Proc. Int. Conf. Design and Implementation of Symbolic Computation Systems (DISCO’93)
A. Miola (Ed.), Springer, Berlin, LNCS (1993)

Sketching Concepts and Computational Model of
TROLL light

M. Gogolla*, S. Conrad*, and R. Herzig*
TU Braunschweig, Informatik, Abt. Datenbanken
Postfach 3329, D-38023 Braunschweig, GERMANY

e-mail: gogolla@idb.cs.tu-bs.de

Abstract

The specification language TROLL light is intended to be used for conceptual
modeling of information systems. It is designed to describe the Universe of
Discourse (UoD) as a system of concurrently existing and interacting objects,
i.e., an object community.

The first part of the present paper introduces the various language concepts
offered by TROLL light. TROLL light objects have observable properties mod-
eled by attributes, and the behavior of objects is described by events. Possible
object observations may be restricted by constraints, whereas event occurrences
may be restricted to specified life-cycles. TROLL light objects are organized
in an object hierarchy established by sub-object relationships. Communication
among objects is supported by event calling.

The second part of our paper outlines a simplified computational model for
TROLL light. After introducing signatures for collections of object descriptions
(or templates as they are called in TROLL light) we explain how single states of
an object community are constructed. By parallel occurrence of a finite set of
events the states of object communities change. The object community itself is
regarded as a graph where the nodes are the object community states reachable
from an initial state and the edges represent transitions between states.

1 Introduction

Formal program specification techniques have been receiving more and more attention
in recent years. Several approaches to specification are studied nowadays, for exam-
ple: Specification of functions (VDM, Z [Jon86, BHLI0]), abstract data types [EM85,
EGL89, EM90, Wir90, BKL*91], predicate logic and extensions like temporal and
modal logic, semantic data models [HK87], and process specification (CCS [Mil80],
CSP [Hoa85], petri nets [Rei85]). But for different reasons, none of the above ap-
proaches seems to meet in isolation all the requirements needed for the conceptual
modeling of information systems: The specification of functions and abstract data
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types does not adequately support persistent objects or the interactive nature of infor-
mation systems, predicate logic seems to be too general, semantic data models do not
take into account the evolution of information systems, and process specifications do
not reflect structural aspects.

The paradigm of object-orientation seems to offer more natural ways to model systems
and to develop modular software. The two areas formal specification and object-
orientation are brought together by object-oriented specification. In particular, object-
oriented specification tries to take advantage of several specification techniques by com-
bining their capabilities. For this extremely current research field semantic foundations
of object-oriented specifications are given for instance in [EGS90, SE91, Mes92b]. But
in addition to semantic foundations, concrete specification languages for objects are
needed as well. As far as we know OBLOG [SSE87, CSS89, SSGT91, SGGT91, SRGSI1]
was the first proposal. Based on experience with this language and on results achieved
in the ESPRIT BRWG IS-CORE the language TROLL [JSHS91, JSS91] was devel-
oped. Other specification languages for objects are ABEL [DO91], CMSL [Wie91],
MONDEL [BBE*90], OS [Bre91], and IT [Gab93].

We did not want to re-invent the wheel, and therefore took the specification language
TROLL as a basis for our language. The richness of concepts in TROLL allows us to
model the Universe of Discourse (UoD) as adequately as possible. With this aim in
mind even some partially redundant language concepts are offered by TROLL. Thus it
was necessary to evaluate which concepts are redundant and could be disregarded for
our language. Other concepts of TROLL, like temporal logic, have been excluded for
pragmatical reasons (so as to simplify animation and to make verification manageable).
Finally, we obtained a language with a small number of concepts and hence called it
TROLL light.

However, TROLL /light is not just a subset of TROLL. Some details have been added
or modified in order to round off TROLL light. This was necessary because we needed
a clear and balanced semantic basis for our specification language. In particular we
want to stress the fact that in TROLL light classes are understood as composite objects
having the class extension as sub-objects. Therefore in contrast to TROLL an extra
notion of class is not needed in TROLL [light. This leads to a more orthogonal use of
object descriptions. Over and above that concepts like class attributes, meta-classes,
or heterogeneous classes are inherent in TROLL light while they had to be introduced
in TROLL by additional language features. Second TROLL light incorporates a query
calculus providing a general declarative query facility for object-oriented databases.
For instance, terms of this calculus may be used in object specifications to describe
derivation rules for attributes, or to query object communities in an ad hoc manner.

The paper is organized as follows. Section 2 shortly introduces the various language
concepts offered by TROLL light. A more detailed presentation of TROLL light can
be found in [CGH92|. In Section 3 a simplified computational model for TROLL light
is outlined. The last section discusses future work and gives some concluding remarks.

2 Concepts of TROLL light

TROLL light is a language for describing static and dynamic properties of objects. As
in TROLL object descriptions are called templates in TROLL light. Because of their
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pure declarative nature templates may be compared with the notion of class found in
object-oriented programming languages. In the context of databases however, classes
are also associated with class extensions so that we settled on a fresh designation.
Templates show the following structure.

TEMPLATE name of the template
DATA TYPES data types used in current template
TEMPLATES  other templates used in current template
SUBOBJECTS  slots for sub-objects
ATTRIBUTES slots for attributes
EVENTS event generators
CONSTRAINTS restricting conditions on object states
VALUATION  effect of event occurrences on attributes
DERIVATION rules for derived attributes
INTERACTION synchronization of events in different objects
BEHAVIOR description of object behavior by a CSP-like process
END TEMPLATE;

To give an example for templates let us assume that we have to describe authors. For
every author the name, the date of birth, and the number of books sold by year have
to be stored. An author may change her name only once in her life. An appropriate
TROLL light specification would hence be:

TEMPLATE Author
DATA TYPES String, Date, Nat;
ATTRIBUTES Name:string; BirthDate:date;
SoldBooks (Year:nat) :nat;

EVENTS BIRTH create(Name:string, BirthDate:date);
changeName (NewName : string) ;
storeSoldBooks (Year:nat, Number:nat);

DEATH destroy;

VALUATION [create(N,D)] Name=N, BirthDate=D;
[changeName (N)] Name=N;
[storeSoldBooks (Y,NR)] SoldBooks(Y)=NR;

BEHAVIOR PROCESS authorLifel =

( storeSoldBooks -> authorLifel |
changeName -> authorLife2 |
destroy -> POSTMORTEM );

PROCESS authorLife2 =

( storeSoldBooks -> authorLife?2 |

destroy -> POSTMORTEM ) ;
( create -> authorLifel );
END TEMPLATE;

Data types are assumed to be specified with a data specification language. In the
KoRSo0 project we use SPECTRUM [BFG192] as a reference language, but other pro-
posals like ACT ONE [EFHS83], PLUSS [Gau84], Extended ML [ST86], or OBJ3 [GWS88]
will do their job just as good. With the DATA TYPES section the signature of data types
is made known to the current template. For example, referring to Nat means that the
data sort nat, operations like + : nat x nat -> nat, and predicates like <= : nat
x nat are visible in the current template definition. Note that we employ a certain con-
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vention concerning the naming of data types, templates and associated sorts. We use
names starting with an upper case letter to denote data types and templates whereas
the corresponding sort names start with a lower case letter.

Attributes denote observable properties of objects. They are specified in the ATTRI-
BUTE section of a template by a[ ([p1:]s1,-..,[pn:]sn) ]:d, where a is an attribute
name generator, d is a sort expression determining the range of an attribute, and
S1,- .., 8 (n > 0) denote optional parameter sorts (data or object sorts). To stress the
meaning of parameter sorts, optional parameter names p; might be added. The sort
expression d may be built over both data sorts and object sorts by applying predefined
type constructors. We have decided to include the type constructors tuple, set, bag,
list, and union. Of course other choices can be made. Thereby, complex attributes
can be specified, e.g., data-valued, object-valued, multi-valued, composite, alternative
attributes, and so on. The interpretation of all sort expressions contains the undefined
element L, and therefore all attributes are optional by default. Attribute names may be
provided with parameters. For example, by the declaration SoldBooks (Year:nat) :nat
a possibly infinite number of attribute names like So1dBooks (1993) is introduced. We
demand that in a given state of an object only a finite number of attributes takes values
different from L such that only these attributes have to be stored. A parametrized
attribute a(sq, ..., s,) : s can also be viewed as an attribute a : set(tuple(sy, ..., s, s)),
but clearly the formerly inherent functional dependency would have to be described by
an explicit constraint. The same works for parametrized sub-object constructors to be
discussed later.

Incidents possibly appearing in an object’s life are modeled by events. Events are
specified in the EVENT section of a template by e[([p1 :]s1, ..., [pn:]sn)], where e denotes
an event generator and si,..., s, (77 > O) represent optional parameter sort expressions.
To underline the meaning of parameters, optional parameter names p; may be added.
Event parameters are used to define the effects of an event occurrence on the current
state of an object (see the explanation of the VALUATION section below), or they are
used to describe the transmission of data during communication (see the explanation of
the INTERACTION section below). Special events in an object’s life cycle are the BIRTH
and DEATH events with which an object’s life is started or ended. Several birth or death
events may be specified for the same object. A template may have no death event, but
we require a it to have at least one birth event.

The effect of events on attribute values is specified in the VALUATION section of a
template definition by wvaluation rules, having the following form.

[{precondition}] [Levent_descr] attr_term = term

Such a rule says that immediately after an event occurrence belonging to the event
descriptor event_descr, the attribute given by the attribute term attr_term has the value
determined by destination term. The applicability of such a rule may be restricted by
a precondition, i.e., the valuation rule is applied only if the precondition is true. It
is important to note that the precondition as well as both terms are evaluated in the
state before the event occurrence. Thereby all these items may have free variables
which however must appear in the event descriptor. An event descriptor consists of an
event generator and a (possibly empty) list of variables representing the parameters of
an event. By a concrete occurrence of such an event, these variables are instantiated
with the actual event parameters in such a way that the precondition and the other
terms can be evaluated.
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Figure 1: Behavior of authors

To summarize we can say that a valuation is a proposition stating that after the
occurrence of a certain event some attributes shall have some special values. The
following frame rule is assumed: Attributes which are not caught by a suitable valuation
rule of a given event remain unchanged. Before the birth event, all attributes of an
object are assumed to be undefined. Thus if the event in question is a birth event,
some attributes may remain undefined. It is important to note that an attribute can
only be affected by local events, i.e., events which are specified in the same template
in which the attribute is specified.

In the BEHAVIOR section the possible life-cycles of objects are restricted to admissible
ones by the means of behavior patterns. Using an abstract characterization, behav-
ior patterns are given by an event-driven machine, which will be called o-machine
(o for object) in the sequel. This machine has a finite number of behavioral states
(cf. [SM92]). However, regarding an object together with its attributes we shall gener-
ally get an infinite number of object states. To achieve a compact notation within the
BEHAVIOR section such an o-machine is represented by process descriptions. By process
descriptions event sequences, which an object must go through, can be specified as
well as event dependent branchings. Event sequences always lead back into processes,
and event alternatives, which produce the same o-machine state transitions, can be
listed separated by commas. The possibility of providing every state transition with a
precondition allows for guarded events (cf. CSP [Hoa85]). We have used the keyword
POSTMORTEM within the behavior specification to denote that the object vanishes. In
Figure 1 the behavior of authors is visualized by the corresponding o-machine repre-
sentation. Within an object description the behavior section may be missing. In that
case life-cycles are unrestricted, i.e., it is only required for life-cycles to start with a
birth event and possibly end with a death event.

After dealing with the TROLL [light features for simple objects we now turn to com-
posite objects. In order to combine several authors in a higher-level object, classes are
usually introduced as containers in object-oriented databases. Here, TROLL [light does
not support an explicit class concept. Classes are viewed as composite objects instead,
and therefore classes have to be described by templates as already mentioned in the
last section. However, the means of describing the relationship between a container ob-
ject and the contained objects must be added. This is done by introducing sub-object
relationships denoting (exclusive) part-of relationships. The following example gives
the format of container objects for authors.
TEMPLATE AuthorClass

DATA TYPES String, Date, Nat;

TEMPLATES Author;

SUBOBJECTS  Authors(No:nat) :author;
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ATTRIBUTES DERIVED NumberOfAuthors:nat;
EVENTS BIRTH createClass;
addObject (No:nat,Name:string,BirthDate:date) ;
removeObject (No:nat) ;
DEATH destroyClass;
CONSTRAINTS NumberOfAuthors<10000;
DERIVATION  NumberOfAuthors=CNT (Authors) ;
INTERACTION addObject(N,S,D) >> Authors(N).create(S,D);
removeObject (N) >> Authors(N) .destroy;
END TEMPLATE;

Within the TEMPLATES section, other (existing) templates can be made known to the
current template. We assume templates to induce corresponding object sorts. Hence
referring to Author means that the object sort author, and the attributes and the
event generators of Author are visible in AuthorClass.

An object of sort authorClass will hold finitely many author objects as private com-
ponents or sub-objects. In order to be able to distinguish several authors from a logical
point of view, an explicit identification mechanism is needed. One way to install such
a mechanism would be to assign a unique name for each sub-object, e.g., MyAuthor,
YourAuthor, ... . Indeed, such a name allocation could be expressed in TROLL light
as follows

SUBOBJECTS MyAuthor:author; YourAuthor:author; ...;

But clearly, in the case of a large number of authors such a procedure is not practicable.
A solution is given by parametrized sub-object constructors as shown in the example.
As with parametrized attributes, a possibly infinite number of logical sub-object names
like Authors(42) can be defined by the sub-object name declaration for authors, but
not the author objects themselves. The declaration only states that in context of an
object of sort authorClass, author objects are identified by a natural number. In
semantic data models the parameter No would be called a key. But the parameters
need not be related to any attributes of the objects they identify. Each logical sub-
object name corresponds to an object of the appropriate object sort. Analogously to
attributes, we demand that in each state only a finite number of defined sub-objects
exists.

Interaction rules are specified in the INTERACTION part of the template definition.
During the lifetime of an author class there will be events concerning the insertion
or deletion of authors. In AuthorClass, the insertion of an author should always be
combined with the creation of a new author object. In the template definition this is
expressed by an event calling rule add0bject (N,S,D) >> Authors(N).create(S,D),
where N denotes a natural number, S a string, and D a date. The general event calling
scheme is expressed as

[{precondition}] [src_obj_term .|src_event_descr >> [dest_obj_term .|dest_event_term .

Such a rule states that whenever an event belonging to the source event descriptor
src_event_descr occurs in the source object denoted by src_obj_term, and the precondi-
tion holds, then the event denoted by the destination event term dest_event_term must
occur simultaneously in the destination object denoted by dest_obj_term. If one of the
object terms is missing, then the corresponding event descriptor (respectively event
term) refers to the current object. The source object term is not allowed to have free
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Figure 2: Instance of sort 1libraryworld

variables, but the destination object term, the destination event term, and the precon-
dition are allowed to have free variables, which however have to occur in the source
event descriptor. As already mentioned in the explanation of valuation rules, these free
variables are instantiated by an event occurrence corresponding to the event descriptor
in such a way that the precondition and the other terms can be evaluated. In almost
all cases the objects to be called for must be alive. The one and only exception is when
a parent object calls for the birth of a sub-object. In this case it is even a requisite
that the destination object does not exist already.

In addition to the mentioned language features TROLL light offers some further, more
sophisticated concepts which will be mentioned only briefly: Possible object states can
be restricted by explicit constraints, which are specified in the CONSTRAINTS section
of a template. Constraints are given by closed formulas. For example, an author con-
tainer of sort authorClass may only be populated by less than 10000 authors. Deriv-
able attributes can be specified by stating derivation rules which, in fact, are closed
terms. In the example we declared the attribute NumberOfAuthors of authorClass
as derived. We employed the function CNT which counts the elements of a multi-
valued term. Please remember that in the derivation rule Authors is a term of sort
set (tuple(nat,author)). So NumberOfAuthors does not need to be set by explicit
valuation rules.

Up to now we have only dealt with the description of objects (i.e., templates). In order
to attain object instances we must choose one template as the schema template, and
one fixed object of the corresponding object sort as the schema object. Because the
schema object is not a sub-object of any other specified object it has no logical object
name. Therefore, we give the special name INIT to this object. Then we can make use
of templates to derive all other object names by means of a term algebra construction.
This will be shown in the next section.

In Figure 2 we give an example of a possible embedding of an object of sort authorClass.
The considered world consists of an object representing a library world which has two
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libraries, an author index and a book index as sub-objects. The author index and
the book index are modeled as class objects having authors respectively books as sub-
objects. The libraries have (disjoint sets of) documents as sub-objects. In the figure,
objects are represented by rectangles with the corresponding object sorts standing in
the upper left corner and the logical sub-object name standing outside. Thereby, sub-
object relationship is represented by putting the rectangles of the sub-objects into the
rectangle of their common superobject. A similiar approach for representing object
structures graphically can be found [KS91].

Within the figure dashed lines are used to state another kind of relationship. In the
specification these relationships are given by object-valued attributes. For instance,
each document refers to a corresponding book, and each book refers to (a list of)
authors. Thereby, object sharing is possible because several books can have com-
mon authors. Furthermore, object-valued attributes can change in the course of time
whereas sub-object relationships are fixed. Therefore, object-valued attributes provide
a flexible mechanism to model arbitrary relationships between objects.

3 Simplified Computational Model for
TROLL lght

In this section we will outline a simplified computational model for TROLL light.
Indeed this model is just one of many possible models. Unluckily it is beyond the
scope of this paper to discuss a general notion of model for specification of templates.
Our computational model serves as a basis for an animation system of the language.
For this reason, we use concrete set- and graph-theoretical concepts to describe it.
We will not go into detailed technicalities, but we will give an overview and a general
taste how the computational model works by means of examples. We assume that a
collection of TROLL light templates together with one distinguished (schema) template
is given. We first define the data part of our model.

Definition 3.1: Data signature and data algebra

A data signature ¥ = (Sp,Qp,IIp) is given by

e a set Sp of data sorts,
e a family of sets of operation symbols Q2 =< €2p 45 >wseSs xS and

e a family of sets of predicate symbols I, =< 1Ip,, >wess -

We assume a data signature is interpreted by one fixed term-generated data algebra
DA € ALGs,. The set Epy = {t;, = tg | tr,tp € Tx,,t?* = t£4} denotes the
equations induced on X )-terms by DA. O

The algebra DA is assumed to be specified with a data specification language. Next
we define signatures for template collections where the names of object sorts, and the
names and parameters of sub-object constructors, attributes, events, and o-machine
states are given.

Definition 3.2: Template collection signature

A template collection signature Yo = (So, SUBo, ATT o, EVT o, OMS() is given by
8



e aset Sp of object sorts — from now on we assume S := Sp U Sp —,

e a family of sets of sub-object symbols SUBo =< SUB0 ows >owseSoxS*xSo s
e a family of sets of attribute symbols ATT o =< ATT 0 ows >owseSoxS* xS,

e a family of sets of event symbols EVT o =< EVT 0 0w >owes,xs+, and

e a family of finite sets of o-machine states OMSy =< OMS, >,cs,.

The notation u : 0 X s; X ... x 5, — s stands for u € SUBg 4s,..5,s- We assume an

analogous notation for attribute symbols, event symbols, and o-machine states. O
Example 3.3:
For our running example we have the following template collection signature.

So = { author, authorClass }

SUBo = { Authors: authorClass x nat — author }

ATT, = { Name : author — string,

BirthDate : author — date,

SoldBooks : author x nat — nat,

NumberOfAuthors : authorClass — nat }
EVTo = { create: author x string x date,

changeName : author x string,

storeSoldBooks : author x nat x nat,

destroy : author,

createClass : authorClass,

addObject : authorClass x nat x string x date,

removeObject : authorClass x nat,

destroyClass : authorClass }
OMSo = { authorClasslife : authorClass,

authorLifel, authorLife2 : author }

O

After having fixed the syntax of our template collections we can define a name space
for possible objects to be considered.

Definition 3.4: Universe of possible object names

We construct the universe of possible object names by considering the term algebra
generated by data operations in X, sub-object operations in SUB(, and a special
constant INTT for the object sort of the distinguished (schema) template. Additionally
we factorize this term algebra by the equations Fp4:

UNIV =< T%,1SUB,+INIT,Epa,0 > 0cS0- U

Example 3.5:

For our running example template AuthorClass is the schema template and therefore
INIT is a constant for object sort authorClass.

UN]V;mthorC’lass - { INIT }
UNIV,uihor = { ..., Authors(INIT,23), Authors(INIT,42), ... } O
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Figure 3: Objects in example object community state

Up to now we have only considered the template signatures. Now we will assume
that families of constraints, valuation formulas, derivation rules, interaction rules, and
behavior descriptions constitute the template specifications. We first define how object
community states, i.e., snapshots describing the shape of the object community after
a number of events occurred, look like.

Definition 3.6: Object community state

An object community state is a finite tree (N, E') with root INIT (provided N # () such
that the conditions given next are satisfied.

e The nodes N are given as an Sp-indexed family of finite sets with N, C UNIV;.
e The edges are given by F = {(t, u(t, t1,....tn)) | t,u(t, t1,....,t,) € N}.
DA, ifse Sp
Ny, ifse Sy’
e A sub-object symbol v : 0 X s; X ... X s, — s is interpreted as a mapping
uyp: Ny X Iy x o x Iy, — NyU{L}.

' u(to,tl,...,tn) ifu(to,tl,...,tn) € Ny
ur : (to, b1y ey ty) — { 1 othermise
Each wu; is already fixed by the choice of the nodes N.

e With the above it is possible to define [, := {

e An attribute symbol a : 0 X s; X ... X s, — s is interpreted as a mapping
ay @ No x I X .. x I, — I;U{L}. In contrast to u; the interpretation of a
non-derived attribute is free.

e FEach object has a fixed o-machine state determined by a family of functions
< 0y >oes, With 6, : N, = OMS, for each o € Sp.

e The above interpretation must obey the definitions given for derived attributes

and must fulfill the specified static constraints.

The initial object community state Sy is defined by Sy = (0, 0). The set of all object
community states is denoted by STATES. O

Example 3.7:

Consider the object community state for the running example depicted in Figure 3.
Here only the sub-object relationships and their tree structure but not the attributes
are shown. More general graph structures with shared objects can be realized with
object-valued attributes.
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author Authors(INTT,52) | Authors(INIT,23) | Authors(INIT,42)

Name; "Mailer’ "Mann’ ‘Sartre’

BirthDate; (01.04.1929) (06.06.1875) (21.06.1905)

SoldBooks; 1981 +— 300 1979 — 400 1985 — 600
1983 +— 600 1980 — 700

Oauthor authorLife2 authorLifel authorLifel

authorClass INIT

NumberOfAuthors; 3

OauthorClass authorClasslife

Figure 4: Attributes and o-machine states in example object community state

The attribute and o-machine state values for the example state are characterized by
the table in Figure 4. In the state there is an author which has already changed his
name from 'Kundera’ to "Mailer” and consequently his o-machine state is ’authorLife2’
disallowing a second name change.

If we had a constraint restricting authors to be born in the 20th century (for example by
requiring CONSTRAINTS BirthDate>=(01.01.1900)), then the above would not be a
valid object community state. On the other hand we even get a valid object community
state if dgyusnor maps Authors(INIT,52) to ’authorLifel’. O

So far we have not considered events. The occurrence of events changes the state of the
object community. Due to our mechanism for event calling the occurrence of one event
may force other events to occur as well. Therefore state transitions will in general be
induced by sets of events.

Definition 3.8: Event and closed event set

A possible event in an object community state (N, E) consists of an event symbol
e : 0X S X ..X s, together with appropriate actual parameters (t,,t,...,t,) €
(N, x I, x ... x I ) where the first parameter  the object for which the event takes
place  is written in dot notation before the event symbol: ¢,.e(t1,...,t,). A finite set
of events {e, ..., e,} is called closed with respect to event calling, if there does not exist
another event e and an interaction rule such that an event e; calls for e.

The set of all possible closed events sets is denoted by EVENTS. O

Definition 3.9: Object community state transitions
The specification of the templates determine a relation

TRANSITION C STATES x EVENTS x STATES

given as follows. Let an object community state S and a closed event set {e,...,¢e,}
be given. (S,{e;,...,e,},5") € TRANSITION, if the following conditions are satisfied.

e The object community state S’ differs from S only by modifications forced by
evaluating valuation rules of events from the event set (modification of attribute
functions) and by birth and death events from the event set (modification of the

sub-object structure).
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e There is at most one event per object in the event set.
e FEach event fits into its object’s life-cycle determined by the behavior patterns.

e In the state S’ the o-machine states have changed in accordance with the behavior
patterns.

Recall, if S” is a valid object community state, then the constraints are satisfied by S’.
O

Example 3.10:

We give examples of transitions for the object community state in Example 3.7 and also
examples for event sets which do not induce such transitions. One possible transition
is induced by the closed event set:

{ INTT.addObject(37,’"Mann’,(27.03.1871)),
Authors(INIT,37).create("Mann’,(27.03.1871)) }.

The state belonging to the transition is characterized as follows:

® jvéuthorCﬂass - ]VﬁuthorCHass
. ! = Nauthor U { Authors(INIT,37) }

author
e Name) = Name; U { Authors(INIT,37) +— 'Mann’ }

e BirthDate}, = BirthDate; U { Authors(INIT,37) — (27.03.1871) }
e SoldBooks), = SoldBooks;

e NumberOfAuthors) : INIT — 4

o ¢ = Squthor U { Authors(INIT,37) — authorLifel }

author
After this, another transition may be performed by executing the closed event set:
{ INIT.removeObject(52), Authors(INIT,52).destroy }

As examples for events which cannot be elements of event sets inducing a state tran-
sition for the state in Example 3.7 we mention the following events.

e Authors(INIT,52).changeName(’Kundera’)

e Authors(INIT,52).create('Kundera’,(01.04.1929))
e INIT.addObject(23,’Mann’,(06.06.1875))

e INIT.removeObject(13)

e INIT.createClass

A sequence of event sets indeed, this is one sequence of many possible ones

leading to the state in Example 3.7 would start with { INIT.create } and then one
could sequentially create the authors 'Kundera’, 'Mann’, and 'Sartre’. Afterwards one
could have the five events updating the SoldBooks attribute. The last step could be
the event changing the Name attribute of author 'Kundera’ to "Mailer’. This sequence
of event sets has a rather non-parallel nature. But parallel occurrence of events is
supported as well. Consider a situation where authors 'Kundera’ and "Mann’ already
exist and have not changed their name. In this situation the following closed event set

could induce a state transition.
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{ INIT.addObject(42,’Sartre’,(21.06.1905)),
Authors(INTT,42).create(’Sartre’,(21.06.1905)),
Authors(INIT,52).changeName(’"Mailer’),
Authors(INIT,23).storeSoldBooks(1980,700) }

These four events occur concurrently in different objects. O

We now come to our last and most important notion, namely the object community.
An object community is the collection of all object community states reachable from
the initial state together with the transitions between these states. Thus an object
community reflects structure and behavior of the described system.

Definition 3.11: Object community

The semantics of a template collection specification, i.e., the specified object community,
is a directed, connected graph where the nodes are the object community states and
edges represent closed event sets. All nodes must be reachable from the initial state
So. a

In general, the object community will be an arbitrary directed graph and not a tree
or dag structure. From the initial state subsequent states are reached by performing
a birth event for the (schema) object INIT. Not all possible object community states
contribute to the object community but only those which are reachable from the initial
state. Our computational model implies for instance severe restrictions on the inter-
pretation of attributes: a;(t,,t1, ..., t,) yields values different from L only for a finite
number of arguments, because only a finite number of events lies between the initial
state and a reachable object community state.

4 Conclusion and Future Work

Although we have now fixed the language, a lot of work remains to be done. Special
topics for our future investigations will be formal semantics of TROLL [light, animation,
certification, and an integrated development environment.

Here, we have presented a computational model for TROLL light serving as a basis for
implementation. But what we desire is an abstract formal semantics for TROLL light
which is compositional. The approach presented in [Mes92a, Mes92b| seems to us very
promising since our computational model already reflects the idea to have systems with
structured states and transitions between these states. On the other hand the entity
algebra approach of [Reg90] or the Berlin projection specifications [EPPB*90] may be
suitable tools as well. A detailed overview on algebraic semantics of concurrency can
be found in [AR93].

Animation is another aspect of our future studies. Formal specifications cannot be
proved to be correct with regard to some informal description of the system to be spec-
ified. Only validation can help to ensure that a formally specified system behaves as
required. Animation of specifications seems to be an important way to support valida-
tion in an efficient manner. Therefore, we develop and implement an animation system
for TROLL light specifications supporting designers in validating object communities
against their specification.
13



Another aspect we work on is certification. Consistency is an essential prerequisite
for specifications to be used. For instance, animation, as well as proving properties
of specifications, requires consistent specifications. Therefore, requirements for speci-
fications to be consistent have to be worked out. Verification is needed to prove the
properties of specifications. Writing all intended properties of some objects into their
template specification seems to be unrealistic, because in this way specifications would
become larger and larger and finally nobody would be able to read and understand
such specifications.

We also design an integrated development environment [VHG'93] for our specification
language. In principle, this environment will support all phases of software develop-
ment: Information analysis, formal specification, animation, certification, and trans-
formation into executable code. Of course we do not expect that at the end of our
project there will be a complete development environment. Consequently we are going
to implement the important parts of such a system.
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