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Abstract

This paper studies the intertemporal allocation of incentives in a repeated moral hazard model

with reference-dependent preferences as in Kőszegi and Rabin (2009). Besides consumption

utility, the agent experiences utility from the change in his beliefs about present and future

effort and income. When effort plans are rational, the prospect of being disappointed by the

outcome realization equals that of being pleasantly surprised and hence the loss-averse agent is

on net hurt by news. In contrast to the prediction with classical preferences but consistent with

real-world contracts, if consumption utility is not too concave and news about present income

carries sufficiently larger weight in utility than news about future income, a contract setting a

current fixed wage is optimal as it minimizes the agent’s compensation for bearing risk. Despite

this, I further prove that several standard features of the contract with classical preferences–such

as no rents to the agent, conditions to achieve first-best cost and the non-optimality of random

contracts–still hold.
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1 Introduction

Classical models of dynamic moral hazard predict that in the optimal contract both future and

present payments should be contingent on current performance (Lambert (1983), Rogerson (1985),

Murphy (1986), Malcomson and Spinnewyn (1988), Chiappori, Macho, Rey, and Salanié (1994)).

This prediction, however, is at odds with the observation that real-world contracts seldom use

current payments to motivate the agent. For instance, MacLeod and Parent (1999) and Parent

(2001) find that in the U.S the percentage of workers paid through commissions or piece-rates

varies between 4 to 10%.1

On the contrary, contracts completely deferring incentives into future payments are common.

Wage revisions, promotions (Baker, Jensen, and Murphy (1988), Baker, Gibbs, and Holmstrom

(1994), Treble, Van Gameren, Bridges, and Barmby (2001)), dismissal threats (MacLeod and

Malcomson (1988, 1989), Sen (1996), Kwon (2005)) and yearly productivity bonuses (Joseph and

Kalwani (1998), Steenburgh (2008)) are widely used in real-world contracts and are usually com-

bined with a fixed-present wage. For instance, based on the Executive Compensation Surveys for

1974-1986, Jensen and Murphy (1990) find that for each $1000 change in the shareholder’s wealth,

the CEO’s present and next year salary and bonus increase by 2 cents. In contrast, their wealth from

salary revisions, outstanding stock options and performance-related dismissals increase in about 75

cents, suggesting that present incentives are negligible relative to incentives deferred into future

payments.

One possible explanation for this puzzle relies on the difficulty to find objective performance

measures. When a formal output-based contract is not verifiable, incentives must be set through–

possibly informal–contracts rewarding long-term performance rather than short-term output (Eaton

and Rosen (1983), Huck, Seltzer, and Wallace (2004)).2 Evidence, however, suggests that the lack

of verifiable output-based measures cannot fully account for the widespread use of contracts using

current fixed wages with deferred incentives.3

1In Parent (2001) the percentage depends on the survey used. Adding a productivity bonus component and
excluding profit sharing plans, the percentage increases to 20% using the National Longitudinal Survey of Youth.
Barkume (2004) finds similar results. Using data for 2001 on the Bureau of Labor Statistics Employment Cost Index
(ECI), he estimates that only 7% of the average total employment in skilled production use commission, piece-rates
or productivity bonuses to motivate employees. These numbers, however, are lower bounds since the incentive-pay
definition of the ECI only includes individual payments (commission, piece-rates and production bonuses), omitting
profit-sharing distributions, all-employee payments and other non-production bonuses.

2The observation that finding verifiable performance measures is difficult because of monitoring costs (Barkume
(2004), Lazear (1999)), incentives towards skill acquisition (for a survey see Gibbons (1998)) and action complexity
(Holmström and Milgrom (1991), MacLeod (2000)), shifted away the contract theory literature from the risk-incentive
trade-off towards reviewing the assumptions over the economic environment. As a result, the literature developed a
whole array of models that greatly improved the match between theoretical contracts and those observed in reality
such as those on relational contracts (MacLeod and Malcomson (1989), Levin (2003)), multitasking (Holmström and
Milgrom (1991)) and skill acquisition and career concerns (Holmström (1999), Gibbons and Murphy (1992)).

3Hutchens (1987) using data from the National Longitudinal Survey tests the hypothesis that delayed payments
to motivate the agent are less likely to occur in jobs involving repetitive tasks as a proxy for low monitoring costs.
He finds that workers in these type of jobs have a 9% smaller probability of a pension, 8% smaller probability of
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This paper shows that contracts fully deferring incentives into the future can be optimal in a

moral-hazard setting when agents have dynamic reference-dependent preferences. To model these

preferences, I adapt and integrate to a classical moral-hazard environment the general model of

individual decision-making by Kőszegi and Rabin (2009). Besides consumption utility, agents with

these preferences experience utility from the change in his beliefs about present and future effort

and income. When effort plans are rational, the prospect of being disappointed by the outcome

realization equals that of being pleasantly surprised and hence the loss-averse agent is on net hurt by

news brought by the outcome realization. As a result, if the agent is more sensitive to receive news

about his present payments relative to receive news about his future payments, a fixed-first-period-

wage contract using second-period consumption utility–rather than changes in income beliefs–to

replace incentives is optimal. Such contract implements the action path and saves the agent from

the most painful source of income-belief fluctuations minimizing thus the compensation the principal

must provide the agent for bearing risk.

After a review of the related literature, Section 3 presents the basic framework. The set up

presents a two-period model with a finite set of outcomes and effort levels, where the agent is paid

at the end of each period once the common-knowledge performance measure has been realized. The

model further assumes that the agent has neither access to credit nor can save between periods and

that both the agent and the principal can credibly commit to stay in the relationship until the end

of period two. This environment mimics that in Rogerson (1985).

In an initial period zero, given the contract offered by the risk and loss-neutral principal the

agent forms effort plans to be executed in the upcoming two periods. Following Kőszegi and Rabin

(2009), the model assumes the agent has rational expectations in forming these plans: given the

contract offered by the principal and given knowledge of the relationship between effort and the

conditional probability distribution of outcomes, the agent only forms effort plans he knows he will

be willing to follow given the income beliefs they generate and hence the future preferences they

induce. With these effort plans and related income beliefs, the agent decides whether to accept or

reject the contract.

In the beginning of period one, the agent executes an action, observes the outcome realization

mandatory retirement and 18% shorter length of tenure. Even though suggestive that monitoring costs do play a
role in the intertemporal allocation of incentives, these magnitudes indicate that other effects must also be in place.
Lazear and Moore (1984) contrasts the steepness of the earnings temporal profiles of self-employed workers against
those of wage and salary workers to investigate whether the evolution of earnings can be completely explained by
human capital accumulation and skill acquisition. They find that salaries grow faster than productivity, suggesting
that skill acquisition alone cannot account for the temporal behavior of wages. Similar results are found in Kotlikoff
and Gokhale (1992) and Ilmakunnas, Maliranta, and Vainiomäki (2004). From the theoretical perspective, Akerlof and
Katz (1989) explicitly show that in a classical framework future incentives are not a perfect substitute for incentives
coming from present payments. As a consequence, models such as those in career concern and termination threats
(Stiglitz and Weiss (1983), Shapiro and Stiglitz (1985), MacLeod and Malcomson (1988), Sen (1996), Banks and
Sundaram (1998)) simply assumed that incentives were totally deferred into future payments. Lazear (1981) is the
only exception. See Section 2.
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and receives his period-one payment. Following Kőszegi and Rabin (2009), upon the outcome

realization the agent experiences consumption utility from the period-one payment and effort as

well as “contemporaneous gain-loss utility” from changes in his period-one effort plans and income

beliefs. To compute this utility, the agent compares the distribution induced by the payment he

actually received and the effort he actually exerted with the distribution induced by the income

beliefs and effort plans he formed in period zero about period one’s payments and effort. In these

comparisons the agent is loss averse: receiving a payment lower than expected hurts more than

receiving an income higher than expected is pleasant and exerting an effort higher than expected is

more costly than the gain of working less than planned.4 Besides contemporaneous gain-loss utility,

whenever second-period contracts depend on first-period performance, the agent also experiences

“prospective gain-loss utility” from changes in his period-one beliefs and plans about period-two

payments and effort, i.e., from comparing the beliefs he now holds about the second-period payment

with those he inherited from period zero (equivalently for effort).5 In all these computations it is

thus assumed that preferences are separable across consumption domains and across time. Finally,

at the end of the period, the agent updates his effort plans and the associated income beliefs for

the second period.

In a second and final period, the agent executes effort, receives the corresponding payments, and

the relationship ends. Just as in period one, after the outcome realization, the agent experiences

consumption utility from the exerted effort and the received payment along with contemporaneous

gain-loss utility from comparing the income beliefs and effort plans inherited from the end of period

one to the payment actually received and the effort actually executed.6

Two parameters index the total instantaneous utility. First, a reference-dependent parameter

η > 0 shows the importance of gain-loss utility–contemporaneous plus prospective–relative to con-

sumption utility. When η = 0, this preference structure reduces to classical reference-independent

preferences. Second, a parameter γ > 0 shows the relative importance of contemporaneous gain-loss

utility relative to prospective gain-loss utility, i.e, how sensitive the agent is to receive information

about his present payments relative to receive information about his future payments. Besides
4In general, gain-loss utility captures the idea that news changing previous beliefs about present and future effort

and income generate a present utility flow that is part of the agent’s decision utility. This basic idea that agents get
utility from changes in consumption levels rather than level themselves was introduced in the seminal prospect theory
paper by Kahneman and Tversky (1979). They further stated that decreases are more heavily felt than same-sized
increases, phenomenon they called loss aversion.

5Prospective gain-loss utility is a form of anticipatory utility in the spirit of Caplin and Leahy (2001) and many
others. The key difference is that this is a referent-dependent feeling of anticipation where the reference point
corresponds to the previous beliefs for the corresponding period. Thus, the use of this type of utility should not be
regarded as a radical departure from the behavioral literature.

6Notice that this description implicitly defines the reference point as previous-period beliefs. Since the agent forms
his effort plans and income beliefs based on the contract offered by the principal, this reference point specification is
in the same spirit as Hart and Moore (2008). It differs from their model in that the reference point is endogenously
determined and considers all payments rather than one particular scenario to which–for exogenous reasons–the agent
feels entitled to.
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assuming that γ is non-negative, the model does not impose restrictions over the value of this

parameter.7 Finally, to isolate the role of γ, the model assumes that the agent maximizes the

undiscounted sum of his instantaneous utilities.

Section 4 characterizes some basic properties of the optimal long-term contract with dynamic

reference-dependent preferences. I start exploring the shape of the optimal contract when the

state perfectly reveals the action. I prove that when the action is observable, the optimal contract

does not depend on η. Intuitively, when the outcome perfectly reveals the agent’s action there is no

uncertainty and thus the agent cannot be surprised by the payment he actually gets: under certainty,

reference-dependent agents are behaviorally equivalent to consumption-utility maximizers.8 Next, I

provide a basic characterization of the second-best contracts. Broadly, I show that several features

of the optimal contract with classical preferences still hold when agents are reference-dependent.

After proving that the optimal contract exists when agents are reference-dependent, I prove that

such a contract is unique if the consumption utility function is strictly concave, just as with classical

preferences. Furthermore, and because of a very similar argument to that with classical preferences,

I show that the optimal contract does not leave rents to the agent. Then I prove that the second-best

contract achieves the first-best cost when the principal wants to implement the minimum effort in

every period and when there is at least one outcome with probability zero under the chosen action

but positive under the lower cost actions. However, and most importantly, in general first-best is

not achieved when the consumption utility function is linear because the agent is loss averse and

thus the risk-incentive trade-off is still present.

Section 5 presents the main prediction: when contemporaneous gain-loss utility is strong enough

relative to prospective gain-loss utility and consumption utility is not too concave, the optimal

contract defers all incentives into future payments, i.e. the contact uses a fixed-first-period wage.

To understand this prediction, assume that consumption utility is linear. Because the agent has

rational expectations and thus only forms effort plans that he will actually execute, the prospect

of being disappointed by the outcome realization equals that of being pleasantly surprised by it.

As a consequence, because the agent is loss averse–bad news about his income hurt him more

than good news please him–he gets expected disutility out of the changes on his income beliefs

caused by the income news brought by the outcome realization. Intuitively, the agent dislikes

risk from the reference-dependent component of his utility function because news makes beliefs

fluctuate. When the agent is less hurt by receiving news about his future payments relative to

receive news about his present payments (γ sufficiently small), the principal can save the agent

the most unpleasant source of income-beliefs fluctuations by fixing the first-period wage, increasing

thus the total expected utility the agent gets from the contract. Setting a fixed-first-period wage,
7Kőszegi and Rabin (2009) assume γ < 1 from the start.
8The fact that reference-dependent preferences reduce to classical preferences under certainty in a general model

of consumption, is explicitly derived in Kőszegi and Rabin (2006).
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however, is done at the expense of shutting down incentives coming from first-period consumption

utility and contemporaneous gain-loss utility since income beliefs do not fluctuate when agents

have rational expectations and are paid a fixed wage. To replace the incentives lost the principal

increases as much as necessary incentives coming from second-period payments. In particular,

she changes the level of all payments within each continuation contract so to create incentives

from second-period consumption utility. Increasing second-period incentives, however, increases

the gain-loss disutility the agent gets from prospective gain-loss utility, i.e, from fluctuations in his

beliefs about future payments. Nevertheless, since the agent is less sensitive to receive news about

his future payments relative to receive news about his preset payment, the gains from shutting

down contemporaneous gain-loss disutility outweigh the losses from increasing prospective gain-loss

disutility. As a consequence, the agent gets a higher total period-zero expected utility and thus the

principal can decrease the level of payments and still implemented the effort path.

When consumption utility is concave the principal can keep the agent’s marginal consump-

tion utility high by spreading incentives across periods.9 In such a case, a sufficient condition for

the present-period-fixed-wage contract to be optimal is the consumption utility function being not

too-concave so that the reference-dependent effect pushing towards deferring incentives into future

payments–to minimize the disutility the agent gets from fluctuation in income beliefs–dominates.

Rabin (2000) shows that, for reasonable risk taking behavior, the agent’s consumption utility func-

tion is compatible with risk neutrality for wealth levels of the order of an average monthly salary.10

To further investigate the role of γ, I also explore the shape of the optimal long-term contract

when the agent is more sensitive to news about future consumption than to news about present

consumption. I prove that in this case, the optimal contract must rely on first period contingent

payments to induce a desired level of effort in the first period. Even more, in this case there is always

a γ big enough such that it is not convenient for the principal to make second-period payments

contingent on first-period performance. Intuitively, with a big γ is too expensive to use deferred

incentives because it triggers expensive prospective gain-loss disutility. By making payments only

contingent in first-period performance the principal increases the agent’s total utility by saving him

painful fluctuations in his beliefs about future income. This result contrasts with the prediction of

classical reference-independent preferences, where the optimal long term contract can only reduce

to a sequence of one-period contracts if the agent is risk neutral.

Section 7 explores the convenience of using performance measures that are uncorrelated with the

agent’s unobserved action. I prove that, just as in the case of classical preferences, using ex-post-

random contracts is never optimal since a contract paying in each period the certainty equivalent
9Such an intertemporal risk-sharing argument drives the prediction of classical-repeated-moral-hazard models where

is optimal to make present and future payments contingent on current performance.
10A reasonable length period for our model is a month because such period is long enough so that the agent can

form plans, but not so long that the agent gets used to his income beliefs.
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of the period-random contract allows the principal to decrease the expected cost of implementing

the desired action. Contrary to the classical case, this result is valid even if consumption utility is

linear.

Finally, to capture the intuition that the information the agent gets in period one about period-

two payments may be relevant to review the agent’s effort plans, Section 7 assumes prospective

gain-loss utility is realized after second-period effort plans are updated. In a two-action set up, I

show it is harder to motivate the agent after a first-period success relative to the case of a first-

period failure. This is because, even though the realization of the prospective gain-loss utility

gain is increasing in the second period effort plans–high effort maximizes the distance between the

reference distribution and the actual one–and the realization of the prospective gain-loss utility

loss is decreasing in the second period effort plans–high effort minimizes the distance between the

reference distribution and the actual one–loss aversion implies that the latter effect is stronger

than the former. As a consequence, the optimal contract needs to set stronger incentives after a

first-period success relative to a first-period failure. Even though a similar phenomena is occurs

with classical preferences, the latter rationale differs from the low marginal utility explanation

effect driving the effect in such case. Moreover, with reference-dependent preferences the prediction

depends crucially on the agent having planned to exert high effort and also in the timing between

the review of plans and the actual execution of the action. If the principal allows enough time after

X1 as been observed and the action execution, the agent may get used to his effort beliefs, rendering

the realization of prospective gain-loss utility irrelevant for planning

Section 8 summarizes, discusses the model’s limitations and presents a future research agenda

extending the two-period model.

2 Related Literature

This paper builds on the classic contract theory literature on dynamic moral hazard and the be-

havioral literature on reference-dependent preferences. Lambert (1983) and Rogerson (1985) were

the first to prove that when the principal and the agent engage in a repeated interaction in which

the agent is paid at the end of every period, the optimal contract displays “memory in wages”:

second-period payments must be contingent on the first-period outcome realization. This result

was latter generalized to T periods by Murphy (1986). There has been a vast amount of work done

on dynamic moral hazard exploring several features of the optimal contract, such as the role of

commitment and the conditions for the long-term contract to be implementable as a series of one-

period contracts (Malcomson and Spinnewyn (1988), Fudenberg, Holmstrom, and Milgrom (1990),

Rey and Salanie (1990), Chiappori, Macho, Rey, and Salanié (1994)) or the role of the discount

factor in achieving efficiency when the principal-agent relationship is infinitely repeated (Radner

(1986), Spear and Srivastava (1987)). For the purposes of this paper, however, all this literature
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predicts that optimal payments spread incentives across periods or concentrates them into present

payments if the long-term contracts is spot implementable.

The literature on reference-dependent preferences started with the seminal work of Kahneman

and Tversky (1979) who proposed that agents experience utility from changes in levels of consump-

tion where losses hurt more than same-sized gains are pleasant, a phenomenon they denominated loss

aversion. Subsequently, a whole array of reference-dependent models were developed. Bell (1985),

Loomes and Sugden (1986), Gul (1991), Munro and Sugden (2003), Sugden (2003), Matthey (2005),

Kőszegi and Rabin (2006) and De Giorgi and Post (2008) among others have presented static mod-

els of reference-dependent preferences. The model presented in Kőszegi and Rabin (2009) builds on

prospect theory in two ways. First, they provide a generalization of the gain-loss utility function

to a dynamic setting by introducing the notion of prospective gain-loss utility. Second, they endo-

genize the reference point by assuming the agent has rational expectations, and thus the reference

point corresponds to the agent’s rational beliefs derived from the economic environment in which

the problem is embodied.11

There is in fact a small but growing body of literature on behavioral contract theory exploring

the role of reference-dependent preferences on hidden-action models. deMeza and Webb (2007)

develop a model of static moral hazard using several models of reference-dependent preferences.

They find that optimal contracts have intervals where payments are insensitive to performance and

that carrots are more frequently used than sticks. The model of Herweg, Müller, and Weinschenk

(2008) is the closest to this work. They build a model of static moral hazard with static reference-

dependent preferences as in Kőszegi and Rabin (2006). They conclude that (1) the optimal contract

has two levels of payments when the agent has linear consumption utility and (2) that the contract

under concavity is significantly simpler than the one predicted by classical theory. My model differs

from theirs mainly in that I am interested in different phenomena: I focus on the intertemporal

allocation of incentives rather than the contract’s complexity, for which I rely on a dynamic setting.

Moreover, while they use continuous actions with a linear specification of the conditional probability

distribution and the first-order approach to solve the principal’s problem, I use the discrete approach

of Grossman and Hart (1983) and a completely standard environment.12

Lazear (1981) is to the best of my knowledge the only paper that has explored the intertemporal

allocation of incentives. His motivation was to explain why wage’s age-tenure profiles are steeper

than productivity tenures and the existence of compulsory retirement policies. His model builds on

the observation that by overpaying the agent in the late stage of his career while underpaying him
11Kőszegi and Rabin (2009) is to the best my knowledge the only one that explicitly considers reference-dependent

preferences in a dynamic setting besides the models in Barberis and Huang (2001) and Barberis, Huang, and Santos
(2001) which are specific to the financial market. The model of Matthey (2005) is the closest as she also introduces
the notion that agents derive utility from changes in beliefs about future consumption.

12Iantchev (2005) and Daido and Itoh (2005) also build models of static moral hazard with reference-dependent
preferences to explain the Pygmalion Effect and contract complexity respectively.
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during his early years, the firm can increase the workers’ effort because he will work hard to avoid

the possibility of being dismissed. This compensation structure, however, increases the incentives

of the firm to terminate the contract before the stipulated date. The optimal wage-profile thus

trade-offs the cost for the firm of not honoring the contract while maximizes the worker’s lifetime

earnings subject to a zero-profit condition. The compulsory retirement policy arises thus to avoid

the possibility of the agent staying longer than needed in the firm. This model, greatly differs

from ours. First, nothing in the model’s basic logic prevents the optimality of present-contingent

payments, a very convincing argument with classical preferences from a consumption smoothing

perspective (see Akerlof and Katz (1989)). Moreover, it gives up on the risk-incentive trade-off to

explain deferred payments.

3 The Model

The principal-agent relationship lasts three periods, t ∈ {0, 1, 2}. In period zero the agent (he)

receives a take-it-or-leave-it offer (TIOLI) from the principal (she) and decides whether to accept

or reject it. If he accepts, both parties credibly commit to stay in the relationship until the end

of period two. In each of the two subsequent periods the agent privately chooses an effort level et
from a finite set E = {e1, . . . , eJ} ⊂ R. Next, a verifiable iid performance measure Xt is drawn

from the finite set X = {x1, . . . , xN} ⊂ R, where x1 < x2 < · · · < xN . Let ΠX(xn|ej) be the

associated distribution function conditional on effort and let πjn ≡ ΠX(xn|ej) − ΠX(xn−1|ej) > 0,

∀n, j represent its density. I assume that the agent is paid at the end of each period and that the

agent has no access to credit nor can he save between periods. Even though unrealistic, relaxing this

assumption does not affect the characteristics of the optimal contract with standard preferences that

concerns us, i.e., second-period wages depending on first-period outcome and contingent payments

in every period (Chiappori, Macho, Rey, and Salanié 1994, Malcomson and Spinnewyn 1988).13

The principal is assumed to be risk and loss neutral. Her gross benefit equals the realization of

the performance measure Xt, and her only cost corresponds to the payment made to the agent.14

13Since my model focuses on formal or written incentive schemes, verifiability is sufficient. However, along the paper,
we will refer interchangeably between verifiability and observability. The assumption of Xt being iid is standard in
the literature and avoids complications due to learning. Extending the analysis to Xt in the Euclidean space RN ,
N>1 and ej ∈ RJ , J>1 may not be innocuous since issues related to effort substitution and task conflict arise, as the
literature in multitasking has acknowledged (see for example Dewatripont, Jewitt, and Tirole (2000) and Holmström
and Milgrom (1991)). Even though generalizations of my model to learning or multitasking may be interesting, they
are not the focus of this paper. Finally, the assumption of the agent being able to commit to stay in the relationship
for any period one outcome realization is relaxed in Section 5.

14The assumption of the principal being risk neutral can be justified in our interest in employment contracts. In such
environment it is reasonable to assume that employers can diversify risk as they have several employees. Extending
the analysis though to a risk-averse principal, where her gross benefits are represented by the existence of a well
behaved function b : {x1, . . . , xN} −→ R, b′′(·) < 0 is straightforward when establishing the existence of conditions
needed for the main result, but it may not be innocuous to establish the strength of those conditions. See a discussion
in Section 5.
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A long-term contract denoted by S = (S1(X1), S2(X1, X2)), St ⊂ R for t = 1, 2, is a set of N+N2

contingent payments governing the principal-agent relationship during periods one and two. I refer

to S1 as the first period contract. Let sn represent its realization if X1 = xn is observed in the first

period. I refer to S2 as the second period contract or “continuation contract” possibly depending

on both X1 and X2. Let snm denote its realization if X1 = xn and X2 = xm. If snm 6= sn′m for at

least one n 6= n′ and m, it is said that the contract displays memory in wages (Chiappori, Macho,

Rey, and Salanié (1994)).

I depart from the standard framework solely by assuming the agent has reference-dependent

preferences. To set up these preferences, I use the model of dynamic reference-dependent prefer-

ences in Kőszegi and Rabin (2009). Accordingly, agents experience two types of utilities, standard

consumption utility and utility from changes in beliefs about their present and future consumption

over the two standard consumption domains in hidden action models: payments and effort. Period

t utility flow corresponds to:

vt = V (st, et) + η

2∑
τ=t

γt,τG(s̃t,τ , ẽt,τ |s̃t−1,τ , ẽt−1,τ ) (1)

The first component, V (st, et), represents classical reference-independent consumption utility from

current payment st and current executed effort et. Assumption 1 presents the assumptions over this

function.

Assumption 1 (Consumption Utility)

The consumption utility function is of the form V (st, et) = u(st)−c(et) where u(st) is twice continu-

ously differentiable with u′(s) > 0, u
′′
(s) 6 0 for all s > s where lims↓s u(s) = −∞ and c(ej) > c(ek)

for all ej , ek satisfying ej > ek.

Assumption 1 is standard in the contract theory literature. First, it states that the agent’s pref-

erences are separable across effort and income. Second, it says that consumption utility in the

payments domain is strictly increasing and weakly concave, whereas consumption utility in the

effort domain is strictly increasing and always non-negative. Finally, Assumption 1 ensures the

existence of a payment such that the agent gets sufficiently low disutility.

The second term in equation (1), G(s̃t,τ , ẽt,τ |s̃t−1,τ , ẽt−1,τ ), corresponds to the “gain-loss” utility

function. It represents the utility the agent gets today from departures of present and future

consumption from a reference point, which corresponds to the effort plans and income beliefs the

agent made in the previous period about present and future effort and income. Formally, at the end

of periods t = 0, 1, the agent forms an effort plan ẽt,τ ∈ E for all future periods τ > t. Notice that

since the continuation contract S2 depends on X1, second period effort plans must be contingent on

the first period realization, i.e., ẽt,2 ≡ ẽt,2(X1), t = 0, 1. Given the contract, and given knowledge
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of the probability distribution over outcomes, these effort plans fully induce beliefs about future

payments. For t = 0 and τ = 1, 2 and for t = 1 and τ = 2, let Π̃S
t,τ ≡

∏τ
k=t+1 ΠS

k (ẽt,k), correspond

to the income probability distribution the agent formed in period t about the future period τ > t.

Let s̃t,τ denote a realization of such distribution. Thus, G(s̃t,τ , ẽt,τ |s̃t−1,τ , ẽt−1,τ ) represents the

utility the agent gets today from departures of present and future consumption (s̃t,τ , ẽt,τ ) from the

consumption beliefs the agent formed in the previous period about present and future consumption

(s̃t−1,τ , ẽt−1,τ ) for all τ > t.15

To develop the intuition behind the results, it is useful to distinguish between gain-loss util-

ity arising because of departures of present consumption from the plans made for the present

period in the previous period (τ = t) and utility arising from changes in plans about future con-

sumption (τ > t). As in Kőszegi and Rabin (2009), I refer to the term G(st, et|s̃t−1,t, ẽt−1,t) ≡
G(s̃t,t, ẽt,t|s̃t−1,t, ẽt−1,t) as “contemporaneous gain-loss utility” where the first expression keeps the

notation of st and et as the actually realized payment and actually implemented effort and to

G(s̃t,τ , ẽt,τ |ẽt−1,τ , s̃t−1,τ ) τ > t as “prospective gain-loss utility”.

Two parameters index this utility function. First, a parameter γt,τ representing the relative

importance of the two types of gain-loss utility in the current utility flow, i.e., the relative weight

the agent assigns to changes in his beliefs about present consumption relative to changes in plans

about his future consumption. I normalize γt,t = 1 ∀t and let γ1,2 ≡ γ > 0 and make no further as-

sumptions over the value of this parameter. Second, the parameter η > 0 is a “reference-dependence

parameter” indicating the strength of the gain-loss utility component of the total utility flow rel-

ative to consumption utility. If η = 0, these preferences reduce to classical reference-independent

preferences.

To illustrate gain-loss utility, consider the following example for the payment domain (the effort

domain is analogous). A worker, who lives only to consume one-dollar caramel-filled chocolate bars

has historically been paid every Friday a salary of 100 dollars and expects to be paid the same

in the future. For simplicity, assume he has linear consumption utility. This Friday he shows up

and finds out that his weekly salary has been permanently reduced to 80 dollars. If the worker

were to have classical reference-independent preferences, that same Friday utility would decrease

by 20 bars. If the worker were to have dynamic reference-dependent preferences, that same Friday

utility flow diminishes from two extra sources. First, he experiences a painful sensation of loss from

comparing the 80 bars he will actually eat today instead of the 100 he had expected. On top of this,

that same Friday, the agent also experiences a utility decrease from knowing that in all upcoming

Fridays he will be consuming twenty fewer caramel-filled bars. If η =0.1 these two effects imply a
15The assumption that the agent experiences utility directly over money and not over the related consumption is

standard in moral hazard models but is not neutral in the Kőszegi and Rabin (2009) model. In fact, the original model
is capable of explaining why agents derive utility form money: because money brings news about future consumption.
For simplicity, though, I omit such interesting observation.
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total decrease in that Friday’s utility flow of 20+0.1[G(80|100)+γ99G(80|100)]>20.16

Assumption 2 presents the assumptions made over the gain-loss utility function. Consider the

payment domain (see Appendix A for the analogous specification of gain-loss utility in effort). For

p ∈ (0, 1), let s
Π̃St,τ

(p; ẽt,τ ) be the payment level at percentile p of the lottery of payments Π̃S
t,τ given

the effort belief ẽt,τ , which is defined as usual by Π̃S
t,τ (s

Π̃St,τ
) > p and Π̃S

t,τ (s) < p ∀s < s
Π̃St,τ

.

Assumption 2 (Gain-loss Utility)

(i) G(s̃t,τ , ẽt,τ |ẽt−1,τ , s̃t−1,τ ) = G(s̃t,τ (ẽt,τ )|s̃t−1,τ (ẽt−1,τ )) +G(ẽt,τ |ẽt−1,τ )

(ii) for t = 1 and τ = 1, 2 and for t = 2 and τ = 2, the G(·|·) function corresponds to:

G(s̃t,τ (ẽt,τ )|s̃t−1,τ (ẽt−1,τ )) =
∫ 1

0
µ
(
u(s̃

Π̃St,τ
(p; ẽt,τ ))− u(s̃

Π̃St−1,τ
(p; ẽt−1,τ ))

)
dp (2)

(iii) where µ(x) = x if x > 0 and µ(x) = λx where λ > 1.

Assumption 2 part (i) states that the gain-loss utility function is separable between consumption

domains where the notation for gain-loss utility in payments makes explicit the effort plan generating

the corresponding income belief. Following Kőszegi and Rabin (2009), part (ii) assumes the agent

makes a rank order comparison between his beliefs at the end of the previous period with those held

at the beginning of it. Intuitively, the agent compares the wort percentile of his old beliefs with

the worst percentile of his new beliefs, the second worst percentile of his old beliefs with the second

worst percentile of his new beliefs, and so on for all percentiles. Notice that for the (t, τ) pairs

(1,1) and (2,2), equation (2) corresponds to contemporaneous gain-loss utility. In such a case, given

xn, the agent compares a particular payment against a non-degenerate payment distribution (the

distribution of payments before xn is realized corresponding to S1 or S2 depending on whether t is 1

or 2). For the pair (t,τ)=(1,2) equation (2) corresponds to prospective gain-loss utility. In such case,

given xn, the agent compares two non-degenerate distributions: the distribution of second-period

payments before xn is observed with that after xn is observed.

To illustrate how the agent makes the rank order comparison to compute gain-loss utility, con-

sider the following example. A worker, who does not experience disutility from effort, lives and

works during two periods. His payments are governed by the following long-term contract: the

first-period contract and the continuation contract after a first-period success pay 100 or 80 dollars

depending on whether the period outcome is high or low; meanwhile the continuation contract after
16Evidence of this preference structure can be found in Loewenstein (1988), who finds that people are willing to

pay more to avoid delaying the delivery of a good when they expect to receive it immediately than to speed up the
delivery when they expected to receive it later. For a more detailed description of the evidence for the relevance of
prospective gain-loss utility as decision utility, see Kőszegi and Rabin (2009) and Matthey (2005). For recent evidence
of expectations as the reference point, see Abeler, Falk, Götte, and Huffman (2009).
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Figure 1: First period contemporaneous gain-loss utility realization.

a first period failure pays 60 or 40 if second-period outcome is high or low respectively. Assume

further that in every period observing a high or low outcome is equally likely and that η =0.1,

γ =1. First, consider contemporaneous gain-loss utility for period one illustrated in Figure 1. If a

high outcome is observed (panel (a)), the agent compares the percentiles in the degenerate lottery

putting probability one on the realization of a hundred dollars against the percentiles of the orig-

inal non-degenerate distribution, i.e., he gets 0.5µ(100-80)+0.5µ(100-100)=10. Equivalently, if a

low outcome was realized (panel (b)), the gain-loss utility loss corresponds to 0.5µ(80-80)+0.5µ(80-

100)=0.5×2(-20)=-20.17 A similar analysis is valid for second-period gain-loss utility under any

continuation contract.

Consider now prospective gain-loss utility. Before the first period outcome is realized, the agent

expects to be paid 40, 60, 80 or a 100 dollars, each with probability 0.25 because outcome realizations

are independent. Panel (a) in Figure 2 illustrates the computation if the high outcome is observed

in the first period. In such case, the agent will be paid with the high-payment continuation contract

and thus he will experience a prospective gain-loss utility gain from comparing each percentile

of the old distribution (solid line) of second-period payments with those of the new distribution

(dashed line). This prospective gain-loss utility gain equals 0.25µ(80-40)+0.25µ(80-60)+0.25µ(100-

80)+0.25µ(100-100)=0.25×(40+20+20)=20 since under the old distribution the first 25 percentiles

of payments equal 40 dollars, meanwhile under the new distribution the first 25 percentiles pay

80 dollars; the second percentiles of the old distribution pay 60 dollars meanwhile the second 25

percentiles pay 80 dollars and so on. Equivalently, panel (b) in Figure 2 illustrates the computation

if a low outcome is observed in the first period. Whenever λ = 2, if a low outcome is observed

in the first period, the agent experiences a loss equal to 0.25µ(40-40)+0.25µ(40-60)+0.25µ(60-

80)+0.25µ(60-100)=-0.25×2×(20+20+40)=-40.
17This specification of the gain-loss utility is equivalent to that used in Kőszegi and Rabin (2006, 2007). It is also

worth noticing that in the effort domain things are simpler. Because of the assumption made on ẽt ∈ E , that is,
conditional on the past, the agent only forms effort plans in pure strategies, contemporaneous gain-loss utility in
effort reduces to µ(c(ẽt−1,τ )− c(ẽt,τ )). As a consequence, in period one, given a chosen effort or in period two given
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Figure 2: Prospective gain-loss utility realizations.

Part (iii) in Assumption 2 defines the function µ(·). It corresponds to the equivalent of the

“value function” in Kahneman and Tversky (1979). To capture the intuition that the strength

of the reference-dependent utility is proportional to the importance of consumption utility, present

and past beliefs are stated in their consumption utility equivalents.18 The value function is assumed

to be continuous over the whole domain and differentiable everywhere, except at the origin. For

simplicity, and to isolate the effects of loss aversion, it is assumed to be a piece-wise linear function,

that is, flat but with different slopes in the gain and loss domains. The parameter λ is the “loss-

aversion parameter”, representing how intense losses are felt relative to gains. Notice that if λ = 1

gains are equally felt relative to losses and for a piece-wise value function, preferences reduce to

classical preferences.19

Finally, the model assumes the agent in period t makes his decisions to maximize the sum of his

instantaneous utilities:

Ut =
2∑
τ=t

vτ

where there there is no discounting to highlight the role of γ.20 If there is uncertainty in the agents

the realization of xn, all quartiles of the (degenerated) effort lottery make the same comparison.
18To see this, consider the following example in Kőszegi and Rabin (2006). When choosing between whether to

accept or reject a 50% lottery of winning or loosing 100 dollars, versus a 50% lottery of winning or loosing a paper
clip, it is reasonable to assume that the agent will be more loss-averse over the first lottery rather than the second.

19Whenever a piece-wise linear value function is assumed, loss aversion becomes a necessity to experience reference-
dependent preferences. See formulas in Appendix A. In a more general specification of the value function, in which the
gain domain is assumed to be concave and the loss domain is assumed to be convex–phenomenon called diminishing
sensitivity–the agent can experience reference-dependent preferences without being loss averse.

20It is worth considering the difference between a traditional discount factor and γ. Following Kőszegi and Rabin
(2009) one may justify the first in terms of a decision maker putting lower weight on future utility flows because
something may cause those future dates to be irrelevant. Time discounting is thus a discounting measure between
utility flows. Contrarily, the gain-loss utility weight γ is a within utility flow “discounting”. It may justified in terms
of the decision maker putting a different weight into events happening in the future, not necessarily because they may
not take place but simply because awareness is decreasing in the date of experience. See Section 8 for a discussion on
the implications of including an exponential discount factor.
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Figure 3: Timing of the Principal-Agent Interaction

takes expectations accordingly.

Figure 3 presents the time line of the principal-agent interaction. After the principal offers the

contract to the agent, the agents forms effort plans (ẽ0,1, ẽ0,2(X1)) for the two upcoming periods.

Given these plans, he accepts or rejects the contract.21 In the beginning of period one the agent

chooses effort e1. Immediately thereafter X1 is realized and the agent experiences consumption

and gain-loss utilities. At the end the same period, and with X1 = xn at hand, the agent reviews

his effort plans for the upcoming period and forms ẽ1,2. At the beginning of period two the agent

chooses second-period effort, and immediately after the realization of X2 is observed and payoffs are

realized.22 The last ingredient to the preference specification is the assumption that the agent has

rational expectations: he correctly anticipates the consequences of his effort decision and cannot

form effort plans he knows he will not carry out given the implications these plans have over

payments and future preferences. The agent’s equilibrium behavior is thus a complete contingent

effort plan for period one and two, from which the agent will never want to deviate when actually

executing it–given that the effort plan constitutes the reference–nor when updating it as information

arrives. Moreover, notice that because of rational expectations, when updating his effort plans, the

agent will only consider deviating to plans that he knows he is willing to follow, that is, to rational

or consistent plans.23

21Notice that this specification abuses a bit of the word “plan”, because if the agent does not accept the contract
he will never get to execute these actions. Thus, one can think of the period-zero plans are “conditional plans”. We
do so to avoid introducing further notation to denote the agent’s intended actions.

22The length of the period is neutral in models with classical preferences. However, this is not the case with
reference-dependent preferences. In fact, an implicit assumption of the model is that the periods are long enough so
that the agent can form plans but not that long so that the agent does not consider deviations from the references as
in the “choice acclimating equilibrium” in Kőszegi and Rabin (2007). A month is a credible long-term period for this
model.

23Notice that assuming the agent has rational expectations implies no contradiction with the assumption that agents
have reference-dependent preferences. In fact, reference-dependent preferences is by no means a form of irrationality
but simply a different preference structure, which the completely rational agent correctly maximizes given the economic
environment and restrictions he faces.
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To formally introduce the agent’s equilibrium behavior, I make an explicit distinction between

the total expected utility at the beginning of t = 1, 2, when the agent actually implements a period

effort, and the total expected utility the agent gets at the end of the period, once the performance

measure has been realized and the agent is updating his effort plans for the upcoming periods. In

periods zero and one, before X1 is realized, ẽt,2(X1), t = 0, 1, corresponds to a function mapping

from X to E . At the end of period one, once xn has been observed, plans for second-period effort are

denoted using this realization, i.e. ẽ1,2(xn) and the expected utility function is denoted contingent

on xn.

Definition 1 (Agent’s Equilibrium Behavior)

Given a contract S, the effort path (ePE1 ,ePE2 (X1)) is a “preferred personal equilibrium” (PE) for

the agent if

(i) EU0(ePE1 , ePE2 (X1)|ePE1 , ePE2 (X1)) > EU0(e1, e2(X1)|e1, e2(X1)) ∀(e1, e2(X1)) ∈ EPE

(ii) EU1(ePE1 , ePE2 (X1)|ePE1 , ePE2 (X1)) > EU1(e1, e
PE
2 (X1)|ePE1 , ePE2 (X1)) ∀e1 ∈ E

(iii) EU2(ePE2 (xn)|ePE2 (xn);xn) > EU2(e2|ePE2 (xn);xn) ∀e2 ∈ E ,∀xn

where EPE ≡ {e ∈ E , e2(X1) ∈ E × · · · × E|(ii) and (iii) hold for e = ePE1 and e2 = e2(X1)PE}.

Definition 1 says that an effort path is a personal equilibrium for the agent if (1) given xn, in

the second period the agent does not want to deviate from his second-period planned effort to any

other second-period rational plan (2) in the first period the agent does not want to deviate from his

planned effort nor change his plans for the second period to another second-period effort he knows

he is willing to follow and (3) in period zero he knows that he will be willing to plan and implement

the effort plan in the upcoming periods since it is the rational plan that gives him the highest utility

among all rational plans.24,25

To actually compute the equilibrium, the agent must proceed backwards: in period zero, he

considers which action will be convenient to implement in period two given the continuation contract

and each realization of the first period performance measure xn. This will constitute the effort plan

he will hold at the end of period one, ẽ1,2(xn). Because of rational expectations, however, he must

also check that, given this plan, once in period two he will be willing to carry this plan through,

that is, e2 = ẽ1,2(xn). With e2 and ẽ1,2(xn) the agent can consider which effort will be optimal to

24This definition of personal equilibrium slightly differs to that in Kőszegi and Rabin (2009). In part (i) I assume
the agent forms his period zero reference point at the same time he forms his plans, as in the static model in Kőszegi
and Rabin (2006), meanwhile Kőszegi and Rabin (2009) assume that in period zero the agent has an arbitrary set of
plans for future periods. They show that the predictions of the model are robust to this specification. This should
not make any difference for the model predictions.

25Notice that because of the assumption that plans are updated after gain-loss utility is realized, the condition that
the agent does not want to deviate to other second-period credible plans at the end of period one is ensured by (i).
We relax this assumption in Section 7.
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implement in period one. This will constitute his effort plan for the period ẽ0,1. Then, just as before,

he must make sure that, given this belief and those for period two, he will actually implement the

action, that is e1 = ẽ0,1. Thus, since in period zero he knows that ẽ1,2 is a rational plan, then he

sets ẽ0,2 = ẽ1,2. An effort path (ePE1 ,ePE2 (X)) thus will be an equilibrium for the agent if ẽ0,1 = ePE1

and ẽ0,2(xn) = ẽ1,2(xn) = ePE2 (xn) ∀xn.

I finally turn to the definition of an implementable path and the principal’s problem.

Definition 2 (Implementable Effort Path)

An effort path (e1, e2(X1)) is said to be implementable by a contract S if

(i) EU0(e1, e2(xn)) > UR.

(ii) (e1, e2(X1)) is a preferred personal equilibrium for the agent.

where UR = U1
R + U2

R corresponds to the sum of the agent’s per-period reservation utilities.

Part (i) corresponds to the standard individual rationality restriction: the agent accepts the offer if

and only if the total utility he gets from the contract is not lower than his reservation utility. Part (ii)

corresponds to the incentive compatibility restrictions implied by the agent’s personal equilibrium.

When agents have reference-dependent preferences and their reference point corresponds to their

rational expectations about the effort path and the income beliefs induced by the contract, the

personal equilibrium makes sure the agent will actually execute the desired effort path. However,

this notion of incentive compatibility is more complex than that with classical reference-independent

preferences. This is because the contract not only has to ensure that the agent actually executes

the contingent desired actions but also that the agent plans those desired actions and does not

deviate from his plan as information about the performance measure arrives. As a consequence,

it is useful to consider the requirement of the effort path being a personal equilibrium as two sets

of incentive compatibility restrictions: (1) those that, given the reference, make sure the agent

actually implement the desired action and (2) those that make sure the agent does not deviate to

other rational plans when reviewing his future plans as information arrives. I call the first set of

incentive compatibility restrictions (part (i) in Definition 1) as “planning incentive compatibility

restrictions”, and the second set of restrictions as “executing incentive compatibility restrictions”

(part (ii) and (iii) in Definition 1).

Finally, as usual since Grossman and Hart (1983), I consider the principal’s problem as a two-

step decision problem. First, find the contract that implements a given effort path (e1, e2(X1)) at

the minimum cost. Formally, for a given effort path (e1, e2(X1)) the first step corresponds to the

program (P)

min{
snsnm

}N
m=1

N∑
n=1

πn(e1)[sn +
N∑
m=1

πm(e2)snm
]
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subject to EU0(e1, e2(X1)|e1, e2(X1)) > UR

(e1, e2(X1)) is a preferred personal equilibrium

The second step in the Grossman and Hart (1983) approach consists in choosing the effort path

(and its correspondent contract) that maximizes her profits. Though the statement of this problem

is straightforward, I will skip it as I focus on the first step.

4 Basic Properties of the Optimal Contract

In this section I present a basic characterization of the optimal contract when agents are loss averse.

I contrast the results under reference-dependent preferences with those under classical reference-

independent preferences.

4.1 First-best Contracts

I start by considering the shape of the optimal contract when the state perfectly reveals the agent’s

action, i.e. the first-best contract. Lemma 1 presents a basic description of gain-loss utility under

certainty.26

Lemma 1 (Gain-loss Utility under Certainty is Zero)

Assume A1-A-2 and that for every effort ej ∈ E there exists an n ∈ {1, . . . , N} such that πn(ej) = 1

and πn(ek) = 0 for all ek 6= ej. Then
∫
G(s̃t,τ , ẽt,τ |s̃t−1,τ , ẽt−1,τ )dΠS

τ = 0 for t = 1 and τ = 1, 2 and

for t = 2 and τ = 2, ∀λ > 1.

Lemma 1 states that gain-loss utility is zero when there is no uncertainty even if the agent is

loss averse. Intuitively, when the state perfectly reveals the action and the agent has rational

expectations the agent cannot experience any feelings of gain or loss since he will never expect any

other payment but the certain one given the effort he exerted.

With this lemma at hand, the following proposition describes the first-best contracts (SFB) for

classical reference-independent and reference-dependent preferences.

Proposition 1 (First-Best Contracts)

Assume A1-A2 and that for every effort ej ∈ E there exists an n ∈ {1, . . . , N} such that πn(ej) = 1

and πn(ek) = 0 for all ek 6= ej. Then the optimal contract S implementing (e1, e2(X1)) does not

depend on η. Moreover, S can be such that snm = sn′m for n 6= n′ ∀m.
26This lemma replicates Proposition 3 in Kőszegi and Rabin (2006) in a moral hazard environment.
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Proposition 1 presents two basic characteristics of the first best contracts. First, the contract with

reference-dependent preferences is equal to that with classical reference-independent preferences.

Herweg, Müller, and Weinschenk (2008) establish the same result for a static model of moral hazard

with loss averse agents with preferences as in Kőszegi and Rabin (2006). The intuition behind this

result comes straight from Lemma 1: under certainty gain-loss utility is zero and thus reference-

dependent agents are behaviorally equivalent to consumption utility maximizers. Second, first-best

contracts can be implemented without memory in wages, i.e. as a sequence of one-period contracts.

Intuitively, when the contract can be written upon effort the principal does not face a risk-incentive

trade-off and thus memory plays no role in alleviating it. As a result, a forcing contract in every

period minimizes the principal’s expected cost of implementing the desired action.27

4.2 Second-Best Contracts

I now study the shape of the optimal contract when the outcome measure does not reveal the agent’s

effort and the principal cannot observe the agent’s action, i.e. the second-best contract. The aim is

to prove that several standard features of this contract under classical reference-independent pref-

erences still hold when agents have reference-dependent preferences. I start by proving the optimal

contract exists when agents have reference-dependent preferences. Furthermore when consumption

utility is concave such a contract is unique.

Assumption 3 (Outcome does not Reveal the Action)

For every n ∈ {1, . . . , N} there are at least two actions ej 6= ek such that πn(ej) 6= 0 and πn(ek) 6= 0.

Proposition 2 (Existence and Uniqueness of Second Best Contracts)

Assume A1-A3 and fix η > 0 and an implementable effort path (e1, e2(X1)). Then, there exists

a contract S implementing (e1, e2(X1)) at minimum expected cost for the principal. Moreover, if

u′′(·) < 0, S is unique.

Just as in the reference-independent case, the assumption of consumption utility being strictly

increasing allows us to uniquely define the principal’s problem in a utility equivalent problem, which

under the assumption of the value function being piece-wise linear (Assumption 2) corresponds to

the minimization of well-behaved convex function with linear constraints.28

27Notice that without discounting, the first cost can also be implemented with a forcing long-term contract, i.e., a
contract paying s in the second period if the desired first-period outcome is not observed and paying a fixed first-period
wage of u−1(c(e1) + UR1). This contract, however, does not help highlighting the role of memory when the agent’s
action is not observable. See Proposition 4. For a proof of the optimality of first-best contracts without memory with
classical preferences see Lambert (1983).

28The assumption of E being a discrete set is also important since it allows me to avoid the first order approach.
See Herweg, Müller, and Weinschenk (2008) for a model of static moral hazard with Kőszegi and Rabin (2006)
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From now on we assume that the outcome measure does not reveal the unobservable agent’s

action. Proposition 3 states that some of the basic characteristic of the second-best contract with

classical reference-independent preferences also hold with reference-dependent preferences.

Proposition 3 (Basic Properties of Second-Best Contracts)

Assume A1-A3 and fix η > 0 and an implementable effort path (e1, e2(X1)). Then, in the optimal

contract S implementing the effort path

(i) the IR is binding.

(ii) the expected cost equals that of the first best contract if e1 = e2(xn) = emin ∀n where emin is such

that c(emin) = min{c(E)} or if there exists a subset Xj ⊆ X such that
∑

xn∈Xj π
j
n = 0 <

∑
xn∈Xj π

k
n

∀ek ∈ E\ej where c(ek) < c(ej) for ej = e1 and equivalently for ej = e2(xn) ∀xn.

Part (i) states that any contract minimizing the principal’s expected cost will leave no rents to

the agent. Much like with reference-independent preferences, if the IR does not bind the principal

can decrease by the same magnitude the consumption utility equivalents of all payments in a given

period–without affecting gain-loss utility–decreasing thus her expected cost of implementing the

action path.29 Part (ii) states conditions under which the second-best contract achieves the same

cost as a first-best contract. There are two cases here. First, if the principal wants to implement the

least-cost effort path. The intuition is the same as with classical reference-independent preferences:

if the interest of the agent and those of the principal are aligned there is no trade-off between risk-

allocation and incentives. Second, if there is a (possibly different) shifting support for each of the

desired actions in the effort path; that is, if for every desired action there is a certain range of the

performance measure which cannot be achieved under the desired action but only under low cost

ones. In this case the principal can write a sequence of forcing contracts with a sufficiently high

penalization so that the agent will never take the risk of not executing the desired action path.30

It is interesting to note that with reference-dependent preferences, linear consumption utility

does not imply that the second-best contract achieves the cost of the first-best contract as it is

the case with reference-independent preferences. In fact, recall that with risk neutral classical

preferences the principal can “sell the firm” at a fixed price to the agent (equal to her expected

utility) and achieve first best. With reference-dependent preferences this is no longer true: even

preferences where the action is assumed to be continuous and the first order approach is used. As the authors point
out, assumptions over the cost function must be made for the first order approach to be valid. The reason lies in the
equilibrium gain-loss utility being negative (see Lemma 2 in the next section). Finally, the assumption of E being
finite is not crucial. In fact, proving the existence of the contract when E is infinite only requires proving that the
expected cost function is lower semicontinuous instead of simply continuous as I have done in the proof. I have opted
to assume a finite set because there seem to be no additional interesting insights when E is assumed to be infinite.

29This result is not surprising: despite being reference-dependent, the agent’s preferences over income lotteries are
still independent of his effort choice due to the separability assumption (see Assumption 1).

30Notice though that this relaxes our initial assumption that πjn > 0 ∀n, j. However, just as in the case of classical
reference-independent preferences, this may create some existence problem since proving that the set of IC and IR
contracts is not bounded becomes harder. For details see Grossman and Hart (1983).
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when consumption utility is linear, agents are still loss averse and thus they will not be willing to

absorb the risk that such agreement involves.

5 Fixed-Wage Contracts

I now turn to the main prediction, that is, explore the intertemporal allocation of incentives when

agents have dynamic reference-dependent preferences and the effort choice is private information.

Proposition 4 presents our benchmark: the shape of optimal long-term contracts when agents have

standard reference-independent preferences. From now on, unless otherwise stated, Assumption 1

is assumed to hold.

Proposition 4 (Long-Term Contract with Reference-Independent Classical Preferences)

Assume A1 and A3 and fix η = 0 and an effort path (e1, e2(X1)). Then, the optimal contract S

implementing (e1, e2(X1)) is such that

(i) if u
′′
< 0, sn 6= sn′ for at least one n 6= n′, and snm 6= sn′m for n 6= n′ and at least one m.

(ii) if u
′′

= 0, sn 6= sn′ for at least one n 6= n′ and snm = sn′m for all m and for at least one n 6= n′.

Proposition 4 part (i) replicates the result in Rogerson (1985) (see also Lambert (1983), Murphy

(1986), Malcomson and Spinnewyn (1988), Chiappori, Macho, Rey, and Salanié (1994)). It says that

when the agent has standard risk-averse preferences optimal payments are contingent on the whole

outcome history and the contract is said to display memory in wages. With risk-averse agents

the intuition is as follows. By splitting incentives across time, the long-term contract increases

the insurance provided to the agent relative to a sequence of one-period contracts, ameliorating the

standard risk-sharing problem and allowing the principal to pay a smaller risk premium to implement

the same action path. For present purposes, this prediction implies that when agents are risk-averse

it is never optimal for the principal to cluster incentives in one period. Part (ii) corroborates this

intuition by stating that if consumption utility function is linear the optimal contract displays no

memory: since the agent is not bothered by risk there are no gains from intertemporal risk-sharing.

In other words, the principal can write a sequence of forcing-short term contract and achieve first

best.31

Before turning to our main proposition we present a lemma and add one final assumption.

Lemma 2 generalizes the result in Kőszegi and Rabin (2009) by describing the value of the gain-loss

utility in the equilibrium.
31From Proposition 2 we know that the optimal contract is not unique when the agent has a linear consumption

utility function. As discussed in footnote 27, the first-best cost can also be achieved with a contract using memory.
However, such contract does not highlight the use of memory as alleviating the risk-incentive trade-off. Thus, we opt
to emphasize the first-best contract without memory.
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Lemma 2 (Equilibrium Gain-loss Utility is Non-Positive)

Fix η > 0 and an an effort path (e1, e2(X1)). Then, for the optimal contract S implementing

(e1, e2(X1)) ∫
G(s̃t,τ (ẽt,τ )|s̃t−1,τ (ẽt−1,τ ))dΠS

τ 6 0

for t = 1 and τ = 1, 2 and for t = 2 and τ = 2 with equality if λ = 1.

Lemma 2 says that if the action path is a personal equilibrium, expected gain-loss utility is negative

for loss-averse agents. Intuitively, the agent is hurt by the prospect of fluctuations in his income

beliefs: he expects the payment realization to disappoint him with the same probability that he

expects it to pleasantly surprise him, so due to loss aversion the expected utility from changes in

income beliefs is unpleasant. By noticing that beliefs can only change in risky environments, this

feature of the preference structure implies that the agent dislikes risk from the reference-dependent

component of his utility function.

To understand why Lemma 2 holds, consider the following simple example illustrating contem-

poraneous gain-loss utility. An agent who works every Friday is paid the same day 100 dollars with

probability π(eh) if he works hard (if he exerts eh), and 80 dollars otherwise. On Thursday, the agent

forms an effort plan ẽ to be executed on Friday. Such an effort plan implies that the agent believes

that on Friday he will earn 100 dollars with probability π(ẽ) and 80 dollars otherwise. To compute

the expected utility the agent must consider the utility he will get in each possible future scenario.

He knows that if he is successful on Friday he will get a gain equal to (1−π(ẽh))µ(100−80) by com-

paring the percentiles of the reference distribution with the degenerate distribution putting mass

one into 100 (see the example in Section 3). Furthermore, he knows that if he fails on Friday he will

experience a loss equal to π(ẽ)µ(80− 100). As a consequence, the total expected contemporaneous

gain-loss utility corresponds to

π(eh)(1− π(ẽh))µ(100− 80) + (1− π(eh))π(ẽ)µ(80− 100) (3)

Equation (3) shows that the probability of the gain scenario corresponds to π(eh)(1− π(ẽh)) while

that of the loss scenario is (1 − π(eh))π(ẽ). When the agent has rational expectations, however,

he will only implement actions he planned and he only plans actions he is willing to implement.

Thus, in equilibrium π(eh)(1−π(ẽh)) = (1−π(eh))π(ẽ). Then, using the piece-wise linearity of the

value function (see Assumption 2), equation (3) corresponds to (1− λ)π(eh)(1− π(eh))20, which is

negative whenever λ > 1.

Assumption 4 presents one final assumption over the outcome probability distribution.

Assumption 4 (MLRP)

For any ek, ej ∈ E such that ek 6 ej, the ratio πn(ek)/πn(ej) is non-increasing in n ∈ {1, . . . , N}.
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Intuitively, Assumption 4 states that exerting more costly actions implies that higher outcome levels

are more likely. This is a very reasonable assumption for a model where the actions correspond to

effort level and the performance measure are outcomes positively related to the principal’s utility:

the higher the effort the agent exerts, the more likely higher outcomes will be observed. Whenever

Assumption 4 holds for actions ek 6 ej , I say that the income distribution ΠS(ej) “likelihood ratio

dominates” ΠS(ek) for τ = 1, 2 (denoted ΠS(ej) %LRD ΠS(ek)).

I now present the main result. Proposition 5 states sufficient conditions for the long-term con-

tract to allocate all incentives into future payments.

Proposition 5 (Long-Term Contracts with Reference-Dependent Preferences)

Assume A1-A4 and fix η > 0 and an effort path (e1, e2(X1)). Then there is a γ̄ > 0 and a M1 > 0

such that if γ < γ̄ and |u′′(s)| 6 M1 for all s > s, the optimal contract implementing (e1, e2(X1))

sets sn = sn′ for all n, n
′

and a first-period fixed wage, snm 6= sn′m for all n 6= n
′

and at least one

n, n
′
.

To illustrate the mechanism behind the main proposition, consider a two-action, two-effort model

where for simplicity I assume the second-period action is verifiable and that the agent does not

experience prospective gain-loss utility (γ = 0). Assume further that consumption utility is linear

and that the principal wants to implement high effort in both periods. The high effort consumption

disutility is c and that of low effort is zero. Define a contract S as follows. The first-period contract

pays sh after a success, and s` < sh after a failure, meanwhile the second-period contract pays s̄

after a second-period success and s < s̄–where s is defined in Assumption 1–after a second-period

failure, independently of the first-period performance. Consider now an alternative contract Ŝ

paying a fixed first-period payment s = π(eh)sh + (1 − π(eh))s`, where π(eh) is the probability

of success given high effort and (sh,s`) correspond to the first-period payments under contract S.

Contrary to contract S, assume that Ŝ sets second-period contracts contingent on the first-period

outcome realization: if a high outcome is observed in the second period, the contract pays s̄ + ρh

after a first-period success and s̄ − ρ` after a first-period failure with ρh, ρ` ∈ R+. Moreover, if a

low outcome is observed in the second period, the contract pays s.

I show that for the right choices of ρh and ρ`, Ŝ is a profitable deviation from S, i.e., Ŝ implements

the same effort path at cheaper expected cost. Notice that since the fixed-first-period payment under

contract Ŝ–s–equals the first-period expected consumption utility of contract S, the total expected

cost of the two contracts will be equal if πhρh − (1 − πh)ρ` = 0. As a consequence, the principal

will be indifferent between the two contracts and thus it suffices to show that under the alternative

contract Ŝ, high effort in both periods is a PPE and that the agent is better-off relative to contract

S.
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I start by exploring the conditions on ρh and ρ` such that high effort in every period is a PPE

under Ŝ. Notice that because the action is observable in the second period, and thus second-period

contracts are forcing contracts, the only credible action for period two is high effort (otherwise the

agent gets infinite disutility from s). Thus, the second-period implementing IC is trivially satisfied

under both S and Ŝ.

Consider now the first-period implementing IC. To understand this IC restriction, we show how

the two contracts S and Ŝ set incentives. Under contract S, the increase in total period one total

expected utility the agent gets from exerting high effort instead of low effort, having planned to

exert high effort, corresponds to:32

EU1(eh|eh;S)− EU1(e`|eh;S) = [π(eh)− π(e`)]
{

(sh − s`)︸ ︷︷ ︸+φ(sh − s`)︸ ︷︷ ︸ }− c− µ(c) > 0

where φ ≡ η[(1 − πh) + λπh].33 The first bracket shows incentives coming from first-period con-

sumption utility: implementing high effort increases the probability of getting the high payment

and decreases the probability of a low payment. The second bracket shows incentives coming from

first-period contemporaneous gain-loss utility: implementing high effort increases the probability of

a gain and decreases the probability of a loss. The difference in costs corresponds to the increase in

costs of exerting high instead of low effort, having planned high effort: the consumption disutility of

high effort plus the forgone gain of a pleasant surprise of working less than expected. Equivalently,

under contract Ŝ, the implementing first-period IC corresponds to:34

EU1(eh|eh; Ŝ)− EU1(e`|eh; Ŝ) = [π(eh)− π(e`)]
{

0 + 0 + (ρh + ρ`)
}
− c− µ(c) > 0

32To derive this equation, first build contemporaneous gain-loss utility. For this, recall that if a success is observed
in the first period, the agent will experience a gain equal to η(1−π(eh))(sh−s`). If a failure is observed, the agent gets
a loss equal to −λη(1−π(eh))(sh−s`) (see example in Section 3). Since in equilibrium the implemented action equals
the planned one, the gain scenario happens with probability π(eh) and the loss scenario happens with probability
(1 − π(eh)). Then, notice that for a given effort plan made in period zero to be executed in period one, ẽ0,1, the
agent’s total period-one expected utility of exerting eh corresponds to:

EU(eh|ẽ0,1, S) = π(eh)[sh + η(1− π(ẽ0,1))(sh− s`) + s̄] + (1− π(eh))[s`− ληπ(ẽ0,1)(sh− s`) + s̄]− c+µ(−c− c(ẽ0,1))

This equation follows simply by first setting ẽ0,1 = eh in the equation above, constructing the same equation for e`
and then taking differences between the two. Notice, thus, that φ in fact corresponds to η[(1 − π(ẽ0,1)) + λπ(ẽ0,1)].
In equilibrium, however, planned actions equal implemented actions.

33Because the second-period action is observable, the notation of all the utility functions in this example suppress
the second-period action.

34To derive this equation notice that for a given effort plan made in period zero to be executed in period one, ẽ0,1,
the agent’s total period-one expected utility of exerting eh corresponds to:

EU1(eh|ẽ0,1, Ŝ) = π(eh)[s+ 0 + s̄+ ρh] + (1− π(eh))[s+ 0 + s̄− ρ`]− c+ µ(−c− c(ẽ0,1))

The equation follows simply by first setting ẽ0,1 = eh in the equation above, constructing the same equation for e`
and then taking differences between the two.
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Since contract Ŝ uses a fixed wage in the first period, there is no change in consumption utility nor

in gain-loss utility (the first two zeros above). However, under this alternative contract, second-

period payments depend on the first-period outcome, and thus a new source of incentive arises:

second-period consumption utility.35 This is because if the agent executes high effort, he increases

the probability of getting the high payment s̄+ ρh relative to the low one s̄− ρ`.
From the two equations above is straightforward to see that by setting

(ρh + ρ`) = (1 + φ)(sh − s`) (4)

the period-one implementing IC under contract Ŝ holds, i.e. having planned to execute high effort,

the agent will actually work hard under contract Ŝ. In fact, using equation (4) together with

πhρh − (1 − πh)ρ` = 0, the optimal quantities ρ∗h and ρ∗` such that the principal is indifferent

between the two contract and the agent will execute the desired action in period one are uniquely

defined.36

The final step for high effort to be a PPE under Ŝ, is to show that the period-zero planning IC

holds. For this notice that if the disutility the agent gets in period zero from planning low effort but

then deviating to high effort is big enough, an effort path with low effort in the first period may also

be credible. Thus, it must be the case that under the deviation contract Ŝ, the total period-zero

expected utility of planning and exerting high effort is greater than that of planning and exerting

low effort in the first-period. In fact, under the alternative contract Ŝ this condition is satisfied by

the first-period implementing IC since this contract only relies on consumption utility–and thus on

the implemented action–to put incentives.37 Having found the optimal amount of second-period

incentives for Ŝ to implement high effort, the question then is whether the agent is better or worse-

off under this alternative contract. To find the answer, I compare the total period-zero expected

utility the agent gets under both contracts. Under the original contract S the total period-zero

equilibrium expected utility corresponds to:

EU0(eh, |eh;S) = π(eh)sh + (1− π(eh))s`︸ ︷︷ ︸− η(λ− 1)π(eh)(1− π(eh))(sh − s`)︸ ︷︷ ︸+s̄− 2c

The first bracket corresponds to first-period expected consumption utility. The second bracket cor-

responds to period-one expected contemporaneous gain-loss utility, which because of loss aversion is
35If γ > 0 then prospective gain-loss utility also helps to set incentives.
36The optimal difference between the second-period continuation contracts therefore corresponds to ρ∗h = (1 −

πh)(1 + φ)(sh − s`) and ρ∗` = πh(1 + φ)(sh − s`).
37To see this notice that, by adding and subtracting conveniently and by noticing that equilibrium period-total

utility equals that in period zero, period-zero planing IC can be written as

EU0(eh|eh; Ŝ)− EU0(e`|e`; Ŝ) = [EU1(eh|eh; Ŝ)− EU1(e`|eh; Ŝ)]− [EU1(e`|e`; Ŝ)− EU1(e`|eh; Ŝ)]

Furthermore, with very little work one can see that under this contract EU1(e`|e`; Ŝ) − EU1(e`|eh; Ŝ) = −µ(c) and
thus EU0(eh|eh; Ŝ)− EU0(e`|e`; Ŝ) = [EU1(eh|eh; Ŝ)− EU1(e`|eh; Ŝ)] + µ(c).
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negative. Notice further that there is no prospective gain-loss utility nor second-period contempo-

raneous gain-loss utility because γ = 0 and second-period contracts do not depend upon first-period

performance. Equivalently, under contract Ŝ, the total period-zero expected utility corresponds to

EU0(eh, |eh; Ŝ; ρ∗h, ρ
∗
` ) = s︸︷︷︸+ s̄+ π(eh)ρh − (1− π(eh))ρ`︸ ︷︷ ︸−2c = π(eh)sh + (1− π(eh))s` + s̄− 2c

The first bracket corresponds to period-one expected utility, which consists only of first-period

expected consumption utility. The second bracket corresponds to second-period expected utility

which consists, again, uniquely of second-period expected consumption utility.

Therefore, the difference between the total period-zero expected utility under Ŝ and S corre-

sponds to:

EU0(eh|eh; Ŝ, ρ∗h, ρ
∗
` )− EU0(eh|eh;S) = η(λ− 1)π(eh)(1− π(eh))(sh − s`) > 0 (5)

which is positive because the agent is loss averse (λ > 1).

Intuitively, when γ = 0, the agent is not hurt by fluctuations in his beliefs about future income.

As a consequence, the principal can defer all the risk–and thus all the incentives–into the future

to minimize the disutility the agent gets from bearing risk. In doing so, the optimal contract

relies heavily on future consumption utility to restore the incentives lost from fixing the first-period

wage. In other words, a payment structure exploiting future consumption utility to set incentives

is cheaper than one using gain-loss utility to motivate the agent, since it minimizes the disutility

the agent gets from fluctuations in his income beliefs and thus from bearing risk.

When the agent is risk-averse, an intertemporal risk-sharing argument from consumption utility

arises. Just as in the case of classical reference-independent preferences case, the concavity of the

consumption utility function pushes towards spreading incentives across time. In such case, all

the calculations above hold but for {ρ∗h, ρ∗`} defined in utility terms. As a consequence, an extra

assumption is needed to ensure that the expected cost of the alternative contract does not outweigh

that of the original contract. Such a restriction corresponds to a not-too-concave restriction over

the consumption utility function so that the cost of deferring payments to the second period do not

outweigh the benefits of the fixed first-period wage.

When γ > 0, increasing the risk from future payments triggers prospective gain-loss disutility,

which hurts the agent but helps the principal to set first-period incentives. However, if γ is small

enough, the principal can defer incentives by increasing those coming from future consumption

utility–without altering second-period incentives by moving all payments within a continuation

contract by the same amount–and still increase the agent’s total period-zero expected utility. A

sufficiently small γ ensures that the increase in the total expected utility from shutting down first-

period contemporaneous gain-loss utility outweighs the increase in the disutility from prospective
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gain-loss utility.38

Whether γ is big or small is an empirical matter, despite it seems reasonable that agents have

a greater concern about present payments relative to future payments. I now further explore the

importance of γ in the shape of the optimal contract by considering the case where changes in

beliefs about future consumption resonate more strongly than changes in beliefs about present

consumption. In such a case the increase in the continuation contract distance needed to preserve

incentives would be small since prospective gain-loss utility is strong and helps to set incentives.

However, this also implies a strong decrease in total period-zero total expected utility.

Proposition 6 (No Memory)

Fix η > 0 and an effort path (e1, e2(X1)). Then there is a γ > 0 such that if γ > γ, the optimal

contract implementing (e1, e2(X1)) sets sn 6= sn′ for at least one n 6= n
′

and snm = sn′m for all

n 6= n
′
, ∀m.

Proposition 6 states that if prospective gain-loss utility is strong enough, then the optimal contract

will display two basic characteristics. First, it will use contingent payments in the first period. The

intuition here is the reverse of that in Proposition 5: if news about future consumption resonates

more than news about current consumption, then it would be too expensive to set a first-period

fixed wage since the savings from shutting down first-period contemporaneous gain-loss utility do

not compensate the costs in increasing prospective gain-loss utility, as mentioned before. Second,

wages will not display memory. The intuition is that using memory necessarily implies the agent

will experience prospective gain-loss utility, which is negative (see Lemma 2). If γ is big enough,

this creates a big disutility from the period-zero perspective, so big in fact that is it cheaper to use

only first-period payments to motivate the agent.

6 Random Contracts

This section explores the principal’s decision of which performances measures to use depending on

their informativeness when writing the fixed-first-period wage contract. In particular, we explore
38This result is more likely to hold if the agent experiences diminishing sensitivity. Since the deviation contract does

not rely on second-period contemporaneous gain-loss utility to replace incentives and since a lower prospective gain-loss
disutility can be replaced with (cheaper) incentives coming from second-period consumption utility, a non-piece-wise-
linear value function should increase the range of γ for which the result holds. To the contrary, the assumption of the
principal being risk neutral is relevant since a risk averse principal is not willing to absorb the risk of the fixed-present
wage for free. As a consequence, an assumption would have to be made about the principal being non too risk averse
for the result to hold. This is no different from the classical model, however, where the optimal contract also depends
on the principal’s risk aversion assumption. This result also depends on the separability assumption made over the
gain-loss utility function. In particular, if the gain-loss disutility in the second period depends negatively upon that in
the first period, then fixing the first-period wage may trigger a higher prospective gain-loss disutility that would make
the fixed-wage contract too expensive. Finally, the assumption of the agent consuming all his period income is also
important. If the agent receives income news but he is forbidden to spend it, then the Kőszegi and Rabin (2009) model
predicts the agent should not experience contemporaneous gain-loss disutility, as such news brings no information
about present consumption. As a consequence, the principal would have no incentives to set a present-fixed wage.
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Figure 4: Timing of the Principal-Agent Interaction with Random Contracts

the convenience of paying the agent using a random contract, i.e., a contract that makes payments

contingent on outcome measures uncorrelated with the agent’s action. In this case, the principal

offers the agent a menu of contracts for each period. The each-period menu consists of one contract

for each possible realization of the outcome measure. Once the outcome is realized a pure random-

ization device uncorrelated with the agent’s action–such as a wheel spun–is used to determine the

actual payment from the contract previously chosen by the outcome realization.39 Formally, let X̃

drawn from the finite set X̃ correspond to the random device uncorrelated with the agent’s action,

which is assumed to be used in both period one and two. Let the random contract be denoted by

S(X1, X2, X̃) with a first-period contact S1(X1, X̃) and a second period contract corresponding to

S2(X1, X2, X̃).

The timing of the principal-agent interaction is presented in Figure 4. In period zero the princi-

pal makes a TIOLI offer of S(X1, X2, X̃) to the agent. Given the contract, the agent forms an effort

plan ẽ0,1 and ẽ0,2 for the upcoming periods. With these effort plans and the associated income

beliefs he accepts or rejects the long-term contract. In the first period the agent takes and effort

decision e1 and the performance measure X1 is realized according to which one of the contracts in

the first-period menu is chosen. Next, X̃ is realized for the fist time and the first-period payment–

independent of the agent’s performance–is realized and thus consumption and gain-loss utility in

payments are experienced. At the end of period one the agent updates his effort plans for the

second period given the realization of X1. At the beginning of the second-period the agent takes

a second effort decision e2 and the performance measure X2 is realized according to which one of

the contracts in the second-period menu is chosen. Next, X̃ is realized for the second time and the

agent receives his second-period payments.

Proposition 7 shows that it is not optimal for the principal to use a contract using ex-post
39This type of random contract is usually denoted as “ex-post random” contract since the wheel is spun after the

agent has executed the action. A second type of randomness can be included if the wheel is spun before the agent
executes the action. Such a contracts are called “ex-ante” random contracts, and under specific assumptions over the
third derivative of the consumption utility function, they can be optimal when the agent has classical preferences.
See Fellingham, Kwon, and Newman (1984) and Arnott and Stiglitz (1988)
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Figure 5: Timing of the Principal-Agent Interaction

randomness to implement the desired effort path when the optimal contract uses a fixed-first-period

wage.

Proposition 7 (Non-Optimality of Ex-Post Random Contracts)

Assume A1-A4 and fix η > 0 and an effort path (e1, e2(X1)). Then, there is a M1 > 0 such that if

γ = 0 and |u′′(s)| 6M1 for all s > s, EC(S(X1, X2, X̃)) > EC(S(X1, X2)).

Intuitively, and just as with classical preferences, the principal can increase the agent’s utility by

offering him the certainty equivalent of the random payment. This is because the random device

is not correlated with the agent’s action–and thus it does not help to provide incentives–and the

agent dislike risk. Then, because the principal’s objective function is convex, the result follows by

Jensen’s inequality.40 Hence, just as with classical reference-independent preferences, the principal

will never use performance measures that are uncorrelated with the agent’s unobserved effort.

Finally, it is interesting to notice that the certainty equivalent associated with the random

device of an agent with reference-dependent preferences is smaller than that of an agent with

classical preferences because he not only dislikes risk from the concavity of the consumption utility

function, but also from the reference-dependent component of the utility function (see Lemma 2).

As a consequence he is willing to accept even less money than a classical agent with the same

consumption utility function to give up on the ex-post randomness of the contract.

7 Timing of the Prospective Gain-Loss Utility Realization

This section examines a modification in the timing of the prospective gain-loss utility realization.

To capture the intuition that experiencing a loss or gain from news about second-period payments
40Notice that Proposition 7 assumes γ = 0. This assumption is made only for simplicity and should be straightfor-

wardly generalizable to small values of γ as in the main proposition. Moreover, I conjecture that the non-optimality
of random contracts should also hold if γ is big so that a fixed-first-period wage is not optimal.
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Figure 6: Prospective gain-loss utility realization when X1 = xh as function of ẽ1,2.

may affect second-period effort plans, I now assume prospective gain-loss utility is experienced

after the agent has reviewed his second-period effort plans.41 To keep the structure of incentives

tractable, I further reduce the analysis to a two-effort et ∈ {e`, eh}, two-outcomes xt ∈ {x`, xh}
model in which the principal wants to implement high effort in both periods. Let S(X1) = (sh, s`)

and S(X1, X2) = (snh, sn`) for n = h, ` correspond to the first and second period contracts. The

rest of the interaction equals that in the original set up. Figure 5 shows the new timeline and

Proposition 8 formalizes how second period incentives are affected by the timing of the prospective

gain-loss utility realization.

Proposition 8 (Slacking After Success)

Fix η > 0 and assume the principal wants to implement e1 = e2(x`) = e2(xh) = eh. Then, the

optimal contract implementing (eh, eh) is such that shh − sh` > s`h − s``.

Proposition 8 says that the optimal contract has to provide the agent with a bigger payment

increase after a first-period success relative to a first-period failure. The intuition behind this result

is as follows. When a high outcome is observed in the first period the agent experiences a gain

from knowing that in the second period he will be paid with the high continuation contract. Since

prospective gain-loss utility is realized after the agent reviews his plans for the second period, its

size depends on the agent’s effort plans for the second period. To understand how is the relationship

between the planned effort and the prospective gain-loss utility gain, panel (a) in Figure 6 computes

the the prospective gain-loss utility gain when the agent plans to exert high effort and the probability

of success is 0.5. The solid line represents the reference distribution of second-period payments from

period zero perspective, meanwhile the dashed line represents the expected second-period payment

distribution. Since the agent compares the percentiles in the reference distribution with those in
41Notice that the equilibrium concept must be extended when changing the timing of prospective gain-loss utility

realization. This is because now period-zero planning IC does not necessarily imply that the agent will form the
correct plans. As consequence, a period-two planning restriction must be added. See the proof in Section 10.

30



the expected one (see Assumption 2), the prospective gain-loss utility gain corresponds to the area

A+B+C. Panel (b) shows the size of the realized prospective gain if the agent plans to exert low

effort in period two when the probability of success under low effort corresponds to 0.25. As before,

the solid line represents the reference distribution–the equilibrium distribution of second-period

payments from period zero perspective–meanwhile the dashed line corresponds to the expected

second-period payment distribution. In this case the prospective gain-loss utility gain corresponds

to the area A+B because planning to exert low effort in period two decreases the probability of

pleasantly being surprised by uhh given that uh` was planned. In other words, planning high effort

maximizes the distance between the reference and the actual distribution of second-period payments.

Equivalently, if a failure is observed in the first period, the agent experiences a loss from knowing

that in the second period he will be paid with the low continuation contract. The size of such loss

is decreasing in the agent’s second-period effort plans since planning high effort minimizes the

distance between the actual second-period payments distribution and the reference distribution.

In particular, planning high effort decreases the probability of being unpleasantly surprised by u``
given that uh` was planned. As consequence, the prospective gain-loss utility realization makes it

easier to plan high effort for any realization of the first-period outcome. However, because of loss

aversion, the effect of prospective gain-loss utility in planning is stronger in the loss scenario and

thus is harder to motivate the agent after a first-period success.

Three important things to notice. First, even though this result mimics that with classical

preferences where is easier to motivate the agent after a failure because the marginal utility is high,

the rationale is different. Under reference-dependent preferences high effort is easier to motivate

irrespective of the first-period realization but it is by loss aversion that the result follows. Moreover,

this result holds even if consumption utility is linear, whereas with classical preferences payments are

independent of first-period performance. Second, with reference-dependent preferences the temporal

distance between the planning and the action execution is relevant. In fact, if the principal allows

enough time after X1 as been observed and the action execution, the agent may get used to his

effort beliefs, rendering the realization of prospective gain-loss utility irrelevant for planning. Third,

this result holds given that the agent planned in period zero to exert high effort in period two.42

8 Limitations and Future Research

This paper discusses the intertemporal allocation of incentives when agents have dynamic reference-

dependent preferences. I show that in a completely classical environment and under reasonable

assumptions over the utility function, the optimal contract defers all incentives into future payments.
42Changing the time of the prospective gain-loss utility would not affect our main result. To see this in pour

Section 5 example, notice that at the end of period one, when the agent is reviewing his the second-period effort plan
given the first-period outcome realization, there will be no other credible plans to deviate to and thus the first-period
planning IC is also trivially satisfied under both S and Ŝ.
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This prediction reconciles the apparent dissociation between the models based on the risk-incentive

trade-off and the shape of real contracts using present fixed wages. I further prove that, despite

difference in the timing of incentive allocation, this optimal contract shares many features of the

optimal contract with classical preferences: it does not leave rents to the agent, achieves first best

when actions are least cost and there is a shifting support and ex-post random contracts are never

optimal.

I emphasize that this model is about the principal’s decision to defer incentives into the future.

As a consequence, as it stands, it does not shed light about (1) how far incentives should be deferred

or (2) how those deferred incentives should be spread among future periods. In fact, a probably

pathological prediction of this model is that, when the sensitivity to income news is decreasing in

the income period to which the news refers, the principal will always want to defer risk as far into

the future as possible if the time structure of the problem allows her to do so. Extending the model

to T periods would allow me to tackle this issue. In fact, I believe this pathological prediction

may be overcome if the role of a standard exponential discount factor δ is considered. If δ < 1/r–

where r is the discount rate at which the principal can borrow or save–using future consumption

utility to provide present incentives gets more and more expensive since the agent is less sensitive to

incentives coming from future consumption utility the further in the future incentives are deferred.

As a consequence, the principal won’t be able to kick incentives into the future indefinitely because

the amount of incentives needed would increase so much that no matter how small γ is (as long

as is different form zero) the utility increase from shutting down present gain-loss utility will not

outweigh the increase in prospect gain-loss disutility.

A second interesting question that can be explored in a T-period model relates to the timing

of payments and feedback through the outcome realization. Until now, the model assumes that

the principal pays the agent at the end of each period, once the performance measure has been

realized. An extension of the model may deal with the case when there is a unique payment for

first and second-period effort to be paid at the end of the principal-agent relationship. In such

a framework, the principal may face the decision of whether to disclose the performance measure

at the end of period one or disclose it at the end of period two together with the second-period

outcome. Notice that in the classical model the preference structure is robust to the disclosure

policy: only the informational structure of the problem changes. This is no longer true for dynamic

reference-dependent preferences. In fact, the disclosure policy is a relevant choice variable for the

principal because it determines whether the agent experiences gain-loss utility: if the principal

decides not to disclosure xn, then the agent only experiences second-period consumption utility and

second-period current gain-loss utility. To the contrary, if the principal disclosures xn in period one,

then the agent will experience prospective gain-loss utility at the end of period one.

Extending the results to a T-period model may also give us some insights into why there is
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less contract renegotiation than what classical static moral hazard theory predicts. In fact, if the

T-period-optimal contract with reference-dependent agents sets in every period a wage that does

not depend on present performance but only on past performance–and thus can be considered fixed

from the same period perspective–, then the model would predict that renegotiation is actually not

necessary. The agent is perfectly insured in the present and cannot renegotiate future dates since

the performance measure has not yet been observed.

9 Appendix A

9.1 Gain-loss Utility in Effort

In this section we present gain-loss utility in the effort domain. Making a similar definition of p
relative to that for the payments domain but for the effort distribution (see Assumption 2), we have
that gain-loss utility in the effort domain corresponds to

G(ẽt,τ |ẽt−1,τ ) =
∫ 1

0
µ
(
− c(et,τ (p)) + c(ẽt−1,τ (p))

)
dp

for t = 0 and τ = 1, 2 and for t = 1 and τ = 2 where we have suppressed the tilde notation because
et,τ represents the actually implemented action. Consider first contemporaneous gain-loss utility for
t = 1. Then, we have that if the agent implements action e1 having planned ẽ0,1, contemporaneous
gain-loss utility corresponds to

G(e1|ẽ0,1) = µ(c(ẽ0,1)− c(e1))

To see this, recall that ẽ ∈ X and thus for the first period the actual and the reference effort distri-
butions are degenerate. Second-period contemporaneous gain-loss utility is defined analogously. For
(t, τ) = (1, 2), we have that if the agent implements effort e1 having planned (ẽ0,1, ẽ0,2), prospective
gain-loss utility corresponds to

G(ẽt,τ |ẽt−1,τ ) =
∫ 1

0
µ
(
− c(et,τ (p)) + c(ẽt−1,τ (p))

)
dp

9.2 Description of the Total Utilities

From now on we rewrite gain-loss utility in effort and income in its discrete equivalent. Such
conversion is done using the quantile comparison described in Section 3. Start by considering total
period-two expected utility. Having observed X1 = xn and thus having planned ẽ1,2 at the end of
period one, the total expected utility of implementing effort e2 corresponds to

EU2(e2(xn)|ẽ1,2(xn);xn) =
∑
m

π2
munm+

∑
m

∑
`

π2
mπ

1,2
` µ(unm−un`)−c(e2)+µ(c(ẽ1,2)−c(e2)) (6)

where π2
m ≡ πm(e2), π1,2

` ≡ π`(ẽ1,2), unm ≡ u(snm) and snm are second-period payments given
X1 = xn and X2 = xm. The first term corresponds to the period-two expected consumption utility
given the agent executes effort e2. The second term corresponds to contemporaneous gain-loss
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utility as presented in Assumption 2. The last two terms represent the total cost. The term c(e2)
corresponds to the consumption utility cost of exerting effort e2, meanwhile the last term is the
gain-loss utility of deviating from the planned effort made at the end of period one, ẽ1,2 to e2.

At the end of period one, having exerted e1 in period one and having observed X1 = xn, the
total expected utility of planning the credible action ẽ1,2 corresponds to

EU2(ẽ1,2(xn)|ẽ1,2(xn);xn) =
∑
m

π1,2
m unm +

∑
m

∑
`

π1,2
m π1,2

` µ(unm − un`)− c(e2) (7)

The first term corresponds to second-period expected consumption utility of planning to exert ẽ1,2.
The second term is second-period contemporaneous gain-loss utility, knowing that ẽ1,2 will be the
the next period reference and knowing that he will execute the plan. Finally, notice there is no
contemporaneous gain-loss utility in effort since the agent has rational expectations.

At the beginning of period one, before observing X1 and having planned (ẽ0,1, ẽ0,2(X1)) in period
zero, the total expected utility of executing e1 corresponds to

EU1(e1ẽ0,2(X1)|ẽ0,1, ẽ0,2(X1)) =
∑
n

π1
nun +

∑
n

∑
`

π1
nπ

0,1
` µ(un − u`) + γ

∑
n

∑
`

∑
m

π1
nπ

0,1
` π0,2

m µ(un` − u`m)

(8)

+
∑
n

π1
nEU2(ẽ0,2(xn)|ẽ0,2(xn);xn)

− c(e1) + µ(c(ẽ0,1)− c(e1)) + γ
∑
n

∑
`

π1
nπ

0,1
` µ(c(ẽ2(x`))− c(ẽ2(xn)))

where π1
n ≡ πn(e1) and π0,1

n ≡ πn(ẽ0,1), un ≡ u(sn) and sn are first-period payments and others
defined as before. The first line represents period-one total expected utility from exerting e1 having
planned to exert ẽ0,1. As before, the first term is expected consumption utility and the second term
is contemporaneous gain-loss utility. The third term corresponds to prospective gain-loss utility as
defined in Assumption 2. The second line represents period-two total expected utility. The third
and final line represents total period-one expected utility from effort. The first and second term
correspond to consumption and gain-loss utilities from implementing action e1 having planned ẽ0,1

and the last term corresponds to prospective gain-loss utility in effort from second period effort
being a contingent strategy.

Finally, in period zero, the agent’s total expected utility corresponds to

EU0(ẽ0,1ẽ0,2(X1)|ẽ0,1, ẽ0,2(X1)) =
∑
n

π0,1
n un +

∑
n

∑
`

π0,1
n π0,1

` µ(un − u`) + γ
∑
n

∑
`

∑
m

π0,1
n π0,1

` π0,2
m µ(un` − u`m)

(9)

+
∑
n

π0,1
n EU2(ẽ0,2(xn)|ẽ0,2(xn);xn)

− c(ẽ0,1) + γ
∑
n

∑
`

π0,1
n π0,1

` µ(c(ẽ2(x`))− c(ẽ2(xn)))

The description of period-zero total expected utility follows that of period one. The only dif-
ference is that in this period the agent does not execute an action but forms plans. Since he
has rational expectations, those plans must coincide with the actual action he plans to imple-
ment, thus he does not experience contemporaneous gain-loss utility in effort and the probabilities
are defined in term of the plans uniquely. As a consequence EU0(ẽ0,1ẽ0,2(X1)|ẽ0,1, ẽ0,2(X1)) =
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EU1(ẽ0,1ẽ0,2(X1)|ẽ0,1, ẽ0,2(X1)).

10 Appendix B: Proofs

Proof of Lemma 1
Consider first-period contemporaneous gain-loss utility. Start noticing that if for ej ∈ E πjn = 1,
then πjn′ = 0 ∀n′ 6= n. Consider first the equilibrium path. In this case e1 = ẽ0,1 and thus ∀e1 ∈ E
∃! n(e1) ∈ {1, . . . , N} such that π1

n(e1)π
0,1
n(e1) 6= 0 and π1

n(e1)π
0,1
` = 0 ∀` 6= n(e1). Therefore,

N∑
n=1

N∑
`=1

π1
nπ

0,1
` µ(un − u`) = π1

n(e1)π
0,1
n(e1)µ(un(e1) − un(e1)) = 0

Second, consider the outside equilibrium path. In this case e1 6= ẽ0,1, and thus π1
nπ

0,1
` = 0 ∀n, `

and thus
∑N

n=1

∑N
`=1 π

1
nπ

0,1
` µ(un−u`) = 0. The proof for second-period contemporaneous gain-loss

utility is analogous ∀xn. Consider now prospective gain-loss utility from period one perspective.
Consider first the equilibrium path. If e1 = ẽ0,1 = ẽ0,2, then ∀e1 ∈ E ∃! n(e1) ∈ {1, . . . , N} such
that π1

n(e1)π
0,1
n(e1)π

0,2
n(e1) 6= 0 and π1

n(e1)π
0,1
` π0,2

m = 0 ∀` 6= n(e1), m 6= n(e1) or ` 6= m. Therefore,

N∑
n=1

N∑
`=1

N∑
m=1

π1
nπ

0,1
` π0,2

m µ(un` − u`m) = π1
n(e1)π

0,1
n(e1)π

0,2
n(e1)µ(un(e1)n(e1) − un(e1)n(e1)) = 0

Second, if e1 = ẽ0,1 6= ẽ0,2, then π1
nπ

0,1
` πm(ẽ0,2) = 0 ∀n, `,m. Consider now the outside equilibrium

path. In such case e1 6= ẽ0,1 and thus π1
nπ

0,1
` = 0 ∀n, ` and thus

∑N
n=1

∑N
`=1

∑N
m=1 π

1
nπ

0,1
` π0,2

m µ(un`−
u`m) = 0.. From period zero perspective, the proof is analogous.

�

Proof of Proposition 1
From Lemma 1 we have that equation (1) becomes vt = V (st, et) ∀η. Thus the optimal contract does
not depend on η. To see that the optimal contract implementing (e1, e2(X1)) does not necessarily
displays memory, notice that when the action is observable for e1 ∃! n(e1) ∈ {1, . . . , N} such that
π1
n = 1 and thus π1

n′ = 0 ∀n′ 6= n. Defining m(e2) ∈ {1, . . . , N} in analogous manner, we have that
the IR restriction to implement (e1, e2(xn)) corresponds to

N∑
n=1

πn(e1)[un +
N∑
m=1

πm(e2)unm]− c(e1)− c(en) = un(e1) + um(e2) − c(e1)− c(en) > UR1 + UR2

Thus, the principal can write a long-term-forcing contract as

S1 =

{
u−1(U1

R + c(e1)) if X1 = xn(e1)

s otherwise.
and S2 =

{
u−1(U2

R + c(e2)) if X2 = xm(e2)

s otherwise.

where s is defined in Assumption 1. It is straight to see that such contract implements the action
path and is least cost since the principal’s objective function is decreasing in the agent’s payments.
Notice that in fact, there is a family of forcing contracts implementing the first best, as any payment
u−1(s) 6 s < u−1(U1

R+c(e1)) implements e1 at first best cost. Same for the second-period contract.
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�

Proof of Proposition 2
Let U =

(
U1(X1),U2(X1, X2)

)
be the utility equivalent of the contract S. Because u

′
(·) > 0 (see

Assumption 1) such representation is unique. Thus, we can write the principal problem as

min{
{un}Nn=1,{unm}Nm=1

} EC1(un) + EC2(unm) =
∑
n

π1
nu
−1(un) +

∑
n

∑
m

π2
mu
−1(unm)

subject to EU0(e1, e2(X1)|e1, e2(X1)) > UR

(e1, e2(X1)) is a Preferred Personal Equilibrium

where the objective function is convex. Moreover, because the function µ(·) is piece-wise linear
(Assumption 2), then is straightforward to see that all the expected utilities in the restriction set
are linear in un and unm ∀n,m (see Definition 1 and Appendix A). Thus the principal’s problem
is a convex problem with linear constraints. Consider the set of all contracts U implementing the
action path

C(e1, e2(X1)) ≡
{ N∑
n=1

πn(e1)[u−1(un) +
N∑
m=1

πm(e2)u−1(unm)
]
|U implements (e1, e2(X1)

}
We are done if show that C(e1, e2(X1)) has an infimum that is achieved. We prove that the set is
bounded below. Start by noticing that, because UR is bounded, there must exist a finite ŨR2(xn)
∀n so that EU2(e2(xn)|e2(xn);xn) = ŨR2(xn) (recall the agent is fully committed in period zero to
stay in the relationship and thus the principal is not committed to EU2(e2(xn)|e2(xn);xn) > UR2

∀n). Thus, using equation (6) in equilibrium, we have∑
m

π2
munm − c(e2) >

∑
m

π2
munm +

∑
m

∑
`

π2
mπ

2
`µ(unm − un`) + c(e2) > ŨR2(xn) > Ũmax

R2

where Ũmax
R2
≡ max{ŨR2(xn)}Nn=1 and the second inequality comes from the fact that contemporane-

ous gain-loss utility is negative in equilibrium (see Lemma 2). Applying the definition of convexity
twice, we have that a lower bound for the second-period contract corresponds to:∑

n

∑
m

π1
nπ

2
mu
−1(unm) >

∑
n

πn(e1)u−1
(∑

m

unm

)
> u−1

(
Ũmax
R2

+ c(e2)
)

Doing a similar analysis for period-one payments, we have that∑
n

π1
nu
−1(un) > u−1

(∑
n

π1
nun

)
> u−1

(
UR + c(e1)

)
Thus the set C(e1, e2(X1)) is bounded below. Since the set is closed by construction, it as an
infimum. The rest of the proof follows exactly that in Grossman and Hart (1983) by proving that
this lower bound is achieved and then applying Weierstrass’ theorem.

I now prove that the optimal contract is unique. By contradiction, suppose not. Let U ′ =
(U
′
1, U

′
2) be also an optimal contract implementing (e1, e2(xn)) where u

′
n 6= un and u

′
nm 6= unm
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for at least one n and one m. Define a new contract Uα as uαn = αun + (1 − α)u
′
n and uαnm =

αunm + (1 − α)u
′
nm, α ∈ (0, 1) (where without loss of generality we have assumed α is the same

for fist and second- period contracts). I start proving that such contract still implements the same
effort path. Consider first the IR restriction under Uα. First period consumption utility can be
written as

∑N
n=1 π

0,1
n uαn =

∑N
n=1 π

0,1
n (αun + (1−α)u′n) = α

∑N
n=1 π

0,1
n un + (1−α)

∑N
n=1 π

0,1
n u

′
n, and

equivalently for second-period consumption utility. From equation (10) in the proof of Lemma 2,
because the value function is assumed to be piece-wise linear, first period gain-loss utility can be
written in linear form as (1− λ)

∑N
n=1

∑
`<n π

0,1
n (uαn − uα` ) = α(1− λ)

∑N
n=1

∑
`<n un + (1−α)(1−

λ)
∑N

n=1

∑
`<n u

′
n, and equivalently for second-period contemporaneous gain-loss utility. Also from

the proof of Lemma 2, prospective gain-loss utility can be separated into its positive and negative
components so find a shape for prospective gain-loss utility under Uα as function of U and U

′

payments. Consider first from equation (12) its positive component,

N∑
n=1

N∑
`<n

N∑
m=1

π1
nπ

0,1
` π0,2

m (uαn` − uα`m) +
N∑
n=1

N∑
`=n

N∑
m<`

π1
nπ

0,1
` π0,2

m (uαn` − uα`m)

= α
[ N∑
n=1

N∑
`<n

N∑
m=1

π1
nπ

0,1
` π0,2

m (un` − u`m) +
N∑
n=1

N∑
`=n

N∑
m<`

π1
nπ

0,1
` π0,2

m (un` − u`m)
]

+(1− α)
[ N∑
n=1

N∑
`<n

N∑
m=1

π1
nπ

0,1
` π0,2

m (u
′
n` − u

′
`m) +

N∑
n=1

N∑
`=n

N∑
m<`

π1
nπ

0,1
` π0,2

m (u
′
n` − u

′
`m)
]

Working the negative terms from equation (13) in the same fashion, and putting together first and
second-period consumption utility with first and second-period contemporaneous gain-loss utility,
is easy to see that

EU0(e1, e2(xn)|e1, e2(xn);Uα) = αEU0(e1, e2(xn)e1, e2(xn);U)+(1−α)EU0(e1, e2(xn)|e1, e2(xn);U
′
)

Thus, since the IR holds for U and U
′
, it must also hold for Uα. Exactly the same logic shows that

the IC restrictions are all satisfied for Uα as they are satisfied for U and U
′
. As a consequence, Uα

implements the same effort path as U and U ′. Finally, notice that because of Jensen’s inequality,

ECt(uαn) 6 αECt(un) + (1− α)ECt(u′n) = ECt(un) t = 1, 2

with at least one inequality strict if u
′′
(·) < 0 which contradicts the optimality of U .

�

Proof of Proposition 3
I start proving that the IR binds in the principal’s problem. By contradiction, assume the contract S
is the least cost contract implementing the effort path (e1, e2(X1)) where EU0(e1, e2(X1)|e1, e2(X1);S) >
UR. Consider an alternative contract Ŝ = (sn − ε, snm) ε > 0. Notice that because Ŝ does not
modify second-period payments, second-period implementing IC is satisfied. Consider first-period
implementing IC. By equation (8), first-period contemporaneous utility under contract Ŝ corre-
sponds to

∑N
n=1

∑N
`=1 π

1
nπ

0,1
` µ((un−ε)− (u`−ε)) =

∑N
n=1

∑N
`=1 π

1
nπ

0,1
` µ(un−u`), which is equal to

contemporaneous gain-loss utility under S. Thus, first-period implementing IC holds under Ŝ with
the same argument as in the classical model. The same analysis is valid for period-zero planning
IC. The result follows from EC1(S) being decreasing in first period payments and thus S cannot be
a least-cost contract.
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Consider now part (ii). Consider first the case when the principal wants to implement e1 =
e2(xn) = emin ∀n where emin is such that c(emin) = min{c(E)}. The proof follows straight from
noticing that a contract Smin, sminn = u−1(U1

R + c(emin)) ∀n and sminnm = u−1(U2
R + c(emin)) ∀n,m

implements the action path and at first best cost (for a description of the first-best cost, see proof
of Proposition 1). To see that the contract is IR, notice from equation (2) that gain-loss utility
(contemporaneous and prospective) is zero with fixed wages, thus

EU0(emin, emin|emin, emin;Smin) =
∑
n

πminn (U1
R + c(emin)) +

∑
n

∑
m

πminm (U2
R + c(emin))− 2c(emin) = UR

where πminn ≡ πn(emin). An equivalent analysis show that under Smin all the IC constraints are
met.

Consider now the case where there exists a subset Xj ⊆ X such that
∑

xn∈Xj π
j
n = 0 <

∑
xn∈Xj π

k
n

∀ek ∈ E\ej such that c(ek) < c(ej) for ej = e1 and equivalently for ej = e2(xn) ∀xn where we use
the notation X2(xn) to make clear that the set X2 may depend on xn. The proof follows straight
from noticing that contract S consisting of the following two spot implementable forcing contracts

S1 =

{
u−1(U1

R + c(e1)) if xn /∈ X1

s otherwise.
and S2(xn) =

{
u−1(U2

R + c(e2)) if xn /∈ X2(xn)
s otherwise.

∀n

implements the desired action path and achieves first best contract. To do so, is straight to check
the IR and IC constraints hold.

�

Proof of Proposition 4
We start proving part (i), following the proof in Rogerson (1985). To see that first-period payments
are contingent, let U = (un, unm) be the unique utility equivalent of the optimal contract imple-
menting the effort path (e1,e2(xn)). Consider the following deviation contract Û = (ûn, ûnm)
where ûn = un and ûnm = unm and ûn′ = un′ − ρ and ûn′m = un′m + ρ for one n′ 6= n
for all m ∈ {1, . . . , N}. Notice that the agent’s expected utility is the same under both con-
tracts since π1

n′
[(un′ − ρ) +

∑
m π

2
m(un′m + ρ)] = π1

n′
[un′ +

∑
m π

2
mun′m]. Moreover, since ρ does

not depend on the action, Û also implements (e1,e2(xn)) and the agent is indifferent between
the two contracts. Then, for U to be the optimal contract, the value ρ = 0 must minimize
u−1(un − ρ) +

∑
m πm(e2(xn))u−1(unm + ρ) Taking first derivatives and using the fact ρ = 0 in

the optimal contract, I have that the following condition must hold:

1
u′(u−1(un))

=
N∑
m=1

πm(e2(xn))
u′(u−1(unm))

Because the right hand side depends on xn (as the notation emphasizes), then it must be the case
that un 6= un′ for n 6= n′. To see that the optimal contract will display memory, suppose not. Then,
it must be the case that unm = ukm ∀n, k and thus e2(xn) = e2(xk). Therefore, from the equation
above,

1
u′(u−1(un))

=
N∑
m=1

πm(e2(xn))
u′(u−1(unm))

=
N∑
m=1

πm(e2(xk))
u′(u−1(ukm))

=
1

u′(u−1(uk))
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implying that un = uk, which is a contradiction.
To prove part (ii) it suffices to show that when u

′′
(·) = 0, the optimal long term contract without

memory equals the first-best contract. Let unm = un′m ≡ um be the second period payments in
the contract without memory. The expected cost of implementing (e1, e2(xn)) under such contract
corresponds to:∑

n

π1
nu
−1(un) +

∑
m

π2
mu
−1(um) = u−1

(∑
n

π1
nun +

∑
m

π2
mum

)
= u−1

(
UR + c(e1) + c(e2)

)
= u−1

(
U1
R + c(e1)

)
+ u−1

(
U2
R + c(e2)

)
where the first line follows from the fact that the IR constraint binds because of the usual arguments.
Then, from Proposition 1 we the principal can implement the action path at the same cost of the
first-best contract. As a consequence, memory cannot decrease the principal’s expected cost .

�

Proof of Lemma 2
Let un ≡ u(sn), unm ≡ u(snm) be the utility equivalent of contract S. Because of Assumption 1, such
representation is unique. Order this utility contract in ascending order with respect to n. Consider
first expected contemporaneous gain-loss utility, that is

∫
G(s̃tτ |s̃t−1,τ )dΠS

τ for (t, τ) = (1, 1) and
(t, τ) = (2, 2). Consider (t, τ) = (1, 1),∫

G(s1|s̃0,1)dΠS
1 =

∫ ∫ 1

0
µ
(
u(s1(p))− u(s̃0,1(p))

)
dpdΠS

1

=
N∑
n=1

N∑
`=1

πn(e1)π`(ẽ0,1)µ(un − u`)

=
N∑
n=1

∑
`6n

πn(e1)π`(ẽ0,1)µ(un − u`) +
N∑
n=1

∑
`>n

πn(e1)π`(ẽ0,1)µ(un − u`)

=
N∑
n=1

∑
`6n

πn(e1)π`(ẽ0,1)µ(un − u`) +
N∑
n=1

∑
`6n

πn(ẽ0,1)π`(e1)µ(u` − un)

=
N∑
n=1

∑
`6n

πn(e1)π`(e1)[µ(un − u`) + µ(u` − un)] 6 0 (10)

where in the last line I have used the fact that in equilibrium ẽ0,1 = e1. Notice further that
if λ = 1, then µ(un − u`) = |µ(u` − un)| and thus

∫
G(sτ |s̃t−1,τ )dΠS

τ = 0. For (t, τ) = (2, 2)
the proof is analogous by considering

∫
G(s̃2,2|s̃1,2)dΠS

2 =
∫ ∫ 1

0 µ
(
u(s2(p)) − u(s̃1,2(p))

)
dpdΠS

2 =∑N
m=1

∑N
`=1 πm(e2)π`(ẽ1,2)µ(unm − un`) for any given n. Finally, notice that the latter proof does

not rely on the assumption of the value function µ(·) being piece-wise linear.

Consider now expected prospective gain-loss utility (gain-loss utility for (t, τ) = (1, 2)). Notice
that the difference between this utility source and contemporaneous gain-loss utility for period
two is that, for the latter, and given the realization of xn, second-period payments are still a
non-degenerate distribution (a continuation contract S2(xn)), whereas in second-period contempo-
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raneous gain-loss utility the second-period payment is a degenerate distribution since xn has already
been observed. Thus, using the fact that prospective gain-loss utility is realized before plans are
updated and thus the only relevant case is e2(xn) = ẽ2(xn), then

γ

∫
G(s2|s̃0,2)dΠS

2 ∝
∫
G(s2|s̃0,2)dΠS

2 =
∫ ∫ 1

0
µ
(
u(s2(p))− u(s̃0,2(p))

)
dpdΠS

2

=
N∑
n=1

N∑
`=1

N∑
m=1

πn(e1)π`(ẽ0,1)πm(ẽ0,2)µ(un` − u`m)(11)

Ordering the payments as snm > snm′ for m > m′ ∀n and that snN > s(n−1)1 for ∀n, I can use
the same strategy as in contemporaneous gain-loss utility of splitting the positive terms from the
negative ones in equation (11) as

N∑
n=1

N∑
`<n

N∑
m=1

π1
nπ

0,1
` π0,2

m µ(un` − u`m) +
N∑
n=1

N∑
`=n

N∑
m<`

π1
nπ

0,1
` π0,2

m µ(un` − u`m) (12)

+
N∑
n=1

N∑
`>n

N∑
m=1

π1
nπ

0,1
` π0,2

m µ(un` − u`m) +
N∑
n=1

N∑
`=n

N∑
m>`

π1
nπ

0,1
` π0,2

m µ(un` − u`m) (13)

where I have shortened the notation as πn(e1) ≡ π1
n, π`(ẽ0,1) = π0,1

` and πm(ẽ0,2) ≡ π0,2
m , and those

terms in (12) are positive whereas those in equation (13) are negative. Contrarily to the case of
contemporaneous gain-loss utility, the terms in (12) are not the same as those in (13). To make
them comparable, I add an subtract so to create neighboring payments and use the value function
specification µ(x) = x if x > 0 and µ(x) = λx if x < 0. Consider first equation (12). For n > `,
sn` − s`m = sn` ± sn(`−1) ± · · · ± sn1 ± s(n−1)N ± . . . s(n−1)1 ± · · · ± s`N ± · · · ± s`(m+1) − s`m; for
n = ` > m, snn−snm = snn±sn(m+1)±· · ·±sn(n−1)−snm, and for a given xn, with a lot of tedious
work I can rewrite (12) as

=
N−1∑
n=1

N∑
` 6=1

[ n−1∑
i=1

π0,1
i + π0,1

n

`−1∑
j=1

π0,2
j

]
(sn` − sn(`−1)) +

N∑
n=2

n−1∑
i=1

π0,1
i (sn1 − s(n−1)N )

+
N−1∑
`=1

[ N−1∑
i=`+1

π0,1
i + π0,1

N

∑̀
j=1

π0,2
j

]
(sN(`+1) − sN`)

Adding and subtracting in a similar fashion, I can rewrite (13) as:

= − λ
N∑
n=2

N∑
` 6=1

[ N∑
i=n+1

π0,1
i + π0,1

n

N∑
j=`

π0,2
j

]
(sn` − sn(`−1))− λ

N∑
n=2

N∑
i=n

π0,1
i (sn1 − s(n−1)N )

− λ

N−1∑
`=1

[∑̀
i=2

π0,1
i + π0,1

1

N∑
j=`+1

π0,2
j

]
(s1(`+1) − s1`)

Then, changing the notation from n to k so to sum over the realizations of xn and rearranging, I
have that expected prospective gain-loss utility can be written in terms of neighboring payments
as:
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{N−1∑
k=1

N∑
n=k+1

N∑
`>1

π1
n

[ k−1∑
i=1

π0,1
i + π0,1

k

`−1∑
j=1

π0,2
j

]
(sk` − sk(`−1)) +

N∑
n=1

n∑
k=2

k−1∑
i=1

π1
nπ

0,1
i (sk1 − s(k−1)N ) (14)

+
N∑
k=2

k∑
`>1

π1
k

[ k−1∑
i=`

π0,1
i + π0,1

k

`−1∑
j=1

π0,2
j

]
(sk` − sk(`−1))

}
−

λ
{ N∑
k=2

k−1∑
n=1

N∑
`>1

π1
n

[ N∑
i=k+1

π0,1
i + π0,1

k

N∑
j=`

π0,2
j

]
(sk` − sk(`−1)) +

N∑
n=1

N∑
k=n+1

N∑
i=k

π1
nπ

0,1
i (sk1 − s(k−1)N )

+
N−1∑
k=1

N∑
`=k+1

π1
k

[ `−1∑
i=k+1

π0,1
i + π0,1

k

N∑
j=`

π0,2
j

]
(sk` − sk(`−1))

}
Now I can prove that the latter expression is non-positive. In order to do so, I will conveniently
sum up the terms. Consider first the sum of the second and the fifth terms in equation (14):

N∑
n=1

n∑
k=2

k−1∑
i=1

π1
nπ

0,1
i (sk1 − s(k−1)N )− λ

N∑
n=1

N∑
k=n+1

N∑
i=k

π1
nπ

0,1
i (sk1 − s(k−1)N )

=
N∑
n=1

[ n∑
k=2

k−1∑
i=1

π1
nπ

0,1
i − λ

N∑
k=n+1

N∑
i=k

π1
nπ

0,1
i

]
(sk1 − s(k−1)N )

= (1− λ)
N∑
k=2

N∑
n=k

k−1∑
i=1

πnπi(sk1 − s(k−1)N ) 6 0

where in the last line I have used the fact that in equilibrium ẽ0,1 = e1. Consider now the first and
last terms in equation (14) for k = 1:

N∑
n=2

N∑
`>1

π1
n

[ 0∑
i=1

π0,1
i + π0,1

1

`−1∑
j=1

π0,2
j

]
(s1` − s1(`−1))− λ

N∑
`=2

π1
1

[ `−1∑
i=2

π0,1
i + π0,1

1

N∑
j=`

π0,2
j

]
(s1` − s1(`−1))

}
(15)

=
N∑
n=2

N∑
`>1

π1
nπ

0,1
k

`−1∑
j=1

π0,2
j (s1` − s1(`−1))− λ

N∑
`=2

π1
1

[ `−1∑
i=2

π0,1
i + π0,1

1

N∑
j=`

π0,2
j

]
(s1` − s1(`−1))

}

= π1
1

N∑
`>1

{ N∑
n=2

`−1∑
j=1

π1
nπ

0,2
j − λ

[ `−1∑
i=2

π0,1
i + π0,1

1

N∑
j=`

π0,2
j

]}
(s1` − s1(`−1)) (16)

where in the last line I have used the fact that in equilibrium π1
1 = π0,1

1 . Consider now the
curly bracket in equation (16). Changing the notation for convenience, adding and subtracting
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conveniently, and then rearranging, I have

N∑
n=2

`−1∑
j=1

π1
nπ

0,2
j − λ

[ `−1∑
i=2

π0,1
i + π0,1

1

N∑
j=`

π0,2
j

]

= π0,2
1

N∑
n=2

π1
n +

N∑
n=2

`−1∑
j=2

π1
nπ

0,2
j ± π

0,2
1

`−1∑
n=2

π1
n − λ

[ N∑
j=1

`−1∑
n=2

π0,1
n π0,2

j + π0,1
1

N∑
j=`

π0,2
j

]

= (1− λ)
[
π1

N∑
n=`

πn +
N∑
n=1

`−1∑
j=2

πnπj

]
where in the last line I have used e1 = ẽ0,1. Thus equation (15) corresponds to

(1− λ)π1

N∑
`>1

{ N∑
n=`

πn +
N∑
n=1

`−1∑
j=2

πnπj

}
(s1` − s1(`−1)) 6 0

Second, consider the sum of the third and fourth terms on (14) for k = N .

N∑
`>1

π1
N

[N−1∑
i=`

π0,1
i + π0,1

N

`−1∑
j=1

π0,2
j

]
(sN` − sN(`−1))− λ

N−1∑
n=1

N∑
`>1

π1
n

[ N∑
i=N+1

π0,1
i + π0,1

N

N∑
j=`

π0,2
j

]
(sk` − sk(`−1)) (17)

=
N∑
`>1

π1
N

[N−1∑
i=`

π0,1
i + π0,1

N

`−1∑
j=1

π0,2
j

]
(sN` − sN(`−1))− λ

N−1∑
n=1

N∑
`>1

π1
nπ

0,1
N

N∑
j=`

π0,2
j (sk` − sk(`−1))

= π1
N

N∑
`1

{N−1∑
i=`

π0,1
i + π0,1

N

`−1∑
j=1

π0,2
j − λ

N−1∑
n=1

π1
n

N∑
j=`

π0,2
j

}
(sN` − sN(`−1)) (18)

where in the last line I have used the fact that in equilibrium π1
N = π0,1

N . Consider now the curly
bracket in equation (18). Slightly changing the notation for convenience, adding and subtracting
conveniently, and then rearranging, I have

N−1∑
i=`

π0,1
i + π0,1

N

`−1∑
j=1

π0,2
j − λ

N−1∑
n=1

π1
n

N∑
j=`

π0,2
j =

N−1∑
j=`

π0,1
j + π0,1

N

`−1∑
j=1

π0,2
j ± π

0,1
N

N∑
j=`

π0,2
m

= (1− λ)(1− πN )
N∑
j=`

πj

where in the last lien I have used π1
1 = π0,1

1 . Thus equation (17) corresponds to

(1− λ)(1− πN )π1
N

N∑
`=1

N∑
j=`

πj(sN` − sN(`−1)) 6 0

Finally, consider all terms 2 6 k 6 N − 1 in the first, third , fourth and last term in equation (14).
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For a given k and a given `, I have

{ N∑
n=k+1

π1
n

[ k−1∑
i=1

π0,1
i + π0,1

k

`−1∑
j=1

π0,2
j

]
+ π1

k

[ k−1∑
i=`

π0,1
i + π0,1

k

`−1∑
j=1

π0,2
j

]}
(sk` − sk(`−1))

− λ
{ k−1∑
n=1

π1
n

[ N∑
i=k+1

π0,1
i + π0,1

k

N∑
j=`

π0,2
j

]
+ π1

k

[ `−1∑
i=k+1

π0,1
i + π0,1

k

N∑
j=`

π0,2
j

]}
(sk` − sk(`−1))

Five possible cases arise here depending on the relative magnitudes of `, k − 1 and k + 2. With
some further work, one can prove that all the terms above are negative in each of the five cases,
which concludes the proof.

�

Before proving the main result, we present the following lemma.

Lemma 3 (Outside Equilibrium Contemporaneous Gain-Loss Utility)
For any actions ej 6= ek ∈ E, if ΠS

τ (ej) %LRD ΠS
τ (ek), then

(i)
∫
G(s̃t,τ (ek)|s̃t−1,τ (ej))dΠS

τ 6 0
(ii)

∫
G(s̃t,τ (ej)|s̃t−1,τ (ej))dΠS

τ −
∫
G(sτ (ek)|s̃t−1,τ (ej))dΠS

τ 6 0
for t = 1 and τ = 1 and t = 2 and τ = 2.

Proof of Lemma 3
To keep notation simple, I will use first period contemporaneous gain-loss utility. To prove part (i),
notice ∑

n

∑
`

πknπ
j
`µ(un − u`) = η

∑
n

∑
`<n

πknπ
j
` (un − u`)− λη

∑
n

∑
`>n

πknπ
j
` (u` − un)

= η
∑
n

∑
`<n

πknπ
j
` (un − u`)− λη

∑
n

∑
`<n

πjnπ
k
` (un − u`)

= η
∑
n

∑
`<n

[πknπ
j
` − λπ

j
nπ

k
` ](un − u`)

Because ΠS
τ (ej) %LRD ΠS

τ (ek),then for all n, n > `

πknπ
j
` 6 π

j
nπ

k
` 6 λπ

j
nπ

k
` 6

where the last inequality holds because λ > 1. Then it must be the case that [πknπ
j
` − λπ

j
nπk` ] 6 0,

which concludes the proof. Part (ii) is obvious from the fact that gains are increasing in n whereas
losses are decreasing in n.

�

Proof of Proposition 5
Let S, un 6= un′ for at least one n 6= n

′
and unm = un′m, n 6= n′ for at least one m be the

optimal contract implementing the effort path (e1, e2(xn)). I prove that the alternative contract Ŝ,
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ûn = ûn′ =
∑

n π
1un ≡ ū ∀n 6= n′ and ûnm = unm + ρn, ∀n,m ρn ∈ R implements (e1, e2(xn))

at a lower expected cost than S. Consider first period-two implementing IC under contract S.
Ordering the payments as in Lemma 2 and using equation (6) from Section 9.2 and Definition 1,
these restrictions correspond to

EU2(e2(xn)|e2(xn);xn, S)− EU2(ej |e2(xn);xn, S) =
∑
m

[π2
m − πjm]

(
unm +

∑
`

π2
`µ(unm − un`)

)
> c(e2(xn))− c(ej) ∀ej ∈ E\e2(xn) ∀n

where recall π2
m ≡ πm(e2(xn)) and πjm ≡ πm(ej). The agent’s expected utility under the alternative

contract Ŝ corresponds to

EU2(e2(xn)|e2(xn);xn, Ŝ) =
∑
m

π2
m(unm + ρn) +

∑
m

∑
`

π2
mπ

1,2
` µ(unm − un`)− c(e2(xn))

= EU2(e2(xn)|e2(xn);xn, S) + ρn

Thus, for all ej ∈ E\e2(xn) and for all n,

EU2(e2(xn)|e2(xn);xn, Ŝ)− EU2(ej |e2(xn);xn, Ŝ) = EU2(e2(xn)|e2(xn)|e2(xn);xn, S)− EU2(ej |e2(xn);xn, S)

so Ŝ does not distort second period incentives and thus period-two implementing IC is satisfied
under Ŝ. Consider now first-period implementing IC. Using equation (8) from Section 9.2 and
Definition 1, under S these restrictions correspond to

EU1(e1, e2(X1)|e1,e2(X1);S)− EU1(ej , e2(X1)|e1, e2(X1);S) =∑
n

[π1
n − πjn]

{
un+

∑
`

π1
`µ(un − u`) + γ

∑
`

∑
m

π1
`π

2
mµ(un` − u`m)

+EU2(e2(xn)|e2(xn);xn, S) + γ
∑
`

π1
`µ
(
c(e2(x`)− c(e2(xn))

)}
> c(e1)− c(ej) ∀ej ∈ E\e1

where notice that the difference between the utilities is taken for the implemented action given the
reference. Under the alternative contract, the agent’s first-period utility corresponds to:

EU1(e1, e2(X1)|e1, e2(X1); Ŝ) =
∑
n

π1
n

{
ū+ γ

∑
`

∑
m

π0,1
` π0,2

m µ((un` + ρn)− (u`m + ρ`))

+ EU2(e2(X1)|e2(xn);S) + ρn

+ γ
∑
`

π1
`µ
(
c(e2(x`)− c(e2(xn))

)}
− c(e1)− c(ẽ0,2)

Working for the period-one implementing IC under this alternative contract and operating we have

EU1(e1, e2(X1)|e1, e2(X1); Ŝ)− EU1(ej , e2(X1)|e1, e2(X1); Ŝ) =

EU1(e1, e2(X1)|e1, e2(X1);S)− EU1(ej , e2(X1)|e1, e2(X1);S)−
∑
n

[π1
n − πjn]

{
un +

∑
`

π1
`µ(un − u`)

}
+ γ

∑
n

[π1
n − πjn]

{∑
`

∑
m

π1
`π

2
m[µ(un` − u`m + ρn − ρ`)− µ(un` − u`m)]

}
+
∑
n

[π1
n − πjn]ρn > 0 ∀ej ∈ E\e1
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where the first curly bracket corresponds to the incentive lost from fixing the first-period wage, the
second one–weighted by γ–corresponds to the incentives gained from prospective gain-loss utility
whereas the last corresponds to the incentives gained from second-period consumption utility. To
simplify the notation, define φ(ρn, ρ`) ≡ µ(un` − u`m + ρn − ρ`) − µ(un` − u`m). Then, incentives
are preserved if the sequence {ρn}Nn=1 satisfies∑
n

[π1
n − πjn]

{
un +

∑
`

π1
`µ(un − u`)

}
= γ

∑
n

[π1
n − πjn]

{∑
`

∑
m

π1
`π

2
mφ(ρn, ρ`)

}
+
∑
n

[π1
n − πjn]ρn ∀ej ∈ E\e1

(19)

Existence of such sequence can be straightly proved by showing setting the system of J−1 equations
as Aρ = B–where A is a (J − 1)×N matrix and B is a (J − 1) vector–and showing that B can be
written as a linear combination of the cols of A.

Consider first the set Ẽ = {e ∈ E|c(e) 6 c(e1)} ⊆ E and consider period-zero planning IC.
Adding and subtracting, and noticing that the equilibrium total period one and period zero coincide,
is straightforward to see that the period-zero planning IC can be written as

EU0(e1, e2(X1)|e1, e2(X1); Ŝ)− EU0(ej , ek(X1)|ej , ek(X1); Ŝ)

=
(
EU1(e1, e2(X1)|e1, e2(X1); Ŝ)− EU1(ej , e2(X1)|e1, e2(X1); Ŝ)

)
−
(
EU1(ej , ek(X1)|ej , ek(X1); Ŝ)

−EU1(ej , e2(X1)|e1, e2(X1); Ŝ)
)

Because under the optimal sequence {ρ∗} the implementing IC holds, it is sufficient to find conditions
for the second line to be negative. For this, notice that this planning IC is necessary iff (ej , ek(xn))
is a credible plan, i.e. if EU0(ej , ek(xn)|ej , ek(xn)) > EU0(ej , e2|ej , ek(xn)). Thus,

EU1(ej , ek(xn)|ej , ek(xn); Ŝ)− EU1(ej , e2|e1, e2(xn); Ŝ)

6EU1(ej , e2(xn)|ej , ek(xn); Ŝ)− EU1(ej , e2(xn)|ej , ek(xn); Ŝ)
6EU0(ej , e2(xn)|ej , e2(xn))− EU1(ej , e2|e1, e2(xn))

where the last line follows from the fact that second-period IC holds. Thus, if

γ 6
minj{µ(c(e1)− c(ej))}

maxj{
∑

n

∑
`

∑
m[πjnπ

j
`π

2
m − π

j
nπ1

`π
2
m]φ(ρ∗n, ρ∗` )

= γ̄1 (20)

the period-zero planning IC is implied by the period-one implementing IC. Furthermore, notice that
γ̄1 > 0 because the numerator is positive for all j since prospective gain-loss utility is decreasing in
the reference distribution.

Consider now the difference between total period-zero utility between contracts for the optimal
sequence {ρ∗n}. Modifying equation (9) in Section 9.2 and using Definition 1, we have that under
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contract Ŝ the total period-zero expected utility corresponds to,

EU0(e1, e2(X1)|e1, e2(X1); Ŝ) =
∑
n

π1
nū+ γ

∑
n

∑
`

∑
m

π1
nπ

1
`π

2
mµ(un` − u`m + ρh − ρ`) (21)

+
∑
n

π1
n[EU2(e2(xn)|e2(xn);xn;S) + ρn]

− c(ẽ0,1) + γ
∑
n

∑
`

π0,1
n π0,1

` µ(c(e2(x`))− c(e2(xn)))

Taking differences between equation (9) in Section 9.2 and equation (21), we have that the deviation
contract gives a higher expected utility if

γ
∑
n

∑
`

∑
m

π1
nπ

1
`π

2
mφ(ρ∗n, ρ

∗
` ) +

∑
n

π1
nρn 6 −

∑
n

∑
`

π1
nπ

1
n

1∑
`

µ(un − u`) (22)

where the RHS and LHS are positive because of Lemma 2 and because {ρ∗n} is increasing, respec-
tively. Using equations (19) for the optimal sequence, we can rewrite equation (22) as

∑
n

[π1
n − πjn](un − ρ∗n)−

∑
n

1∑
`

µ(un − u`) > γ[−
∑
n

∑
`

∑
m

πjnπ
1
`π

2
mφ(ρ∗n, ρ

∗
` )] (23)

Thus, if γ 6 min{γ̄1, γ̄2} where

γ̄2 =
minj{

∑
n[π1

n − π
j
n](un − ρ∗n)−

∑
n

∑1
` µ(un − u`)}

maxj{−
∑

n

∑
`

∑
m π

j
nπ1

`π
2
mφ(ρ∗n, ρ∗` )}

(24)

where γ̄2 > 0 because of equation (19) and Lemma 3. Then Ŝ implements the action path at
the same expected cost for the principal and increases the agent’s total period-zero utility in the
restricted set Ẽ .

We are done in the linear consumption utility case if can show that adding actions does not
decrease the principal’s expected cost under the contract Ŝ. To see this, first notice that working
for the period-zero planning IC for both contracts and operating, we have that period-zero planning
IC holds under contract Ŝ can be written as

EU0(e1, e2(X1)|e1, e2(X1); Ŝ)− EU0(ej , ek(X1)|ej , ek(X1); Ŝ) = (25)

EU0(e1, e2(X1)|e1, e2(X1);S)− EU0(ej , ek(X1)|ej , ek(X1);S)−
∑
n

[π1
n − πjn]

{
un − ρ∗n

}
−
∑
n

∑
`

[π1
nπ

1
` − πjnπ

j
` ]µ(un − u`) + γ

∑
n

∑
`

∑
m

[π1
nπ

1
`π

2
m − πjnπ

j
`π

k
m]φ(ρ∗n, ρ

∗
` ) > 0 ∀(ej , ek(X1)) ∈ EPE
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where EPE is as in Definition 1. By contradiction, assume that there exists a ej ∈ E\Ẽ such that

EU1(ej , e2(X1)|e1, e2(X1); Ŝ)− EU1(e1, e2(X1)|e1, e2(X1); Ŝ) =

EU1(ej , e2(X1)|e1, e2(X1);S)− EU1(e1, e2(X1)|e1, e2(X1);S)−
∑
n

[πjn − π1
n]
{
un +

∑
`

π1
`µ(un − u`)

}
+ γ

∑
n

[πjn − π1
n]
{∑

`

∑
m

π1
`π

2
mφ(ρ∗n, ρ

∗
` ) +

∑
n

[πjn − π1
n]ρ∗n > 0

however, since S implements the action path we know that

EU1(ej , e2(X1)|e1, e2(X1);S)− EU1(e1, e2(X1)|e1, e2(X1);S) < 0

which contradicts equation (19). An analogous proof holds for period-zero planning IC. This com-
pletes the proof for the linear case.

Consider now the case where u
′′
< 0. Let EC(S) and EC(Ŝ) correspond to the expected cost

of each contract. First, notice that if Ŝ is the optimal contract, given {ρ∗n}, the fixed-wage u∗ that
maximizes the principal’s profits corresponds to

u∗ = UR + c(e1)− γ
∑
n

∑
`

∑
m

π1
nπ

1
`π

2
mµ(un` − u`m + ρ∗h − ρ∗` )−

∑
n

π1
nEU2(e2(xn)|e2(xn);S) <

∑
n

π1
nun

(26)

where the last inequality follows from the IR under contract S. Thus the difference between the
first-period expected cost between contract S and Ŝ

EC1(S)− EC1(Ŝ) =
∑
n

π1
nu
−1(un)− u−1(u∗) >

∑
n

π1
nu
−1(un)− u−1

(∑
n

π1
nun

)
> 0

To consider the difference between the second-period expected cost, recall that the optimal deviation
contract sets

∑
n πnρ

∗
n = 0. Defining the sets N+ = {n|ρ∗n > 0} and N− = {n|ρ∗n < 0},

EC2(S)− EC2(Ŝ) =
∑
n

∑
m

π1
nπ

2
m

(
u−1(unm)− u−1(unm + ρ∗n)

]
=
∑
m

π2
m

( ∑
n∈N−

π1
n

[
u−1(unm)− u−1(unm + ρ∗n)

]
−
∑
n∈N+

π1
n

[
u−1(unm + ρ∗n)− u−1(unm)

])

Noticing that the first term is positive, for the contract Ŝ to have a smaller expected cost than S it
suffices to find a condition for the following to hold∑

n∈N+

∑
m

π1
nπ

2
m

[
u−1(unm + ρ∗n)− u−1(unm)

]
6
∑
n

π1
nu
−1(un)− u−1(u∗)

+
∑
n∈N−

∑
m

π1
nπ

2
m

[
u−1(unm)− u−1(unm + ρ∗n)

]
where we have already showed that the right hand side is positive. For that notice that for all m,
n ∈ N+ there exists an u+

nm ∈ (unm, unm + ρ∗n) such that u−1
′
(u+
nm)ρ∗n = u−1(unm + ρ∗n)−u−1(unm)

where u−1
′
(·) is the inverse’s derivative. Defining u+

max = max{{u+
nm}n∈N+,m}, we can find an upper
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bound for the increase in the second-period expected cost,∑
n∈N+

∑
m

π1
nπ

2
m

[
u−1(unm + ρ∗n)− u−1(unm)

]
=
∑
n∈N+

∑
m

π1
nπ

2
mu
−1
′
(u+
nm)ρ∗n 6 u

−1
′
(u+

max)
∑
n∈N+

π1
nρ
∗
n

Analogously, we can define a lower bound for the second-period expected cost gain by noticing
that for all m, n ∈ N− there exists an u−nm ∈ (unm + ρ∗n, unm) such that u−1

′
(u−nm)(−ρ∗n) =

u−1(unm)− u−1(unm + ρ∗n) so that

u−1
′
(u−min)

∑
n∈N−

π1
n(−ρ∗n) 6

∑
n∈N−

∑
m

π1
nπ

2
m

[
u−1(unm)− u−1(unm + ρ∗n)

]
where u−min = min{{u−nm}n∈N−,m} < u+

max because {ρ∗} is nondecreasing. Now, by assumption,

there exists a M1 such that u−1
′′
(s) 6M1 ∀s. Thus, using the mean value theorem again, we now

that u−1
′
(u+

max)− u−1
′
(u−min) 6 M1(u+

max − u−min). Thus, the expected cost of Ŝ is no greater than
that of S if M1 is such that

M1 6

∑
n π

1
nu
−1(un)− u−1(u∗) + u−1

′
(u−min)

(∑
n∈N− π

1
n(−ρ∗n)−

∑
n∈N+

π1
nρ
∗
n

)
(u+

max − u−min)

=
∑

n π
1
nu
−1(un)− u−1(u∗)

(u+
max − u−min)

where this upper bound is positive by Jensen’s inequality and equation (26). This concludes the
proof.

�

Proof of Proposition 6
The fact the contract uses contingent payments in the first period follows straight from the proof
of Proposition 5 by defining γ > min{γ̄1, γ̄2}. To see that the contract does not use memory if γ is
big enough, suppose the contract S is such that un 6= u

′
n for at least one n 6= n

′
and unm = un′m for

un 6= u
′
n ∀m. Consider now a deviation contract using memory in wages, Ŝ, ûn = un + ρn ρn ∈ R,

ρn 6= 0 for at least one n and ûnm 6= û
′
nm, n 6= n

′
for at least one m.

Consider the case of linear consumption utility. Building the first-period implementing IC and
the period-zero planning IC, using a proof equivalent to that in the proof of Proposition 5, one can
show that there exists a {ρ∗n} such that Ŝ implements the effort path. Consider now the difference
between total period-zero expected utility under contract Ŝ relative to S

EU0(Ŝ)− EU0(S) =
∑
n

π1
nρ
∗
n +

∑
n

∑
`

π1
nπ

1
`

[
µ(un − u` + (ρ∗n − ρ∗` ))− µ(un − u`)

]
+ γ
(∑

n

∑
`

∑
m

π1
nπ

1
`π

2
mµ(ûn` − û`m) +

∑
n

∑
`

π1
nπ

1
`µ(c(e2(x`))− c2(xn))

)
+
∑
n

π1
n

(
EU2(es(xn)|e2(xn);xn, Ŝ)− EU2(es(xn)|e2(xn);xn, S)

)
where EU0(Ŝ) stands for EU0(e1, e(xn)|e1, e(xn); Ŝ) and the same for s. Noticing that from
Lemma 2 the second line is negative, then is straight to see that for any {ρ∗n} and any EC(Ŝ)−EC(S)
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there is always a γ such that EU0(e1|e1; Ŝ) < EU0(e1|e1;S) so that Ŝ is not a profitable deviation.

�

Proof of Proposition 7
Let π̃m = P{X̃ = x̃m} > 0 for all x̃m ∈ X represent the density of the random device. Consider first
the utilities the agent gets under the random contract S. Let EU2

2(e2(xn)|e2(xn);S) represent the
total expected utility at the end of period-two once the agent has exerted e2, which corresponds to

EU2
2(e2(xn)|e2(xn);S) =

∑
m

π̃munm +
∑
m

∑
`

π̃mπ̃`µ(unm − un`)

Thus, the total expected utility at the beginning of period two having planned to exert ẽ1,2(xn) at
the end of period one

EU1
2(e2(xn)|ẽ1,2(xn);S) =

∑
n

π2
n

[∑
m

π̃munm +
∑
m

∑
`

π̃mπ̃`µ(unm − un`)
]
− c(e2(xn)) + µ

(
c(e)− c(ẽ1,2(xn))

)
Thus, the second-period implementing IC for any n corresponds to∑
n

[π2
n − πjn]

[∑
m

π̃munm +
∑
m

∑
`

π̃mπ̃`µ(unm − un`)
]
−
(
c(e2(xn))− c(ej)

)
− µ(c(e2(xn))− c(ej))

(notice that a period-one planning IC equal the latter except for the fact that µ
(
c(e2(xn))−c(ej)) =

0
)
. Because Proposition 5 assumptions hold, let ūm be the first-period payment depending on the

first period X̃ but not on X1. As before, the expected utility flow of the agent once the agent has
executed the first-period action corresponds to

∑
m π̃mūm +

∑
m

∑
` π̃mπ̃`µ(ūm − ū`). Thus, the

total period-one expected utility of implementing action e1 having planned corresponds to

EU1
1(e1, ẽ0,2(xn)|ẽ0,1, ẽ0,2(xn);S) =

∑
m

π̃mūm +
∑
m

∑
`

π̃mπ̃`µ(ūm − ū`)

+
∑
n

π1
nEU

1
2(ẽ0,2(xn)|ẽ0,2(xn);xn, S)− c(e1)− µ

(
c(ẽ0,1)− c(e1)

)
Thus for all ej ∈ E\e1 the period-one implementing IC corresponds to

EU1
1(e1, ẽ0,2(xn)|ẽ0,1, ẽ0,2(xn);S)− EU1

1(ej , ẽ0,2(xn)|ẽ0,1, ẽ0,2(xn);S)

=
∑
m

π̃mūm +
∑
m

∑
`

π̃mπ̃`µ(ūm − ū`) +
∑
n

[π1
n − πjn]EU1

2(ẽ0,2(xn)|ẽ0,2(xn);xn, S)− c(e1)− µ
(
c(ẽ0,1)− c(e1)

)
where the period-zero planning IC equals this for µ

(
c(ẽ0,1) − c(e1)

)
= 0. Then, by noticing that

paying unm =
∑

m π̃munm+
∑

m

∑
` π̃mπ̃`µ(unm−un`) and ūm =

∑
m π̃mūm+

∑
m

∑
` π̃mπ̃`µ(ūm−

ū`) all the IC are satisfied and the agent is indifferent between the two contracts, the result follows
straight from Jensen’s inequality.

�

Proof of Proposition 8
We first restate the equilibrium concept. Now, period-zero planning IC does not ensure that the
agent chooses the right plans at the end of period one and thus a period-one planning IC must be
explicitly stated.
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Definition 3 (Modified PPE)
Given a contract S, the effort path (ePE1 ,ePE2 (X1)) is a “personal equilibrium” (PE) for the agent if

(i) EU0(ePE1 , ePE2 (X1)|ePE1 , ePE2 (X1)) > EU0(e1, e2(X1)|e, e2(X1)) ∀(e1, e2(X1)) ∈ EPE

(ii) EU1(ePE1 , ePE2 (X1)|ePE1 , ePE2 (X1)) > EU1(e1, e
PE
2 (X1)|ePE1 , ePE2 (X1)) ∀e1 ∈ E

(iii) EU1(ePE2 (xn)|ePE2 (xn);xn) > EU1(e2|e2;xn) ∀e2 ∈ EPEn ,∀xn
(iv) EU2(ePE2 (xn)|ePE2 (xn);xn) > EU2(e2|ePE2 (xn);xn) ∀e2 ∈ E ,∀xn

where EPE ≡ {e ∈ E , e2(X1) ∈ E × · · · × E|(ii), (iii) and (iv) hold for e = ePE1 and e2 = e2(X1)PE}
and EPEn ≡ {e ∈ E|(iv) holds for e = ePE2 given X1 = xn}.

First consider period-two implementing IC for any given realization of the first-period outcome
xn ∈ {xh, x`},

EU2(eh|eh;xn)− EU2(e`|eh;xn) = [πh − π`](unh − un`)
+ [πh(1− πh)− λπh(1− πh)](unh − un`)
− [π`(1− πh)− λπh(1− π`)](unh − un`)− c− µ(c) > 0

I now build period one planning IC. From the analysis in Section 7, I have that after a first period
failure the change in the prospective gain-loss utility loss from planning high effort for the second
period instead of low, corresponds to λη(πh− π`)(u`h− u``) > 0. Thus, the period-one planning IC
after a first-period failure corresponds to

EU2(eh|eh;x`)− EU2(e`|e`;x`) = [πh − π`](u`h − u``)
+ [πh(1− πh)− λπh(1− πh)](u`h − u``)
− [π`(1− πh)− λπh(1− π`)](u`h − u``)
+ λγ(πh − π`)(u`h − u``)− c > 0

Comparing the planning and implementing ICs, one can see that if

c(1− γ) > (πh − π`)[λ(1− π` − γ)− π`] (27)

then the planning IC implies the implementing IC and thus it must bind (in the opposite case the
implementing IC binds). Equivalently, after a first first-period success, the change in prospective
gain-loss utility from planning high effort for the second period instead of low, corresponds to
η(πh− π`)(uhh− uh`) > 0. Thus, period-one planning IC after a first-period success corresponds to

EU2(eh|eh;xh)− EU2(e`|e`;xh) = [πh − π`](uhh − uh`)
+ [πh(1− πh)− λπh(1− πh)](uhh − uh`)
− [π`(1− πh)− λπh(1− π`)](uhh − uh`)
+ γη(πh − π`)(uhh − uh`)− c > 0

where have used that the principal wants to implement high effort in both periods. Comparing the
planning and implementing ICs, one can see that if

c(1− γ) > (πh − π`)[(1− π` − γ)− π`] (28)
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then the planning IC implies the implementing IC and thus it must bind (in the opposite case the
implementing IC binds). Thus, four cases arise here. If both implementing IC’s bind, because their
RHS are equal, then by making them equal is straight to see that (u`h−u``) = (uhh−uh`). If both
planning IC’s bind, doing the same, one can see that (u`h−u``) < (uhh−uh`). The other two cases
follow using the same logic and using the conditions in equations (27) and (28).

�
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