nite sets with Ns � UNIVs.� The edges are given by E = f(t; u(t; t1; :::; tn)) j t; u(t; t1; :::; tn) 2 Ng.� With the above it is possible to de�ne Is := (DAs if s 2 SDNs if s 2 SO .� A sub-object symbol u : o� s1 � :::� sn ! s is interpreted as a mappinguI : No � Is1 � :::� Isn ! Ns [f?g.uI : (to; t1; :::; tn) 7! (u(to; t1; :::; tn) if u(to; t1; :::; tn) 2 Ns? otherwiseEach uI is already �xed by the choice of the nodes N .� An attribute symbol a : o � s1 � ::: � sn ! s is interpreted as a mappingaI : No � Is1 � ::: � Isn ! Is [f?g. In contrast to uI the interpretation of anon-derived attribute is free.� Each object has a �xed o-machine state determined by a family of functions< �o >o2SO with �o : No ! OMS o for each o 2 SO.� The above interpretation must obey the de�nitions given for derived attributesand must ful�ll the speci�ed static constraints.The initial object community state S0 is de�ned by S0 = (;; ;). The set of all objectcommunity states is denoted by STATES. 2Example 3.7:Consider the object community state for the running example depicted in Figure 3.Here only the sub-object relationships and their tree structure but not the attributesare shown. More general graph structures with shared objects can be realized withobject-valued attributes. 10

author Authors(INIT,52) Authors(INIT,23) Authors(INIT,42)NameI 'Mailer' 'Mann' 'Sartre'BirthDateI (01.04.1929) (06.06.1875) (21.06.1905)SoldBooksI 1981 7! 300 1979 7! 400 1985 7! 6001983 7! 600 1980 7! 700�author authorLife2 authorLife1 authorLife1authorClass INITNumberOfAuthorsI 3�authorClass authorClasslifeFigure 4: Attributes and o-machine states in example object community stateThe attribute and o-machine state values for the example state are characterized bythe table in Figure 4. In the state there is an author which has already changed hisname from 'Kundera' to 'Mailer' and consequently his o-machine state is 'authorLife2'disallowing a second name change.If we had a constraint restricting authors to be born in the 20th century (for example byrequiring CONSTRAINTS BirthDate>=(01.01.1900)), then the above would not be avalid object community state. On the other hand we even get a valid object communitystate if �author maps Authors(INIT,52) to 'authorLife1'. 2So far we have not considered events. The occurrence of events changes the state of theobject community. Due to our mechanism for event calling the occurrence of one eventmay force other events to occur as well. Therefore state transitions will in general beinduced by sets of events.De�nition 3.8: Event and closed event setA possible event in an object community state (N;E) consists of an event symbole : o � s1 � ::: � sn together with appropriate actual parameters (to; t1; :::; tn) 2(No � Is1 � :::� Isn) where the �rst parameter | the object for which the event takesplace | is written in dot notation before the event symbol: to:e(t1; :::; tn). A �nite setof events fe1; :::; eng is called closed with respect to event calling, if there does not existanother event e and an interaction rule such that an event ei calls for e.The set of all possible closed events sets is denoted by EVENTS. 2De�nition 3.9: Object community state transitionsThe speci�cation of the templates determine a relationTRANSITION � STATES � EVENTS � STATESgiven as follows. Let an object community state S and a closed event set fe1; :::; engbe given. (S,fe1; :::; eng,S') 2 TRANSITION, if the following conditions are satis�ed.� The object community state S' di�ers from S only by modi�cations forced byevaluating valuation rules of events from the event set (modi�cation of attributefunctions) and by birth and death events from the event set (modi�cation of thesub-object structure). 11

� There is at most one event per object in the event set.� Each event �ts into its object's life-cycle determined by the behavior patterns.� In the state S' the o-machine states have changed in accordance with the behaviorpatterns.Recall, if S' is a valid object community state, then the constraints are satis�ed by S'.2Example 3.10:We give examples of transitions for the object community state in Example 3.7 and alsoexamples for event sets which do not induce such transitions. One possible transitionis induced by the closed event set:f INIT.addObject(37,'Mann',(27.03.1871)),Authors(INIT,37).create('Mann',(27.03.1871)) g.The state belonging to the transition is characterized as follows:� N 0authorClass = NauthorClass� N 0author = Nauthor [f Authors(INIT,37) g� Name0I = NameI [f Authors(INIT,37) 7! 'Mann' g� BirthDate0I = BirthDateI [f Authors(INIT,37) 7! (27.03.1871) g� SoldBooks0I = SoldBooksI� NumberOfAuthors0I : INIT 7! 4� �0author = �author [f Authors(INIT,37) 7! authorLife1 gAfter this, another transition may be performed by executing the closed event set:f INIT.removeObject(52), Authors(INIT,52).destroy gAs examples for events which cannot be elements of event sets inducing a state tran-sition for the state in Example 3.7 we mention the following events.� Authors(INIT,52).changeName('Kundera')� Authors(INIT,52).create('Kundera',(01.04.1929))� INIT.addObject(23,'Mann',(06.06.1875))� INIT.removeObject(13)� INIT.createClassA sequence of event sets | indeed, this is one sequence of many possible ones |leading to the state in Example 3.7 would start with f INIT.create g and then onecould sequentially create the authors 'Kundera', 'Mann', and 'Sartre'. Afterwards onecould have the �ve events updating the SoldBooks attribute. The last step could bethe event changing the Name attribute of author 'Kundera' to 'Mailer'. This sequenceof event sets has a rather non-parallel nature. But parallel occurrence of events issupported as well. Consider a situation where authors 'Kundera' and 'Mann' alreadyexist and have not changed their name. In this situation the following closed event setcould induce a state transition. 12

f INIT.addObject(42,'Sartre',(21.06.1905)),Authors(INIT,42).create('Sartre',(21.06.1905)),Authors(INIT,52).changeName('Mailer'),Authors(INIT,23).storeSoldBooks(1980,700) gThese four events occur concurrently in di�erent objects. 2We now come to our last and most important notion, namely the object community.An object community is the collection of all object community states reachable fromthe initial state together with the transitions between these states. Thus an objectcommunity reects structure and behavior of the described system.De�nition 3.11: Object communityThe semantics of a template collection speci�cation, i.e., the speci�ed object community,is a directed, connected graph where the nodes are the object community states andedges represent closed event sets. All nodes must be reachable from the initial stateS0. 2In general, the object community will be an arbitrary directed graph and not a treeor dag structure. From the initial state subsequent states are reached by performinga birth event for the (schema) object INIT. Not all possible object community statescontribute to the object community but only those which are reachable from the initialstate. Our computational model implies for instance severe restrictions on the inter-pretation of attributes: aI(to; t1; :::; tn) yields values di�erent from ? only for a �nitenumber of arguments, because only a �nite number of events lies between the initialstate and a reachable object community state.4 Conclusion and Future WorkAlthough we have now �xed the language, a lot of work remains to be done. Specialtopics for our future investigations will be formal semantics of TROLL light , animation,certi�cation, and an integrated development environment.Here, we have presented a computational model for TROLL light serving as a basis forimplementation. But what we desire is an abstract formal semantics for TROLL lightwhich is compositional. The approach presented in [Mes92a, Mes92b] seems to us verypromising since our computational model already reects the idea to have systems withstructured states and transitions between these states. On the other hand the entityalgebra approach of [Reg90] or the Berlin projection speci�cations [EPPB+90] may besuitable tools as well. A detailed overview on algebraic semantics of concurrency canbe found in [AR93].Animation is another aspect of our future studies. Formal speci�cations cannot beproved to be correct with regard to some informal description of the system to be spec-i�ed. Only validation can help to ensure that a formally speci�ed system behaves asrequired. Animation of speci�cations seems to be an important way to support valida-tion in an e�cient manner. Therefore, we develop and implement an animation systemfor TROLL light speci�cations supporting designers in validating object communitiesagainst their speci�cation. 13

Another aspect we work on is certi�cation. Consistency is an essential prerequisitefor speci�cations to be used. For instance, animation, as well as proving propertiesof speci�cations, requires consistent speci�cations. Therefore, requirements for speci-�cations to be consistent have to be worked out. Veri�cation is needed to prove theproperties of speci�cations. Writing all intended properties of some objects into theirtemplate speci�cation seems to be unrealistic, because in this way speci�cations wouldbecome larger and larger and �nally nobody would be able to read and understandsuch speci�cations.We also design an integrated development environment [VHG+93] for our speci�cationlanguage. In principle, this environment will support all phases of software develop-ment: Information analysis, formal speci�cation, animation, certi�cation, and trans-formation into executable code. Of course we do not expect that at the end of ourproject there will be a complete development environment. Consequently we are goingto implement the important parts of such a system.References[AR93] E. Astesiano and G. Reggio. Algebraic Speci�cation of Concurrency. In M. Bidoitand C. Choppy, editors, Recent Trends in Data Type Speci�cation | Proc. 8thWorkshop on Speci�cation of Abstract Data Types, pages 1{39. Springer, Berlin,LNCS 655, 1993.[BBE+90] G. v. Bochmann, M. Barbeau, M. Erradi, L. Lecomte, P. Mondain-Monval, andN. Williams. Mondel: An Object-Oriented Speci�cation Language. D�epartementd'Informatique et de Recherche Op�erationnelle, Publication 748, Universit�e deMontr�eal, 1990.[BFG+92] M. Broy, C. Facchi, R. Grosu, R. Hettler, H. Hussmann, D. Nazareth, F. Regens-burger, and K. St�len. The Requirement and Design Speci�cation LanguageSPECTRUM | An Informal Introduction (Version 0.3). Technical ReportTUM{I9140, Technische Universit�at M�unchen, 1992.[BHL90] D. Bjorner, C.A.R. Hoare, and H. Langmaack, editors. VDM'90: VDM and Z| Formal Methods in Software Development. Springer, LNCS 428, 1990.[BKL+91] M. Bidoit, H.-J. Kreowski, P. Lescanne, F. Orejas, and D. Sannella, editors.The Compass Working Group: Algebraic System Speci�cation and Development.Springer, Berlin, LNCS 501, 1991.[Bre91] R. Breu. Algebraic Speci�cation Techniques in Object Oriented ProgrammingEnvironments. Springer, LNCS 562, 1991.[CGH92] S. Conrad, M. Gogolla, and R. Herzig. TROLL light: A Core Language for Spec-ifying Objects. Informatik-Bericht 92{02, Technische Universit�at Braunschweig,1992.[CSS89] J.-F. Costa, A. Sernadas, and C. Sernadas. OBL-89 Users Manual (Version 2.3).Internal report, INESC, Lisbon, 1989.[DO91] O.-J. Dahl and O. Owe. Formal Development with ABEL. Technical Report159, University of Oslo, 1991. 14

[EFH83] H. Ehrig, W. Fey, and H. Hansen. ACT ONE: An Algebraic Speci�cation Lan-guage with Two Levels of Semantics. Technical Report 83-03, Technische Uni-versit�at Berlin, 1983.[EGL89] H.-D. Ehrich, M. Gogolla, and U.W. Lipeck. Algebraische Spezi�kation abstrakterDatentypen { Eine Einf�uhrung in die Theorie. Teubner, Stuttgart, 1989.[EGS90] H.-D. Ehrich, J. A. Goguen, and A. Sernadas. A Categorial Theory of Objects asObserved Processes. In J.W. de Bakker, W.P. de Roever, and G. Rozenberg, ed-itors, Foundations of Object-Oriented Languages (Proc. REX/FOOL Workshop,Noordwijkerhood (NL)), pages 203{228. Springer, LNCS 489, 1990.[EM85] H. Ehrig and B. Mahr. Fundamentals of Algebraic Speci�cation 1: Equationsand Initial Semantics. Springer, Berlin, 1985.[EM90] H. Ehrig and B. Mahr. Fundamentals of Algebraic Speci�cation 2: Modules andConstraints. Springer, Berlin, 1990.[EPPB+90] H. Ehrig, F. Parisi-Presicce, P. Boehm, C. Rieckho�, C. Dimitrovici, andM. Gro�e-Rhode. Combining Data Type and Recursive Process Speci�cationsUsing Projection Algebras. Theoretical Computer Science, 71:347{380, 1990.[Gab93] P. Gabriel. The Object-Based Speci�cation Language �: Concepts, Syntax, andSemantics. In M. Bidoit and C. Choppy, editors, Recent Trends in Data TypeSpeci�cation | Proc. 8th Workshop on Speci�cation of Abstract Data Types,pages 254{270, Berlin, 1993. Springer, LNCS 655.[Gau84] M.-C. Gaudel. A First Introduction to PLUSS. Technical Report, Universit�e deParis-Sud, Orsay, 1984.[GW88] J.A. Goguen and T. Winkler. Introducing OBJ3. Research Report SRI-CSL-88-9, SRI International, 1988.[HK87] R. Hull and R. King. Semantic Database Modelling: Survey, Applications, andResearch Issues. ACM Computing Surveys, 19(3):201{260, 1987.[Hoa85] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, EnglewoodCli�s (NJ), 1985.[Jon86] C.B. Jones. Systematic Software Developing Using VDM. Prentice-Hall, Engle-wood Cli�s (NJ), 1986.[JSHS91] R. Jungclaus, G. Saake, T. Hartmann, and C. Sernadas. Object-Oriented Spec-i�cation of Information Systems: The TROLL Language. Informatik-Bericht91{04, Technische Universit�at Braunschweig, 1991.[JSS91] R. Jungclaus, G. Saake, and C. Sernadas. Formal Speci�cation of Object Sys-tems. In S. Abramsky and T. Maibaum, editors, Proc. TAPSOFT'91, Brighton,pages 60{82. Springer, Berlin, LNCS 494, 1991.[KS91] G. Kappel and M. Schre. Object/Behavior Diagrams. In Proc. 7th Int. Conf.on Data Engineering, Kobe (Japan), pages 530{539, 1991.[Mes92a] J. Meseguer. A Logical Theory of Concurrent Objects and its Realization in theMaude Language. In G. Agha, P. Wegener, and A. Yonezawa, editors, ResearchDirections in Object-Based Concurrency. MIT Press, 1992. To appear.15

[Mes92b] J. Meseguer. Conditional Rewriting as a Uni�ed Model of Concurrency. Theo-retical Computer Science, 96(1):73{156, 1992.[Mil80] R. Milner. A Calculus of Communicating Systems. Springer, Berlin, 1980.[Reg90] G. Reggio. Entities: An Institution for Dynamic Systems. In H. Ehrig, K.P. Jan-tke, F. Orejas, and H. Reichel, editors, Recent Trends in Data Type Speci�cation,pages 246{265. Springer, LNCS 534, 1990.[Rei85] W. Reisig. Petri Nets: An Introduction. Springer, Berlin, 1985.[SE91] A. Sernadas and H.-D. Ehrich. What is an Object, after all? In R.A. Meers-man, W. Kent, and S. Khosla, editors, Object-Oriented Databases: Analysis,Design & Construction (DS-4), Proc. IFIP WG 2.6 Working Conference, Win-dermere (UK) 1990, pages 39{70. North-Holland, 1991.[SGG+91] C. Sernadas, P. Gouveia, J. Gouveia, A. Sernadas, and P. Resende. The Rei�-cation Dimension in Object-Oriented Database Design. In D. Harper and M. C.Norrie, editors, Proc. Int. Workshop on Speci�cation of Database Systems, pages275{299. Springer, 1991.[SM92] S. Shlaer and S.J. Mellor. Object Life Cycles: Modeling the World in States.Yourdon Press computing series, Prentice-Hall, Englewood Cli�s (NJ), 1992.[SRGS91] C. Sernadas, P. Resende, P. Gouveia, and A. Sernadas. In-the-large Object-Oriented Design of Information Systems. In F. Van Assche, B. Moulin, andC. Rolland, editors, Proc. Object-Oriented Approach in Information Systems,pages 209{232. North Holland, 1991.[SSE87] A. Sernadas, C. Sernadas, and H.-D. Ehrich. Object-Oriented Speci�cation ofDatabases: An Algebraic Approach. In P.M. Stocker and W. Kent, editors, Proc.13th Int. Conf. on Very Large Data Bases (VLDB), pages 107{116. Morgan-Kaufmann, Palo Alto, 1987.[SSG+91] A. Sernadas, C. Sernadas, P. Gouveia, P. Resende, and J. Gouveia. OBLOG| Object-Oriented Logic: An Informal Introduction. Technical report, INESC,Lisbon, 1991.[ST86] D.T. Sannella and A. Tarlecki. Extended ML: An Institution-IndependentFramework for Formal Program Development. In Proc. Workshop on CategoryTheory and Computer Programming, pages 364{389. Springer, LNCS 240, 1986.[VHG+93] N. Vlachantonis, R. Herzig, M. Gogolla, G. Denker, S. Conrad, and H.-D. Ehrich.Towards Reliable Information Systems: The KORSO Approach. In C. Rolland,F. Bodart, and C. Cauvet, editors, Advanced Information Systems Engineering,Proc. 5th CAiSE'93 Paris, pages 463{482. Springer, LNCS 685, 1993.[Wie91] R. Wieringa. Equational Speci�cation of Dynamic Objects. In R.A. Meers-man, W. Kent, and S. Khosla, editors, Object-Oriented Databases: Analysis,Design & Construction (DS-4), Proc. IFIP WG 2.6 Working Conference, Win-dermere (UK) 1990, pages 415{438. North-Holland, 1991.[Wir90] M. Wirsing. Algebraic Speci�cation. In J. Van Leeuwen, editor, Handbook ofTheoretical Computer Science, Vol. B, pages 677{788. Elsevier, North-Holland,1990. 16

