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ABSTRACT

The problem of optimal approximation of members
of a vector space by a linear combination of members
of a large overcomplete library of vectors is of impor-
tance in many areas including image and video coding,
image analysis, control theory, and statistics. Finding
the optimal solution in the general case is mathemat-
ically intractable. Matching pursuit, and its orthogo-
nal version, provide greedy solutions to this problem.
Orthogonal matching pursuit typically provides signif-
icantly better solution compared to the nonorthogonal
version, but requires much more computation. This
paper presents a fast algorithm for implementation of
orthogonal matching pursuit which for many coding
applications has computational complexity very close
to that of the nonorthogonal version.

1. INTRODUCTION

Approximation of the members of a vector space by a
linear combination of a small number of members in
a possibly large set (dictionary) of redundant vectors
in that space has been of interest in di�erent areas of
science. More formally, given a vector x 2 RM , a scalar
error threshold ", and a set

U = fu1;u2; : : : ;uP g � RM ;

the problem is to �nd a subset

U� = fuJ1 ;uJ2 ; : : : ;uJSg � U; 1 � J1; J2; : : : ; JS � P

with smallest S, and a corresponding collection
f�1; �2; : : : ; �Sg, such that

k(�1uJ1 + �2uJ2 + � � �+ �SuJS )� xk � ": (1)

If we use the notation

U� def
=

�
uJ1 uJ2 � � � uJS

�
M�S

;

�
def
=

�
�1 �2 � � � �S

�T
;

x̂
def
= �1uJ1 + �2uJ2 + � � �+ �SuJS = U�

�;

then (1) may be written as kx� x̂k � ":

If the number S and the set U� are found, the cor-
responding f�1; �2; : : : ; �Sg can simply be computed
by least squares methods.

This problem is a di�cult combinatorial optimiza-
tion problem. In fact, it has recently been proven that,
in the general case, �nding the optimal solution is NP-
hard [1]. However, an e�cient suboptimal greedy so-
lution to this problem has been discovered by di�erent
researchers in di�erent contexts but with basically the
same underlying mathematics.

In statistics, this greedy algorithm was found for
the computation of conditional expectation of random
variables and was named projection pursuit [2]. In con-
trol theory, such a method was developed for nonlin-
ear system identi�cation [3]. In the context of time-
frequency decomposition, it was named matching pur-

suit [4] and was used in signal analysis for extraction
of patterns from noisy signals. In the context of image
coding, it was developed for a generalized image cod-
ing method unifying transform coding, vector quanti-
zation, and fractal coding [5].

The orthogonal matching pursuit was developed in-
dependently by Chen et al. [3], Pati et al. [6], Davis et
al. [7], and Gharavi-Alkhansari and Huang [8]. Rate-
distortion optimized versions of matching pursuit were
proposed in [9], [10], and [11].

Vetterli and Kalker used rate-distortion optimized
matching pursuit for motion compensated video cod-
ing [11]. Ne� and Zakhor used matching pur-
suit for coding motion residual images of video se-
quences [12, 13]. Gharavi-Alkhansari and Huang used
rate-distortion optimized matching pursuit for general-
ized fractal image and video coding [9, 10].

The essence of matching pursuit is that, for a given
vector x to be approximated, �rst choose the vector
from the dictionary on which x has the longest pro-
jection. Then, remove any component of the form of
the selected vector from x, i.e., orthogonalize x with
respect to the selected dictionary vector, and obtain
the residual of x. The selected dictionary vector is in
fact the one that results in the residual of x with the



for i := 1 to P

ui := kuik

T := f1; 2; : : : ; Pg

k := 0

while kxk > " f

k := k + 1

for all i 2 T

ci :=
1

ui
(x � ui)

�nd Jk such that cJk = max
i2T

ci

T := T � fJkg

rk;Jk := uJk

uJk :=
1

uJk
uJk

x := x� cJkuJk

for all i 2 T f

rk;i := ui � uJk
ui := ui � rk;iuJk

ui := kuik g g

S := k

� := (U�T
U
�)
�1

U
�T
x

Figure 1: Basic Algorithm for orthogonal matching
pursuit.

smallest energy. Repeat this process for the residual of
x with the rest of dictionary vectors until the norm of
the residual becomes smaller than the threshold ".

In matching pursuit, after a vector in the dictionary
is selected, one may remove any component of its form
not only from x, but also from all other dictionary vec-
tors before repeating the process. This version of the
method is called orthogonal matching pursuit and is
computationally more expensive than the nonorthogo-
nal version, but typically gives signi�cantly better re-
sults in the context of coding. The basic orthogonal
matching pursuit algorithm, is shown in Figure 1.

2. PROPOSED ALGORITHM

In this paper, we assume that 1 � S � M < P and
that all the computations, including all inner products,
must be done in real time and cannot be precomputed,
as it is the case in many applications of this algorithm
in image and video coding [5, 11, 8, 9, 10]. With this
assumption, most of the computation time for the al-
gorithm of Figure 1 is spent on the vector operations.
For this algorithm, under the above assumption, and
ignoring lower order terms, approximately (8S+2)MP
arithmetic computations are required.

The proposed algorithm is shown in Figure 2 and
requires approximately (2S + 2)MP arithmetic opera-
tions, which is 2.5 to 4 times faster than the algorithm
of Figure 1. This is the same as the (2S+2)MP arith-
metic operations required for the standard (nonorthog-
onal) matching pursuit. This speed up is made possible
by the following observations.

1) If we use the notation x
def
= kxk, then due to the

orthogonalization process, at stage k, ui and x can be
updated recursively using the following updating for-
mulas, and without directly using ui and x:

x =
q
x2 � c2Jk (2)

ui =
q
u2i � r2k;i: (3)

2) Lemma: Let a, b, and c be three vectors. Let us
write each of a and b in the form of sum of two vectors:

a = a1 + a2 (4)

b = b1 + b2; (5)

where a1 and b1 are orthogonal to c, and a2 and b2
are along the direction of c. Then

a1 � b1 = a � b� ka2k kb2k:

Using this lemma, in Figure 1, at each iteration the
new ci can be computed from the old ci of the previous
iteration. This, with the new method of updating x in
item 1 above, completely removes the need for updating
x, and the computation x := x�cJkuJk can be avoided.

By a similar argument, but with more involved
mathematics, at each iteration, new rk;i can also be
computed from old values of rk;i of previous iterations
and from inner product of original ui's (computed as
necessary). Then ui's need not be updated and the line
ui := ui � rk;iuJk in Figure 1 can be removed.

The above two techniques remove the bulk of com-
putation from the algorithm. Further optimizations are
also implemented in the algorithm of Figure 2, which
a�ect the lower order terms, and are also important



when the assumption 1 � S � M < P is not held.
The following is the most signi�cant of these optimiza-
tion.

3) The last line of the algorithm of Figure 1 �nds the
coe�cients vector � using least squares. The least
squares computation can be done by a QR decomposi-
tion [14] of the matrix U�, i.e., by writing

U�

M�S = QM�SRS�S ;

where the columns of Q are orthonormal and R is an
upper-triangular matrix. Then, � can be found [14,
page 238] from

� = R�1QTx:

The upper triangular matrix R and the vector QTx
are computed directly in the process of selecting the
library vectors in Figure 2:

R =

2
6664

r1;J1 r1;J2 � � � r1;JS
r2;J2 � � � r2;JS

. . .
...

0 rS;JS

3
7775 (6)

p
def
= QTx =

�
cJ1 cJ2 � � � cJS

�T
(7)

As R is an upper triangular matrix, the com-
putation of R�1p in Figure 2 needs far less
computation that inversion of a general S � S
matrix and can be done by back substitution:

for i := S downto 1 f

for j := S downto i+ 1

ci := ci � ri;Jj cj

ci := ci=ri;Jj g

Therefore, � can be found with a small number of com-
putations after the library vectors are selected.

The columns of matrix Q are columns of matrix U�

orthonormalized using the Gram-Schmidt algorithm.
While elements of � are the coe�cients of columns of
U� that can generate an approximation of x, elements
of p are the coe�cients of columns of Q, i.e.,

x̂ = U�
� = Qp

and R is the transformation that can convert � to p,
i.e.,

p = R�:
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x := kxk

if x � " f

S := 0

return g

T := f1; 2; : : : ; Pg

for i := 1 to P f

ei := ui � ui

ui :=
p
ei

ci :=
1

ui
(x � ui) g

k := 1

�nd Jk such that cJk = max
i2T

ci

T := T � fJkg

x :=
q

x2 � c2Jk

while x > " f

rk;Jk := uJk

for all i 2 T f

rk;i :=
1

uJk

 
uJk � ui �

k�1X
j=1

(rj;Jk rj;i)

!
ci := ciui � cJkrk;i

ei := ei � r2k;i

ui :=
p
ei

ci := ci=ui g

k := k + 1

�nd Jk such that cJk = max
i2T

ci

T := T � fJkg

x :=
q

x2 � c2Jk g

S := k

� :=

2
664

r1;J1 r1;J2 � � � r1;JS
r2;J2 � � � r2;JS

. . .
...

0 rS;JS

3
775
�1 2
664

cJ1
cJ2
...

cJS

3
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Figure 2: The proposed fast algorithm for orthogonal
matching pursuit.


