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ABSTRACT 

This paper presents a new personal authentication system that simultaneously exploits 

2D and 3D palmprint features. The objective of our work is to improve accuracy and 

robustness of existing palmprint authentication systems using 3D palmprint features. 

The proposed multilevel framework for personal authentication efficiently utilizes the 

robustness (against spoof attacks) of the 3D features and the high discriminating 

power of the 2D features. The developed system uses an active stereo technique, 

structured light, to simultaneously capture 3D image or range data and a registered 

intensity image of the palm. The surface curvature feature based method is 

investigated for 3D palmprint feature extraction while Gabor feature based 

competitive coding scheme is used for 2D representation. We comparatively analyze 

these representations for their individual performance and attempt to achieve 

performance improvement using the proposed multilevel matcher that utilizes fixed 

score level combination scheme to integrate information. Our experiments on a 

database of 108 subjects achieved significant improvement in performance with the 

integration of 3D features as compared to the case when 2D palmprint features alone 

are employed. We also present experimental results to demonstrate that the proposed 

biometric system is extremely difficult to circumvent, as compared to the currently 

proposed palmprint authentication approaches in the literature. 

Keywords: Biometrics, palmprint verification, 3D palmprint features, Gabor features, 

multilevel matching. 
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1. INTRODUCTION 

Automatic Palmprint recognition has extensively been researched in recent years 

and various techniques have been proposed in the literature. Depending on the 

information they make use of, palmprint recognition techniques can be broadly 

classified in to three types [2], namely texture, line and appearance based techniques. 

Most of these techniques are based on ideas from 2D image analysis [1], [3], [4], [5], 

[6], [7], [8]. Although these methods have been shown to perform well on relatively 

large databases, efforts are still required to achieve an automated, robust, and high 

accuracy palmprint recognition system capable of being deployed for high security 

applications. Often, two-dimensional image-based approaches suffer from changes in 

imaging factors such as illumination. These inherent limitations can adversely affect 

the system performance.  

Moreover, 2D image based biometric recognition systems are vulnerable to 

various kinds of attacks. For instance, if one could draw some lines on his palm and 

make it look like another person’s palm, then a 2D palmprint recognition system 

could easily be circumvented.  It may also be possible for an impostor to present a 

genuine user’s fake biometric image to gain access to restricted services.  However, 

the capability of current palmprint authentication systems against such spoof attacks 

has not yet been investigated in the palmprint literature.  

One of the possible solutions to overcome the limitations associated with 2D 

palmprint authentication systems is to use 3D imaging devices for capturing surfaces 

of human palm and use this data in performing user identification. Such observations 

are relatively invariant to illumination and provide more information on depth and 

curvature of lines and wrinkles on the palm surface.  
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There are a few works in the field of hand geometry recognition that exploits 3D 

features of the hand/finger. Even though a typical hand geometry recognition system 

[15], [16] utilizes 3D features such as height of the finger and the palm, these systems 

rely entirely on intensity images of the hand for feature extraction. Hand geometry 

recognition system described in [17] uses a simple peg free imaging set up, but does 

not make use of any 3D features of the hand. The authors in [18] investigated the use 

of finger back surface as a biometric feature. A high end range scanner is used to 

capture the range image of the back of the hand. They report a recognition rate of 

99.4% using data obtained on the same day, while it reduced to 74% when gallery and 

probe images were obtained on different days. The US patent [29] illustrates the 

process of acquisition of 3D finger and palmprint information using multi camera and 

light projection system. However, this patent does not describe any method for 

verification/ recognition using the acquired biometric information. Malassiotis et al. 

[19] have developed a biometric authentication system based on measurements of 

user’s 3D hand geometry. A low-cost 3D sensor is used to capture the range image of 

the user’s hand. Experiments on a database of 73 subjects achieved an EER of 3.6%. 

Furthermore, in order to improve the performance, biometric researchers have 

combined 2D and 3D features for face [13], [14] and ear biometrics [14]. However, 

there has not been any previous study in the palmprint literature to investigate the 

utility of 3D palmprint features. This has motivated us to explore the utility of 3D 

palmprint features [28] and the possibility of combining them with 2D features for 

palmprint recognition.  Major contributions of this paper can be summarized as 

follows:  

1) This paper, for the first time, investigates the utility of 3D palmprint features 

and proposes a new approach for the personal authentication based on 3D 
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palmprint images of the user. The surface curvature based features are 

employed to represent the information in the captured 3D palmprint images, 

while normalized local correlation is used to match extracted features. 

2) We propose a multilevel framework for personal authentication that efficiently 

combines 2D and 3D palmprint features. At the first level, 3D features are 

matched. If the resulting match score is above a particular threshold, the query 

is rejected as a fake palm or an impostor and the matching process is 

terminated at Level 1. Otherwise matching proceeds to Level 2 where 2D and 

3D matching scores are combined to decide if the user is a genuine or 

impostor. The experimental results presented in this paper demonstrate that the 

combination of 2D and 3D matching scores, using the proposed multilevel 

matcher, results in significant performance improvement over the case when 

either 2D or 3D features are employed alone. 

3) We investigate the robustness (against spoof attacks) of a 2D palmprint image 

based system and present experimental results to demonstrate the utility of 3D 

palmprint features for enhancing the robustness of the proposed system. A 

robust biometric system has to deal with a number of security threats. Among 

various kinds of attacks [22], one of the simplest ways to attack a biometric 

system is to present a fake biometric to the acquisition device. Researches 

have shown that biometric traits such as fingerprint [24] and gait [25] are 

vulnerable to spoof attacks. As a result, various approaches have been 

proposed for fake fingerprint detection [26], [27]. However, no attempt has 

been made so far to analyze the vulnerability of palmprint systems to such 

attacks.   
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The organization of rest of this paper is as follows; section 2 describes the 

operation of the proposed system with a block diagram. This section also details the 

3D acquisition device that captures both an intensity image of the palmprint and its 

3D structure. In section 3, first we briefly describe the 2D feature extraction using the 

competitive coding scheme, followed by 3D feature extraction in detail. Section 4 

describes the feature matching techniques employed in our system. Experimental 

results and discussions are presented in section 5. Section 6 concludes this work with 

comments on future research. 

 

2. PROPOSED SYSTEM 

We propose a palmprint verification system utilizing both 2D and 3D features of 

human palm. Our goal is to improve the performance of existing 2D image based 

system. Block diagram of the proposed biometric system is shown in Figure 2. The 

image acquisition device, developed at Biometric Research Center at the Hong Kong 

Polytechnic University, is based on the principle of structured light. Figure 4 shows 

acquisition of a sample hand image using the developed device. Infrared sensors are 

employed to detect the presence of the hand on the acquisition device (see Figure 1). 

When a hand is detected, the device projects multiple light patterns onto the palm 

surface and acquires depth information using active triangulation. In order to 

distinguish between stripes, they are coded with different brightness. The system uses 

a computer controlled Liquid Crystal Display (LCD) projector that can generate 

arbitrary stripe patterns. A CCD camera is used to capture the images formed on the 

object. The sequence of images captured by the CCD camera is processed by the 

algorithm running on the associated device to obtain the 3D palm data. This device 
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acquires 3D data in point cloud form. It also acquires a registered intensity image in 

the course of its normal operation. The size of these images are set to 768  576 pixels.  

Each of the acquired 2D images are processed to extract the region of interest 

(ROI) using the method described in reference [8]. This method establishes a 

coordinate system with the gaps between the fingers as reference points and extracts a 

subimage of fixed size located at the central part of the palmprint. Since the acquired 

2D and the 3D images are registered, the pixel coordinates of the 2D subimage can be 

used to locate the ROI and extract the 3D subimage. 

 

Figure 1. Block diagram of the image acquisition module 

Figure 3 shows samples of 3D and corresponding 2D subimages in our database. These 

3D and 2D subimages are further processsed to extract surface curvature (3D palmprint 

feature) and competitive code (2D palmprint feature) [9] respectively. Similarity 

between two curvature maps are then calculated using local correlation method. If the 

matching score is greater than the threshold of Decision Module I, the query is rejected 

as a fake palm or an impostor and the process is terminated. This constitutes Level 1 of 

the proposed multilevel authentication approach. On the other hand, if the matching 

score computed at Level 1 is below the threshold, matching proceeds to Level 2, where 
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the matching scores from 2D palmprint features are combined with the 3D matching 

scores from Level 1 to obtain a final matching score. This score is used to make a 

decision as to whether the claimant is a genuine user or impostor.  The entire process of 

our system is illustrated in Figure 2. 

 

Figure 2. Block diagram of the proposed palmprint authentication system. 

 

Figure 3. Samples of 3D and 2D palmprints in the database 
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3. FEATURE EXTRACTION 

 

3.1 EXRACTION OF 2D PALMPRINT FEATURES 

Competitive coding scheme [9] has been one of the best performing feature extraction 

method for palmprint verification. This coding scheme uses the neurophysiology 

based 2D Gabor filters to extract orientation information from the palmlines. A family 

of 2D Gabor wavelets, satisfying wavelet theory and the neurophysiological 

constraints can be derived from general complex 2D Gabor function as [23]: 
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where o is the radial frequency in radians per unit length and  is the wavelet 

orientation in radians.   is a constant, value of which depends on the frequency 

bandwidth. The center frequency o  of the Gabor filters can be derived to be 



[23]. 

Each of the extracted subimages is convolved with Gabor filters oriented in six 

different directions and a competitive rule is formulated to select the prominent 

orientation, p . This orientation is selected to be the one with minimum filter response 

and is defined as: 

arg  min ( ( , )* ( , , , ))j R jp I x y x y    (2) 

where I is a 2D subimage, R represents the real part of the Gabor filter, and ‘*’ 

denotes discrete convolution. Orientations of the filters are chosen to 

be / 6,  {0,1,...,5}j j j   . The winning orientation from Equation 2 is binary coded 

using 3 bits and stored as a feature. A detailed description of this approach has been 

detailed in our earlier work [9]. 
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3.2 EXRACTION OF 3D PALMPRINT FEATURES 

The captured 3D palmprint images are rich in local structural features. Therefore, 

the surface curvature maps, which uniquely characterize the local shape of a surface, 

are used as 3D representations. The surface curvature properties have been widely 

used to represent and recognize various surfaces. Properties such as mean and 

Gaussian curvatures are also used to classify points on a surface to different classes 

[21]. 

 

Figure 4. Data acquisition using the developed device. 

 

For a surface patch represented by X( , ) ( , , ( , ))u v u v f u v , Gaussian curvature 

( )K  and mean curvature ( )H  are calculated as follows [10]: 
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(3) 

 

where, ,u vf f  and , ,uu vv uvf f f  are first and second order partial derivatives of ( , )f u v . 

Once the values of K  and H are found at every point on the 3D surface, the principal 

curvatures 1k  and 2k  can be determined as: 
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 (4) 

In practice, these principal curvature values at every pixel are computed by fitting 

a quadratic surface over a local neighborhood and then estimating first and second 

derivatives of the surface. In our experiments, the partial derivatives are estimated 

using derivative operators [20]. This approach employs a local least squares surface 

fit using orthogonal polynomial basis functions. Since this process involves the 

estimation of second derivates, the estimated curvature values are sensitive to noise in 

the input 3D data. This problem can be overcome by increasing the size of the local 

neighborhood used for fitting the surface. However, a large window size can smooth 

the image, resulting in the loss of minute details in the 3D palmprint image. In our 

experiments, we empirically fixed the size of window as 13  13. 

To represent the curvature of every point on the 3D palmprint image by a scalar 

value, we utilized the curvedness (C ) introduced in [11]. The positive value C is a 

measure of how sharply or gently curved a point is [21]. It is defined in terms of 

principal curvatures 1k  and 2k , as: 

2 2
1 2( ) 2C k k                                                                                               (5) 

Thus a scalar value of curvature is obtained for every point on the 3D palmprint 

image and this can be stored in a 2D matrix or an image. In this paper, set of such 

scalar values is referred to as surface curvature map. Figure 5 shows curvature maps 

for some of the 3D palmprint images in our database. It can easily be observed that 

the surface curvature maps obtained by the proposed feature extraction algorithm 

closely resembles the palmlines, especially the strong principal lines. 

2
1 2,k k H H K  
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Figure 5. Surface curvature maps for six different subjects  

 

4. FEATURE MATCHING  

 

4.1 MATCHING 2D FEATURES 

Angular distance described in [9] is employed for comparing features extracted 

from 2D palmprint images. Let P and Q be the two feature matrices (competitive 

codes) and MP and MQ be the corresponding masks used for indicating the non 

palmprint pixels.  Angular distance ( , )D P Q  is defined by the following equation:  
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(6) 

where  and  denote the bitwise AND and XOR operations respectively. ( )b b
i iP Q  is 

the i
th

 bit plane of ( )P Q . Taking into account the possible translations in the extracted 

subimage (with respect to the one extracted during the enrolment), multiple matchings 

are performed with one of the features translated in horizontal and vertical directions. 

Minimum of the resulting matching scores is considered to be the final score. 
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4.2 MATCHING CURVATURE MAPS 

The inputs for the matching algorithm are two sets of curvature maps of size 128 

 128. The feature matching process establishes the similarity between the gallery and 

the test templates. In our work, we employ a image matching technique, normalized 

local correlation for comparing two curvature maps. Result of this matching is a 

correlation value for every point in the input curvature maps. Average of these 

correlation values is considered to be the matching score. The expression for 

normalized local correlation is given by: 
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(7) 

 

where ijP  and ijQ  are curvature values in the neighborhood of the points being 

matched in gallery and test curvature maps respectively, and P  and Q  are the mean 

curvature values in those neighborhoods. (2 1)N    (2 1)N  is the size of the 

neighborhood in pixels. Clearly, the value of C lies in the range of [-1, 1] with values 

1 and -1 indicating a perfect match and mismatch respectively. Figure 6 and 7 

illustrate the process of matching of two curvature maps of the same and different 

user respectively. Red (dark) colored pixels in the correlation map represent high 

values of correlation while blue (light) represents low correlation. Final matching 

score is the average of pixel values in the correlation map. It can be observed from 

Figure 6 that genuine matching results in a correlation map with large regions of red 

colored pixels, indicating high correlation between the two curvature maps being 

matched. 
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Figure 6. Matching of two curvature maps from the same subject 

 

Figure 7. Matching of two curvature maps from different subjects 

5. EXPERIMENTAL RESULTS AND DISCUSSION 

 

5.1 VERIFICATION EXPERIMENTS 

In order to evaluate the performance of the proposed system, we performed 

verification experiments on a database of 108 subjects. This database was collected at 

the Biometric Research Center, the Hong Kong Polytechnic University over a period 

of two months. The database was collected in two sessions, with an interval of 2 

weeks and mainly consisted of volunteers and students from our university. Ideally, 

the database should include some fake palmprints to test the robustness of the 

proposed system. However, in this set of experiments, we focus on analyzing 2D and 

3D palmprint features. The main objective was to achieve performance improvement 
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by combining 2D and 3D palmprint features that are simultaneously acquired from 

our imaging setup. However, the utility of our approach is not only limited to the 

performance improvement.  In the next section, we illustrate the experiments 

performed to analyze the robustness of the 3D palmprint features against spoof attacks.  

The database for the experimental results reported in this section includes only real 

palmprint images.  All images were acquired using the capture device shown in 

Figure 4. For each subject, six samples of 2D and 3D palmprint images were captured 

and stored in the database.  Thus, there are a total of 648 palmprint images in our 

database. To obtain the verification accuracy of the proposed method, each palmprint 

image is matched with all other palmprint images in the database, resulting in 1,620 

genuine and 208,008 impostors matching scores for each of the two modalities. Figure 

8 shows a scatter plot of the genuine and impostor score distributions obtained from 

2D and 3D palmprint features. It can be observed that the two distributions are well 

separated and a linear classifier would be able to discriminate the genuine and 

impostor classes. 

 

Figure 8. Genuine and impostor scores in 2 dimensional space 
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We first analyzed the individual achieved performance from 2D and 3D palmprint 

representation. Figure 9(a) and 9(b) show the performance, in terms of False 

Acceptance Rate (FAR) and False Rejection Rate (FRR) characteristics obtained from 

2D and 3D features respectively. The Equal Error Rate (EER) achieved from the two  

  
Figure 9(a). FAR and FRR plots for 2D features Figure 9(b). FAR and FRR plots for 3D features 

separate experiments using 2D and 3D features is illustrated in Table 1. In Figures 9a 

and 9b, it is important to note that the 2D palmprint representation clearly 

outperforms 3D in terms accuracy.   

 

Figure 10. Illustrates the selection of threshold for Decision Module I 
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Further experiments were carried out to ascertain the possible performance 

improvement by combining two (2D+3D) palmprint representations using the 

proposed multilevel matching framework. The threshold of the Decision Module I 

was selected such that no genuine users are rejected at Level 1. This can be achieved 

by setting the threshold to the operating point at which FRR for 3D palmprint features 

becomes zero. The value of this threshold was found to be 61.03 (see Figure 10). All 

3D matching scores (genuine as well as impostor) above this threshold are rejected at 

Level 1. After rejection at Level 1, there were 1620 genuine and 203,667 impostor 

scores for each of the two modalities. These scores were carried over to the next level. 

At this level (Level 2), since the genuine and impostor distributions are originally well 

separated (see Figure 8), we employ a simple weighted sum rule to combine the 2D 

and 3D matching scores. The combined score (Level 2 match score) can be expressed 

as: 

2 3 1 2 2 3D D D DS w S w S    (8) 

where 2DS  is the 2D matching score normalized to (0,100) range. The 3D matching 

score, which in fact is a dissimilarity score, is firstly normalized to (0,100) range and 

then converted to a similarity score to obtain 3DS . The weights 1w and 2w are tuned to 

provide the best verification results. The optimal values of 1w and 2w were empirically 

calculated and found to be 0.56 and 0.44 respectively. 

Results of our experiments are summarized in Table 1. Decidability index( 'd ) is 

used as a measure to quantify the improvement in the separability of impostor and 

genuine matching score distributions. It is computed as: 

1 2'

2 2
1 2

2

d
 

 
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(9) 
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where 1 and 2  are the mean values and 2
1 and 2

2  are the variances of the genuine 

and impostor score distributions respectively. 

It can be observed from this Table 1 that the proposed multilevel approach for 

combination of 2D and 3D features achieves the best performance, i.e., Equal Error 

Rate (EER) of 0.0022% and decidability index of 7.45. This performance is 

significantly higher as compared to the case when either 2D or 3D palmprint features 

alone are used. Figure 11 shows the FAR and FRR plots for the case when both 2D 

and 2D features are employed.  

 

Figure 11. FAR, FRR plots for (2D + 3D) features 

A comparative Receiver Operating Characteristics (ROC) obtained from the three 

different set of experiments is shown in Figure 12. 

Table 1: Performance indices from 2D, 3D and the (2D+3D) palmprint representations 
 

Palmprint Matcher EER (%) Decidability Index ( 'd ) 
2D 0.0621 6.50 
3D 0.9914 5.97 

Multi level (2D+3D) 0.0022 7.45 
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Figure 12. The ROC curves for 2D, 3D and the proposed multilevel (2D+3D) features  

 

5.2 SPOOF EXPERIMENTS 

In this set of experiments, we investigate the robustness of the 3D palmprint 

features against the sensor level spoof attacks. We also analyze the vulnerability of 

2D image based authentication system against such attacks. Our experiments involved 

collecting data from five subjects, in two stages. In the first stage, subjects were asked 

to present their “real” hand, while in the second, images of the same users’ hand 

(palm side) printed on a paper were presented to the capture device. Figure 13 shows 

fake palmprints used for our experiments. The fake palmprints generated from 

genuine users’ palmprint images (Figure 13(a)-(d)) were simply pasted on one real 

palm, as shown in Figure 13(e). This real hand, with fake palmprint, was presented to 

the developed system that can acquire both 2D and 3D palmprint images. Again, 

experiments were performed in a verification scenario, i.e., a user’s palmprint image 

captured in the first stage is matched to the one captured in the second stage.  A match 

is counted as correct if the resulting matching score is less than the system threshold. 
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For the purpose of analysis we consider this threshold to be the operating point of 

EER as it represents commonly preferred operating point for most of the practical 

deployments. The results from this set of experiments are summarized in Table 2. 

 

Figure 13. Fake palmprints. (a) - (d) Show the palmprint images printed on the paper to use as spoofs. 
(e) Shows a fake palmprint pasted on the hand to spoof the system. 

 
Table 2: Matching scores from fake palmprints (spoof attack analysis)  

 
 

User ID 
2D Matching Score 
(Threshold = 82.69) 

3D Matching Score 
(Threshold  = 58.19) 

2D+3D Matching Score
(Threshold = 66.01) 

1 63.75 72.42 67.56 
2 66.69 75.68 70.65 
3 67.09 81.89 73.60 
4 59.46 74.59 66.10 
5 60.26 76.79 67.5 

The experimental results in Table 2 show that the user verification using 2D 

palmprint features fails to discriminate between real and fake palmprint samples for 

all users. As seen from the Table 2, matching scores for 2D palmprint features are 

well below the threshold at EER, which suggest that the system considers all matches 

as correct. On the other hand, Table 2 indicate that for the 3D and (2D+3D) features, 

the system would count all matches as incorrect or negative as the matching scores for 

3D and 2D+3D  are above their corresponding thresholds. In fact, 3D performs better 
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than 2D+3D (matching scores for 3D are well above the threshold, while 2D+3D 

scores are closer to the threshold). This is why we rely entirely on 3D features to 

reject fake palmprints at Level 1 of the proposed multilevel matching algorithm. It 

may be noted that the threshold for Decision Module I was set to 61.03, and all the 3D 

match scores in Table 2 are above this threshold. This suggests that the proposed 

system will be successful in rejecting all fake palms at Level 1. The experimental 

results presented in Table 2 demonstrate the utility of 3D palmprint features for 

enhancing the robustness (against spoof attacks) of the proposed system. 

 

6. CONCLUSIONS 

In this paper, we present experimental results from a newly developed palmprint 

authentication system that can simultaneously acquire and combine 2D and 3D 

palmprint features. This paper also presented the comparative performance evaluation 

of 2D and 3D palmprint representations. Experimental results on a real palmprint 

database from 108 subjects demonstrate that with proper selection of weight 

parameters of fusion scheme, significant performance improvement (over 2D and 3D 

alone) can be achieved. The experimental results presented in section 5 illustrate a 

performance gain of 96% in EER and 14.6% in Decidability Index when the 

simultaneously acquired 3D features are combined with traditional 2D palmprint 

features. Experimental results presented in section 5.1 suggest that the performance of 

palmprint authentication using 3D features alone is promising. However, our 

comparative analysis, where 2D features achieve lower error rates compared to the 3D 

features, suggests that the 2D features are more discriminative than 3D features for 

palmprint representation.  
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The experiments performed in section 5.2, to investigate the robustness of 2D 

image based approaches, expose the vulnerability of such systems to spoof attacks.  

On the other hand, palmprint authentication systems based on 3D features, as well as 

combination of (2D+3D) features, utilize depth information from the palm surface, 

therefore making them extremely difficult to circumvent. It may also be noted that the 

proposed system is more robust to noise such as some text or lines drawn on the 

palmprint. This is because the 3D depth features extracted from such palms are 

unaffected by noise and therefore results in a more robust system compared to the 2D 

image based palmprint authentication systems. Our experiments also show that 2D 

palmprint features can be more prone to spoof attacks, compared to fingerprint 

systems that require special materials and sometimes special skills. Therefore there is 

an urgent need to develop robust palmprint authentication techniques capable of 

withstanding such attacks. 

The experimental results reported in this paper led us to believe that the proposed 

system effectively combines the high discriminatory power of 2D and robustness of 

3D palmprint representations, resulting in a biometric system that has the potential to 

be deployed for security critical applications. Future research should be directed 

towards developing better 3D palmprint representations and exploring different fusion 

strategies. Though the developed system has been shown to be robust against spoof 

attacks, it is still possible (though extremely difficult) to fabricate fake 3D palm 

models to circumvent the system. Therefore, another area of future research is to 

develop techniques for fake palmprint detection.  Now that the performance (accuracy 

as well as robustness) of the proposed system has been investigated on a moderate 

sized database, it would be interesting to test its performance on a very large user 

population, i.e. scalability of the system. 
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