
Named Graphs

Jeremy J. Carrolla Christian Bizerb Pat Hayesc Patrick Sticklerd

aHewlett-Packard Labs, Bristol, UK
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Abstract

The Semantic Web consists of many RDF graphs nameable by URIs. This paper extends
the syntax and semantics of RDF to cover such named graphs. This enables RDF statements
that describe graphs, which is beneficial in many Semantic Web application areas. Named
graphs are given an abstract syntax, a formal semantics, an XML syntax, and a syntax based
on N3. SPARQL is a query language applicable to named graphs. A specific application
area discussed in detail is that of describing provenance information. This paper provides a
formally defined framework suited to being a foundation for the Semantic Web trust layer.
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1 Introduction

A simplified view of the Semantic Web is a collection of web retrievable RDF
documents, each containing an RDF graph. The RDF Recommendation [1–4], ex-
plains the meaning of any one graph, and how to merge a set of graphs into one, but
does not provide suitable mechanisms for talking about graphs or relations between
graphs. The ability to express metainformation about graphs is required for:

Data syndication systems need to keep track of provenance information, and prove-
nance chains.

Restricting information usage Information providers might want to attach infor-
mation about intellectual property rights or their privacy preferences to graphs in
order to restrict the usage of published information [5,6].

Access control A triple store may wish to allow fine-grain access control, which
appears as metadata concerning the graphs in the store [7].

Preprint submitted to Elsevier Science 17 June 2005



Signing RDF graphs As discussed in [8], it is often necessary to keep the graph
that has been signed distinct from the signature, and other metadata concerning
the signing, which may be kept in a second graph.

Expressing propositional attitudes such as modalities and beliefs [9].
Scoping assertions and logicwhere logical relationships between graphs have to

be captured [10–12].
Ontology versioning and evolution OWL [13] provides various properties to ex-

press metadata about ontologies. In OWL Full, these ontologies are RDF graphs.
Ontology versioning and evolution is discussed in [14,15].

RDF reification has well-known problems in addressing these use cases as previ-
ously discussed in [16]. To avoid these problems the use of quads has been proposed
by several authors [7,17–19]. These consist of an RDF triple and a further URIref
or blank node or ID. The proposals vary widely in the semantics of the fourth el-
ement, using it to refer to information sources, to model IDs or statement IDs or
more generally to ‘contexts’.

We propose a general and simple variation on RDF, callednamed graphs. A named
graph is an RDF graph which is assigned a name in the form of a URIref. The name
of a graph may occur either in the graph itself, in other graphs, or not at all. Graphs
may share URIrefs but not blank nodes.

Named graphs can be seen as a reformulation of quads in which the fourth ele-
ment’s distinct syntactic and semantic properties are clearly distinguished, and the
relationship to RDF’s triples, abstract syntax and semantics is clearer.

Named graphs are a deliberately small step on top of the RDF and OWL Recom-
mendations. This allows their use with tools built as implementing those recom-
mendations, in a backward compatible way, with little or no code modifications.

The first half of the paper covers: the abstract syntax and semantics of named
graphs; their relationship with RDF, OWL, TRIPLE, Guha’s contexts and SPARQL
RDF dataset. We then discuss the TriX, TriG and RDF/XML for named graphs and
the query language SPARQL.

The second half describes how named graphs can be used for Semantic Web pub-
lishing, looking in particular on provenance tracking and how it interacts with the
choices consumers of Semantic Web information make about which information
to trust. We provide a vocabulary for Semantic Web publishing with its formal
semantics. The vocabulary includes support for digital signatures and addresses
performative acts, such as asserting RDF.

This paper is an extended version of the paper presented at the World Wide Web
Conference (WWW 2005) [20].
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2 Abstract Syntax

RDF syntax is based on a mathematical abstraction: an RDF graph is defined as a
set of triples. These graphs are stored in documents which can be retrieved from
URIs on the Web. Often these URIs are also used as a name for the graph, for
example with anowl:imports . To avoid confusion between these two usages
we distinguish between named graphs and the RDF graph that the named graph
encodes or represents. A named graph is an entity with two functionsnameand
rdfgraphdefined on it which determine respectively its name, which is a URI, and
the RDF graph that it encodes or represents. These functions assign a unique name
and RDF graph to each named graph. In this way, a named graph is a resource,
identified by its name, and so it can be described in the usual open way using RDF.

More formally, letU be the set of all URI references,B an infinite set of RDF blank
nodes, andL the set of all legal RDF literals (all three sets as defined in [4]);U , B
andL are pairwise disjoint; letV = U ∪ B ∪ L be the set ofnodes; then the set
T = V ×U×V is the set of all RDF triples1 . The set of RDF graphsG is the power
set ofT . A named graph is a pairng = (n, g) with n in U andg in G. We write
name(ng) = n andrdfgraph(ng) = g. To enforce the blank node scoping rules ([3])
we make the global assumption that blank nodes cannot be shared between different
named graphs, i.e. ifng andng′ are different named graphs then the sets of blank
nodes which occur in triples inrdfgraph(ng) and inrdfgraph(ng′) are disjoint.

All of the above definitions may be relativized to a particular set of URIrefs, or to
a particular set of named graphs. Any set of named graphs can be thought of as a
partial function fromU into the power set ofT .

3 Formal Semantics

The semantics of graph naming are a simple semantic extension of the RDF(S)
semantics: we will say that an RDF(S) interpretationI (as in [3]) conformswith
a set of named graphsN when: For every named graphng ∈ N , name(ng) is
in the vocabulary ofI andI(name(ng)) = ng. Note that the named graph itself,
rather than the RDF graph it intuitively ‘names’, is the denotation of the name. We
consider the RDF graph to be related to the named graph in a way analogous to that
in which a class extension is related to a class in RDFS. This intensional (c.f. [3])
style of modelling allows for distinctions between several copies of a single RDF
graph (with distinct names) and avoids pitfalls arising from accidental identification
of similar named graphs.

1 We have removed the legacy constraint that a literal cannot be the subject of a triple.
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The RDF documentation [4] defines a notion of graph equivalence, which treats
two RDF graphs which differ only in the identity of their blank nodes as being the
‘same’ graph. We will make a similar assumption, ignoring the mathematical details
of ‘renaming’ functions; in practice, this amounts to permitting RDF processors to
freely re-name any blank node identifiers when required in order to maintain the
no-sharing condition.

The intuitive meaning of a named graphG is the standard RDF meaning [3] of
its associated RDF graphrdfgraph(G), which we will refer to as thegraph exten-
sion. Any assertions in RDF about the graph structure of named graphs are under-
stood to be referred to these graph extensions, just as the meanings of the RDFS
class vocabulary are referred to relationships between the class extensions. As an
example of this meaning, we can define two propertiesrdfg:subGraphOf and
rdfg:equivalentGraph , with semantics defined as follows:

〈f, g〉 is in IEXT(I(rdfg:subGraphOf ))

iff rdfgraph(f) is a subset ofrdfgraph(g)

where the subset holds in a manner performing any necessary blank node renaming,
as discussed above. Formally, the condition is that there is a renaming mappingm
on the blank nodes ofrdfgraph(f) such that the RDF graphm(rdfgraph(f)) is a
subset ofrdfgraph(g).

〈f, g〉 is in IEXT(I(rdfg:equivalentGraph ))

iff rdfgraph(f) = rdfgraph(g)

where, again, identity is understood as renaming blank nodes as appropriate.

3.1 Accepting Graphs

A set of named graphsN has not been given a single formal meaning. Instead,
the formal meaning depends on an additional setA ⊂ domain(N). A identifies
some of the graphs in the set asaccepted. Thus there are2|domain(N)| different for-
mal meanings associated with a set of named graphs, depending on the choice of
A. The meaning of a set of accepted named graphs〈A,N〉 is given by taking the
graph merge

⋃
a∈A N(a), and then interpreting that graph with the RDF seman-

tics [3], subject to the additional constraint that all interpretationsI conform with
N. Named graphs can be used with any of the various levels of semantic theo-
ries for RDF: simple, RDF, RDFS or datatyped interpretations from [3], or OWL
Full interpretations from [21]. It is a deliberate choice to work in this way with
the deployed Semantic Web recommendations, rather than inventing a new seman-
tics with special features, perhaps from modal logic, to reflect potential conflict
between different graphs on the Semantic Web.
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The choice ofA reflects that the individual graphs in the set may have been pro-
vided by different people, and that the information consumers who use the named
graphs make different choices as to which graphs to believe. Thus we do not provide
one correct way to determine the ‘correct’ choice ofA, but provide a vocabulary
for information providers to express their intensions, and suggest techniques with
which information consumers might come to their own choice of which graphs to
accept. Issues as to how to resolve conflicts between different graphs, and how to
determineA, are seen as pragmatic issues, to be dealt with by application develop-
ers, rather than logical issues to be dealt with by formal semantics. A motivation
is that different applications will have different tolerances to errors, inconsisten-
cies and variability between the data, and a unified formal approach is likely to be
overkill for some, yet may miss key features required by another (e.g. some more
formal approaches to context [22–24] fail to address digital signatures, vital for
financially sensitive applications).

We consider three further issues of detail in the relation between named graphs and
RDF and OWL: the open world assumption; RDF reification, and OWL imports.

3.2 The Open World Assumption

Both RDF and OWL operate with the open world assumption. RDF Concepts [4]
says:

RDF is an open-world framework that allows anyone to make statements about
any resource. In general, it is not assumed that complete information about any
resource is available.

The OWL Guide [25]:

OWL makes an open world assumption. That is, descriptions of resources are
not confined to a single file or scope. While classC1 may be defined originally
in ontologyO1, it can be extended in other ontologies.

As is clear from these quotations, openness here means that a description of a re-
source is considered to be open-ended. Actual web objects such as files and RDF
graphs can however be identified and rigidly named, so that the name uniquely iden-
tifies the resource. Named graphs utilize this ability to attach a name rigidly to a
graph. Thus the mapping between names and graphs fixes the graph corresponding
to a name in a rigid, non-extensible way. Two different Web documents asserting
different graphs named by the same URI contradict one another. However, two dif-
ferent graphs with different names may make statements about the same resources.
Thus the named graph framework facilitates the open world of the Semantic Web;
not only can different people make different (hopefully complementary) statements
about the same resource, but it is possible to keep these statements separate, and it
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is possible to combine them. The choice of which of these two is more appropriate
is explicitly application specific.

Summarizing, if documentA contains a graphg namedu making statements about
a resourcer, a further documentB that is consistent withA cannot use the nameu
for a different graphg′. However,B can contain a graphg′ namedu′ making further
statements aboutr. Thus the named graphs framework maintains the open-world
framework of RDF, but treats graph naming as a form of rigid identification.

3.3 RDF Reification

A ‘reified statement’ [3] is a single RDF statement described and identified by a
URI reference. Within the framework of this paper, it is natural to think of this as
a named graph containing a single triple, i.e. anamed triple. With this convention,
the subject ofrdfg:subGraphOf can be a reified triple, and the property can be
used to assert that a named graph contains a particular triple. This provides a useful
connection with the traditional use of reification and a potential migration path.
However, the semantics of a single triple graph differ from the (lack of) semantics
offered to a reified statement by the RDF recommendation [3], better addressing
traditional uses of reificiation such as providing metadata about triples and quoting.

RDF reification operates at the semantic level, not the syntactic, so that:

_:r rdf:type rdf:Statement .
_:r rdf:subject eg:s1 .
_:r rdf:predicate eg:p .
_:r rdf:subject eg:o .
_:r dc:create "Jeremy Carroll" .
eg:s1 owl:sameAs eg:s2 .

which informally says that someone named “Jeremy Carroll” is the creator of the
statementeg:s1 eg:p eg:o , both entails and is entailed by (with the OWL se-
mantics forowl:sameAs ):

_:r rdf:type rdf:Statement .
_:r rdf:subject eg:s2 .
_:r rdf:predicate eg:p .
_:r rdf:subject eg:o .
_:r dc:create "Jeremy Carroll" .
eg:s1 owl:sameAs eg:s2 .

which informally says that someone named “Jeremy Carroll” is the creator of the
statementeg:s2 eg:p eg:o . This difference of intent behind the two graphs, is
not reflected in the formal semantics: the two graphs are semantically equivalent.
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Thus, RDF reification fails to make this simple distinction.

Named triples solve this, for example as follows. The syntax for this example is
TriG explained in section 5.3.

:t1 {
eg:s1 eg:p eg:o .
}
:t2 {

eg:s2 eg:p eg:o .
}
:g1 {

:t1 dc:creator "Jeremy Carroll" .
eg:s1 owl:sameAs eg:s2 .
}
:g2 {

:t2 dc:creator "Jeremy Carroll" .
eg:s1 owl:sameAs eg:s2 .
}

Despite theowl:sameAs triple, g1 andg2 are saying different things, which is
reflected in them not entailing one another.

The RDF reification of a statement neither implies, nor is implied by, the statement
itself. The relationship between a named triple and the related statement (the in-
terpretation of the triple), is slightly different. In the example above, there are four
named graphs. The semantics given to this collection of named graphs depends
on which of these are accepted. If either of the named triples is accepted then the
related statement is true in all associated interpretations, if a named triple is not
accepted then there may be interpretations in which it the related statement is not
true.

Named triples may be combined with RDF reification, noting the possibility ex-
pressed in RDF Sematics [3]:

Semantic extensions MAY limit the interpretation of these so that a triple of the
form
aaa rdf:type rdf:Statement .

is true inI just whenI(aaa) is a token of an RDF triple in some RDF doc-
ument, and the three properties, when applied to such a denoted triple, have the
same values as the respective components of that triple.

In this case, any interpretation conforming with a set of named graphs including a
named triple, will satisfy the reification of that triple. For example, any interpre-
tation conforming with the four named graphs above, with the above extension,
would entail:
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:t1 rdf:type rdf:Statement .
:t1 rdf:subject eg:s1 .
:t1 rdf:predicate eg:p .
:t1 rdf:object eg:o .
:t2 rdf:type rdf:Statement .
:t2 rdf:subject eg:s2 .
:t2 rdf:predicate eg:p .
:t2 rdf:object eg:o .

This includes interpretations that do not accept any of the graphs; and as before
there are interpretations that accept:g1 and do not accept:g2 , so that the named
triples preserve the syntactic intent of most use cases for reification.

3.4 OWL Imports

OWL imports processing uses the URI object of anowl:imports triple to locate
an additional RDF/XML file to be included in an ontology, as in [21], withK a
collection of RDF graphs:

K is imports closed iff for every triple in any element ofK of the form x
owl:imports u . thenK contains a graph that is the result of the RDF process-
ing of the RDF/XML document, if any, accessible atu into an RDF graph.

Using the named graphs it is more natural to use the name of a graph as the object
of owl:imports ; so that the notion of imports closure is applied to a collectionK
of named graphs, and the definition is reworded as:

K is imports closed iff for every triple in any element ofK of the form x
owl:imports u . thenK contains a graph that is namedu.

The URIu still may act as a locator, used to retrieve an RDF/XML document that is
parsed to give a graph namedu. The retrieval is unnecessary if the graph is available
through other means, e.g. a cache (like with Jena’s OntDocumentManager), or a
local copy, or as part of a TriX document (see section 5.2 for the TriX syntax).
There is a consistency question: do two different copies of a named graph agree?
This can perhaps be resolved by phrasing it as: does a copy of a named graph agree
with the graph found by the retrieval action?

4 Related Work

Previous authors of research work addressing the semantics of a collection of doc-
uments on the Semantic Web have tended to have rich theories for addressing the
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relationship between multiple contexts.

4.1 TRIPLE

TRIPLE [23] provides graphs named with resources, and a Horn clause language
for defining inferences etc. e.g.

@dfki:documents {
dfki:d_01_01 [

dc:title → "TRIPLE";
dc:creator → "Michail Sintek";
dc:creator → "Stefan Decker" ;
... ].

∀ S,D search(S,D) ←
D[dc:subject → S].

}

By mixing up the data representation (i.e. the named graph), the implementation of
core RDF and DAML-OIL semantics (through Horn rules) and application seman-
tics (through further Horn rules), TRIPLE becomes, as they say a ‘novel query and
transformation language’. Horn rules are allowed to reference data from multiple
models. In as much as TRIPLE could be seen as mandating a single approach to
implementing RDF(S) and OWL semantics (Horn rules), this must be seen as a
weakness. The ongoing work on query languages for the Semantic Web indicates
that other developers are more confortable with a specification that does not pre-
suppose a Horn implementation, but permits different developers to implement in
different ways. Named graphs can be seen as taking one aspect of this language,
noting that it is particular useful, and not addressed by the Semantic Web recom-
mendations, and pursuing that.

4.2 Contexts in RDF

Guha et al. [22] provide contexts, aggregate contexts, lifting rules, selective im-
porting, preference rules etc. They modify the RDF model theory to have addi-
tional context parameters both in the abstract syntax being interpreted and in the
universe of interpretation. They interpret sets of graphs, rather than an individual
graph. Unfortunately this step is sufficiently large to require significant new effort
for implementors of RDF and OWL inference systems.

Their approach shares with ours the style of expressing some of the richer semantic
constraints as extensions which constrain interpretations of certain new vocabulary
(for them e.g.importsFrom , for us e.g.signature ).
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A significant difference is the approach to aggregation. For Guha et al. certain con-
texts are aggregate contexts, which use lifting rules, possibly simple imports, pos-
sibly complex non-monotonic rules, to combine RDF data from multiple sources.
They have some universal restrictions built into the model theory, for example, lift-
ing rules must be defined within their target aggregate context. For us, aggregation
is only ever a monotonic merging operation, but the choice of what to aggregate is
seen as a pragmatic, application level decision.

We find their approach to be overly complex. Feigenbaum [26] suggests that for
Semantic Web research that the “Path of maximal return is more knowledge not
more logic”. Unlike Guha et al. we do not propose complex logic for contexts,
merely the minimum step needed to record knowledge about provenance and other
aspects of graphs needed for applications which need to address problems of trust.
Using knowledge recorded with named graphs, applications will be able to use
heuristics appropriate to them, to select the graphs they wish to trust for specific
purposes.

The simple approach that we take, permits substantially quicker deployment of ap-
plications that need to take provenance information into account, uses the flexibility
and expressiveness of RDF, and is, we believe, fully adequate for Semantic Web ap-
plications in the near future. Web technology, designed to be deployed on a world
wide scale, needs to put a high value on simplicity, and on incremental steps. This
ensures enough development effort can be made, in a number of systems, with dif-
ferent implementation strategies, to support the widespread deployment needed for
a Web. The first steps of the Semantic Web are completed: systems implementing
the RDF and OWL recommendations are deployed. Knowledge is published on the
Semantic Web in these formats. To be effective, proposals for new Semantic Web
features must build on these foundations, and must be parsimonious in the addi-
tional implementation effort required. A key feature of named graphs, lacking in
TRIPLE or Guha’s contexts work, is parsimony.

4.3 RDF Dataset

The concept of named graphs has been adopted by the W3C Data Access Working
Group with a slight modification as the basis for the SPARQL query language [27].
Recent drafts of the SPARQL query language specification define RDF datasets as:

An RDF dataset is a set= {G, (u1, G1), (u2, G2), ...(un, Gn)} whereG and each
Gi are graphs, and eachui is a URI. Eachui is distinct.

G is a called the default graph.(ui, Gi) are named graphs.

The main innovation over our work is the addition of one unnamed default graph.
This provides backward compatibility with RDF without named graphs, and allows
the named graphs functionality of SPARQL to be optional.
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The addition of the default graph to a collection of named graphs may have the
side effect of reintroducing some of the difficulties that named graphs address. For
example, merging both default graphs and named graphs from different reposito-
ries, while maintaining provenance information, may prove difficult. The problem
of distinguishing between documents and document content is reintroduced when
serializations of RDF datasets are published on the Web using syntaxes like TriX
or TriG which serialize multiple graphs into a single document (see section 5).
What does the document URL refer to if such a document contains a unnamed de-
fault graph? The document, the RDF dataset or the default graph? As this question
is unanswered, we recommend naming all graphs before publishing them on the
Web.

4.4 Concise Bounded Descriptions and Minimum Self-contained Graphs

Named graphs allow a large monolithic knowledge base, consisting of a single RDF
graph, to be divided up into a collection of smaller graphs, each individually named.
The named graphs framework provides very little guidance as to how to make this
division: the only constraint is that blank nodes cannot be shared between different
named graphs, so that all triples involving the same blank node must occur in the
same named graph.

Two other approaches to doing such divisions are Stickler’sConcise Bounded De-
scriptions(CBD)) [28], and Tummarello et al.’sMinimum Self-contained Graph
(MSG) [29]. Both of these use an algorithmic approach to determining a subgraph.
A concise bounded description of a URIrefu node from a graphG, is the smallest
subgraph containing all the triples fromG whose subject is either the given URIref
or a bnode used as an object by some other triple in the CBD (there is a further
rule concerning reification, which we omit here). We will write this ascG(u) ⊂ G.
An MSG is a minimal subgraph ofG containing every triple inG whose subject or
object is a bnode occurring in the MSG. We will writemG(t) ⊂ G for the MSG of
G containing a triplet ∈ G.

Given a collection of named graphsN , and considering its mergeM(N), we see
that any MSGm ⊂M(N) is necessarily a subgraph of some specific graphg ∈ N ,
i.e. an MSG from a collection of named graphs is an MSG of one of the graphs
in the collection. More precisely,mM(N)(t) = mg(t) for g ∈ N such thatt ∈ g.
Each graph is the disjoint union of the MSGs within it, making MSGs a useful
syntactic building block. This is reflected in the above decomposition of a collec-
tion of named graphs into MSGs. In contrast, the CBDcM(N)(u) of a URIref u
in M(N) may have components from different graphs in the collection of named
graphs. i.e. the URIrefu may have descriptions in many of the graphs in the collec-
tion of named graphs, and the CBD will draw from all of the them. More formally,
cM(N)(u) = ∪g∈Ncg(u). Unlike with MSGs, a graph cannot be decomposed into
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CBDs. The CBDs of two different resources may overlap, and there may be parts
of the graph that are not in any CBD. This reflects CBDs being motivated by appli-
cation needs rather than from purely syntactic considerations.

Compared with MSGs named graphs are a more useful way of breaking up a large
graph, because the MSGs are often too small to be useful. For example, every
ground triple (with no blank nodes) is an MSG. Information such as provenance
information or access control is likely to be applied to subgraphs that are bigger
than a single MSG.

In comparing named graphs with concise bounded descriptions it is significant that
they are intended for different purposes. Named graphs allow collections of triples
to be published as independent units, and to retain the integrity of the publication
unit. This permits metadata to be added about the publication unit, such as meta-
data about the publication process etc. Concise bounded descriptions are intended
primarily as a mechanism to provide a fragment of knowledge about a particular
resource, typically in a response from a server to a client that asked about that
resource. Hence concise bounded descriptions divide a knowledge base up into
resource-centric subgraphs; whereas named graphs divide a knowledge base up in
a publication oriented way. The two approaches are complementary and could be
used together.

5 Concrete Syntaxes

A concrete syntax for named graphs has to exhibit the name, the graph and the
association between them. We offer three concrete syntaxes: TriX and RDF/XML
both based on XML; and TriG as a compact plain text format.

5.1 RDF/XML

Named graphs are backward compatible with RDF. A collection of RDF/XML [1]
documents on the Web map naturally into the abstract syntax, by using the first
xml:base declaration in the document or the URL from which an RDF/XML file
is retrieved as a name for the graph given by the RDF/XML file. Using RDF/XML
has disadvantages:

• The set of named graphs is in many documents rather than one.
• The known constraints and limitations of RDF/XML apply [16,30]. For instance,

it is not possible to serialize graphs with certain predicate URIs, nor is it possible
to use literals as subjects.
• The URI at which an RDF/XML document is published is used for three different

purposes: as a retrieval address, with an operational semantics; as a means of
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identifying the document; and as a means of identifying the graph described by
the document. There is potential for confusion between these three uses.

None of these disadvantages is present in the TriX and TriG syntaxes described
below. In balance, the major advantage of using RDF/XML is the deployed base,
and current technology.

5.2 TriX

The RDF/XML syntax has been designed as a compromise of requirements from
different communities. While encoding the RDF abstract syntax [4], RDF/XML
tries to hide the underlying triple structure in order to make it easier for humans
to read the code and to get into RDF applications such as OWL with only partial
understanding of their representation in RDF. Thus RDF/XML provides a lot of dif-
ferent serialization options that neither complete hide the underlying RDF, nor does
it make them clear. Allowing this variety of serialization options implies the draw-
back that it is impossible to describe RDF/XML with an DTD or XML Schema,
forbids generic XML tools such as XPath [31], XSLT [32] and XQuery [33] to be
used and complicates parsing the syntax [16,30].

TriX [16] addresses these shortcomings by having a basic syntax corresponding
closely to the RDF abstract syntax, with hiding achieved by using alternative syn-
tactic forms that are transformed into the basic syntax. In addition, TriX provides
for naming graphs and for serializing several graphs in a single document.

The core of TriX is thetriple element, which contains three children, the subject,
predicate and object of the triple. Each of these children is either auri element, an
id element, aplainLiteral or atypedLiteral element depending on whether
the corresponding node in the graph is an RDF URI reference, a blank node or a
literal (plain or typed). The element content contains the label of the node (or the
blank node identifier). Whitespace normalization is applied touri andid element
content. We strongly prefer the use of absolute URI references inuri . This ensures
that XML based tools can easily compare twouri nodes for equality. Relative
URIs, if used, are resolved against the base URL used to retrieve the document (as
in RDF/XML without xml:base ).

plainLiteral elements can be modified by anxml:lang attribute.xml:lang

is prohibited elsewhere in the document (for example, it is not permitted on the root
element). This avoids any confusion as to whether it applies to typed literals. It does
not. typedLiteral elements require adatatype attribute. As in RDF/XML,
no whitespace processing is performed. We note it is difficult to write the legal
lexical forms forrdf:XMLLiteral which have to be exclusive canonical XML
[34], which is escaped either with aCDATAblock, or using XML character escaping
conventions.
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A graph element starts with an optionaluri child element which names the graph,
and then has any number oftriple elements as children. The root element of
the document is atrix element, which has zero or moregraph elements as its
children.

The example below shows a TriX document containing two named graphs; the
second describes the first.

<trix xmlns="http://www.w3.org/2004/03/trix/trix-1/">
<graph>

<uri>http://example.org/graph4</uri>
<triple>

<uri>http://example.org/aBook</uri>
<uri>http://purl.org/dc/elements/1.1/title</uri>
<typedLiteral datatype=

"http://www.w3.org/1999/02/22-rdf-syntax-ns#XMLLiteral">
&lt;ex:title xmlns:ex="http://example.org/">

A Good Book
&lt;/ex:title>

</typedLiteral>
</triple>
<triple>

<uri>http://example.org/aBook</uri>
<uri>http://www.w3.org/2000/01/rdf-schema#comment</uri>
<plainLiteral

xml:lang="en">This is a really good book!</plainLiteral>
</triple>

</graph>
<graph>

<uri>http://example.org/graph5</uri>
<triple>

<uri>http://example.org/graph4</uri>
<uri>http://example.org/source</uri>
<uri>http://example.org/book-description.rdf</uri>

</triple>
</graph>

</trix>

TriX is described by the following DTD:

<!-- TriX: RDF Triples in XML -->
<!ELEMENT trix (graph * )>
<!ATTLIST trix xmlns CDATA #FIXED

"http://www.w3.org/2004/03/trix/trix-1/">
<!ELEMENT graph (uri?, triple * )>
<!ELEMENT triple ((id|uri|plainLiteral|typedLiteral),

uri,
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(id|uri|plainLiteral|typedLiteral))>
<!ELEMENT id (#PCDATA)>
<!ELEMENT uri (#PCDATA)>
<!ELEMENT plainLiteral (#PCDATA)>
<!ATTLIST plainLiteral xml:lang CDATA #IMPLIED>
<!ELEMENT typedLiteral (#PCDATA)>
<!ATTLIST typedLiteral datatype CDATA #REQUIRED>

The requirements related to ease of writing and reading XML syntax for RDF tend,
in general, to conflict with the core requirements of giving a transparent representa-
tion of the graph in a way that can easily be processed with XML tools. Therefore
TriX defines a general purpose interoperable extensibility mechanism. Each com-
munity can then define and use whatever syntactic extensions they wish, declaring
the extensions they are using at the top of the data files. As long as the extensions
are described in a standard way and are identified with URLs, any processor can
apply them. We use XSLT [32] as the syntactic extensibility mechanism, and the
stylesheet processing instruction [35] as the declaration. Examples of how the ex-
tensibility mechanism can be used to extend the TriX basic syntax withxml:base ,
rdf:XMLLiteral , collections, and typed literals are found in [16].

5.3 TriG

In this paper we use TriG as a compact and readable alternative to TriX. TriG is a
variation of Turtle [36], which in turn is based on N3 [10]. TriG extends Turtle by
using ‘{’ and ‘}’ to group triples into multiple graphs, and to precede each by the
name of that graph. The following TriG document contains two graphs. The first
graph contains information about itself. The second graph refers to the first one
(namespace prefix definitions omitted).

:G1 { _:Monica ex:name "Monica Murphy" .
_:Monica ex:email <mailto:monica@murphy.org> .
:G1 pr:disallowedUsage pr:Marketing }

:G2 { :G1 ex:author :Chris .
:G1 ex:date "2003-09-03"ˆˆxsd:date }

TriG provides compatibility with N3 [10] by allowing additionally ‘=’ and ‘.’ to
write the same pair of graphs thus:

:G1 = { _:Monica ex:name "Monica Murphy" .
_:Monica ex:email <mailto:monica@murphy.org> .
:G1 pr:disallowedUsage pr:Marketing } .

:G2 = { :G1 ex:author :Chris .
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:G1 ex:date "2003-09-03"ˆˆxsd:date } .

This is N3, with the ‘=’ being read asowl:sameAs . However, unlike in N3, the
following features are not permitted:

• Blank nodes cannot be shared between graphs.
• Each graph should be named with a URIref.
• A formula for a graph cannot be embedded within another graph as a node (al-

though its name can be used in this way).

These differences mean that basic syntactic operations such as comparing two N3
documents for differences in their abstract syntax, or signing the abstract form of
an N3 document, differ significantly, and are substantially more difficult, than the
corresponding operations on RDF graphs. These restrictions permit named graphs
to use RDF graph comparison [37] and RDF graph signatures [8].

A further difference is that when read as N3, each named graph is the object of an
owl:sameAs triple in an outer graph, the graph of the document. Thus, N3 com-
mits to having graphs within graphs, and the additional complexity that that entails.
This complexity is not motivated by applications, but seems to be an unnecessary
elegance, making the underlying mathematical framework significantly more dif-
ficult, and less well understood. Reading the document as a TriG document, reads
it as two separate named graphs, and does not include the extra layer of an outer
graph.

6 Query Languages

There are two query languages for named graphs: TriQL [38] and RDFQ [39]. The
W3C is developing a new RDF query language SPARQL [27], which will also
allow querying across multiple named graphs. RDFQ and TriQL predate SPARQL
and we expect that SPARQL will supersede both languages once it has become a
final W3C recommendation.

The GRAPH keyword in SPARQL allows access to the URIs naming the graphs in
an RDF dataset, or restricts a graph pattern to be applied to a specific named graph.

The following SPARQL query identifies people having email addresses, selecting
and extracting the person identifier and email address value pairs; furthermore, the
query is restricted to statements occurring in graphs having Chris as author:

PREFIX ex: <http://example.org/>

SELECT ?person ?email
WHERE
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{
GRAPH ?graph
{ ?person ex:email ?email }

GRAPH ?anyGraph
{ ?graph ex:author ex:Chris }

}

The variable?graph is bound to the names of all graphs that contain information
about email addresses. The second pattern restricts?graph to graphs authored by
Chris. The information that Chris authored a graph may occur in any named graph.

7 Implementations

Because named graphs are only a small addition on top of the Semantic Web rec-
ommendations it is easy to implement them using existing Semantic Web tools.

7.1 NG4J

One of these extensions is NG4J [40] which builds on the Jena Semantic Web
toolkit [41]. NG4J provides developers with an API for manipulating sets of named
graphs and an API for signing named graphs using the Semantic Web Publishing
Vocabulary described in section 8. NG4J implements the TriX and the TriG syntax
and the TriQL query language. A set of named graphs can also be viewed and ma-
nipulated as a provenance-enabled Jena model, allowing applications to track the
origin of statements. By retrofitting Jena with an extended abstract syntax while
staying compartible with the existing Jena API, NG4J aims at providing an migra-
tion path for existing applications based on Jena.

7.2 Jena MultiModel

One application which uses named graphs is a faceted browser [42],http://
www.swed.org.uk/ . This harvests RDF graphs from potentially many sites,
and stores them in aMultiModel object which embodies the named graph ab-
straction on top of Jena’sModel class [41], which implements the RDF abstract
syntax [4]. The source of any triple can be used during the faceted browse for vi-
sual styling of that part of the data. The end-user can apply varying levels of trust
to different information presented on a single page. The style indicates the different
authors, who can be treated with varying levels of caution.
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8 Semantic Web Publishing

One application area for named graphs is publishing information on the Semantic
Web. This scenario implies two basic roles embodied by humans or their agents:
Information providers and information consumers. Information providers publish
information together with meta-information about its intended assertional status.
Additionally, they might publish background information about themselves, e.g.
their role in the application area. They may also decide to digitally sign the pub-
lished information. Information providers have different levels of knowledge, and
different intentions and different views of the world. Thus seen from the perspec-
tive of an information consumer, published graphs are claims by the information
providers, rather than facts. An information consumer may accept some of these
claims and reject others. We represent these choices using the concept of the infor-
mation consumeracceptingnamed graphs (as discussed formally in section 3.1).

Different tasks require different levels of trust. Thus information consumers will
use different trust policies to decide which graphs should be accepted and used
within the specific application. These trust policies depend on the application area,
the subjective preferences and past experiences of the information consumer and
the trust relevant information available. A naive information consumer might, for
example, decide to trust all graphs which have been explicitly asserted. This trust
policy will achieve a high recall rate but is easily undermineable by information
providers publishing false information. A more cautious consumer might require
graphs to be signed and the signers to be known through a Web-of-Trust mecha-
nism. This policy is harder to undermine, but also likely to exclude relevant infor-
mation, published by unknown information providers.

8.1 Authorities, Authorization and Warrants

Information providers using RDF do not have any explicit way to express any inten-
tion concerning the truth-value of the information described in a graph; RDF does
not provide for the expression ofpropositional attitudes, such as asserting, denying,
commenting on, or otherwise expressing an opinion about the content of a graph.
Information consumers may require this, however. Note that this is in addition to
trust policies, and may be required in order to put such policies into operation. For
example, a simple policy could be: believe anything asserted by a trusted source. In
order to apply this, it is necessary to have a clear record of what isassertedby the
source. Not all information provided by a source need be asserted by that source.
We propose here a vocabulary and a set of concepts designed to enable the uniform
expression of such propositional attitudes using named graphs.

We take three basic ideas as primitive: that of anauthority, a relationship ofautho-
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rizing, and awarrant. An authority is a ‘legal person’; that is, any legal or social
entity which can perform acts and undertake obligations. Examples include adult
humans, corporations and governments. The ‘authorizing’ relationship holds be-
tween an authority or authorities and a named graph, and means that the authority
in some sense commits itself to the content expressed in the graph. Whether or not
this relationship in fact holds may depend on many factors and may be detected in
several ways (such as the named graph being published or digitally signed by the
authority). Finally, a warrant is a resource which records a particular propositional
stance or intention of an authority towards a graph. A warrant asserts (or denies or
quotes) a named graph and is authorized by an authority. One can think of warrants
as a way of reducing the multitude of possible relationships between authorities and
graphs to a single one of authorization, and also as a way of separating questions
of propositional attitude from issues of checking and recording authorizations. The
separation of authority from intention also allows a single warrant to refer to several
graphs, and for a warrant to record other properties such as publication or expiry
date.

To describe the two aspects of a warrant we require vocabulary items: a property
swp:authority (whereswp: is a namespace for Semantic Web publishing) re-
lating warrants to authorities, and another to describe the attitude of the authority
to the graph being represented by the warrant. We will consider two such inten-
tions expressed by the propertiesswp:assertedBy andswp:quotedBy . These
take a named graph as a subject and aswp:Warrant as object;swp:authority

takes a warrant as a subject and aswp:Authority as an object. Each warrant
must have a unique authority, soswp:authority is an OWL functional property.
Intuitively, swp:assertedBy means that the warrant records an endorsement or
assertion that the graph is true, whileswp:quotedBy means that the graph is being
presented without any comment being made on its truth. This latter is particularly
useful when republishing graphs as part of a syndication process, the original pub-
lisher may assert a news article, but the syndicator, acting as a common carrier,
merely provides the graph as they found it, without making any commitment as to
its truth. Warrants may also be signed, and the propertyswp:signatureMethod

can be used to identify the signature technique.

8.2 Warrant Descriptions as Performatives

A warrant, as described above, is a social act. However, it is often useful to embody
social acts with some record; for example, a contract (which is a social act) may be
embodied in a document, which is identified with that act, and is often signed. In
this section, we introduce the notion of awarrant graph, which is a named graph
describing a warrant, that is identified with the social act. Thus, this is a resource
which is both aswp:Warrant and anrdfg:Graph . Consider a graph containing
a description of a warrant of another named graph, such as:
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Fig. 1. The Semantic Web Publishing Vocabulary

{ :G2 swp:assertedBy _:w .
_:w rdf:type swp:Warrant 2 .
_:w swp:authority _:a .
_:a rdf:type swp:Authority .
_:a foaf:mbox <mailto:chris@bizer.de> }

The graph is true when there is a genuine warrant; but so far we have no way to
know whether this is in fact the case. A slight modification identifies the graph with
the warrant itself:

:G1 { :G2 swp:assertedBy :G1 .
:G1 swp:authority _:a .
_:a foaf:mbox <mailto:chris@bizer.de> }

Suppose further that such awarrant graph is in fact authorized by the authority
it describes - in this case, by Chris, the owner of the mailbox: this might be es-
tablished by, for example, being published on Chris’ website, or by being digitally
signed by him, or in some other way, but all that we require here is that it is in
fact true. Under these circumstances, the warrant graph has the intuitive force of a
first-person statement to the effect “I assert:G2 ” made by Chris.

In natural language, the utterance of such a self-describing act is called aperfor-
mative; that is, an act which is performed by saying that one is doing it. Other
examples of performatives include promising, naming and, in some cultures, mar-
rying [43]. The key point about performatives are that while they are descriptions
of themselves, they are not only descriptions: rather, the act of uttering the perfor-
mative is understood to be the act that it describes. Our central proposal for how
to express propositional attitudes on the Web is to treat a warrant graph as a record
of a performative act, in just this way.3 With this convention, Chris can assert

2 The type triples are implied by domain and range constraints and can be omitted.
3 The Bank of England uses this technique, by having each twenty pound note bear the
text: “I promise to pay the bearer on demand the sum of twenty pounds.”
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the graph:G2 by authorizing the warrant graph shown above, for by doing so he
creates a warrant: the warrant graph becomes the (self-describing) warrant of the
assertion of:G2 by Chris. In order for others to detect and confirm the truth of this
warrant requires some way to check or confirm the relationship of authorization, of
course: but the qualification of the warrant graph as a warrant depends only on the
relationship holding.

A graph describing a warrant is not required to be self-describing in order to be
true (it may be true by virtue of some other warrant) and a warrant graph may not
in fact be a performative warrant (if it is not authorized by the authority it claims).
In the latter case the graph must be false, so self-describing warrant graphs whose
authorization cannot be checked should be treated with caution. The warrant graph
may itself be the graph asserted. Any named graph which has a warrant graph
as a subgraph and is appropriately authorized satisfies the conditions for being a
performative warrant of itself. For example:

:G2 { :Monica ex:name "Monica Murphy" .
:G2 swp:assertedBy :G2 .
:G2 swp:authority _:a .
_:a foaf:mbox
<mailto:patrick.stickler@nokia.com> . }

when authorized by Patrick Stickler, becomes a performative warrant for its own
assertion, as well as being warranted by the earlier example. As this example indi-
cates, a named graph may have a number of independent warrants.

8.3 Publishing with Signatures

Information providers may decide to digitally sign graphs, when they wish to allow
information consumers to have greater confidence in the information published. For
instance, if Patrick has an X.509 certificate [44], he can sign two graphs in this way:

:G1 { :Monica ex:name "Monica Murphy" .
:G1 swp:assertedBy _:w1 .
_:w1 swp:authority _:a .
_:a foaf:mbox

<mailto:chris@bizer.de> }
:G2 { :G1 swp:quotedBy :G2 .

:G1 swp:digestMethod
swp:JjcRdfC14N-sha1 .

:G1 swp:digest
"..."ˆˆxsd:base64Binary .

:G2 swp:assertedBy :G2 .
:G2 swp:signatureMethod
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swp:JjcRdfC14N-rsa-sha1 .
:G2 swp:signature

"..."ˆˆxsd:base64Binary .
:G2 swp:authority _:s .
_:s foaf:mbox
<mailto:patrick.stickler@nokia.com> .
_:s swp:certificate

"..."ˆˆxsd:base64Binary }

Note that:G2 is a warrant graph. Theswp:signature gives a binary signature
of the graph related to the warrant4 . The canonicalization and signature algo-
rithms which have been used to calculate the signature are indicated by the value of
the swp:signatureMethod property. SWP uses a similar mechanism as XML-
Signature [45] for signing several resources using a single signature: Including the
graph digest of:G1 into :G2 and signing:G2 afterwards also asures the integrity
of :G1 .

The information publisher indicates the methods used for forming digests and sig-
natures. We require the methods to be identified by URIs, which can be derefer-
enced on the Web to retrieve a document, describing the method in detail. The sig-
nature methodswp:JjcRdfC14N-rsa-sha1 , for example, specifies a variation
of the graph canonicalization algorithms provided in [8], and chooses one of the
digest/signature algorithm combinations defined by XML-Signature [45]. Rather
than make a set of decisions about digest and signature methods, SWP provides
terms for describing the chosen combination.

Using signatures does not modify the theoretical semantics of assertion, which is
boolean; but it will modify the operational semantics, in that without signatures,
any assertions made, will only be acted on by the more trusting Semantic Web
information consumers, who do not need verifiable information concerning who is
making them.

The formal semantics of the Semantic Web publishing vocabulary are described in
section 9.

8.4 The Information Consumer

The information consumer needs to decide which graphs to accept. This decision
may depend on information concerning who said what, and whether it is possible
to verify such information. It may also depend on the content of what has been said.
We consider the use case in which an information consumer has read a set of named

4 It is necessary to exclude the lastswp:signature triple, from the graph before sign-
ing it: this step needs to be included in the method.
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graphs off the Web. In terms of the semantics of named graphs (section 3.1), the
information consumer needs to determine the setA. Information about the graphs
may be embedded within the set of named graphs, hence most plausible trust poli-
cies require that we are able to provisionally understand the named graphs in order
to determine, from their content, whether or not we wish to accept them. This is
similar to reading a book, and believing it either because it says things you already
believe, or because the author is someone you believe to be an authority: either of
these steps require reading at least some of the book.

The trust policy an information consumer chooses for determining his set of ac-
cepted graphs depends on the application area, his subjective preferences and past
experiences and the trust relevant information available. Trust policies can be based
on the following types of information [46]:

First-hand information published by the actual information provider together with
a graph, e.g. information about the intended assertional status of the graph or
about the role of the information provider in the application domain. Example
policies using the information provider’s role are: “Prefer product descriptions
published by the manufacturer over descriptions published by a vendor” or “Dis-
trust everything a vendor says about its competitor.”

Information published by third parties about the graph (e.g. further assertions)
or about the information provider (e.g. ratings about his trustworthiness within
a specific application domain). Most trust architectures proposed for the Seman-
tic Web fall into this category [47–49]. These approaches assume explicit and
domain-specific trust ratings. Providing such ratings and keeping them up-to-
date puts an unrealistically heavy burden on information consumers in many
application domains.

The content of a graph together with rules, axioms and related content from graphs
published by other information providers. Example policies following this ap-
proach are “Believe information which has been stated by at least 5 independent
sources.” or “Distrust product prices that are more than 50% below the average
price.”

Information created in the information gathering process like the retrieval date
and retrieval URL of a graph or whether a signed warrant attached to a graph is
verifiable or not.

As illustrative examples we show how two different trust policies can be imple-
mented. The first policy relies on a SPARQL query, the second on a custom algo-
rithm. Further example trust policies are found in [46,50].

Let’s assume that Patrick has a collection of several graphs from the Web plus one
graph authored by himself containing a list of the people he knows. He could now
decide to filter the information from the Web using the policy to trust only people
he knows. This trust policy is implemented by the following SPARQL query:

CONSTRUCT{ ?sub ?pred ?obj }
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WHERE
{

GRAPH ?w1
{ ?sub ?pred ?obj .

?w1 swp:assertedBy ?w1 .
?w1 swp:authority ?patricksFriends . }

GRAPH <http://example.org/patricksTrustedGraph>
{ _:s foaf:knows ?patricksFriends .

_:s foaf:mbox <mailto:stickler@nokia.com> . }
}

As a second example we sketch an algorithm that allows the agent to implement a
trust policy of trusting any RDF that is explicitly asserted. More cautious variation
may require performative assertions or digital signatures.

The agent has an RDF knowledge base,K, which may or may not be initially
populated. The agent is presented with a set of named graphsN, and augments
the knowledge base with some of those graphs (determining the setA of accepted
graphs).

(1) SetA := φ
(2) Non-deterministically choosen ∈ domain(N) − A, if no choices remain ter-

minate.
(3) SetK ′ := K ∪N(n), provisionally assumingN(n).
(4) If K ′ entails:

n swp:assertedBy w .

then setK := K ′ andA := A ∪ {n}, otherwise backtrack to 2.
(5) Repeat from 2.

If initially K is empty, then the first graph added toK will be one that includes
its own assertion, by an arbitrary warrant and authority. All such graphs will be
added toK, as will any that are asserted as a consequence of the resultingK. The
algorithm is equivalent to one that seeks to accept a graph by finding a statement of
its assertion either within itself, or within some other accepted graph, or the initial
knowledge base. The algorithm is sound with respect to the goal of only adding
graphs that are explicitly asserted, as verified by step 4. However, it is incomplete
against the same criterion, since two graphs each of which explicitly assert the
other, would satisfy the criterion if both were accepted, but the algorithm misses
that. We see the self-asserting performative warrant as the basic communicative
act, and more sophisticated phrasings (such as the mutually asserting graphs), are
less likely to be understood.

At step 4,w is unconstrained, reflecting the simple policy of trusting everybody. A
slightly more sophisticated query could implement a policy that, for example, only
trusted a set of named individuals, or require that any self-asserting graph actually
be a warrant graph.
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This algorithm does not take consistency into account. As we merge internally con-
sistent graphs in step 3 we may introduce inconsistencies that occur between the
graphs. In some cases, it may not be possible to even detect this, for example,
in OWL Full which has an undecidable theory. For a semantics with a complete
and terminating consistency checker [51] (such as for OWL Lite), inconsistency
could be detected immediately. We do not propose any particular response to in-
consistency. Some applications, such as the faceted browser of [42], may not care,
whereas others, may wish to use inconsistency to reject some of the graphs, in
favour of a maximal consistent subset. Mechanisms such as those used in truth
maintenance systems would be useful for these applications.

8.4.1 Using a Public Key Infrastructure

The second trust algorithm above would believe fraudulent claims of assertion. That
is, any of the named graphs may suggest that anyone asserted any of the graphs,
whether or not that is true, and the above algorithm has no means of detecting that.

We have described how a publisher can sign their graphs and include such signa-
tures in the published graphs. We will continue to explore the X.509 certified case;
in general the PGP [52] case is similar, and the approach taken does not assume a
particular PKI.

The earlier example can be checked by modifying the query in step 4 to be:

SELECT ?certificate ?method ?sign
WHERE
{

GRAPH ?w1
{ ?w1 swp:assertedBy ?w1 .

?w1 swp:authority ?s .
?w1 swp:signatureMethod ?method .
?w1 swp:signature ?sign }

GRAPH ?anyGraph
{ ?s swp:certificate ?certificate }

}

where this is understood as being over the interpretation of the graph, rather than
as a syntactic query over the graph. The signatures must be verified following the
given method. If this verification fails then the graph is false and can be rejected.
If the verification succeeds then the certification chain should be considered by the
information consumer. If the agent trusts anyone in the certificate chain5 , then the
graph is accepted, otherwise not. More sophisticated algorithms would consider
whether the person asserting the graph, who has now been verified, is in the group

5 For PGP, the specific method of determining whether the certificate is trusted is different.
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of persons which the information consumer trusts on the topic the graph discusses.

A graph may have more than one warrant. If any warrant contains an incorrect
signature, then the warrant is simply wrong, and indicates data or algorithmic cor-
ruption. A graph containing such a warrant (but not necessarily the named graph
misasserted) should be rejected. The choice of which warrant to check is nondeter-
minismic and hence should consider any valid warrant whose certification chain is
trusted.

9 Formal Semantics of Publishing and Signing

This section provides an extension of RDF semantics [3] which: allows persons to
be members of the domain of discourse; allows interpretations to be constrained by
the identifying information in a digital certificate; allows theswp:assertedBy

triple to have aperformativesemantics; and makesswp:signature triples true or
false depending on whether the signature is valid or not. Together these extensions
underpin the publishing framework of the previous section.

9.1 Persons in the Domain of Discourse

The two frameworks of digital signatures we have considered both tie a certificate
to a legal person (e.g. a human or a company), or similar. In X.509, a certificate
includes a distinguished name [53,54], which is chosen to adequately identify a
legal person, and is verified as accurate by the certification authority. In PGP, a
certificate contains unspecified identifying information, “such as his or her name,
user ID, photograph, and so on” [52]; this is usually an e-mail address.

The class extension ofswp:Authority is constrained to be a setP of legal per-
sons and software agents acting on behalf of legal persons. Thus, our formal seman-
tics requires the universe of discourse to contain such persons as resources. Such
a requirement goes beyond the usual ‘logical’ bounds of model-theoretic seman-
tics. We expect that Web languages will further extend their semantics into the real
world of agents, acts and things as they become applied in real-world applications.
This first step is, in itself, not very interesting since we have not constrained which
person in the real world corresponds to which URIref or blank node in the graph.

The second step, is to constrain the property extension ofswp:certificate to
{(p, c)|p ∈ P, c a sequence of binary octets, withc being an X.509 or PGP certifi-
cate forp}. The binary octets are represented in a graph usingxsd:base64Binary .
The interpretation of these sequences as X.509 is specified in [44], which gives a
distinguished name from RFC 2253 [54], which identifies a person. Ifc gives a
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PGP certificate then given the potential vagueness of the identifying information
we allow all pairs of in which the person matches the identifying information. For
example, if the identifying information is only a GIF image, then all people who
look like that image are paired with the certificate.6

This definition doesnot depend on whether or not the certificate is trusted. If
the graph containing theswp:certificate triple is accepted, using mechanisms
such as those discussed in section 8.4, then the triple’s meaning is as above. The
certificate chain in the certificate is only checked when deciding which graphs to
accept.

9.2 Performative warrants

A formal model-theoretic semantics specifies truth conditions. To fully capture
the meaning of a performative, however, we need to go beyond truth-conditions,
since the very same form of words may be true whoever uses them, but will only
count as a performative if used by the authority it mentions. For example “Patrick
promises...” uttered by Patrick is a promise - a performative act - but uttered by
Christian is merely a description of the act; yet it may well still be true, and for
the same reasons. We will deal with this by considering a warrant graph to be a
‘genuine’ warrant just when it describes its authority accurately, and to be true in
any interpretation under which a genuine warrant actually exists.

The relationship of authorizing, and sets of authorities and warrants, are taken as
primitive, and we will identify them respectively with the property extension of
swp:authority and the class extensions ofswp:Authority andswp:Warrant .
All the remaining semantic conditions are defined in terms of these, so their correct-
ness in any application depends on that of the interpretation ofswp:authority

together with its range and domain. Thus a triple

ex:a swp:authority ex:b .

is true inI just whenI(ex:a ) is a warrant which is authorized byI(ex:b ).

The performative role of a properly authorized warrant graph can then be described
by simply declaring that any named graphngcontaining a triple

name(ng) swp:authority bbb .

is a warrant. Then any interpretationI of rdfgraph(ng) (conforming to the naming
of ng) under whichng is authorized byI(bbb) makes this triple true, and hence

6 This shows why it is unwise to only provide an image in your PGP certificate.
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requiresng to be inICEXT( I(swp:Warrant )): call this anauthorizing interpre-
tationof the named graph. Fixing the referent of the object of such a triple to be an
authorizing authority thus means that the graph can be satisfied only by authorizing
interpretations under which the named graph is a warrant.

The self-realizing quality of performatives is extended to the triples which express
propositional attitudes by making these trivially self-fulfilling when they occur un-
der the right conditions, in an authorized warrant graph. For example ifng is a
warrant graph which contains a triple

aaa swp:assertedBy bbb .

whereI(bbb) = ng, then if I is an authorizing interpretation ofng, thenI must
satisfy that triple; similarly forswp:quotedBy and indeed for any other property
expressing a propositional attitude of an authority towards a graph.

Note that this does not imply that a named graph istrue in an authorizing interpre-
tation of a warrant which asserts it. The fact of an authority asserting a graph can be
true independently of the actual truth of the graph. However, the attitude expressed
can be utilized by trust policies. It may be appropriate to treat graphs asserted by
trusted authorities as being true, but not to extend this to graphs quoted by trusted
authorities. One could express this trust policy by a semantic rule to the effect that
if I satisfies

aaa swp:assertedBy bbb .
bbb swp:authority ccc .

andI(ccc) is trusted, thenI satisfiesrdfgraph(I(aaa)).

The algorithm for choosing which graphs to accept, presented in section 8.4, in-
teracts with this performative semantics, by essentially assuming that a graph has
been asserted, and then verifying that in that case the performative is true.

Usingrdfs:subPropertyOf or owl:equivalentProperty to introduce aliases
of swp:assertedBy may be misleading and should be avoided. Information con-
sumers should be suspicious of any graphs that attempt this, except when they are
also asserted by the persons using the aliases so introduced.

9.3 Graph Digests and Signatures

The final specialized vocabulary we consider is that for graph digests and sig-
natures. Strictly speaking this is not necessary for Semantic Web publishing, but
just as a signed document has greater social force than an unsigned one, a signed
swp:assertedBy triple is more credible than an unsigned one. Thus, this section
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is specifically intended to be used to sign graphs that are either the subject of, or
includeswp:assertedBy triples.

The two propertiesswp:digest and swp:signature are treated in a similar
fashion: we start with the simplerswp:digest .

A pair (g, d) is in the property extension ofswp:digest , if and only if,

(1) d is a finite sequence of octets.
(2) There is a pair(g,m) in the property extension ofswp:digestMethod , and

m is a URI which can be dereferenced to get a document.
(3) The method described in the document retrieved fromm calculates the digest

d for the graphI(g).

This means that answp:digest triple is true if and only if the value is the ap-
propriate digest. Hence, if the graph which is the subject of the triple has been
tampered with, such tampering is detected by theswp:digest triple being false.

Similarly, a pair(w, s) is in the property extension ofswp:signature , if and only
if,

(1) s is a finite sequence of octets.
(2) There is a pair(w, m) in the property extension ofswp:signatureMethod ,

andm is a URI which can be dereferenced to get a document.
(3) There is a pair(w, a) in the property extension ofswp:authority and a

pair (a, c) in the property extension ofswp: certificate , andc is a finite
sequence of octets.

(4) There is a pair(g, w) in the property extension ofswp: quotedBy or
swp:assertedBy , andI(g) is a named graph.

(5) The method described in the document retrieved fromm calculates the signa-
tures for the graphI(g) usingc understood as an X.509 or PGP certificate.

This definition does not depend upon verifying the certificate chain forc.

10 Conclusions

Having a clearly defined abstract syntax and formal semantics, named graphs pro-
vide greater precision and potential interoperablity than the variety ofad hocRDF
extensions currently used. Combined with specific further vocabulary, this will be
beneficial in a wide range of application areas and will allow the usage of a com-
mon software infrastructure spanning these areas.

The adoption of named graphs as part of SPARQL’s RDF dataset is making it likely
that an increasing number of RDF stores implement named graphs, allowing Se-
mantic Web applications to use this additional functionally through a standardized
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interface.

The ability of self-reference combined with the Semantic Web Publishing vocab-
ulary addresses the problem of differentiating asserted and non-asserted forms of
RDF and allows information providers to express different degrees of commitment
towards published information.

Linking information to authorities and optionally assuring these links with digital
signatures gives information consumers the basis for using different task-specific
trust-policies. We have shown how operational trust can depend on what is being
said, rather than simply on who said it, and the trust-rating of the author.

Named graphs provide a high-value but small and incremental change to the Se-
mantic Web Recommendations. Thus they should be preferred over more complex,
all-embracing approaches to context that are more likely to face substantial barriers
to adoption.

Further related work can be found at the named graphs web-sitehttp://www.
w3.org/2004/03/trix/ .
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