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Recent extensions to the Intel® Architecture feature the SIMD technique to
enhance the performance of computational intensive applications that perform
the same operation on different elements in a data set. To date, much of the
code that exploits these extensions has been hand-coded. The task of the
programmer is substantially simplified, however, if a compiler does this exploi-
tation automatically. The high-performance Intel® C++/Fortran compiler
supports automatic translation of serial loops into code that uses the SIMD
extensions to the Intel® Architecture. This paper provides a detailed overview of
the automatic vectorization methods used by this compiler together with an
experimental validation of their effectiveness.
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1. INTRODUCTION

Computer designers have always tried to keep up with the demands for
high performance. At the semiconductor level, for example, the speed of
circuits has been increased and the packaging densities have been enhanced
to obtain higher performance. Due to physical limitations on the speed of
electronic components, however, other approaches to enhance performance
have been taken as well. At an architectural level, many advances have
been made that either reduce latency, i.e., the time between start and
completion of an operation, or increase bandwidth, i.e., the width and rate
of operations. (1–4)



Since the early days of supercomputing, there have been architectural
advances that utilize data parallelism to improve execution bandwidth. This
form of parallelism arises in many numerical applications in science, engi-
neering and image processing where a single operation is applied to mul-
tiple elements in a data set, usually a vector or a matrix. One way to utilize
data parallelism that has proven its effectiveness in early vector processors
(like the Cray 1 (5)) is data pipelining. In this approach, vectors of data
stream directly from memory or vector registers to pipelined functional
units (possibly chained) and back. The process of vectorization, i.e., trans-
forming serial code into vector instructions to obtain high performance,
can be a cumbersome task for programmers. Therefore, successfully using
vector processors generally depends on vectorizing compilers that can do
this process with none or little assistance of the programmer. Over the
years, compiling for vector processors, with a traditional emphasis on
Fortran programs, has become one of the more mature areas of compiling
for parallel architectures. A closely related approach to utilize data
parallelism is replication. Massively parallel supercomputers that are based
on the SIMD (single-instruction-multiple-data) technique (like the Maspar
MP-1 (6)) consists of a single control unit that dispatches instructions to an
ensemble of simple processing elements that execute each instruction
synchronously on different data items. Rewriting serial code into a form
that exploits this kind of lock-step parallelism is usually also referred to as
vectorization, although it has the added complexity of efficiently dealing
with the private memories of processing elements and the interconnection
network.

More recently, extensions to the Intel® Architecture have started to
use the SIMD technique as a way to enhance execution bandwidth in
mainstream computing. In this approach, multiple functional units operate
simultaneously on so-called packed data elements, i.e., relatively short
vectors that reside in memory or registers. Since a single instruction pro-
cesses multiple data elements in parallel, this form of instruction-level-
parallelism provides a new way to utilize data parallelism. The Pentium®

Processor with 64-bit MMX™ technology, (7, 8) for example, supports
integer operations on 8 packed bytes, 4 packed words or 2 packed dwords.
The Pentium® III Processor and Pentium® 4 Processor introduced 128-bit
SSE and SSE2 (Streaming-SIMD-Extensions), (9, 10) respectively, providing
support for floating-point operations on 4 packed single-precision and 2
packed double-precision floating-point numbers, respectively, as well as
integer operations on 16 packed bytes, 8 packed words and 4 packed
dwords in SSE2. Because from an architectural point of view, these SIMD
extensions differ from the two other approaches described above, we use
the term intra-register vectorization to specifically refer to the conversion of
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serial code into a form that utilizes the MMX™ technology or SSE/SSE2.
To date, most intra-register vectorization is done explicitly using assembly,
intrinsic functions, or language extensions. Although such explicit methods
can be very effective, there are certain advantages to letting a compiler do
(at least part of ) intra-register vectorization automatically. First, automatic
vectorization has been well studied in the past and many techniques to
convert serial code into vector form are described in the literature. (11–16)

Second, the approach is less error-prone and simplifies the task of the
programmer. Third, it enables the vectorization of existing software, which
avoids potentially huge investments that would be required to rewrite this
code into SIMD form. Finally, the approach is more flexible, because one
serial program can be mapped to different vectorized versions, each of
which is specifically tailored for the peculiarities of a particular target
architecture (cache line size, relative cost of instructions, etc.). In this
paper, we discuss the automatic intra-register vectorization methods used
by the high-performance Intel® C++/Fortran compiler. Because, as stated
above, automatic vectorization is a mature research area that is well
described in the literature, we mainly focus on the methods related specifi-
cally to intra-register vectorization.

The rest of this paper is organized as follows. In Section 2, some
preliminaries are given. Section 3 covers automatic intra-register vectoriza-
tion in detail. An experimental validation of the resulting performance is
given in Section 4. Finally, related work and conclusions are presented in
Sections 5 and 6, respectively.

2. PRELIMINARIES

In this section, we briefly introduce the MMX™ technology (7, 8) and
SSE/SSE2. (9, 10)

2.1. MMX™ Technology

The first SIMD extensions became available with the 64-bit MMX™
technology on the Pentium® Processor and Pentium® II Processor. (7, 8) This
technology consists of the following extensions.

• Eight 64-bit registers: mm0 through mm7.

• Four 64-bit integer data types: 8 packed bytes, 4 packed words,
2 packed dwords, and 1 qword.

• Instructions that operate on the 64-bit integer data types.
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Fig. 1. MMX™ technology.

As illustrated in Fig. 1, the new register set is aliased to the data regis-
ter stack of the Intel® Architecture FPU (Floating-Point Unit), mainly to
keep the MMX™ technology fully transparent to the operating system. As
a result, MMX™ code and FPU code cannot be mixed at the instruction
level. Each floating-point code section should be exited with an empty FPU
stack. Likewise, the instruction emms should be executed after each
MMX™ code section to empty the FPU tag (all other MMX™ instruc-
tions fill the entire FPU tag, which would cause subsequent FPU instruc-
tions to produce unexpected results). In the same figure, we illustrate how
the 64-bit integer data types are stored using little-endian order. The
MMX™ technology supports arithmetic, comparison, conversion, logical,
shift, and data movement instructions on the 64-bit integer data types
(examples of these appear throughout this paper).

The arithmetic MMX™ instructions simultaneously process the indi-
vidual data elements using either wrap-around arithmetic (where individual
elements are truncated to the least significant bits) or saturation arithmetic
(where individual elements are clipped to the appropriate data-range limit).
The instruction paddusb, for example, yields 8-way SIMD parallelism
by adding eight unsigned bytes in the source operand to eight unsigned
bytes in the destination operand, clipping each individual result to 0xFF
on overflow. Finally, note that although the 64-bit MMX™ technology
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operates more efficiently on memory addresses at an 8-byte boundary,
there is only one 64-bit data movement instruction movq that can be
applied to any address.

2.2. Streaming SIMD Extensions

The Pentium® III Processor introduced 128-bit SSE, which supports
SIMD instructions on packed single-precision floating-point numbers. (10)

The Pentium® 4 Processor further extended this support with 128-bit SSE2,
which features SIMD instructions on packed double-precision floating-
point numbers and integers. (9, 10) These technologies extend the Intel®

Architecture as follows.

• Eight 128-bit registers: xmm0 through xmm7.

• Two 128-bit floating-point and four 128-bit integer data types:

(a) 4 packed single-precision and 2 packed double-precision floating-
point numbers.

(b) 16 packed bytes, 8 packed words, 4 packed dwords, and 2
packed qwords.

• Instructions that operate on the 128-bit floating-point and integer
data types.

The registers form an extension to the state of the Intel® Architecture,
which must be explicitly saved and restored by the operating system during
a context switch. In Fig. 2, we illustrate how the packed data elements
are stored using little-endian order. The SSE/SSE2 instructions can be
grouped in arithmetic, comparison, conversion, logical, shift or shuffle, and
data movement instructions that operate on the 128-bit floating-point and

Fig. 2. Streaming SIMD extensions.
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integer data types (examples appear throughout the paper). Furthermore,
SSE/SSE2 supports some cacheability control instructions, such as pre-
fetching instructions.

The floating-point arithmetic instructions perform IEEE-754 compliant
operations in an SIMD fashion. For instance, the instruction addps yields
4-way SIMD parallelism by adding 4 individual single-precision floating-
point numbers in the source operand to 4 individual single-precision float-
ing-point numbers in the destination operand. The integer instructions are
mostly direct extensions of the MMX™ technology to the wider data
format. Finally, note that there are two kinds of 128-bit data movement
instructions in SSE/SSE2. Aligned moves (like movaps) transfer 128-bit
packed data between memory and a 128-bit register, or between two
128-bit registers. The memory address must be aligned at a 16-byte
boundary, or else an exception occurs. The less efficient unaligned moves
(like movups) must be used if this assumption on the alignment cannot be
made. Also, aligned memory operands can be used directly as operands of
most SIMD instructions, whereas unaligned memory operands must be
first loaded into one of the 128-bit registers, as illustrated below with two
instruction sequences that add data from memory to register xmm0.

movups xmm1, U_MEM ; add 4 SP addps xmm0, A_MEM ; add 4 SP

addps xmm0, xmm1 ; (unaligned) ; (aligned)

3. AUTOMATIC INTRA-REGISTER VECTORIZATION

Because the automatic detection of vector loops in serial code has been
well studied in the literature, (11–16) in this section we mainly focus on the
methods that are related specifically to intra-register vectorization, starting
with a brief outline of the overall organization.

3.1. Organization of Intra-Register Vectorization

The approach taken by the Intel® C++/Fortran compiler to auto-
matic intra-register vectorization is organized into three phases (a) analysis,
(b) restructuring, and (c) vector code generation, with a strong interaction
between the first two phases.

Program analysis consists of control flow, data flow and data depen-
dence analysis (14–22) to provide the compiler with useful information on
where implicit parallelism in the source program can be exploited. The data
dependence analyzer is organized as a series of tests, progressively increas-
ing in accuracy as well as time and space costs. First, the compiler tries to
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prove independence between memory references by means of simple, inex-
pensive tests. If the simple tests fail, more expensive tests are used. Even-
tually, the compiler resorts to solving the data dependence problem as an
integer linear programming problem that is attacked by the powerful but
potentially expensive Fourier–Motzkin elimination method. (23, 24)

Program restructuring focuses on converting the source program into
a form that is more amenable to analysis and, eventually, vectorization.
For example, if static data dependence analysis of a program fails to prove
independence, then the Intel® C++/Fortran compiler has the ability to
generate dynamic data dependence testing to increase the opportunities for
exploiting implicit parallelism in a program. Here, multi-version code of
a loop is generated that is guarded by an overlap test for each pair-wise
combination of accesses that could cause a data dependence. This idea is
sketched below. In the resulting code, data independence may be assumed
for the first loop.

float *p, *q;

...

for (i = L; i < = U; i++) {

p[i] = q[i];

}

Q

pL = p + 4*L; pH = p + 4*U;

qL = q + 4*L; qH = q + 4*U;

if (pH < qL || pL > qH) {

/* loop without data dependence */

for (i = L; i < = U; i++) p[i] = q[i];

}

else {

/* loop with potential overlap */

for (i = L; i < = U; i++) p[i] = q[i];

}

Other examples of transformations that are done during program restruc-
turing are traditional compiler optimizations (such as constant/copy prop-
agation and constant folding (17, 18, 21, 22)), loop transformations (such as loop
interchanging or loop distribution (14–16)), and idiom recognition (such as the
detection of reductions or MIN/MAX/ABS operators in user code).

Because vectorization only preserves lexically forward data depen-
dences, lexically backward data dependences and data dependence cycles
must be dealt with prior to a translation into vector instructions. The Intel®

compiler follows the standard approach to vector code generation. (14–16)

First, the statements in innermost loops are reordered according to a topo-
logical sort of the acyclic condensation of the data dependence graph,
which clusters statements involved in dependence cycles and makes the
dependences between all others lexically forward. Second, statements
involved in a data dependence cycle are either recognized as certain idioms
(such as reductions) or are distributed out into a loop that will remain
serial. Finally, vector code is generated for all vectorizable loops.
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3.2. Intra-Register Vectorization

Given a vectorizable loop with loop-body B(I), intra-register vector-
ization consists of strip-mining the loop with a vector length VL and
replacing the statements in B(I) by corresponding SIMD instructions that
operate on VL data elements in parallel. Below, this is sketched using
so-called subscript triplet notation to denote SIMD instructions.

DO I = 1, N DO I = 1, N, VL // assume VL evenly divides N

B(I) Q B(I:I+VL-1)

ENDDO ENDDO

Usually, the compiler must also generate some test code and a serial
cleanup loop to deal with any remaining iterations in case VL does not
evenly divide the trip count. For clarity of explanation, however, we omit
such implementation details from our code examples. The focus of this
paper is on countable loops, i.e., loops for which a runtime expression
for the trip count can be constructed. Furthermore, in order to obtain a
uniform vector length VL, the Intel® compiler only proceeds with vector-
ization of a loop if all unit stride memory references have the same type,
which is referred to as the loop type. A statement like da[i] = fa[i], where
da and fa are a double- and single-precision floating-point array, respec-
tively, will prohibit vectorization. As we will see in subsequent sections,
however, certain mixed-type loops can still be vectorized. Note that, given
a loop type, all data dependences with a distance that exceed the vector
length of the corresponding packed data type can be pruned from the data
dependence graph before deciding whether vectorization is legal. Because
for intra-register vectorization the vector lengths are relatively short
(ranging from VL=2 to VL=16), this implies that some loops that could
not be vectorized on traditional vector processors can still be converted
into MMX™ or SSE/SSE2 code.

Intra-register vectorization of a loop that operates on merely singly
typed, unit stride memory references is straightforward. Each operator or
load/store operation is replaced by an equivalent SIMD instruction, where
the precision of the individual data elements is defined by the loop-type.

For loops that operate on integer data, the MMX™ technology and
SSE2 provide SIMD instructions with 32-bit, 16-bit, and 8-bit precision for
the individual data elements (packed dwords, words and bytes, respec-
tively). Vectorization may proceed if the precision of all final results in the
original fragment is preserved. For example, given a 32-bit and 8-bit
implementation of the types int and char, respectively, the C standard (25)

dictates that the addition in the following loop should be done in 32-bit
precision (after the operands have been promoted accordingly by an implicit
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type conversion). Because eventually only an 8-bit value is stored back (again
by means of an implicit type conversion), however, the operations may be
done in lower precision 8-bit wrap-around arithmetic. When compiling for
the 64-bit MMX™ technology, this implies that 8-way SIMD parallelism can
be obtained for this loop with loop type char, as illustrated below.

char a[N], b[N], c[N]; Back: movq mm0, _b[ecx] ; load 8 bytes from b

... paddb mm0, _c[ecx] ; add 8 bytes from c

for (i = 0; i < N; i++) { movq _a[ecx], mm0 ; store 8 bytes into a

a[i] = b[i] + c[i]; add ecx, 8 ;

} cmp ecx, edi ;

jl Back ; looping logic

Vectorization is disabled, however, if higher order bits of intermediate
results can contribute to the precision of the final result. A 32-bit shift-right
operator, for instance, cannot be vectorized using only 16-bit precision,
because this could result in the loss of higher order bits that are shifted into
lower positions. Also, because the MMX™ and SSE/SSE2 instruction sets
are not fully orthogonal (there are no byte shifts, for instance), not all
integer operations can actually be vectorized.

For loops that operate on floating-point numbers, SSE/SSE2 provides
SIMD instructions with 32-bit and 64-bit precision for the individual data
elements (packed single-precision and double-precision floating-point
numbers, respectively). The binary +, − , *, and /, MIN and MAX and
unary SQRT operators are directly supported in hardware. Below, for
example, we show how 2-way SIMD parallelism is obtained by intra-register
vectorization of a double-precision loop.

double a[N], b[N], c[N]; Back: movapd xmm0, _b[ecx] ; load 2 DP from b

... mulpd xmm0, _c[ecx] ; mult 2 DP from c

for (i = 0; i < N; i++) { movapd _a[ecx], xmm0 ; store 2 DP into a

a[i] = b[i] * c[i]; add ecx, 16 ;

} cmp ecx, edi ;

jl Back ; looping logic

In addition, the Intel® C++/Fortran compiler provides a ‘‘short
vector mathematical library’’ (developed at Intel Nizhny Novgorod Labs)
with efficient software implementations for trigonometric, hyperbolic,
exponential and logarithmic functions on vectors. This library enables the
automatic intra-register vectorization of loops that contain such functions.

Intra-register vectorization of loops containing loop invariant memory
references, type conversions, induction variables, reductions, saturation
arithmetic, and conditional statements is more elaborate. In the following
sections we discuss how each of these constructs is handled.
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3.3. Scalar Expansion

It is well known that before a loop invariant memory reference (like
a constant, scalar or array with loop invariant subscripts) can be used at a
right-hand side in a vector loop, it must be expanded into a vector in a
prelude. (15) Below, we show how the punpcklbw instruction is used to
expand a byte value in the least significant byte of integer register eax into
the MMX™ register mm0.

movd mm0, eax ; |00|00|00|00|--|--|--|al|

punpcklbw mm0, mm0 ; |--|--|--|--|--|--|al|al|

punpcklbw mm0, mm0 ; |--|--|--|--|al|al|al|al|

punpcklbw mm0, mm0 ; |al|al|al|al|al|al|al|al|

Scalar expansions of a single-precision floating-point variable sp and
a double-precision floating-point variable dp into the SSE/SSE2 register
xmm0 are shown below.

movss xmm0, _sp ; |00|00|00|sp| movsd xmm0, _dp ; |00|dp|

shufps xmm0, xmm0, 0 ; |sp|sp|sp|sp| unpcklpd xmm0, xmm0 ; |dp|dp|

Similar sequences can be given for all other packed data types.
Furthermore, note that directly moving a compile-time expanded vector of
constants from a read-only data segment in memory into the appropriate
register can be used as a more efficient alternative to expand a constant.

A scalar that is defined at a left-hand side and possibly used later at a
right-hand side, exists in expanded form during execution of the vector
loop, followed by a last value assignment in a postlude (which may be
omitted if the scalar is dead on exit of the loop). A last value assignment
simply consists of moving the most significant data element back into the
appropriate scalar. In the example shown below, for instance, shuffling the
most significant element (denoted by x@63) in register xmm0 back into
memory restores the last value of x.

mov eax, -256 ;

float a[64], b[64], x; Back: ;

... movaps xmm0, _a[eax+256] ; load 4 SP from a

for (i = 0; i < 64; i++) { movaps _b[eax+256], xmm0 ; store 4 SP into b

x = a[i]; add eax, 16 ;

b[i] = x; jne Back ; looping logic

} ; |x@63|x@62|x@61|x@60|

... use of x ... shufps xmm0, xmm0, 3 ; |x@60|x@60|x@60|x@63|

movss _x, xmm0 ; store into x
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When a scalar is assigned conditionally in a loop, it is generally infea-
sible to generate the last value assignment. Likewise, a scalar that is used
before it is defined in a loop causes a carry-around behavior that may be
hard to vectorize. Vectorization of such construct only proceeds under
certain circumstances, as further discussed in Section 3.8.

3.4. Type Conversions

Given a loop that operates on integer data, all integer type conversions
that keep the data at least as wide as the precision of the loop type can
simply be ignored during intra-register vectorization (provided that higher
order bits of intermediate results cannot contribute to the precision of the
final results, as stated earlier). One example was actually already given at
the beginning of Section 3.2. Another example is shown below. Here, given
a 16-bit implementation of the type short, the compiler can simply use the
16-bit scalar expansion sequence for the 32-bit variable x.

movd xmm0, _x ; load 32-bits of x

punpcklwd xmm0, xmm0 ; and expand lower

pshufd xmm0, xmm0, 0 ; 16-bits into 8 words

short a[N], b[N], c[N]; Back: ;

int x; movdqa xmm1, _b[ecx*2] ; load 8 words from b

... pmullw xmm1, xmm0 ; mult 8 words

for (i = 0; i < N; i++) { paddw xmm1, _c[ecx*2] ; add 8 words from c

a[i] = x * b[i] + c[i]; movdqa _a[ecx*2], xmm1 ; store 8 words into a

} add ecx, 8 ;

cmp ecx, eax ;

jl Back ; looping logic

Integer type conversions with data that is narrower than the precision
of the loop type are only allowed if the conversion can be safely done
during a scalar expansion. The loop above still vectorizes, for instance, if
the type of x is changed into char (using instruction movsx prior to the
scalar expansion to implement sign-extension).

For loops operating on floating-point numbers, vectorization proceeds
in either a relaxed mode (the default) or a conservative mode (when the
compiler switch /Op for exactly preserving precision is given). In the relaxed
mode, arbitrary mixes of single-precision and double-precision floating-
point operators, constants, scalars and even simple integer sub-expressions
are allowed at right-hand sides. In the conservative mode, on the other
hand, only loops containing operations of one precision (either single-pre-
cision or double-precision floating-point) are vectorized. Vectorization of
the following loop, for instance, only proceeds in the relaxed mode.
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fld QWORD PTR _d ; load DP

float a[N], b[N]; fst DWORD PTR [esp+8] ; store SP

double d; movss [esp+8] ;

... shufps xmm0, xmm0, 0 ; expand 4 SP

for (i = 0; i < N; i++) { Back: ;

a[i] = d + b[i]; movaps xmm1, _b[ecx*4] ; load 4 SP from b

} addps xmm1, xmm0 ; add 4 SP

movaps _a[ecx*4], xmm1 ; store 4 SP into a

add ecx, 4 ;

cmp ecx, eax ;

jl Back ; looping logic

We stated earlier that vectorization only proceeds if all unit stride
memory references in a loop have the same type in order to obtain a
uniform vector length. There a several obvious exceptions to this rule,
however. Integer type conversion arising from the use of signed and
unsigned data with the same precision can be ignored, provided that all
operations can be implemented with appropriate SIMD instructions. This
is illustrated below, where an arithmetic and logical shift are used to
implement the signed and unsigned shift-right operation, respectively, as
dictated by the C standard. (25)

signed short a[N]; Back: movdqa xmm1, _b[eax*2] ; load 4 dwords from b

unsigned short b[N]; movdqa xmm0, _a[eax*2] ; load 4 dwords from a

... psrld xmm1, 2 ; shift 4 dwords by 2

for (i = 0; i < N; i++) { psrad xmm0, 2 ; shift 4 dwords by 2

a[i] = (b[i] >> 2) paddd xmm1, xmm0 ; add 4 dwords

+ (a[i] >> 2); movdqa _a[eax*2], xmm1 ; store 4 dwords into a

} add eax, 8 ;

cmp eax, ecx ;

jl Back ; looping logic

Type conversions due to mixing 32-bit integer and single-precision
floating-point unit stride memory references allow for a conversion
between vectors of the same length using the SIMD instructions cvtdq2ps
and cvtps2dq. An example of such mixed-type loop vectorization is shown
below.

float a[N], b[N]; Back: ;

int c[N]; movdqa xmm0, _c[ecx*4] ; load 4 dwords from c

... cvtdq2ps xmm1, xmm0 ; convert 4 dwords into SP

for (i = 0; i < N; i++) { mulps xmm1, _b[ecx*4] ; mult 4 SP

a[i] = b[i] * c[i]; movaps _a[ecx*4], xmm1 ; store 4 SP into a

} add ecx, 4 ;

cmp ecx, ebp ;

jl Back ; looping logic
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3.5. Induction Variables

Typically, statements that implement induction variables (17) are removed
from the vector loop and replaced by last value assignments in the post-
lude. Induction variables that appear at the right-hand side of other
statements must be dealt with explicitly, however. Consider a right-hand
expression that can be expressed as follows, where a and b denote arbitrary
loop invariant expressions and I denotes the normalized loop index that
iterates from 0 up to the trip count.

a ·I + b

To implement the first vector iteration, the compiler generates an
instruction sequence (similar to the sequences presented for scalar expan-
sion) that constructs the following vector (in little-endian order).

| ... | ... |2 ·a + b| a + b | b |

For subsequent iterations, this vector is kept up-to-date by adding the
scalar expanded value a · VL. A simple MMX™ example for bytes is shown
below (viz. a=1, b=0, VL=8). The initialization in the prelude consists of
moving a compile-time expanded vector of constants from a read-only data
segment in memory into two MMX™ registers. Subsequently, these registers
are used to implement SIMD induction in the loop-body.

movq mm1, _cnst$1 ; |8|8|8|8|8|8|8|8|

char a[128]; movq mm0, _cnst$2 ; |7|6|5|4|3|2|1|0|

... mov eax, -128 ;

for (i = 0; i < 128; i++) { Back: ;

a[i] = i; movq _a[eax+128], mm0 ; store 8 bytes into a

} paddb mm0, mm1 ; add 8 bytes

add eax, 8 ;

jne Back ; looping logic

Floating-point induction is implemented similarly. Furthermore, the
relaxed mode even allows integer induction within floating-point expres-
sions. In this case, the SIMD induction is performed directly in floating-
point arithmetic, as illustrated below (viz. a=24, b=25, VL=2).

double a[N]; int x = 0; movapd xmm1, _cnst$1 ; |48.0|48.0|

... movapd xmm0, _cnst$2 ; |49.0|25.0|

for (i = 0; i < N; i++) { Back: ;

x = x + 4; movapd _a[ecx], xmm0 ; store 2 DP into a

a[i] = 6*x+1; addpd xmm0, xmm1 ; add 2 DP

} add ecx, 16 ;

cmp ecx, edi ;

jl Back ; looping logic
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A wrap-around induction variable is a special case of a scalar with
carry-around behavior. For the loop shown below, for instance, all but the
first iteration see the value i-1 for the wrap-around induction variable j.
Vectorization of such loops may proceed after loop peeling (15) has been
applied to peel off at least one iteration, after which all uses of the wrap-
around induction variable can be replaced with the value i-1.

for (i = 0, j = N; i < N ; i++) { ... uses of j ... j = i; }

3.6. Reductions

A reduction is an operation that computes a scalar value from a set of
values. If a reduction is implemented by means of a loop, then this gives
rise to loop-carried data dependences that prohibit straightforward vector-
ization. Some reductions into a scalar variable can still be vectorized,
however, by means of a slightly more elaborate scheme.

Summing all elements of an array into a scalar accumulator, for
instance, is an example of a reduction defined by the operator +. Such a
reduction can be vectorized by resetting an SIMD register in a prelude,
adding partial results to this register in the loop using an SIMD instruction
(e.g., paddw for words), and combining these partial results into the final
result in a postlude. Below, we show how this final step can be imple-
mented for some packed data types.

Add words in mm0: Add dwords in mm0: Add SPs in xmm0: Add DPs in xmm0:

***************************************************************************

movq mm1, mm0 movq mm1, mm0 movap xmm1, xmm0 movaps xmm1, xmm0

prslq mm1, 32 prslq mm1, 32 movhlps xmm1, xmm0 unpckhpd xmm1, xmm0

paddw mm0, mm1 paddd mm0, mm1 addps xmm0, xmm1 addsd xmm0, xmm1

movq mm1, mm0 movaps xmm1, xmm0

prslq mm1, 16 shufps xmm1, xmm0, 1

paddw mm0, mm1 addss xmm0, xmm1

Figure 3 illustrates the accumulation of packed words into the lower
part of a MMX™ register. After each of these sequences, the least signifi-
cant part of the register must be added to the scalar accumulator. Similar
sequences can be given for all other packed data types.

The Intel® compiler provides similar support for the operators +, -, *,
MAX, MIN, &, and | with only trivial changes to the initial value assigned
to the SIMD register in the prelude and the operations in the vector loop
and postlude. Idiom recognition and some other supporting transformations
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Fig. 3. Accumulation of packed words.

(such as the elimination of coupled reductions) help the compiler to vec-
torize more reductions. Note that because vectorizing a reduction may
change the order in which partial results are computed, a different round
off error may result in the final answer for floating-point numbers. There-
fore, floating-point reductions are not vectorized in the conservative mode
(under /Op).

In the example shown below, idiom recognition first converts the if-
statement into the assignment statement x = MAX(a[i], x);. Subsequently,
this reduction is vectorized.

double a[N], x; movsd xmm0, _x ;

... unpcklpd xmm0, xmm0 ; expand x into 2 DP

for (i = 0; i < N; i++) { Back: ;

if (a[i] > x) { movapd xmm1, _a[eax*8] ; load 2 DP from a

x = a[i]; maxpd xmm0, xmm1 ; max 2 DP

} add eax, 2 ;

} cmp eax, ecx ;

jl Back ; looping logic

;

movapd xmm1, xmm0 ;

unpckhpd xmm1, xmm0 ;

maxsd xmm0, xmm1 ; compute final maximum

movsd _x, xmm0 ; and store into x

In general, we require that the type of the scalar used for the reduction
is equal to the loop type. An exception is formed by the accumulation of
the product of two 16-bit signed integer expressions into a 32-bit signed
integer accumulator. This mixed-type reduction can be easily implemented
using the MMX™ or SSE2 instruction pmaddw, as will be shown in
Section 4.1. Likewise, accumulating the absolute differences of unsigned
bytes is recognized as a special idiom that can use the SSE/SSE2 instruc-
tion psadbw.
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3.7. Saturation Arithmetic

Advanced instruction selection is used to vectorize particular opera-
tions that can be efficiently mapped onto SIMD instructions that perform
saturation arithmetic. Consider, for example, the following loop (the suffix
letter u denotes an unsigned constant).

unsigned char x[N];

...

for (i = 0; i < N; i++) {

x[i] = (x[i] >= 20u) ? x[i] - 20u : 0u;

}

The Intel® C++/Fortran compiler recognizes the saturation arithmetic
performed in this code fragment (if the subtraction would yield a negative
value, the result is saturated to 0x00) and converts the serial loop into the
following SIMD instructions.

movdqa xmm0, _cnst$1 ; |20u|20u|...|20u|20u|

Back: ;

movdqa xmm1, _x[eax] ; load 16 bytes from x

psubusb xmm1, xmm0 ; sat-sub 16 bytes

movdqa _x[eax], xmm1 ; store 16 bytes into x

add eax, 16 ;

cmp eax, ecx ;

jl Back ; looping logic

The automatic detection of saturation idioms in user code can be quite
elaborate. A detailed overview of how the Intel® compiler recognizes satu-
ration and related idioms is given in Ref. 26.

3.8. Conditional Statements

The Intel® compiler supports vectorization of singly nested conditional
statements by a technique called bit masking. Given an if-statement in a
loop that is under control of a condition C(I), vectorization proceeds by
generating code that constructs a bit mask for VL successive values of the
condition that has an all-ones bit mask for a TRUE value and an all-zeros
bit mask for a FALSE value. Statements in the if-statement are sub-
sequently vectorized according to the pattern below.

DO I = 1, N DO I = 1, N, VL

IF (C(I)) THEN _ G = BIT_MASK( C(I:I+VL-1) )

A(I) = B(I) A(I:I+VL-1) = (A(I:I+VL-1) & !G) | (B(I:I+VL-1) & G)
ELSE X(I:I+VL-1) = (X(I:I+VL-1) & G) | (Y(I:I+VL-1) & !G)
X(I) = Y(I) ENDDO

ENDIF

ENDDO
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For the true-branch, the final values consist of a bit-wise or of the
original values and new values that are masked by the negation of the bit
mask and by the bit mask itself, respectively. For the false-branch, the
opposite bit masking is performed. Note that because both branches are
evaluated in the resulting code, benefits from vectorization could be nulli-
fied by this additional computational overhead.2 Therefore, vectorization is

2 Another issue is that if the condition protects situations in which exceptions will occur (such
as an integer division by zero), masking may move exceptions into the execution path. For
the operations handled by the Intel® compiler, however, this problem does not occur.

disabled if the ratio of masked statements versus unmasked statements
exceeds a certain threshold.

There are some obvious ways to improve the performance of the
masked code. If A and X denote the same array, then the following
optimized pattern can be used.

DO I = 1, N, VL

G = BIT_MASK( C(I:I+VL-1) )

A(I:I+VL-1) = (Y(I:I+VL-1) & !G) | (B(I:I+VL-1) & G)
ENDDO

Within a masked expression, the following two rules (and similar
variants obtained by the commutativity of operators) are applied to hoist
common sub-expressions out of the logical operations for any of the
operators À ¥ {+, − , *, /} for the first, and À ¥ {+, − } for the second.

((E À X) & G ) | ((E À Y) & !G ) _ E À ((X & G ) | (Y & !G ))

((E À X) & G ) | ( E & !G ) _ E À (X & G )

In combination with traditional compiler optimizations (like replacing x&0
with 0), the expressions that typically arise from bit masking can be
implemented quite efficiently. The MMX™ technology and SSE/SSE2
support the construction of bit masks for conditions that are formed by
any of the relational operators (although some rewriting may be required
to construct a condition that is directly supported by an SIMD instruc-
tion). The instructions pand and pandn implement direct bit masking and
negated bit masking, respectively. The following loop, for example, can be
converted into rather compact MMX™ instructions by bit masking the
negation of a comparison with the value 10 (expanded into mm2) with the
value 1 (expanded into mm3).
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int a[N]; Back: movq mm1, _a[eax*4] ; load 2 dwords from a

... movq mm0, mm2 ; copy 2 dwords with 10

for (i = 0; i < N; i++) { pcmpgtd mm0, mm1 ; GT 2 dwords

if (a[i] < 10) pandn mm0, mm3 ; mask 2 dwords with 1

a[i] = 0; movq _a[eax*4], mm0 ; store 2 dwords into a

else add ecx, 2 ;

a[i] = 1; cmp ecx, eax ;

} jl Back ; looping logic

In general, when a scalar is assigned conditionally in a loop, efficient
vectorization may become infeasible. Vectorization of conditionally
assigned scalars only proceeds if (1) the scalar is private in the loop, i.e.,
each use of the scalar is dominated by a single definition in the loop-body
and the scalar is dead on exit of the loop, or (2) the scalar is involved in a
reduction. In the first situation, the scalar is merely used to carry a tem-
porary value into another computation, and vectorization can proceed as
if the scalar assignment is done unconditionally. The second situation is
handled by applying the bit masking technique to the computation of
partial results in the loop-body.

3.9. Static Alignment Optimizations

Since SSE/SSE2 distinguishes between aligned and unaligned data
movement instructions, the compiler uses alignment information of data
structures together with loop bound information to determine the initial
alignment of all unit stride memory references in a vector loop. For
example, if in the example shown below, the base of the 2-dimensional
array a is allocated at a 16-byte boundary, then the compiler is able to
determine that the references to this array in the j-loop always start at a
16-byte boundary, viz. each initial address is a+512*i+16.

float a[128][128]; // base of a allocated at 16-byte boundary

for (i = 0; i < 128; i++)

for (j = 4; j < n; j++) // in this loop, array references

a[i][j] = 0; // start at 16-byte boundary

Because SSE/SSE2 operations are 16 bytes wide, vectorized memory
references that start at a 16-byte boundary remain aligned in all vector
iterations, as illustrated with the access pattern at the top in Fig. 4. Such
references can be implemented efficiently as aligned loads and stores
(movaps, movapd, and movdqa) or as direct memory operands of
SSE/SSE2 instructions. If all memory references have the same initial
misalignment with respect to a 16-byte boundary, then the compiler uses
loop peeling (15) to enforce aligned access patterns within the vector loop.
For example, if in the Fortran example shown below the single-precision
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floating-point arrays A and B are both allocated at a 16-byte boundary,
then 3-fold loop peeling of the original loop converts the initial misalign-
ment 4 with respect to a 16-byte boundary for A(I) and B(I) into aligned
access patterns. Alignment properties of loop invariant memory references
(such as A(1) in this example) are simply ignored, because such references
are involved in scalar expansions.

REAL A(1:1000) A(2) = A(1) + B(2)

REAL B(1:1000) A(3) = A(1) + B(3)

... A(4) = A(1) + B(4)

DO I = 2, 1000 DO I = 5, 1000

A(I) = A(1) + B(I) _ A(I) = A(1) + B(I)

ENDDO ENDDO

In general, an initial misalignment x with respect to a 16-byte bound-
ary for a memory reference with an element size of b bytes can be resolved
by (16-x)/b-fold loop peeling, assuming that arrays are aligned at least at
an element size boundary. Unfortunately, loop peeling cannot help if dif-
ferent initial misalignments occur. In such cases, the unaligned memory
references cannot be used directly as an operand of SSE/SSE2 operations
and must be implemented using the less efficient unaligned loads and stores
(movups, movupd, and movdqu). For example, if the single-precision
floating-point array A is allocated at a 16-byte boundary, straightforward
translation of the following example yields the vector code shown below.

Back: movups xmm0, _a[eax*4+4] ; load 4 SP from A (+1)

REAL A(1:N) movups xmm1, _a[eax*4+24] ; load 4 SP from A (+6)

... mulps xmm0, xmm1 ; mult 4 SP

DO I = 1, N-6 movaps _a[eax*4], xmm0 ; store 4 SP into A

A(I) = A(I+1) * A(I+6) add eax, 4 ;

ENDDO cmp eax, edx ;

jl Back ; looping logic

An additional performance penalty must be paid for unaligned memory
references that cross a cache line boundary. Given a cache line size of 32
bytes, for example, there are three possible misaligned access patterns that
can occur after vectorization of a single-precision floating-point memory
reference in case arrays are at least allocated at an element size boundary. As
illustrated in Fig. 4, every other iteration of the vector loop will cause a
cache line split of +4, +8, or +12 bytes into the next cache line.

Some preliminary experiments revealed that movups xmm1, mem
instructions that cause such cache line splits can be implemented more
efficiently using one of the instruction sequences shown below. Similar
sequences can be given for a cache line split of +8 for the movupd and
movdqu instructions.
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Fig. 4. Cache line splits in vector access patterns.

(+4): (+8): (+12):

movlps xmm1, mem movlps xmm0, mem movss xmm1, mem

movss xmm0, mem+8 movhps xmm0, mem+8 movhps xmm1, mem+4

movhps xmm0, mem+12 movlps xmm0, mem+8

shufps xmm1, xmm0, 0x84 shufps xmm1, xmm0, 0x48

Therefore, in order to alleviate the performance penalties of cache line
splits, the compiler proceeds as follows in case some of the memory refer-
ences in a vector loop have a known initial misalignment with respect to
a cache line boundary that cannot be resolved with loop peeling. Given a
cache line size of C bytes, first C/16-fold loop unrolling (15) is applied to the
vector loop, which unifies the chunks of data handled in each iteration with
the cache line size. Subsequently, the compiler uses one of the instruction
sequences discussed above for each unaligned access in the unrolled version
that actually crosses a cache line. Finally, the compiler uses aligned
instructions for memory references at a 16-byte boundary, and uses the
unaligned load and stores for all remaining memory references with either
an unknown or harmless (mis)alignment. This scheme yields the following
more efficient code for the example shown above.

back: movups xmm1, _a[eax*4+4] ; + first unrolled vector iteration

movlps xmm0, _a[eax*4+24] ; + A(I+1) within cache line

movhps xmm0, _a[eax*4+32] ; + A(I+6) causes cache line split +8

mulps xmm1, xmm0 ; +

movaps _a[eax*4], xmm1 ; +

movlps xmm1, _a[eax*4+20] ; * second unrolled vector iteration

movss xmm0, _a[eax*4+28] ; * A(I+1) causes cache line split +4

movhps xmm0, _a[eax*4+32] ; * A(I+6) within cache line

shufps xmm1, xmm0, 0x84 ; *

movups xmm0, _a[eax*4+40] ; *

mulps xmm1, xmm0 ; *

movaps _a[eax*4+16], xmm1 ; *

add eax, 8 ;

cmp eax, edx ;

jl back ; looping logic
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Note that although the original 64-bit MMX™ technology does not
distinguish between aligned and unaligned load and stores, still perfor-
mance penalties may arise for unaligned movq instructions. In such cases,
loop peeling may be useful to enforce access patterns that start at an 8-byte
boundary, and C/8-fold loop unrolling unifies the chunks of data handled
in each iteration with a cache line size C, which enables the generation of
special instruction sequences for cache line splits.

3.10. Dynamic ALignment Optimizations

Even with aggressive analysis, the compiler may still fail to obtain
alignment information for all memory references, for example due to the
use of pointers. In such cases, the compiler must be ready to deal with each
possible alignment. The number of possible alignment combinations clearly
increases with the number of memory references in the loop-body and the
cache line size (in case special instructions for cache line splits have to be
generated). This causes a trade-off between code size and testing overhead
on one hand and vector loop performance on the other hand (using sub-
optimal implementations for certain alignment combinations vs. generating
the best possible implementation for each of the relevant alignment com-
binations). The Intel® C++/Fortran compiler deals with this trade-off by
the use of dynamic loop peeling alignment strategies, where first a few itera-
tions are executed serially until access to a certain array (preferable one
with many occurrences) becomes 16-byte aligned. At this point, the com-
piler has the choice between (a) generating a single vector loop in which the
alignment of this array is known and unaligned data movement instruc-
tions are used for all other memory references, or (b) testing the resulting
alignment of another memory reference to decide between multiple versions
of the vector loop that are optimized accordingly.

We illustrate these strategies with an example. Suppose that in the
following fragment, the alignments of the memory locations pointed to by
dx and dy are not known at compile-time.

float *dx, *dy;

...

for (i = 0; i < n; i++)

d += dx[i] * dy[i];

Under strategy (b), the following code is generated where aligned data
movement instructions can be used for both variables in the first vector
loop, whereas an unaligned data movement instruction has to be used to
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load the elements of dx in the second.3

3 This code fragment assumes that array elements are aligned at least at a 4-byte boundary. If
initially dy & 0x3 is nonzero, then the access to the array cannot be made 16-byte aligned.
The code should default to serial execution in such cases.

p = dy & 0x0f;

if (p != 0) { /* serial dynamic peeling loop (assumes dy & 0x03 is zero) */

p = (16 - p) / 4;

for (i = 0; i < min(p,n); i++) d += dx[i] * dy[i];

}

if (((dx + p) & 0x0f) == 0) { /* vector loop with both dx and dy aligned */

for (i = p; i < n; i++) d += dx[i] * dy[i];

}

else { /* vector loop with dy aligned and dx unaligned */

for (i = p; i < n; i++) d += dx[i] * dy[i];

}

Under strategy (a), only the false-branch of the if-statement that test
the resulting alignment for dx would be generated. Since both alignment
strategies will execute similar vector code in case the alignments of the
incoming arrays differ, the Intel® C++/Fortran compiler defaults to
alignment strategy (b). Only if code for the MMX™ technology is gener-
ated (where there is only one data movement instruction) or if the size of
the loop-body exceeds a certain threshold, alignment strategy (a) is used to
prevent an excessive growth in code size.

4. EXPERIMENTAL RESULTS

In this section we provide an experimental validation of the perfor-
mance improvements obtained by intra-register vectorization. First, we
study the performance impact on some small integer and floating-point
kernels. Subsequently, we present improvements obtained for a number of
benchmarks. Some preliminary experiments were already discussed in
Ref. 27.

4.1. Integer Kernels

The first benchmark considered is an integer dot product kernel IDOT
that is central to many signal-processing algorithms. (7) Below we show a
function in C that computes the dot product of two 16-bit integer arrays
into a 32-bit accumulator. When compiling for the MMX™ technology,
this particular mixed-type reduction is vectorized as shown below. Align-
ment strategy (a) is used to make the access pattern of incoming array q
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aligned at an 8-byte boundary for efficiency (the code for this loop peeling
as well as the code for the final summation of the partial sums are omitted).

pxor mm0, mm0

int IDOT(short *p, short *q, int n) { Back:

int x = 0, i; movq mm1, [ebp+ecx*2]

for (i = 0; i < n; i++) pmaddwd mm1, [esi+ecx*2]

x += p[i] * q[i]; paddd mm0, mm1

return x; add ecx, 4

} cmp ecx, edi

jl Back

When compiling specifically for the Pentium® III Processor, the Intel®

C++/Fortran compiler further optimizes this code by adding prefetching
instructions to an unrolled version of the vector loop. In Fig. 5, we show
the performance (in million operations per seconds) for 8-byte aligned
arrays of varying length of a serial version (SEQ) and the vector versions
compiled for the MMX™ technology (VEC-mmx) and the Pentium® III
Processor (VEC-PIII) on a 500MHz Pentium® III Processor. The corre-
sponding speedups (S-mmx and S-PIII, respectively) are also depicted in
this figure. Here we see that arrays with lengths exceeding about 8 to 16
start to exhibit a speedup that is nicely sustained for most practical lengths.
Timings were obtained by calling the kernel many times and dividing the
total execution time accordingly. Therefore, the performance behaves
regularly for the data sets that fit in cache. Cache effects are responsible for
the performance anomalies that are observed for larger data sets.

When compiling for the Pentium® 4 Processor, the loop is vectorized
similarly in SSE2 using alignment strategy (b). Because the Pentium® 4

Fig. 5. Performance of IDOT on 500MHz Pentium® III Processor (aligned
arrays).
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Fig. 6. Performance of IDOT on 1.5 GHz Pentium® 4 Processor (aligned
arrays).

Processor features hardware prefetching, (9) no prefetching instructions are
generated in this case. In Fig. 6, we show the performance of a serial (SEQ)
and vector version (VEC) of IDOT and corresponding speedup (S) on a
1.5 GHz Pentium® 4 Processor for 16-byte aligned arrays of varying length.
Again, a nice speedup that is sustained for most practical lengths is
observed.

In the experiments considered so far, the peeling loop is never executed
because all incoming arrays are aligned (the testing overhead is negligible
though). The usefulness of an alignment strategy, however, is illustrated in
Fig. 7. Here we show the speedup obtained on a 1.5 GHz Pentium® 4

Fig. 7. Performance of IDOT on 1.5 GHz Pentium® 4 Processor (unaligned
arrays).
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Processor in case the incoming arrays p and q have an initial misalignment
2 with respect to a 16-byte boundary (S-2/2) and in case array p is aligned
and q has an initial misalignment 2 with respect to a 16-byte boundary
(S-0/2). In the first case, peeling off 7 iterations will make both access
patterns aligned. In the second case, one of the access patterns remains
unaligned. For comparison, we also show the speedup that would be
obtained without an alignment strategy (U-2/2 and U-0/2), i.e., simply
using unaligned data movement instructions for both arrays. Clearly,
although peeling requires slightly longer arrays to become beneficial, com-
bining intra-register vectorization with an alignment strategy eventually
obtains higher performance.

4.2. Floating-Point Kernels

In this section, we study the performance impact of intra-register vec-
torization on four important floating-point Level 1 BLAS routines, (28, 29)

namely SDOT, DDOT, SAXPY and DAXPY. The first two kernels
compute the dot product of two single-precision or double-precision float-
ing-point arrays, respectively, as illustrated below with a C version of
SDOT. We also show a straightforward way to vectorize this kernel in case
both incoming arrays dx and dy are aligned at a 16-byte boundary. After
the loop, the accumulator xmm0 contains 4 partial sums that must be
added into the final scalar result d.

pxor xmm0, xmm0

float SDOT(float *dx, float *dy, int n) { Back:

float d = 0.0f; int i; movaps xmm1, [ebp+eax*4]

for (i = 0; i < n; i++) mulps xmm1, [ecx+eax*4]

d += dx[i] * dy[i]; addps xmm0, xmm1

return d; add eax, 4

} cmp eax, esi

jl Back

Because the alignments of the incoming arrays dx and dy are not
known at compile-time, however, the Intel® C++/Fortran compiler uses
alignment strategy (b) to deal with all possible alignments with respect to a
16-byte boundary. The kernel DDOT is vectorized similarly.

The kernels SAXPY and DAXPY perform single-precision or double-
precision floating-point array updates, respectively, as shown below with a
C implementation of SAXPY. A straightforward vector implementation in
case both incoming arrays dx and dy are aligned is also given, where we
assume that the scalar s has been scalar expanded into register xmm1.
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Back:

movaps xmm0, [ebp+eax*4]

void SAXPY(float *dx, float *dy, float s, int n) { mulps xmm0, xmm1

int i; addps xmm0, [ecx+eax*4]

for (i = 0; i < n; i++) movaps [ecx+eax*4], xmm0

dy[i] += s * dx[i]; add eax, 4

} cmp eax, esi

jl Back

To deal with the unknown initial alignment of the incoming arrays,
however, alignment strategy (b) is used. Automatic intra-register vectoriza-
tion of this kernel also has to deal with a complication caused by the use of
pointers. Without further points-to information, the compiler must con-
servatively assume that data dependences are carried by the loop, which
prevents vectorization. As explained in Section 3.1, the Intel® C++/
Fortran compiler solves this complication with dynamic data dependence
testing, where an initial test for overlap decides between vector and serial
execution of the loop.

In Fig. 8, we show the speedup obtained by automatic intra-register
vectorization of the Level 1 BLAS routines on a 1.5 GHz Pentium® 4 Pro-
cessor. For DDOT, we also show the speedup obtained by an assembly
version (courtesy Henry Ou) that has been hand-optimized for the
Pentium® 4 Processor. Here we see that despite the runtime overhead of
dynamic data dependence testing, speedup is already obtained at length 8
(in fact, avoiding the runtime test by using a compiler hint #pragma ivdep
in the original loop has no significant impact on the performance).
Furthermore, we see that the performance of compiler-generated code can

Fig. 8. Speedup of floating-point kernels on 1.5 GHz Pentium® 4 Processor
(aligned arrays).
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be quite close to the performance of hand-optimized assembly. Finally,
note that, in order to save on die size and power cost, only a single FP
multiplier is used on the Pentium® 4 Processor to multiply two double-
precision numbers in a single SIMD instruction. (9) This clearly limits the
speedup of DAXPY.

4.3. Benchmarks

Al Aburto’s FLOPS benchmark consists of eight independent routines
(flops1 through flops8), each of which tests the performance for a particu-
lar mix of floating-point instructions. Currently the main loops of all but
routine flop2 are vectorized by the Intel® C++/Fortran compiler. In Fig. 9
we show the performance (in MFLOPS) obtained on a 2 GHz Pentium® 4
Processor for a serial version (SEQ) and vector version (VEC) of this
benchmark in C. The corresponding speedups are also plotted in this
figure. Here we see that five out of the eight routines substantially benefit
from automatic intra-register vectorization. Only the performance of flops2
(not vectorized) and flops1 and flops7 (dominated by floating-point divi-
sions) remains virtually unaffected.

The Callahan–Dongarra–Levine Fortran test suite (available at http:
//www.netlib.org/benchmark) consists of a variety of loops, intended to
test the analysis capabilities of a vectorizing compiler. The Intel® C++/
Fortran compiler currently vectorizes 59 out of the 135 test loops (the
number goes up to 73 if elaborate instructions sequences may be used to
implement non-unit stride references, but this method usually does not
yield much speedup).

Fig. 9. Performance of FLOPS benchmark on 2 GHz Pentium® 4 Pro-
cessor.
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Fig. 10. Speedup classification for loops in Callahan–Dongarra–Levine
Fortran test suite.

In Fig. 10, we summarize some performance results for a single-preci-
sion and double-precision floating-point version of this benchmark on a
500MHz Pentium® III Processor and 2 GHz Pentium® 4 Processor for an
array length N=1000. The table classifies the speedup of the 59 vector
loops compared to serial execution of the loops in one of the following
four categories: slight slowdown or no speedup (1×), moderate speedup
(1×–2×), good speedup (2×–4×) and beyond (> 4×). Clearly, a majority of
the loops exhibit a speedup of around 2.

The Linpack (28) benchmark (available at http://www.netlib.org/bench-
mark in both C and Fortran) reports the performance of a single-precision
and double-precision linear equation solver that uses routines SGEFA/
DGEFA and SGESL/DGESL for the factorization and solve phase,
respectively. Most of the runtime of this benchmark results from repeti-
tively calling the Level 1 BLAS routine SAXPY/DAXPY for different sub-
columns of the coefficient matrix during factorization. Table I illustrates
alignment properties of SAXPY’s incoming arrays dy and dx during fac-
torization of a single-precision 100×100 matrix (with leading dimensions
LDA=201 and LDA=200 as defined in the benchmark). This table pre-
sents the number of times each incoming array is aligned with offset 0, 4, 8,
or 12 with respect to a 16-byte boundary (denoted by x%16). The number
of times both incoming arrays have the same or a different (mis)alignment
is shown in the last two columns. This data suggests that the best perfor-
mance for the single-precision floating-point version can be expected for
LDA=200, since in this case dynamic loop peeling can make both access
patterns aligned.
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Table I. Alignment Properties of Incoming Arrays of SAXPY (During Factorization

of a 100×100 Matrix)

0%16 4%16 8%16 12%16 SAME DIFFERENT

LDA=201 dx 25 2575 25 2524 1250 3899
dv 1374 1250 1275 1250

LDA=200 dx 1324 1300 1275 1250 5149 0
dv 1324 1300 1275 1250

In Table II, we present the single-precision and double-precision per-
formance (in MFLOPS) reported by the Linpack benchmark for serial
(SEQ) and vector (VEC) execution on a 2 GHz Pentium® 4 Processor. The
results are identical for Fortran and C, even though the C version requires
dynamic data dependence testing to enable intra-register vectorization
(In Fortran, the compiler may safely assume that aliases arising from
parameter passing may not be modified). Note that the relatively poor
performance of the serial single-precision version causes a rather unrealistic
speedup. For the double-precision version, intra-register vectorization yields
a speedup of around 2.

Finally, we report some performance results for the industry-stan-
dardized computationally intensive benchmark suite SPEC CPU2000 (see
http://www.spec.org/). This suite consists of 14 floating-point and 12
integer benchmarks written in the languages C, C++ and Fortran, all
derived from real-life applications. Here, we focus on how much intra-
register vectorization can contribute to improving the performance of each
of these benchmarks as a whole. Because the maximum obtainable speedup
is limited by the fraction of execution time that is actually spent in vec-
torizable code (Amdahl’s law), the resulting improvements will be much
more moderate than for kernels where the main loop can be vectorized.

In Figs. 11 and 12, we show the speedup obtained on a 2 GHz
Pentium® 4 Processor by full optimization (including advanced features like
whole-program and profile-guided optimization, as well as optimizations
specific to the Pentium® 4 Processor) relative to default optimization

Table II. Linpack Performance on 2 GHz Pentium® 4 Processor

LDA=201 LDA=200

MFLOPS SEQ VEC SEQ VEC

SP 64.4 965.1 64.3 1430.7
DP 525.1 1012.5 523.5 1011.0
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Fig. 11. Speedup for SPEC2000 (FP) on 2 GHz Pentium® 4 Processor.

(which yields generic code that executes on any Intel® Architecture). The
contribution of intra-register vectorization is shown separately (VEC). For
the floating-point benchmarks, four benchmarks benefit from automatic
intra-register vectorization: an additional 20% for the computational fluid
dynamics benchmark 178.galgel, 6% for the weather prediction bench-
mark 171.swim, and 2% for the benchmarks 187.facerec and 301.apsi.
For the integer benchmarks, only one benchmark slightly benefits from
intra-register vectorization: an additional 6% for 164.gzip results from
vectorization of loops that perform saturation arithmetic. For all other
benchmarks, the Intel® C++/Fortran compiler currently fails to detect
loops that benefit from automatic intra-register vectorization.

Fig. 12. Speedup for SPEC2000 (INT) on 2 GHz Pentium® 4 Processor.
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5. RELATED WORK

To date, only a few production compilers are available that support
automatic intra-register vectorization for the Intel® Architecture. The
Portland Group (see http://www.pgroup.com/) offers the PGI® Work-
station Fortran/C/C++ compilers that support automatic usage of SSE
for the Pentium® III Processor. The company Codeplay™ (see http://www.
codeplay.com/) offers the C compiler VectorC that automatically vector-
izes standard C code to take advantage of the latest features of—amongst
others—the Pentium® III Processor and Pentium® 4 Processor. Although
a full comparison with these compilers would be beyond the scope of this
paper, we have observed the following differences. The compilers of the
Portland Group vectorize loops mostly by replacing frequently used
operations into calls to optimized library routines for these operations.
For example, in the Callahan–Dongarra–Levine test suite discussed earlier,
the version 3.2-4 Fortran compiler pgf77—fast—Mvect=sse reports 24
replacements into library calls and 8 direct conversions into SSE instruc-
tions. VectorC focuses on replacing operations on consecutive data items
(like members in a structure or elements in an array) into SIMD instruc-
tions. Loop unrolling is used to line up the number of operations with the
vector length. These compilers currently do not seem to perform dynamic
data dependence testing or any of the alignment optimizations discussed in
this paper.

Examples of research compilers are the Scc compiler for the SWARC
(SIMD-within-a-register) language, (30) which is a C-like language that pro-
vides a portable programming model for the SIMD extensions of a variety
of processors, and the SLP (superword-level-parallelism) compiler, (31) which
targets the detection of parallelism in basic blocks rather than loops. Other
interesting work in progress is presented in Ref. 32, which describes a
preprocessor for multimedia instructions that can be easily retargeted to
deal with different multimedia instructions sets that vary frequently from
one processor family to another.

6. CONCLUSIONS

Recent extensions to the Intel® Architecture have introduced the SIMD
(single-instruction-multiple-data) technique as a way to enhance execution
bandwidth in mainstream computing. Both the MMX™ technology and
SSE/SSE2 (Streaming-SIMD-Extensions) support operations on packed
data elements, which are relatively short vectors residing in registers or
memory. To distinguish the conversion of serial code into a form that
utilizes these extensions from other approaches to exploit data parallelism
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(such as data pipelining in vector processors or replication of processing
elements in massively parallel SIMD supercomputers), we referred to this
conversion as intra-register vectorization. In this paper we presented an
overview of the intra-register vectorization methods used by the Intel®

C++/Fortran compiler. Obvious advantages of letting a compiler do the
conversion are that the task of the programmer is greatly simplified and
that existing software can be recompiled with relatively little effort to take
full advantage of SIMD extension to the Intel® Architecture, possibly
parameterized with certain peculiarities of the target architecture.

The Intel® C++/Fortran follows the standard approach to vectoriza-
tion, where statements in an innermost loop are reordered and possibly
distributed out according to the data dependence graph for the loop. The
mapping of scalar operations to equivalent SIMD instructions is usually
straightforward and we have specifically discussed how loops containing
loop invariant memory references, type conversions, induction variables,
reductions, saturation arithmetic, and conditional statements can be
implemented using the MMX™ technology or SSE/SSE2. Furthermore,
because the alignment of memory references can have a substantial impact
on performance, several alignment optimizations have been incorporated in
the compiler. Dynamic data dependence testing is used to allow the com-
piler to proceed with vectorization in situations where analysis has failed to
prove independence statically.

The results of a number of experiments have been included in the paper
to validate the effectiveness of the intra-register vectorization methods. For
kernels and small computationally intensive applications (such as a linear
solver), automatic intra-register vectorization can boost the performance
substantially. For larger applications, where speedup is bound by the frac-
tion of execution time actually spent in vectorizable code, more moderate
improvements are obtained. The Intel® compiler also performed well in a
qualitative experiment to test the analysis capabilities of the compiler:
vector code can be generated for 73 loops in a test suite of 135 loops.

Future research will focus on increasing the effectiveness of automatic
intra-register vectorization for real-life applications and the combination of
this technique with automatic parallelization for shared-memory multi-
processors. (33) More information on high-performance compilers for the
Intel® Architecture can be found at the website http://developer.intel.
com/software/products/.
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