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CLUSTERING OF VISUAL INFORMATION 

USING SPECTRAL METHODS 
 

ABSTRACT: Clustering is widely used in the computer vision community as a 

first step of content organisation, resulting in many different algorithms available in 

the literature. We propose a self adjustable clustering approach based on the Markov 

Random walk interpretation of pairwise data similarities. The proposed algorithm 

makes no assumption on the number of clusters present in the dataset, instead it 

recursively uncovers clusters in the data until all groups have been found. The 

algorithm is capable of automatically adjusting its parameters to new data, using 

properties of the graph-based data representation. The main advantage of the pro- 

posed approach is the algorithm’s ability to cluster data with no user interaction. By 

applying the proposed clustering algorithm to video material, we propose solutions 

for different problems in the field of video analysis. A novel shot boundary detection, 

and key frame extraction method based on the self adjustable recursive clustering is 

proposed. It utilises the information about cluster properties to find different types 

of shot changes. By extending the shot boundary detection approach and including 

the temporal information, a method for scene detection and redundancy removal 

is created. Scenes are found by letting each frame belong to a number of different 

clusters instead of assigning each frame with one cluster label. The coverage of each 

cluster is defined to describe fuzzy clusters, in order to merge clusters that belong 

to the same scene. Detected scenes are then used to find similar patterns in the 

eigenvector space by the proposed redundancy removal algorithm. These patterns 

are used to detect repetitive segments, which are used to remove redundant infor- 

mation from the original video. Finally by introducing the context-based domain 

information we propose a clustering based summarisation technique for news and 

surveillance videos. 
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Chapter 1 

INTRODUCTION 

As we enter the 21st century the process of acquiring the right information at 
the right moment can be seen as the most important prerequisite of a successful and 
efficient everyday life. With the number of interconnected users increasing every 
day, growing stocks of available data lead to significant research efforts in the task 
of organising, storing and delivering information. Over the years a need for efficient 
information management has resulted in a move from text based to content based 
information systems. Modern multimedia documents use pictures, texts, and audio 
signals to carry specific information. Development of information systems able to 
find and retrieve documents by content is a goal of many research initiatives in the 
field of information retrieval. The work described in this thesis is motivated by the 
fact that the current state of these systems is still in its infancy, and that there are 
many challenges, and open questions still waiting to be answered. 

 

1.1 Information Management Systems 

From the early stages of human progress, people looked for efficient ways to com- 
municate as the possession of useful knowledge often meant a difference between life 
and death. During the aeons of human evolution the means of sharing information 
evolved from primitive cave paintings to modern information systems. Even though 
means of communication changed over time the main purpose was the same: to 
pass information between people. Historically, communication systems started with 
sounds and movements and over time included signs and pictures. Early commu- 
nication systems resulted in historical records on papyrus, temple and tomb walls 
or clay tablets. Together with technological progress, means of communication im- 
proved too, resulting in the creation of printing machines in the industrial era. The 
invention of printing machines automated the process of saving and passing infor- 
mation in the form of books and printed documents. Over a long period of time, 
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since the first written documents were made, the written documents were the main 
source of information. Except in everyday activities communication systems were 
also used for knowledge-sharing purposes. Either by saving important information 
for future generations, or by distributing available knowledge to different groups, 
a critical mass of educated people is created, a process which can be seen as the 
main initiator of human progress. Another great technological breakthrough, the 
invention of transistors in the middle of 20th century, marks the key point in the 
technological progress of information-management systems. From that point on, the 
technology is advancing at high speed using many different tracks, accelerating the 
use of radio, telegraph, television and computers. The start of the digital era meant 
all information could be processed using a computer, opening doors for automatic 
data analysis. Instead of using conventional multimedia systems such as TV, video 
and audio cassettes, visual data could now be processed, stored and consumed using 
a computer. Together with existing textual archives, new storage mediums such 
as magnetic tapes, floppy disks and hard drives were used for information storing. 
Initially, all information stored in such a way had to be manually indexed to prevent 
the loss of useful information. Clearly this task becomes highly impractical when 
working with sheer volumes of data available in modern information-management 
systems. Another key point in the technological progress of information technologies 
is the emerging of the Internet. The Internet provided better means for information 
sharing, than any of the existing systems. This resulted in the fast development of 
tools used over the network. The most important property of the Internet is the big 
number of users, which steers the progress of information technologies. 

 

1.2 Problem Definition 

These technological advances made available huge amount of data to every person 
sitting in front of a computer and surfing the web. Huge stocks of multimedia 
items make it more difficult for users to find right information. Searching for a 
specific piece of content in a traditional multimedia database is almost impossible 
using available browsing tools, due to the semantic-gap. The semantic-gap is a 
barrier between content-representation readable to computers, and actual semantic 
meaning perceived by humans. One way of narrowing the gap between two types 
of representation is to use an army of human annotators to annotate each piece of 
content, and then apply text-based information-management techniques. However 
this is neither practical nor efficient, since the amount of multimedia content is 
huge nowadays. Content based information systems, developed on the foundations 
of traditional text-base information retrieval techniques, and are used to provide 
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more complete understanding of data then traditional information systems. Images 
and videos contain much more information than related textual meta-data, due 
to the way humans understand and convey visual information. In order to save 
information present in images and videos, and use it to create semantic relations 
between different pieces of content, modern information systems should extract the 
meaning from a signal-based representation. At the current level of technology this is 
still not possible. The main reason for this is that the low-level based representation 
of media items is not sufficient to capture the high-level meaning of the content. 
Even though it is not possible to achieve high levels of content understanding it 
is possible to improve the performance of conventional information management 
systems using different techniques for visual content analysis. Detecting groups with 
similar layout in the low-level representation space improves a system capability to 
provide users with the right piece of content. Content based information systems are 
developing in many different directions nowadays. The analysis of a video material 
can be seen as one the most challenging research tasks, since video data connect 
different modalities such as images, sounds and text. The main problem in video 
data organisation is the huge amount of visual material that needs to be processed. 
Efficient organisation and retrieval of visual information depends on the capability to 
break down a video into its elementary units, extract some information and present 
the extracted information in the proper way. We focus on two main problems in this 
thesis: the problem of efficient information extraction from a video and the problem 
of information presentation to the user. 

 

1.3 Contributions of the Thesis 
 

1.3.1 Proposed Self-Adjustable Clustering Approach 

Clustering of visual information is the first step towards the semantic based 
indexing of multimedia items [1]. The main goal of the proposed work is to cluster 
information and extract meaning from clusters using a low level data representation. 
We propose a novel clustering approach which is based on well known Normalised 
Cuts originally used in image segmentation. The main contribution of the proposed 
approach is its capability to automatically select parameters which are usually set 
by the user. The basic step in all spectral clustering algorithms is the creation of 
the similarity matrix. The structure of the similarity distribution is defined by the 
parameter σ. We propose a novel way for automatic σ selection using random walk 
interpretation of clusters. By interpreting the resulting random walk for different 
values, σ is automatically set to the value that successfully finds clusters in a data 
set. Another parameter which usually has to be known in advance, the number of 
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clusters, increases the need for human interaction. In our approach this problem 
is solved by defining stopping criteria based on the geometrical interpretation of 
eigenvectors. The geometrical interpretation of eigenvectors is based on the fact 
that the structure of an eigenvector depends directly on the structure of a data set. 
By analysing the structure of eigenvectors we give a new interpretation of clusters 
and create a framework for adjustable recursive clustering of data. Together with 
proposed solutions we give an intuitive explanation of the proposed approach. The 
adjustable recursive clustering is used in different problems of visual information 
analysis. 

 
1.3.2 Clustering of Video Data 

It is extended to find shot boundaries in a video by localising the clustering in a 
sliding window, and introducing a temporal dimension to the process of eigenvectors 
interpretation. A method for representation of visually informative segments is used 
as a first step of the video summarisation. Another application of the adjustable 
recursive clustering is the problem of scene detection and redundancy removal. By 
assigning each frame to a number of different clusters and by using a proposed 
cluster merging procedure a video is broke down into scenes which are used for fast 
video browsing. The cluster merging procedure based on temporal properties of 
clusters is used to build scenes by putting together different clusters. The proposed 
geometrical eigenvector model is used to find similar temporal patterns in scenes 
and remove redundant information. This is used in the summary creation where 
only selected segments from scenes are presented to the user. Finally context-based 
domain information is used to cluster a video and to build a summary using clusters 
as basic building blocks. 

 

1.4 Structure 

The thesis is organised as follows. Content based retrieval systems are described 
in the following chapter focusing on open issues and problems. The overview is a 
result of the literature reading, and investigation of the state of the art techniques in 
the area of: content based retrieval, data clustering and content based video retrieval. 
The state of the art overview is followed with an overview of spectral clustering al- 
gorithms. In the chapter III we describe the proposed recursive clustering approach. 
The adjustable choice of input parameters and eigenvector based stopping criteria 
are explained with main focus being on practical applications. Experiments on both 
synthetic and real world examples give more detail about proposed approach. They 
are also used to evaluate the performance of different clustering algorithms. In the 
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chapter V a shot detection method based on the proposed clustering approach is 
presented. The proposed method for scene detection and redundancy removal is 
presented in the chapter VI. It is shown how scene and redundancy detection can 
be used for Rushes summarisation and present results achieved in 2008 Trecvid. In 
chapter VII contextual information is introduced to summarise different types of 
video material. It is shown how the summarisation procedure depends on an inter- 
pretation of clusters found in a video. In chapter VIII we give directions for future 
work and conclude the thesis. 



 

 
 
 
 

Chapter 8 

CONCLUSION 

8.1 Main Accomplishments 

In this thesis we presented a novel clustering approach based on Normalised 
Cuts, a well known spectral clustering method. Spectral clustering emerged in re- 
cent years as a promising clustering tool which was mainly applied to the problem of 
image segmentation. Our approach was based on the fact that a real world problems 
algorithm should be able to produce proper results with no human interaction. We 
showed in chapter 3 solutions for two important problems in data clustering. The 
automatic choice of the parameter σ used in building the similarity, based on the 
Markov random walk interpretation, not only produced better results when com- 
pared to different clustering methods proposed in the literature, but also gave an 
intuitive explanation on why such a choice is made. By selecting σ that intro- 
duced the most information to the system, a graph representing data is connected 
maximising the ratio between connections inside clusters and connections between 
different clusters. Another important issue when clustering data is to automatically 
select the number of clusters. We proposed a solution for this problem based on 
the geometric interpretation of the eigenvector structure. By applying the recursive 
clustering defined with the proposed stopping criteria, a data set is clustered with 
no need for the number of clusters. The stopping criteria is defined to distinguish 
between different cases when there are more than one cluster in a data set and when 
all points belong to the same clusters. In order to compare the proposed approach 
to different clustering methods available in the literature experiments are done on 
2D synthetic data sets, gene expression data and on a set of images. 

By introducing a temporal dimension to the clustering problem we applied the 
proposed clustering algorithm to a problem of shot detection. We introduced a 
sliding window in which frames are clustered in order to localise the clustering. The 
proposed stopping criteria was extended so it used the temporal information in the 
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decision process. We showed how different types of transitions can be found using 
modified eigenvector interpretations, followed by the process of key frame extraction. 
We classified frames into two groups. One group contained frames which were part 
of a static scene and which are understood to hold visually important information. 
The second group of frames are frames that are part of a transition or a change in 
the video content. Both groups are found by looking at the eigenvector temporal 
structure. 

The next logical step in applying clustering to the content based video retrieval, 
is to detect scenes and redundant information in the task of video summarisation. 
Our approach is based on the fact that similar frames which are close in time should 
be put in the same scene. A scene is defined as a basic semantic video block used 
to build a summary. By clustering frames defining the coverage of each cluster, a 
number of different clusterings are produced. By merging clusters with overlapping 
coverage regions, scenes are found as unions of overlapping clusters. In order to 
select segments which are representing each scene redundant material needs to be 
removed from the summary. Our approach for redundancy removal is based on the 
fact that regions of similar visual layout results in the areas of similar patterns in 
an eigenvector space. By detecting these patterns and selecting only one segment 
to represent sets of repetitive intervals, a summary representing the original video is 
built. Such a summary is made of segments representing each scene with the level 
of detail depending on the time available for the summary. Such a summarisation 
approach is evaluated in the 2008 Trecvid resulting in a high ranking in terms of 
redundancy removal and pleasantness and rhythm of the summary. 

Finally by introducing a context in the task of video summarisation it is possible 
to extend the proposed clustering approach to find clusters for a specific applica- 
tion. For two different video types, news and surveillance, we showed how recursive 
clustering can be used in combination with contextual information to build both 
static and dynamic summaries. Since news and surveillance videos both have a 
specific structure and different purposes, a summary of such videos is built taking 
into account different properties of video. For news videos the main purpose is to 
present the most important news in a pleasant way so a user gets interested for the 
original content of a video. A news summary is built by detecting story segments 
in a video and by looking at the dominant cluster of each story segment using it 
for summary building. On the other hand surveillance videos are made of short 
and rare events which are of interest to the user. In order to build a surveillance 
summary the difference between energy levels in consecutive frames is used to find 
intervals of strong change in a video and then use these intervals in the clustering 
and summary building process. By clustering only rare events detected in the event 
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detection process the set of static and dynamic summaries are built. We presented 
both approaches together with experimental evaluation done for two types of video 
material. Interesting theoretical and practical issues based on spectral recursive 
clustering have been tackled and solved, such that the contributions presented in 
this work are manifold, as enumerated in the following: 

1. The automatic choice of parameter σ is only free parameter used in spectral 
clustering. We proposed a way to automatically select this parameter using 
the Markov random walk interpretation of the clustering problem. Also the 
proposed approach gives an intuitive explanation why such a choice is made. 

2. The stopping criterion is defined based on the second smallest eigenvector 
structure. Based on the expected eigenvector structure the decision is made 
whether the clustering should be continued or stopped. In order to initialise 
parameters used in the decision process, a learning phase may be introduced. 
Depending on data that is clustered, the user may create a set of clusters and 
use them to initialise parameters so they represent data structure better. Since 
the basic step in spectral clustering is the creation of the similarity matrix, 
which maps distance value to an unit interval, eigenvectors will have the same 
structure independently of data. This is the reason why the set of parameters 
used in the stopping criteria may be initialise with one type of data and used 
in various applications. 

3. Shot boundaries are found using clustering of frames in the interval defined 
by a sliding window. The eigenvector structure model is extended to take into 
the account the temporal dimension of the problem, and different types of shot 
boundaries are found. 

4. By clustering frames of a video and by defining the coverage area of each 
cluster a set of different clusterings of a single video is created. We defined a 
process of merging together clusters which have overlapping areas. 

5. Once the scenes are found each scene is used as a building block for a final 
summary. By looking at similar patterns in an eigenvector space, we proposed 
a way to find repetitive intervals within each scene. Each repetition is then used 
as a source of a number of segments that are used to build a summary. Scene 
detection and redundancy removal was tested on 2008 Trecvid and resulted 
in the highest ranking in redundancy removal and the third highest result in 
terms of pleasantness and rhythm. 

6. By introducing a context in the summarisation process, we proposed the sum- 
marisation of two different video types.  Surveillance and news video have 
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different structures and purposes and it is common for both video types that 
contextual information can be used to lead the clustering process towards the 
final goal. For news video different importance measures are defined and used 
to define stories over the time line. By clustering shots each story is assigned its 
cluster label and then used to build a summary. In the surveillance domain we 
used the energy difference between consecutive frames to quantify the amount 
of change in a frame, and then used this information to find frames holding 
rare events. By clustering events and analysing the cluster structure two types 
of summaries are built. 

 

8.2 Future Work 

With respect to the future work a challenging task is to improve the ability of the 
proposed clustering approach to adjust itself to new data. In terms of selecting the 
optimal σ it would mean the creation of a stable model for choosing sigma based on 
two critical σ values. The stopping criteria will be extended so the decision process 
depends on parameters which are automatically learnt from positive and negative 
examples rather then using a fixed thresholds. 

For the shot boundary detection problem an interesting direction for future work 
is to define a distance between two frames as a commute distance defined in Markov 
random walks [147]. The commute distance is also highly connected to the graph 
based methods for electrical circuit solutions [148]. Defining a random walk over set 
of frames and calculating the commute distance between each pair of frames will be 
the basis of the improved shot boundary approach. 

For video summarisation using scene detection and redundancy removal the main 
challenge is to improve the algorithm capability to detect important events in the 
scene. By extracting different low level and mid level features such as face detection 
and motion activity estimation and by combining these features with features that 
are already used in our approach, we will try to improve the algorithm performance 
in terms of ground truth inclusions. 

Summarisation of news and surveillance videos can be improved by introducing 
more contextual information. For the news videos face detection can be used to find 
anchor person shots and other shots with visually less important information. The 
results of speech recognition could be used as an additional source of information 
in video analysis and may be used to define a set of textual annotation for news 
videos. Textual information can be then combined with textual captions detected in 
the shots, and used to create the semantic relations between different stories in the 
news. For the surveillance videos the main challenge is to identify interesting events 
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properly. By describing events more completely and by using these descriptions to 
cluster events more intuitively better summaries may be created. Finally it is worth 
noting that the proposed clustering approach can be used on any type of data. Since 
the proposed clustering algorithm chooses parameters independently on data type a 
minimal level of human interaction is needed. 
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