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Separating Decision and Encoding Noise in Signal Detection Tasks
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In this article we develop an extension to the signal detection theory framework to separately estimate
internal noise arising from representational and decision processes. Our approach constrains signal
detection theory models with decision noise by combining a multipass external noise paradigm with
confidence rating responses. In a simulation study we present evidence that representation and decision
noise can be separately estimated over a range of representative underlying representational and decision
noise level configurations. These results also hold across a number of decision rules and show resilience
to rule miss-specification. The new theoretical framework is applied to a visual detection confidence-
rating task with 3 and 5 response categories. This study compliments and extends the recent efforts of
researchers (Benjamin, Diaz, & Wee, 2009; Mueller & Weidemann, 2008; Rosner & Kochanski, 2009;
Kellen, Klauer, & Singmann, 2012) to separate and quantify underlying sources of response variability

in signal detection tasks.

Keywords: decision noise, internal noise, external noise, signal detection theory, confidence rating

Signal detection theory (SDT; Green & Swets, 1966; Peterson,
Birdsall, & Fox, 1954; Tanner & Swets, 1954) remains one of the
most influential models of cognitive science. Disparate areas of
psychological research have adopted SDT as an explanatory
framework for a broad range of topics including sensation and
perception (Tanner & Swets, 1954), category perception (Mac-
millan, Kaplan, & Creelman, 1977), recognition memory (Wick-
elgren & Norman, 1966), attention (Lu & Dosher, 1999), percep-
tual learning (Dosher & Lu, 1998, 1999), group decision behavior
(Sorkin & Dai, 1994; Sorkin, Hays, & West, 2001), neurophysi-
ology (Britten, Shadlen, Newsome, & Movshon, 1992), and clin-
ical applications (McFall & Treat, 1999). Many studies have found
application for SDT in areas far beyond traditional psychological
studies (Hutchinson, 1981; McClelland, 2011).

The fundamental assumptions of SDT include a representation
stage and a response stage. The representation stage assumes a
noisy transformation mediating the mapping between an external
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stimulus and an internal response along a decision axis. Over the
course of many trials, a specific stimulus elicits internal responses
with some mean level of activation (corresponding to stimulus
strength) and some variability (corresponding to the noise in the
internal response), so that the observer’s internal representation
takes the form of a probability density function. Stimuli of differ-
ent strengths lead to probability density functions with different
means along the decision axis and potentially different variances
as well. The response stage assumes that observers use criteria to
partition the decision axis to map internal responses to observable
decisions (Figure 1, top panel).

This relatively simple model has recently been described as one
of the most successful “theoretical frameworks” and “mathemati-
cal models” in psychology (Benjamin et al., 2009; Kellen, Klauer,
& Singmann, 2012). However, results from a number of studies
have undermined some of the assumptions of SDT, most notably
the assumption that decision criteria remain fixed upon a decision
axis over the sequence of trials in an experiment (Benjamin, Tullis,
& Lee, 2013; Mueller & Weidemann, 2008; Wickelgren, 1968).
An alternative possibility is that decision criteria fluctuate from
trial to trial over the course of the experiment (Figure 1, bottom
panel). Evidence that challenges the noiseless decision mechanism
may appeal to a reevaluation of the principle measures of sensi-
tivity and bias, as decision noise may modify the interpretation of
these estimates and the conclusions drawn from them. Experimen-
tal methods capable of distinguishing representation and decision
noise in signal detection tasks will serve to estimate decision noise
and to evaluate the impact of criterion variability on SDT param-
eter estimates. So far, such methods are few and restrictive, so that
it is often impossible to know whether reevaluation is even nec-
essary for many SDT tasks. In this article, we build such a
framework to separately estimate decision and representation noise
components at the decision stage.

We begin with an overview of the SDT framework and a review
of the empirical evidence suggesting that decision boundaries are
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Figure 1. Top: decision axis under a classical confidence rating frame-

work. Representations of signal-absent and signal-present distributions
take the form of Gaussian probability density functions. The subject uses
static criteria to partition the decision axis to map internal representations
to overt responses. Bottom: a modified confidence rating framework in
which the criteria are formulated as probability density functions with
means [Lc;, Meo, and pes because of trial by trial variability in decision
processes. In this and later figures, probability density functions for criteria
noise are shown reflected below the decision axis for clarity. See the online
article for the color version of this figure.

variable or noisy, along with a review of recent efforts to identify
and quantify decision noise in categorical judgment tasks with at
least three stimulus classes (Rosner & Kochanski, 2009). We then
develop a new framework that combines a decision noise model
for a confidence rating procedure with a multipass external noise
paradigm (Burgess & Colborne, 1988; Green, 1964; Lu & Dosher,
2008). Using simulations, we demonstrate the feasibility of param-
eter recovery that estimates the separate contributions of decision
and representation noise for three different decision rules. Our
development applies to tasks with only two stimulus classes over
a range of possible underlying noise configurations, that is, differ-

ROC
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ent relative levels of representation and criterion noise. We then
illustrate this method with an application using a multipass visual
detection experiment with external noise. Finally, we consider
some ideas for future studies as well as limitations of this frame-
work. Details of our experiment along with derivations and a more
formal analysis of this framework are provided in Appendix A—C.

SDT and Static Criteria

In a typical yes/no signal detection experiment, an observer
monitors an observation interval for the presence of a designated
signal stimulus. The observer responds affirmatively if she be-
lieves the signal was present during this interval. The observer
cannot respond with perfect accuracy on every trial, sometimes
correctly reporting the presence of a signal when a signal stimulus
in fact occurred, but sometimes incorrectly affirming the presence
of a signal when a signal was not present. The hit rate (HR) is the
relative frequency of saying “yes” when a signal is present; the
false alarm rate (FAR) is the relative frequency of saying yes when
a signal is not present. Miss and correct rejection rates are the
relative frequencies of saying “no” when a signal is present and
when a signal is absent. Manipulation of the observer’s yes rate by
changing task instruction, pay-off structure, or stimulus base rates
elicits different values of HR and FAR, and the HR plotted against
the FAR defines the receiver operating characteristic (ROC; Figure
2, left; Green & Swets, 1966).

The data from empirical ROCs often comprise the fundamental
features researchers wish to model in signal detection tasks. In most
applications, SDT posits internal representations in the form of Gauss-
ian random variables with mean values positioned along a decision
axis and monotonically related to stimulus strength (Graham, 1989).
Consequently, the representational distributions of two stimuli of
different strength often overlap, leaving some nonzero likelihood that
a stimulus sample from either stimulus class (signal present or signal
absent) could have generated the internal response in a given trial.
Many signal detection models assume that the observer responds by

Equivalent Decision Axes

Signal Absent Signal Present
Decision Axis
Hit - _—
Rate Decision Criterion
Signal Abse Signal Present

Decision Axis

False Alarm Rate

Lmterion

Figure 2. Left: A receiver operating characteristic (ROC) with three different decision criteria. When the signal
strength is low, performance decreases, values of hit rate and false alarm rate converge, and the ROC curve
approaches the unity slope. With higher signal strength, hit rate and false alarm rate diverge, so the ROC curve
moves up and to the left. Right: underlying distributions of stimulus representations at the decision stage shown
with high encoding noise and low decision noise (top panel) and an alternative representation with lower
encoding noise and higher decision noise (bottom panel), each leading to the same performance outcome. See

the online article for the color version of this figure.
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establishing a boundary or criterion along the decision axis, and
chooses yes when the value of the sampled internal representation
exceeds this criterion, and chooses no otherwise (Figure 2, right
panels). Internal representations from signal present trials exceeding
the criterion contribute to HR, and representations of signal absent
trials exceeding the criterion contribute to FAR. Insofar as distribu-
tions of internal representations really do approximate Gaussian prob-
ability density functions, HR and FAR may be transformed into
standardized scores (z-scores) to indicate the position of the criteria
along the decision axis in units of the SD of the underlying distribu-
tions (see Appendix A). Empirical z-transformed ROC (zROC) func-
tions are often approximately linear, consistent with the Gaussian
distribution assumption (Macmillan & Creelman, 2004). The classical
SDT model does not incorporate trial-by-trial variability in the crite-
rion position, so all response variability accrues from variations in the
internal representations of the stimuli (Benjamin et al., 2009).

While some simple SDT applications assume equal variances for
signal present and signal absent distributions, researchers frequently
relax this equal variance assumption to account for the nonunity
slopes often observed in many empirical zZROCs. Meanwhile, the
static criterion assumption has rarely been relaxed. Early formulations
of SDT excluded decision noise for two reasons (Tanner & Swets,
1954). First, because a static decision mechanism was optimal and
part of a cognitive operation, an observer would not willingly choose
to vary its operation from trial to trial, because this variable strategy
would lead to lower overall performance (Benjamin et al., 2013;
Mueller & Weidemann, 2008). And second, typical analyses of signal
detection data simply could not differentiate between noise arising
from representational and decision-related processes (Figure 2, right
panels; see Wickelgren, 1968).

Evidence for Criterion Variability

Though practical considerations led to omissions of criterion
variability in early applications of signal detection theory, in fact,
lines of evidence suggesting a variable decision process predate
even the Thurstonian framework (Fernberger, 1920). Later, re-
duced performance on absolute identification in experiments with
increased stimulus range was attributed to increased variance in
identification criteria (the range effect; Pollack, 1952). Early re-
search in auditory amplitude identification led to the explanation
that the change in response variability arose because of subjects
exhibiting a range-dependent criterion noise (also interpreted as
memory noise; see Durlach & Braida, 1969). Later research sug-
gested an independence between the range effect and the total
number of response categories (Braida & Durlach, 1972) and
specifically implicated the criterial range as the source of the
performance decrement (Gravetter & Lockhead, 1973), though not
to the exclusion of representation-related mechanisms as well
(Luce & Nosofsky, 1984; Luce, Nosofsky, Green, & Smith, 1982;
Nosofsky, 1983). Additionally, investigators have invoked crite-
rion noise to help explain anomalies in the shape of the ROC curve
(Mueller & Weidemann, 2008; Murray, Bennett, & Sekuler, 2002;
Wickelgren, 1968); discrepancies in distribution-free estimates of
response bias in confidence rating tasks (Mueller & Weidemann,
2008); performance decrements related to larger rating scales in
confidence ratings tasks (Benjamin et al., 2013); and feedback-
associated manipulation (Carterette, Friedman, & Wyman, 1966)
and learning (Friedman, Carterette, Nakatani, & Ahumada, 1968)

in auditory amplitude detection. Others have suggested that deci-
sion noise results from criterion-setting mechanisms for recon-
structing stimulus representations at the decision level (Parks,
1966); and that criterion noise is related to nonoptimal criterion
shifting (Thomas, 1973, 1975). For a more extensive review, see
Benjamin et al. (2009).

Although we have presented a small sample here, evidence
arising from these disparate research areas has generated a great
body of literature implicating the presence of criterion variability.
Along with these empirical results, a literature of theoretical con-
tributions has also emerged (e.g., Kac, 1962; Treisman, 1984;
Treisman & Williams, 1984). Strictly speaking, to whatever extent
quantitative models can account for the phenomena of criteria
shifting, we can no longer refer to this as “noise” in the proper
sense of the word. We here follow earlier writers who have
disambiguated “systematic” noise from “unsystematic,” “irreduc-
ible,” or “random” noise (Levi, Klein, & Chen, 2005; Rosner &
Kochanski, 2009). We now turn to the research efforts to separate
and measure decision noise.

Decision Noise Methods and Models

Analysis of the categorical judgment task showed that standard
signal detection experimental procedures could not generally dis-
tinguish representational noise from decision noise without signif-
icant simplifying assumptions (Rosner & Kochanski, 2009; Torg-
erson, 1958). The first serious research effort to understand the
influence of decision noise began with Wickelgren and his study of
response predictions for a variety of signal detection task condi-
tions in the presence of significant criterion noise (although see
also Tanner, 1961, for consideration of decision noise under a less
rigid interpretation of decision criterion in a two-alternative forced
choice task). In a seminal paper, Wickelgren (1968) examined the
ramifications of decision noise for subject performance in yes/no
and confidence rating tasks. He derived functional forms for the
zROC and showed that observers with nontrivial decision noise
could produce linear zZROCs as long as decision noise remained
constant across criteria and task structure did not alter representa-
tional characteristics (see also Benjamin et al., 2009). Static crite-
ria with Gaussian representational distributions lead to linear
zROCs, but linear zZROCs do not necessarily imply static criteria.
Wickelgren also considered the implications of attenuated criterion
noise at a primary decision boundary relative to the remaining
criterion boundaries in bipolar confidence rating tasks and the data
signature this affords in a zROC curve (see also Mueller &
Weidemann, 2008; Murray et al., 2002). In particular, he observed
that subjects could exhibit a peaked zZROC when criterion noise at
the primary decision boundary is significantly less than the deci-
sion noise at the remaining boundaries. Reviewing studies with
greater numbers of category boundaries, he often identified larger
peaks, leading to the speculation that increasing the number of
category boundaries could increase decision noise. This finding
was consistent with Miller’s famous article on information re-
trieval (Miller, 1956) and the criterial range interpretation of the
range effect (Gravetter & Lockhead, 1973) insofar as additional
criteria lead to broader criterion spread across the decision axis.

Wickelgren’s close examination of the shape of subjects” ROCs
and zROCs became a standard diagnostic approach for criterion
variability in signal detection type tasks. However, because data
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collection in typical yes/no tasks requires bias manipulations that
might alter either representational or decision processes, research-
ers preferred confidence rating procedures for their greater assur-
ances of representation and decision noise stability over the dura-
tion of the experiment. However, even studies using rating
procedures may have fallen short of unambiguous estimates of
representation and decision variability owing to tradeoffs between
these parameters in estimation (e.g., Benjamin et al., 2009; Mueller
& Weidemann, 2008).

Nosofsky (1983) developed a multiple presentation method to
examine the range effect with an identification task. On individual
trials in his study, subjects made multiple responses to repeated
identical presentations of a stimulus from one of the available stim-
ulus classes. Although he treated each response as independent of the
others, he assumed that noisy internal representations were averaged
while decision noise remained constant across presentation repeti-
tions. By separately measuring sensitivity for each presentation rep-
etition, he demonstrated nontrivial decision and representational noise
with both components increasing with larger criterion range.

Benjamin et al. (2009) developed an Ensemble Recognition task
similar to the multiple presentation method of Nosofsky to exam-
ine the effects of decision noise in memory recognition. In this
study, subjects were first presented a study list of words they
would later be asked to recognize during a test phase. During the
test phase individual trials contained ensembles of one, two, or
four words. Each ensemble contained either one, two, four, or no
words from the previously examined study list. The Ensemble
Recognition framework assumed that each word of each trial
ensemble led to internal activations independent of the other
words, and that either the sum or the average of these activations
would comprise the internal representation at the decision stage.
Similar to Nosofsky, these authors assume that the decision noise
remained constant while the summing or averaging would lead to
adding or averaging of the representational noise. The averaging
model performed best in model selection tests and estimated a very
significant role for decision noise in word recognition.

More recently, Kellen et al. (2012) offered a critique of the con-
clusions drawn from the Ensemble Recognition study and provided
new reports on the question of decision noise in memory recognition
using a model generalization framework. This approach involves
combining a four-alternative forced choice (4AFC) task with a rating
procedure under the traditional assumptions that internal representa-
tions are identical under the two regimes and that response bias does
not play a role in subject response during forced choice tasks. They
jointly fit their elaborated SDT model with decision noise to data from
both the 4AFC and the confidence rating tasks but found virtually no
significant decision noise influencing subject performance in their
memory recognition experiments.

Rosner and Kochanski (2009) developed a categorical judgment
model to separately estimate criterion noise at decision boundaries.
They corrected an error in an earlier formal description of a
categorization task that allowed for decision noise in absolute
identification and confidence rating tasks (Torgerson, 1958). How-
ever, Rosner and Kochanski showed that the earlier formulation
failed to account for the fact that truly independent noisy criteria
might overlap from trial to trial and could result in predictions of
negative response frequencies. Their revised formalization ac-
counts for this overlap and can be reduced to two special cases: in
the absence of decision noise the model simplifies to the traditional
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SDT model, and in the absence of representation noise the model
simplifies to a complimentary SDT model (a formulation that
ascribes all response variability to noisy criteria). Using simulated
experiments, Rosner and Kochanski showed parameter recovery
was possible for a range of assumed parameter configurations.
They argued that the general formulation of the model disambig-
uated the conflated parameters, and that acquiring sufficient de-
grees of freedom in data posed the only constraint to full parameter
estimation. In particular, a categorization task with N stimulus
classes and M + 1 response categories requires identification of
the means and variances of 2N-2 stimulus parameters (assuming a
reference stimulus class with mean 0 and variance 1) and 2M
criterion parameters. This categorization task has NM independent
data points, so that full model identification is possible only when
NM > 2(N + M)-2; that is, when both N > 2 and M > 2. For the
standard signal detection paradigm with two stimulus classes (N =
2), a solution is available only if the criterion variances are
assumed equal at all category boundaries.

A New Approach

Intuitions and Rationale

We now develop a framework combining two well-known ex-
perimental paradigms to estimate both representational and deci-
sion noise components in signal detection type tasks with only two
stimulus classes, S, and S, (where O refers to signal absent trials
and 1 refers to signal present trials). The first paradigm is a
confidence-rating task in which subjects provide a rating R; indi-
cating their degree of certainty that the present trial contains a
signal stimulus (Egan, Shulman, & Greenberg, 1959). The second
component is the multipass procedure, an external noise paradigm
involving multiple presentations of identical stimuli (Burgess &
Colborne, 1988; Green, 1964; Lu & Dosher, 2008). We show that
this combination sufficiently constrains elaborated signal detection
models by providing measures of agreement in addition to rating
frequencies.

Here we offer some basic intuitions to illustrate our strategy for
dissociating representation and decision noise components. To
begin with, we simplify our exposition by considering response
variability with a single criterion C with stimulus class S,, where
h = 0or 1. If an observer responds differently to two or more trial
presentations with identical stimuli, we attribute the change in
response to internal noise. Researchers have explored this basic
idea by adding external noise to stimulus presentations to estimate
internal noise (Barlow, 1957; Lu & Dosher, 1999, 2008; Pelli,
1990). Examples of external noise include random assignment of
contrast increments or decrements to individual pixels in a visual
stimulus, samples of “white noise” added to an auditory stimulus,
or any other random trial-by-trial perturbations to the stimulus.
Multiple presentation methods that utilize external noise assume
that the total noise degrading subject performance is a composite
of component noise sources. The first component, with SD o,
reflects a variability in the subject’s internal representation of the
external noise that is entirely correlated with the variability in the
physical stimuli. This assumption implies that identical samples of
external noise lead to internal representations that are partly com-
posed of identical offsets along the decision axis. Therefore, a
given sample offset reflected by this consistent noise component
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depends entirely on the specific noisy stimulus that evoked it." The
second component, with SD OF, signifies the internal noise in-
duced during trials of stimulus class / and reflects random pertur-
bations arising from the encoding of both signal (if present) and
external noise in trial stimuli. Finally, random trial-by-trial sam-
pling of a variable criterion with SD o constitutes a third com-
ponent. The distributional parameters of the encoding noise com-
ponent may be functionally related to features of a stimulus class
(e.g., contrast level), but it is still stochastic in nature and results in
random perturbations of the internal representation to identical
stimuli. The criterion variability, by assumption, neither depends
on individual stimulus samples nor on the general stimulus class.
We refer to these secondary noise components as random noise
(Levi & Klein, 2003) insofar as they operate independently of any
external noise samples (drawn from a single distribution). There-
fore, the total response variability o7, during trial presentations of
stimulus S,, is the combined result of the perturbations arising
from consistent and random noise components.

02};1 = cr?x, + cr%h + 0‘2C (1)

In a multipass paradigm, subjects perform a signal detection task
over multiple passes of trials. Each trial from the first pass includes
an independent sample of external noise. However, subsequent
passes of trials contain the same stimuli and exactly identical
samples of external noise as in the first pass (see Figure 3).
Although two passes suffice to obtain an estimate of agreement, in
practice experiments often include additional passes for better
accuracy and precision. Because any change in overt response to
identical presentations of a stimulus reflects a change in the
internal state of the observer, variability in response to identical
stimuli reflects internal noise (Burgess & Colborne, 1988; Green,
1964; Lu & Dosher, 2008). Researchers can assess to what extent
subject responses agree over multiple presentations of identical
samples of noisy stimuli and this agreement can be used as an
additional constraint to determine the ratio (0%5/, + (r%) Y2, (see
Appendix A). Low ratios of internal to external noise will lead to

Stimulus Response
Pass 1 Pass 2
> &
ass 1 Pass 2
>
trial 1
trial 2 MMW mem 0 1
trial 2 0 0
trial 3 W/\M\A WWWWN
trial 3 1 1
trial 4
Y waldy 0 0

Figure 3. Left: a multipass procedure contains at least two runs with
identical samples of external noise added to corresponding trial stimuli
within each pass. Corresponding trials need not be presented according to
the same stimulus schedule for each pass, but we match external noise
samples with trial order here for the purpose of illustration. Right: Mea-
sures of agreement (percent agreement, covariance, and correlation) be-
tween responses to corresponding trials across passes provide additional
behavioral measure to help constrain observer models.

greater agreement between responses to identical stimuli, while
higher ratios lead to a decline in agreement. The estimated statistic
of agreement depends on the task specifications but can be mea-
sured with percent agreement (Burgess & Colborne, 1988; Lu &
Dosher, 2008; Spiegel & Green, 1981), correlation (Levi & Klein,
2003), or covariance between responses to corresponding trials on
successive passes.

For multipass experiments involving only a single decision
criterion, the observed response frequency and response agreement
can provide estimates of the total internal to external noise ratio in
addition to sensitivity and response bias (Burgess & Colborne,
1988; Green, 1964). The separate parameters of criterion and
encoding variance, however, leaves many possible combinations
of criterion and encoding noise that are compatible with the
measured combination of HR, FAR, and agreement measures. In a
multipass signal detection experiment with a single criterion, there
are five parameters to estimate (encoding noise for each stimulus
class, a mean value for the signal distribution, a criterion mean,
and a criterion variance) with only four data points (HR, FAR,
agreement on signal present trials, and agreement on signal absent
trials).

Degrees of freedom increase with additional criteria in a rating
experiment. Rosner and Kochanski (2009) demonstrated the pos-
sibility of independent estimates of criteria variability, criteria
positioning, stimulus positioning, and stimulus representational
noise (they did not distinguish between consistent and random
components) in rating tasks with at least three stimulus levels and
four response categories. Estimating these parameters with only
two stimulus classes, however, requires additional constraining
data measurements. In this article, we use a multipass confidence
rating procedure (MCR) and we measure the covariance of re-
sponses to trials of a specific stimulus class across different passes
as an index of response correlation between these passes. The full
covariance matrix provides a compact summary of agreement
measures for the same categorization of identical trials across
passes (within-category covariance along the diagonal) as well as
disagreement for different categorizations of identical trials (be-
tween category covariance off the diagonal). Conceptually, if
trial-by-trial responses over each pass are taken as vector elements,
then the covariance gives the (mean adjusted) dot product of these
response vectors. A highly positive covariance estimate implies
response agreement across passes. Very low covariance (near zero)
implies lack of agreement. Highly negative covariance implies not
only lack of agreement but strong disagreement across passes.
With low to moderate levels of internal noise, we intuitively expect
positive covariance values for within-category estimates along the
diagonal of the covariance matrix. For between-category covari-
ance estimates for adjacent regions of decision space (e.g., re-
sponse assignments of “2”” and “3” across passes) we might expect
lower though still positive values. For between-category covari-
ance estimates for response assignments of nonadjacent regions
(e.g., response assignments of “2” and “5” across passes), we
expect nearly zero or negative covariance estimates.

"To our knowledge, filtered or bandpass noise has not generally been
used with the mutlipass paradigm. However, color or frequency spectrum
notwithstanding, we see no difference in the principle assumption that trial
sampled internal noise is comprised of stimulus dependent (consistent) and
stimulus independent (random) components.
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Here we show that the MCR procedure sufficiently constrains a
class of decision noise models to identify all relevant parameters
even when the task involves only two stimulus classes. Under the
MCR procedure, each stimulus class gives us M independent
response frequencies as well as M independent agreement mea-
sures for identical responses between passes. In addition to the
covariance of responses for the same rating category across passes
(within-category covariance: e.g., response category “2” in the first
pass and “2” again in subsequent passes), the covariance of re-
sponses for different rating categories across passes may provide
even stronger constraints for model fits to data (between-category
covariance: e.g., response category “2” in the first pass and “3” in
subsequent passes). In total, the MCR provides M(M + 3) data
points (2M response frequencies and M(M + 1) covariance esti-
mates) to fit 2M + 3 free parameters: M criterion positions, M
criterion variances, an encoding variance for the signal absent
trials, an encoding variance for the signal present trials, and the
mean position of the signal stimulus along the decision axis (see
Table 1). Therefore, the MCR procedure may provide sufficient
constraints to recover all decision noise parameters for a rating
task with as few as three response categories (corresponding to
M =2).

To illustrate this point, Figure 4 (left) shows two overlapping
and nearly identical ROCs generated using very different under-
lying internal noise components. In one case, the encoding noise is
equal for signal-absent and signal-present trials while decision
noise is small for all criteria. In the second case, the encoding noise
for signal-present trials is half that for signal absent trials, while
the decision noise varies markedly across criteria and even well
exceeds the encoding noise at one of the decision boundaries.
However, despite these very different noise profiles, the resulting
ROC’s are essentially the same. On the other hand, the covariance
measures estimated from an MCR procedure are drastically dif-
ferent (Figure 4, right) and may provide additional constraints to
disambiguate the underlying noise components. While a greater
number of independent data points relative to the number of free
parameters provides a necessary condition for fitting those param-
eters within the context of a model, this is not sufficient all on its
own (Busemeyer & Diederich, 2010). Even with more data points
relative to free parameters, the data may fail to fully constrain the
model and disambiguate the parameters, so that successful model
identification depends on more than degrees of freedom alone.

We will provide evidence that the MCR framework allows for
full parameter recovery from simulated data over a wide range of
conditions. However, we first seek an intuitive demonstration of
the relationship between observed data and underlying noise com-
ponents. While some changes to covariance data are straightfor-
ward (e.g., representational noise for a specific stimulus class
selectively depresses covariance estimates for responses to that
specific stimulus class, but nontrivial decision noise at even a

Table 1
Degrees of Freedom in Rating Procedure Tasks

Procedure Data points Free parameters
Rating 2M < 2M + 3
MCR 2 X 2M > 2M + 3

Note. MCR = multipass confidence rating.

CABRERA, LU, AND DOSHER

single criterion boundary will lead to changes in covariance and
z-scores at all criteria owing to positional overlap), the pattern of
expected values becomes more complex with the introduction of
decision noise. In Figure 5, we examined changes to expected
values of response frequencies and covariance structure for a
three-category rating task in which we selectively increase the
variability for one of the criteria from zero to match the level of
variability in the stimulus representation. For this very simple
example, we assumed that observers map internal representations
to responses according to a corrected law of categorical judgment
as described by Rosner and Kochanski (2009; see Decision Rules
below). This decision rule determines response assignment by
subtracting each trial-sampled representation from trial-sampled
criteria and choosing the category where the difference between
representation and corresponding criterion gives the least positive
value; when all values are negative, the representation is assigned
to the highest response category.

We begin from the standard SDT account with no decision
noise. In this case we assume that two static criteria, each posi-
tioned at the mean of the signal-absent and signal present distri-
butions, divide the decision space into three response categories
(Figure 5, top-left). Our example assumes a d’ = 1 with equal
representational noise for the two evidence distributions. In con-
trast, we juxtapose a second scenario in which we selectively
increase the decision noise for the more lax criteria to match the
representational noise, without modifying any of the other param-
eters. The joint distributions accounting for both the variability in
the criterion as well as variability in the signal-absent and signal-
present representations are shown as concentric circles (Figure 5,
left middle and bottom). The vertical axis represents positions of
the noisy criterion, the horizontal axis reflects positions of the
noisy internal representations, and the solid blue lines reflect the
position of the means of the noisy and static criteria with respect
to the noisy criterion (horizontal blue lines) and representational
(vertical blue lines) distributions. Finally, we superimpose rating
response column and row labels A, B, C, and D for regions of the
joint distributions according to the decision rule described above.
For example, when trial samples of both the noisy criterion and
representation exceed the stricter (and static) criterion in region
DD, some trial representations will be classified as “1”s instead of
“3” depending on whether the sampled criterion exceeds the sam-
pled representation. Similarly, trial representations will always be
classified with a response category of “2” anytime a sampled
criterion exceeds the static criterion while the sampled represen-
tation does not (regions AD, BD, and CD). Each column of these
joint distributions illustrates how some representations falling
along the decision axis become reassigned depending on the po-
sition of the trial sampled criterion. In column C, for example, all
representations remain with a response assignment of “2” except in
row C where some will be reassigned to a response of “1.”

Figure 5 (right) also shows the corresponding changes to the
zROC and covariance in the classical SDT treatment with no
decision noise (shown as circles) and with the targeted increase in
decision noise at the most lax criteria (shown as “X” symbols). In
the case of the zZROC plot, we can see how the introduction of
decision noise at the more lax criterion results in small but notice-
able change in position for the stricter criterion in z-space. Column
D in the joint distributions shows that response assignments of “3”
can only decrease with increased decision noise at the more lax
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Figure 4. Left: Two overlapping receiver operating characteristics generated using a decision rule described by
Rosner and Kochanski (2009; see decision rules below) and assuming two different underlying parameter sets.
Parameters 1 (open symbols): encoding noise is 1 for both signal absent and signal present trials; mean of the
signal distribution is 1; criteria are located at —0.62, 0, 0.5, 1 with criterion noise at 0.1 for all criteria.
Parameters 2 (Xs): encoding noise is 0.8 for signal absent trials, 0.4 for signal present trials; signal mean is 0.92;
criteria are located at —0.15, 0, 0.5, 0.77 with corresponding criteria noise of 0.125, 1, 0.3, 0.2. All quantities
given in units of the consistent noise, o,,,. Right: covariance outcomes using the same two underlying parameter
sets result in discriminably different data patterns. Within-category covariances are denoted as [r,r] and lie within
the gray bar. Between-category covariances lie outside the gray bar. Circles mark within- and between-category
covariances for response “2”; diamonds for response “3”; squares for response “4”; and triangles shows
within-category covariance for response “5.” For example, between-category covariance for response categories
“3” and “5” across passes are shown as a diamond and an X at the position “r, » + 2” along the abscissa. See

the online article for the color version of this figure.

criterion, and no responses previously mapped to “1” or “2” will be
reassigned to “3” according to the parameters we have chosen for
this illustration. This net loss of assignments to “3” occurs for both
signal-absent and signal-present trials and is reflected by a shift in
the criterion estimate in the zZROC toward the bottom left. Simi-
larly, columns A and B show how the criterion variability on
signal-absent trials results in a net decrease of response assign-
ments mapped to “1” leading to a significant rightward shift in the
more lax criterion estimate in zZROC space: losses from region BB
are canceled by gains in region CC, but region AA, BA, AD, and
BD all lose response assignments of “1” without corresponding
counterbalancing regions. These regional reassignments are also
true for signal-present trials, but in this case the region CC repre-
sents a much higher likelihood under the joint density function
than is counterbalanced by regions AA, BA, AD, and BD. These
regional exchanges, coupled with an additional increase in “1”
responses from region DD to counterbalance losses in region BB,
result in a very slight net increase in response assignments of “1”
with a corresponding subtle downward shift in the position of the
more lax criterion in the zZROC plot.

We can also observe this increased decision noise changes the
covariance data, though overall response frequency will also affect
this measure in addition to the correlation in responses across
passes. For both signal-absent and signal-present trials, the cova-
riances for response assignments of “3” decrease because of
changes in lower correlations and lower response frequencies
when trial samples of both criterion and representation fall within

region DD. Within-category covariance for response assignments
of “2” also decrease with increased decision noise for signal-
absent trials since many of the regions previously assigned to “1”
become remapped to “2” under the joint distribution. Although the
remapping of these regions also occurs during signal-present trials,
covariance for response assignments of “2” nets a small increases
here because the overall response frequency increases with deci-
sion noise, but the shifted position of the signal-present joint
distribution leads to a lower drop in correlation than occurs in
signal-absent trials (note the lower impact of regions AD, BA, BB,
and BB). On the other hand, the between-category covariance of
responses “2” and “3” become increasingly negative on both
signal-absent and signal-present trials. These negative covariances
occur because response assignments of both “2” and “3” become
increasingly associated with “1” on subsequent passes, thereby
decreasing the “2-3” covariance from baseline.

Decision Rules

For any task amenable to analysis within the signal detection
framework, SDT assumes observers generate responses by com-
paring internal representations of the trial stimulus with one or
more decision criterion. A decision rule constitutes a specific
protocol that determines how an observer assigns an internal
representation to a response. With static criteria, most straightfor-
ward decision rules predict identical responses for any given
trial-sampled representation. With noisy criteria, the situation may
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Figure 5. Left-top: decision space for classical confidence rating signal detection task with no decision noise.
Criterion locations lie at the means of the signal-absent and signal-present distributions. Left-center and bottom:
decision space showing joint distributions when decision noise equal to the representational noise is selectively
added to the more lax criterion. The center of the concentric circles represents the mean position of the lax
criterion along the ordinate, and the mean position of the signal-absent distribution (center) and signal-present
distribution (bottom) along the abscissa. Straight vertical and horizontal lines represent mean criterion positions.
Numbers overlaying joint distributions denote expected response categories for trial-sampled criteria and
representations falling in these regions. Right: z-transformed receiver operating characteristic (zZROC; top) and
covariance data (bottom) for classical signal detection task without decision noise (circles and diamonds)
and with decision noise equal to representational noise at the more lax criterion (Xs). Within-category covariance
data lie within the gray bar, between-category covariance data lie outside the gray bar. Covariance data indicating
a response of “2” in at least one pass are shown as circles (no decision noise) and vertically aligned Xs (a noisy
lax criterion); within-category covariance for response “3” in both passes labeled as diamonds (no decision
noise) and vertically aligned Xs (a noisy lax criterion). HR = hit rate; FAR = false alarm rate. See main text
for more details. See the online article for the color version of this figure.

be quite complex. When the task involves only a single noisy
criterion (yes/no, 2AFC, 2IFC with bias, etc.), no ambiguity arises
in consideration of this comparison. Similarly, for tasks calling for
multiple criteria (rating procedures, identification, classification,
etc.), it is straightforward to map a trial-sampled representation to
response as long as the noisy criteria do not overlap from trial to
trial. We might even expect the operation of an enforcement
mechanism maintaining ordinal relations between trial-sampled
criteria (Treisman & Faulkner, 1984).

When noisy criteria have overlapping distributions, trial-
sampled criteria may sometimes become disordered along the axis,
requiring subjects to implement a more complicated decision rule.
Simultaneous decision rules require the observers to compare the

internal representation with available criteria all at once. These
decision rules then determine a response category by making a
unique selection among the results of these comparisons. The work
in this article focuses on several forms of simultaneous decision
rules.

We first formulate the simultaneous decision rule used by Ros-
ner and Kochanski: subtract the position of the stimulus represen-
tation from each criterion boundary and respond with the category
affording the least positive distance, if all differences are negative
respond with category M + 1. Following a similar notation used
by Rosner and Kochanski, let s, € G(0, 1) where G(p, o) is a
Gaussian random variable with mean p. and variance o®. Then
510, equals the random offset of the internal response from its
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mean position s, because of the subject’s encoding noise during
a trial of stimulus class S, Furthermore, let ¢; € G(0, 1) and cio¢,
equal a trial-sampled offset of the ith criterion from its mean
location P, because of the subject’s internal decision noise at that
boundary. We now assume a single external noise level o,,, = 1,
so that all parameters are estimated in reference to this term. We
let s.,, equal an observer’s consistent trial-by-trial offset to the
internal representation because of presentation of a specific sample
of Gaussian external noise, so that s,,, € G(0, 1).

The Rosner and Kochanski decision rule just described can be
formalized as follows: for a trial-sampled stimulus of class &
choose the category m when the following equation evaluates to
true, or category M + 1 if the equation evaluates false for all m:

Sext + sho-Eh + HSh < cmO-Cm + “‘Cm < min [Cm’O-Cmr + p“Cm, | Sext
Vm'#m

+ 50g, T s, <CwOc,, T P«cm,] (€5

Klauer and Kellen (2012) proposed two alternative simultane-
ous decision rules. In the first of these alternatives, the decision
rule determines the trial-by-trial response according to the rule:
subtract the m criterion boundaries from the trial-sampled stim-
ulus representation and respond with the category m + 1 yielding
the smallest positive distance; in the event all comparisons are
negative, choose category 1. The second rule determines the
trial-by-trial response by computing the least absolute distance
between criterion boundaries and the trial-sampled representation.
Specifically, subtract the stimulus representation from all M cri-
terion boundaries, identifying the smallest absolute value of the
difference between stimulus representation and criterion boundary
m, and choose category m if the difference is positive and m + 1
otherwise. This second rule also has the additional consequence
that rating frequencies will be symmetrically distributed when the
corresponding means of criteria distributions are symmetrically
distributed about an evidence distribution. Given any M > 1 trial
sampled criteria, these decision rules can be used to map any trial
sampled internal representation to overt observer responses.

To distinguish these three decision rules, we follow Kellen et
al. (2012) and denote Rosner and Kochanski’s law of categor-
ical judgment as LCJ (given by Equation 2); we denote the
second (Klauer and Kellen’s complimentary version of the LCJ)
as LCJ,, and the last as LCJ,,, because of its symmetric
treatment of criterial boundaries relative to trial sampled rep-
resentations. Figure 6 contrasts the response mappings for each
of these three decision rules when trial-sampled criteria over-
lap. For a given sample of criteria, the rules prescribe different
response profiles for stimuli falling in a given region along the
decision axis. Note that for any given overlapping criteria the
LCJ and LCJ, prescribe entirely incongruent responses while
LCJ,,,,, shows some response agreement with both. These dif-
ferences suggest the possibility that the LCJ will produce dis-
tinctly different data patterns in the aggregate from the LCJ,
rule and moderately different patterns from the LCJ,, rule.
With these three different decision rules in hand, we examined
the possibility of parameter recovery in simulated MCR exper-
iments using simultaneous decision rules that either matched or
mismatched the rule used to generate simulated data.

Trial sampled
criteria overlap

Internal
Noise

C, C4

® - © Trial sampled
representations
Observer Response
LCJ 2 1 1 3
Tl 1 3 3 2
- 2 3 1 2

Figure 6. Criterion overlap and stimulus-response mapping for three
different decision rules. Random trial-by-trial sampling may lead to ordinal
rearrangement of criteria (C1 and C2). The encircled letters A, B, C, and
D denote different positions of trial sampled stimulus representations
falling along the decision axis. An observer requires an explicit decision
rule to map the internal representation to a response. Under each stimulus
representation, the columns of the Observer Response shows how an
observer operating under the LCJ, LCJ,, and LCJy,, decision rules clas-
sifies each stimulus representation above. See main text for response
mapping protocols. LCJ = law of categorical judgment; ¢ = complimen-
tary; sym = symmetrically adjusted. See the online article for the color
version of this figure.

Simulation Study

In the present study, we recruit the power of external noise and
the MCR method in a confidence rating task to disambiguate and
estimate criterion noise under the various simultaneous decision
rules LCJ, LCJ,, and LCJ,,. We derived the expected values of
the response frequencies and covariance data conditioned on trial-
by-trial samples of external noise. Here in the main text we show
the equations describing LCJ. For a formal description of LCJ_ and
LCJym» Please see Appendix A.

For the LCJ decision rule, the expected response frequencies
conditioned on the external noise sample s,,, for the ith stimulus
class are given as,

P(R=m]|S,y Sp)
ke, tenoc,

:f¢(cm§ Re,»0c,) f

—®

d)(sEh;sext + M‘Sh’ O-ES)

. +c¢,,0
Pe, TEmOC,,

d)(Cm' 5 “‘Cm" O-Cm')dcm/ dSthm

FLS,I+SE,’0-E,,+S£XI
3

where ¢(x) is the Gaussian probability density function. We then
casily determine P(R = M + 1|s,,S)) as 1 — XM PR =
m | $,4»Sy). The first term in Equation 3 integrates over all possible
values of the mth criterion. The middle term integrates over stim-
ulus representation values up to that criterion. The third term
estimates the probability that the response is consistent with any
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other criterion. We then integrate over all external noise samples
to get the overall response frequency for this stimulus class 4.

exl

PR=m|S)= [ PR=m|s50 S)bGeddss (&)

Similarly, across any two passes i and j the covariance between
any two response categories m and m’ is,

CoviR; = m,R; = m' |S,)=[ PR, = m|5.:15))

X PR; = m" Sy, Sp)O(Sex)dS ey — P(R; = m | S)P(R; = m" | Sp)

(&)

We now show that data from the MCR experiment adequately
constrains the models to uniquely identify individual representa-
tional and decision noise components. We approach this problem
by examining the precision, accuracy, and goodness-of-fit of re-
covered model parameters from simulated data. For each decision
rule adopted by our simulated observer we tested parameter re-
covery when fitting simulation data with matched models (e.g.,
LCIJ fitted to data generated with a simulated observer using LCJ)
as well as when fitted with mismatched models (LCJ, and LCJ,,
fitted to data generated with simulated observer using LCJ). In the
multipass framework, response frequencies and the covariances of
responses across passes are estimated. This covariance data paired
with the rating response sufficiently specifies the models for
independent identification of encoding and decision noise contri-
butions.

Method

Rationale. To demonstrate full parameter recovery for the
model using our new framework, we simulated a number of MCR
experiments under a range of noise configurations. Because MCR
experiments schedule identical stimuli over each pass, data collec-
tion may require significant empirical investment. As the minimal
data for acceptable model recovery was of interest, we examined
not only the possibility but also the feasibility of parameter recov-
ery at different numbers of trials and passes per simulated exper-
iment.

Our simulations investigated several plausible configurations
for the parameters of criterion and stimulus distributions using
three response categories and two stimulus classes. We focus on
the minimum number of stimuli and rating categories because
earlier efforts toward parameter recovery became problematic with
fewer response categories. We investigated configurations in
which either the criterion noise variances or the encoding noise
variances were equated along the decision axis (labeled equ),
increased along the decision axis (labeled asc) or decreased along
the decision axis (labeled des). We assume a single external noise
variance of unity for all stimulus classes, with an external noise mean
of zero. For any glven variance conﬁguratlon 0 < maxo, (rEl] =
1 and 0 < max{oz. 0'2C Ve (rC 1= 1. We also normalized the sum
of the highest decision and encodmg noise variances to equal the
Vanance of the external n01se In other words, max[crE , (rE] + max
[(rcl 0'C7 UZCM] o2 This constraint accords with the reports of
previous authors that the total internal noise lies near this level for
visual and auditory detection and discrimination experiments over a
considerable range of external noise levels® (Burgess & Colborne,

1988; Green, 1964; Lu & Dosher, 2008). For all other noise compo-
nents, we computed variances by applying logarithmic decrements in
the ascending and descending conditions. We positioned each crite—
rlon mean along the decision axis at 3(0m + crE)'/2 and 3(o?, +
o) so that we could ensure a robust level of trial- by-trial criterion
overlap. Finally, we kept the position of the mean of the signal
distribution at (o7, + (rEU)V2 The various arrangements of parameter
configurations is shown in Table 2 and Figure 7.

The simulated experiments emulated a confidence rating detec-
tion paradigm in which an observer maintains two criteria that
define three response categories. The simulated observer imple-
mented a LCJ decision rule for all noise level configurations. We
also generated simulated data with the LCJ, and LCJ,,, decision
rules for a single parameter configuration in which decision and
encoding noise are equal across criterion boundaries and stimulus
classes. The probability of a signal present stimulus was 0.5. The
simulated experiments varied the number of trials per pass and
number of passes per experiment, in addition to a specific param-
eter configuration. The number of trials n per pass was 250, 500,
or 1,000 and the number of passes was either four or six. We set
the minimum number of passes to four to obtain variance estimates
on covariance data for weighted-least squares model fitting.

Data analysis. The data were arranged in this way: for each
stimulus class 4, we have M + 1 subject response matrices R"""
of size T X J, where J is the number of passes, T is the number of
trials per pass, and m is an available response category. Then each
entry of R™" contains 1’s for trial responses to stimulus class &
classified as category m and 0’s otherwise. Thus, we denote r(”' "
as the jth T X 1 column vector of the matrix """ with the rth entry

(”’ h) equal to 1 or 0, signifying whether or not subjects classified
the stimulus from the rth trial of the jth pass with a classification
of m. The matrix corresponding to the lowest confidence rating
RO was dropped because of its redundancy given the other
response rates and fixed trial numbers.

For every simulated experiment, we computed the relative fre-
quency of the mth classification rating during each pass j as

plr=m|Sy = —E r (6)

The average of each response rating across all passes is the best
and final estimate of the rating response rate. That is

1J
Por=m|S) =2 pi(r=mlS) 7
=
Covariance was computed for every combination of passes for
every rating category. For passes i and j, where i # j, and category
ratings m and m’, the covariance is given as,

, I &
ol ) B[ = mis)]

X[r§m M = pir=m"18y)] ®)

2 The dependence of internal noise on external noise is predicted from
observer models that show internal noise increases with the total energy of
the stimulus (Lu & Dosher, 2008).
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Table 2
Parameter Configurations for Simulation Study

Encoding noise

Decision noise Equal Ascending
0 v
Equal v v
Ascending v v
Descending v

We refer to the covariance as within category covariance when
m = m’ and between category covariance when m # m’'. For an
MCR experiment with J passes, we have EJJ;' J observations of
within category covariance estimates for each response rating m,
and ZE/J-; 11 J observations of between category covariance esti-
mates for each response pairing of m and m'. We took the average
of all pairwise estimates as our final covariance estimate between
categories m and m’.

Weighted least-squares model estimation requires estimates of the
variance for each of the final response rates. The variability of the
response rates for each pass was estimated by the variance of each
response rate across all passes:

1 J
Varlpj(r=m|S$,) = J_—IEI [pj(r=m|S)) = p(r=m|SpI*
J=

(C))

The final estimate of each response rate is the average of the
response rates across passes, and the final estimate of variance for
an averaged response rate across all passes is given by dividing the
variance among individual passes by the total number of passes.
That is,

439

Var[p(r =m|Sy)

Varp(r =m|S,)]= K

10)

Variances for covariance data were computed by first taking the
variance of each within and between pass estimate and then
dividing by the EIJ; 11 jor 22;;11 Jj possible pairing combinations,
respectively.

Modeling. We fit the LCJ, LCJ, and LCJ,,, to simulated
data derived from each parameter configuration and LCJ decision
rule, and to simulated data derived from one parameter configu-
ration using the LCJ_ and LCJ,,, decision rules. Model fits used
a Matlab simplex optimization routine (Nelder-Mead) and a
weighted least-squares cost function. The cost function heavily
penalized a possible solution if any variance parameters fell below
zero or if the criterion means violated their ordinal relation. At the
beginning of each parameter search routine, we generated initial
starting parameters by independently perturbing the true means of
each parameter using a Gaussian random number generator with a
SD of 0.150.,,. Apart from penalties just stated, the constraints
imposed on parameters of the simulated observer were not im-
posed upon the model during parameter recovery: candidate fits of
criteria and signal distribution means were not restricted to specific
positions along the decision axis nor were they restricted to main-
tain certain relative distances; nor were any decision and encoding
noise variances constrained to sum to unity. We ran 250 experi-
ments at each experimental condition and at each parameter con-
figuration.

Results

We computed the median and 95% confidence interval (CI) for
each model parameter using the 250 simulated runs at each pa-
rameter configuration and pass-trial combination. In every case,
the actual parameter values of the simulated observer fell within
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Figure 7. Probability density functions for six representative parameter configurations underlying response
behavior for simulated observers. Density functions represent signal-absent trials (mean zero), signal-present
trials (with greater mean values), and criterion noise (reflected downward across the decision axis). DN =
decision noise; EN = encoding noise; asc = increased; des = decreased; equ = equated. See the online article

for the color version of this figure.
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the 95% ClIs of the estimated values for each position and variance
parameter. The median parameter values recovered from the
matched model were very close to the parameter values used to
generate the simulated data. These results stand in contrast to the
attempted parameter recovery for decision protocols of the models
mismatched against decision rule of the observer. In the case of
LClJ. fitted to the data simulated with LCJ, at least one generative
parameter failed to fall within the 95% CI when simulations were
run with four passes at 500 trials/pass or with six passes at 250
trials/pass. When we fitted LCJ,,,, to the data simulated with LCJ,
at least one generative parameter failed to fall within the 95% Cls
when simulations were run with four passes at 500 trials/pass.
We also examined the precision and accuracy of our model fits
as a function of trials per pass and passes per experiment. We
calculated the standard error (SE) of individual recovered param-
eters by computing the SD of each fitted parameter across all
experiments within a given noise configuration, trials/pass, and
passes/experiment setting. Similarly, we estimated an individual
parameter mean-squared error (MSE) by squaring the difference
between the true parameter value adopted by the simulated ob-
server from the corresponding fitted parameter in each experiment
and averaging across all experiments within the given configura-
tion, trials/pass, and passes/experiment setting. Mean SEs (aver-
aged across all model parameters), as well as the SE of the most
variable parameter, strictly decrease with increasing trials per pass
and passes per experiment at each experimental configuration (see
Figure 8). Mean MSEs (again, averaged across all model param-
eters) also exhibit a pattern of increasing accuracy (decreasing
MSE) with greater numbers of trials and passes for the correctly
matched decision rule (see Figure 9). The MSE of the most poorly
fitted parameters (i.e., those parameters with the highest MSE) also
decrease with increasing trials and increasing passes (a single

exception occurs in the DN-asc EN-des configuration at 500
trials/pass comparing four vs. six passes per experiment).

We also examined fits at six passes/experiment for mismatched
relative to matched models (see Figure 10). For both fits of LCJ,
and LCJ,,, to an observer using LCJ, the averages of the MSE for
mismatched protocols do not generally monotonically decrease
with trials/pass or passes/experiment. Furthermore, at six passes/
experiment, fits for both mismatched models show a higher aver-
age MSE across all trials/experiment relative to MSE for the
correctly matched model for all configurations except DN-0 EN-
asc. The models perform equally well for simulations assuming
zero decision noise because the models make identical predictions
for negligible decision noise. For one parameter configuration, we
used both LCJ_ and LCJ,, as our simulation decision rule (Figure
10, bottom). Here too, accuracy improved for matched but not
mismatched models with increasing trials.

An important concern is whether differences in parameter re-
covery between matched and mismatched models correspond to
goodness-of-fit when actual underlying parameters are unknown.
A weighted least squares estimate (x?) finds parameters that min-
imize the difference between simulated data and expected values
of data based on recovered parameters. We computed x? for each
fit of matched and mismatched models to each simulated data set.
We averaged across simulations from a given configuration and
trials/pass setting using six passes/experiment from mismatched
and correctly matched models. In this case, the average x> fits for
the correctly matched model remains nearly constant with increas-
ing trials/experiment (see Figure 11). On the other hand, average
x* for mismatched models increases with increasing trials/exper-
iment for all configurations except DN-0 EN-asc. In contrast to the
other configurations, average x? fits for DN-0 EN-asc are notably
consistent across both matched and mismatched fits. For simulated

Precision improves with trials, passes
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Figure 8. Standard error of parameter fits to data from simulated experiments for different pass-trial and
parameter configurations. Average standard error across all parameters given for four passes/experiment (circles)
or six passes/experiment (squares). Maximum standard error among parameters given by asterisks and triangles.
All parameter configurations show less variability in parameter fits with increasing trials and passes. DN =
decision noise; EN = encoding noise; asc = increased; des = decreased; equ = equated. See the online article

for the color version of this figure.
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Figure 9. Average mean squared error of parameter fits to simulated data for various pass-trial and parameter
configurations. Average mean squared error across all parameters given for four passes/experiment (circles) or
six passes/experiment (squares). Maximum mean squared error among parameters given by asterisks and
triangles. (Maximum for DN-asc EN-equ at 250 trials, four passes is 0.465; not shown to preserve scale). DN =
decision noise; EN = encoding noise; asc = increased; des = decreased; equ = equated. See the online article

for the color version of this figure.

observers with zero decision noise, fits show an increasing accu-
racy while the log of the mean x? fits lie within a narrow range
across all trials/experiment for all model protocols. We also in-
vestigated the frequency with which the model fits for correctly
matched model resulted in lower weighted least square costs than
fits for mismatched models. For every configuration except DN-0
EN-asc, x* fits were lower for correctly matched models than
mismatched models for at least 91% of the individual simulations
with four passes and 250 trials/pass. This lower bound on success
rate increased to 97% for individual simulations with six passes
and 1,000 trials/pass.

We also examined MSE and x* for model fits to data generated
using the LCJ, and LCJ,,, decision rules for a single parameter
configuration, DN-equ EN-equ (Figure 11, bottom). Similar to
results when using the LCJ as a generative model, MSE decreased
with additional trials for correctly matched rules but did not
generally show similar decreases with mismatched rules. Again,
the x? results for models matched to the generative model re-
mained low with increasing trials, while the x? increased with
increasing trials for mismatched models. When using LCJ, as the
generative decision rule, x> fits for correctly matched models were
lower than mismatched models for at least 90% of the individual
simulations with four passes and 250 trials/pass. This lower bound
success rate increased to 99% of individual simulations with six
passes and 1,000 trials/pass. However, when using the LCJ,,, as
the generative decision rule, success rate decreased significantly
for correctly matched models relative to mismatched models at
60% of individual simulations with four passes and 250 trials/pass,
increasing to 80% with six passes and 1,000 trials/pass.

Discussion

Previous attempts to estimate decision noise in simple response
signal detection type tasks with two stimulus classes have required

strong simplifying assumptions about the various noise compo-
nents. Here we demonstrate that an MCR procedure provides a
sufficiently rich data set to effectively recover decision noise
parameters in many representative parameter configurations with-
out assuming specific relationships between noise components.
More important, this framework uses a model that permits over-
lapping criterion distributions and a decision rule that deals with
this possible overlap.

The results show that both the precision (1/SE) and the accuracy
(1/MSE) of the parameters increase with the number of trials/pass
and passes/experiment. Furthermore, model fitting is not only
possible, but also feasible with a number of total trials amenable to
typical experiments in psychophysical studies. For all parameter
configurations, it appears that parameter recovery does no worse
and often improves with total number of trials up to 2,000 total
trials. However, within the range of 3,000 to 4,000 total trials,
allocating less trials over more passes results in better average
accuracy than a greater number of total trials distributed over less
passes for some parameter configurations (cf., DN-asc EN-equ,
and DN-0 EN-asc). Still, though the optimal allocation strategy
may depend on the underlying parameter configuration, the accu-
racy generally appears to improve with total number of trials.

For the configuration assuming zero decision noise, our simu-
lations showed that all three decision models gave accurate and
precise fits to the data of simulated experiments. This result should
come as no surprise because each of the protocols prescribes
identical trial-by-trial responses to a trial-sampled representation
when criteria remain static over the course of the experiment.
However, the results for accuracy look quite different for mis-
matched model and simulation protocols for all configurations
imposing nontrivial decision noise. In every configuration with
decision noise the accuracy and x* estimates are much worse
relative to correctly matched model fits. In these cases, the accu-
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Figure 10. Top and middle rows: average log mean squared error (MSE) for model fits versus trials/pass
(assuming six passes/experiment) for the LCJ, LCJ,, and LCJ,, matched to data simulated using the LCJ
decision rule. Bottom: average (MSE) for model fits to simulations when decision noise and encoding noise are
equal across criteria and stimulus classes. Bottom left: LCJ, LCJ,, and LCJ,, modeled to data simulated using
the LCJ, decision rule. Bottom right: LCJ, LCJ,, and LCJ,, modeled to data simulated using the LCJ,,
decision rule. DN = decision noise; EN = encoding noise; asc = increased; des = decreased; equ = equated;
LCJ = law of categorical judgment; ¢ = complimentary; sym = symmetrically adjusted. See the online article

for the color version of this figure.

racy generally fails to improve in any significant way with increas-
ing trials/pass or passes/experiment and the x* estimates become
notably worse. The failure of these models to fit simulated data
from mismatched protocols shows that the x> estimates of recov-
ered parameters for correctly matched pairings do not result from
underconstrained models. It appears that some combinations of
response frequencies and covariance data are simply not compat-
ible with data sets generated by certain decision protocols. There-
fore, fitting a decision rule model to data derived from an MCR
experiment could recover erroneous estimates of the underlying
parameters when the model rule fails to match the decision strat-
egy of the observer. At least in some cases, however, mismatched
models can be ruled out by comparison to fits of models more
closely aligned with decision rules used by the observer. Some
positive evidence exists suggesting that the experimenter may
manipulate the observer’s decision strategy by instruction and task
structure (Treisman & Faulkner, 1985). However, a more parsi-
monious approach would attempt to disambiguate potential proto-
cols through model selection techniques.

In a related study, we investigated the possibility of trade-offs
between decision and encoding variance parameters. That is, for a

given data set of response frequencies and covariance estimates,
are variances associated with decision and encoding processes
fungible? Using the LCJ decision rule, we generated expected
values of response frequencies and covariance data using the same
underlying parameter sets from our simulation study (see Table 2)
for three response categories. We then independently perturbed
these generative parameters using a Gaussian random number
generator with a SD of 0.150,,. We then used these perturbed
parameters as an initial guess in model fitting routines to assess
how changes in model parameters led to differences between
expected values in the data obtained from our generative param-
eters. We penalized violations of criterion ordering along the
decision axis, but we did not constrain our model fitting with the
same constraints imposed on our simulated observer: decision and
encoding noise variances were not constrained to sum to unity. We
obtained fits for 500 iterations at each parameter configuration.
The norm of the difference between expected values resulting from
the fitting routine and those given by the true generative parame-
ters was always greater than zero when the search failed to con-
verge on the true parameters. That is, we did not find any alter-
native model solutions that resulted in nonzero costs.
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Figure 11. Top and middle rows: average log x* for model fits versus trials/pass (assuming six passes/
experiment) for the LCJ, LCJ,, and LCJ,, matched to data simulated using the LCJ decision rule. Bottom: log
x> for model fits to simulations when decision noise and encoding noise are equal across criteria and stimulus
classes. Bottom left: LCJ, LCJ, and LCJ,, modeled to data simulated using the LCJ, decision rule. Bottom
right: LCJ, LCJ,, and LCJ,, modeled to data simulated using the LCJ,, decision rule. DN = decision noise;
EN = encoding noise; asc = increased; des = decreased; equ = equated; LCJ = law of categorical judgment;
¢ = complimentary; sym = symmetrically adjusted. See the online article for the color version of this figure.

sym

443

Finally, we compared the expected values of the LCJ for each of
our representative parameter settings with those obtained when
random numbers were given as parameter inputs to the model. The
sum of squared differences between model outputs for the repre-
sentative parameter sets and model outputs for random selected
parameters generally increased with the euclidean distance be-
tween parameter sets. This relationship was not monotonic, but a
general trend showed an increasing sum of squared error with
increasing distance between parameters.

We have demonstrated the feasibility of recovering estimates for
decision noise as well as encoding noise within an expanded signal
detection framework for representative parameter configurations.
These configurations imposed identical positioning of the criteria
and signal distribution means, and caps on the total noise at the
decision stage. While we do not believe that this circumstance
poses any fundamental constraints on the application of our frame-
work, more complex configurations might lead to more variable
parameter estimation. For example, a higher overall total internal
noise relative to external noise would necessitate a greater number
of total trials to achieve comparable levels of accuracy and preci-
sion in parameter estimates. Nevertheless, the total internal noise

levels assumed by our simulated observer lay well within the range
often reported in multipass experiments (Burgess & Colborne,
1988; Green, 1964; Lu & Dosher, 2008). While simulation studies
cannot guarantee that the parameters of the decision noise models
considered here uniquely map to confidence rating and covariance
estimates, we believe the demonstrations given here provide strong
evidence for the efficacy of the procedure in resolving and iden-
tifying factors underlying response variability.

Application

We applied our framework to a simple visual detection confi-
dence rating experiment to assess the degree to which decision
noise contributes to response variability, and to investigate the
dependence of noise components on the response structure of the
task. We conducted a multipass, Gabor detection experiment with
external noise in foveal vision (see Appendix C for additional
details). Subjects performed in sessions with both three and five
rating categories each day. For each subject and for each rating
scale, we collected response frequencies and covariance estimates
for signal absent and signal present trials across 5 days. We
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cumulatively summed response frequencies with traditional ZROC
plots and also plotted both within- and between-category covari-
ance estimates for signal present and signal absent trials.

We found the best fitting lines for zROCs (fit to both coordi-
nates) estimated with yes rates for experiments with three response
categories fell above the best fitting line of the zZROC determined
by yes rates for experiments with five response categories for both
subjects (see Figure 12). This result is consistent with the predic-
tion of Benjamin et al. (2013) that more response categories are
associated with more decision noise. We then fit our data with each
of the three decision noise models (LCJ, LCJ, and LCJ,,,) and
the classical signal detection model without decision noise cSDT.
Our criteria for model selection among those with equal number of
parameters (i.e., LCJ, LCJ,, and LCJ,,,) was simply to choose the
model with the lowest weighted least-squares cost function. For
selection between these more complex models and the simpler
reduced model cSDT, we used F tests for nested models (Wonna-
cot & Wonnacot, 1981). For both subjects, the decision noise
models did not fit the data significantly better than the cSDT
model without decision noise when subjects used only three re-
sponse categories. With five response categories, the LCJ decision
noise model fit the data better than the LCJ_ or LCJ,,, models, and
it provided significantly better fits than the cSDT model for both
subjects. For further verification of the LCJ model fits to data with
five response categories, we randomly sampled, analyzed, and
modeled subject responses to 80% of trial stimuli, and then com-
puted the % between predictions of the model with these param-
eters and the remaining 20% of the data. Repeating this procedure
for over 100 repeated samples, we found median rgoe = 0.99 in
zROC data and r_,, = 0.82 in covariance estimates for subject CC,
and median rzoc = 0.97 in zZROC data and r.,, = 0.87 in
covariance estimates for subject YZ.

We also examined whether representational parameters at the
decision stage remained constant across three and five response

Subject: CC

1k

Hits 0

three categories O
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categories. We fit LCJ to subject data from the five-category rating
experiment while jointly fitting the cSDT to the three category
rating experiment. We either allowed all parameters to vary freely,
or assumed that the represention-related parameters Op, O, and
s, remained identical across response structures. For both sub-
jects, fits using the representation-constrained model were statis-
tically equivalent to the unconstrained model suggesting stationary
representational distributions but decision noise increasing with
the number of response categories. These preliminary findings
suggest that decision noise may play a larger role in task process-
ing when tasks require a large number of response categories.

Of course, other SDT models might be generating the observed
data patterns—for example the data may be generated by a mixture
model in which a sample representation from a signal-present trial
may derive from one of two underlying distributions (DeCarlo,
2002). When a trial is well attended, the trial representation is
sampled from a distribution with mean s, and variance ngz +
oé‘). However, if the trial occurred during a lapse of attention then
the trial representation is sampled from a distribution with mean O
and variance o2, + o7 . A mixture parameter N determines the
base rates for attended and unattended signal present trials. Rela-
tive to LCJ model, the mixture model also provided very good fits
to the data, but the parameter N changed inconsistently from three
to five response categories for each subject. Cross-validation re-
sults from the mixture model and those obtained with the LCJ
decision model resulted in very similar performance outcomes so
we are unable to distinguish between these with our experimental
data (see Appendix C for details).

Nevertheless, the success of the mixture model to account for
the data patterns in an MCR experiment raises the question of
whether the decision noise models might mischaracterize response
variability generated from attentional lapses as variability arising
from decision mechanisms. We carried out a preliminary study by

YZ

1r : :
five categories O
2 . i
2 1 0 -1 2 1 0 -1
False Alarms False Alarms
Figure 12. z-Score plots for subjects CC and YZ with three and five rating categories. Points on the

z-transformed receiver operating characteristic from experiments with three rating categories lie above the best
fitting line to points estimated from experiments with five rating categories. This result may reflect increasing
decision noise with the use of additional response criteria. See the online article for the color version of this

figure.
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fitting decision noise models to simulated data from a mixture
distribution. Despite assuming a 5% lapse rate well within the
typical range assumed in attentional lapse studies, the decision
noise models did not misattribute attentional lapse to a decision
noise mechanism (see Appendix C for further details). These
results suggest that the decision noise estimates from the decision
noise models considered here are not mistakenly conflating deci-
sion noise with lapses in attention as an alternative mechanism of
response variability.

General Discussion

In this article, we present a new framework for understanding
performance in signal detection tasks that combines rating re-
sponses with multipass measurements. The framework resolves
response variability arising from representation and decision pro-
cesses, and can be applied to tasks with only two stimulus classes.
Combined use of rating responses and multipass procedures pro-
vide stronger constraints on parameter estimation in extended SDT
models with decision noise. A multipass procedure allows for a
measure of total internal noise relative to consistent noise, but this
technique by itself cannot achieve any further resolution of noise
beyond this first-order partitioning. A rating response task with
more than two stimulus classes may provide for separate estimates
of decision and representation noise, but the efficacy of this
approach does not extend to experiments with only two stimulus
classes without significantly simplifying assumptions about the
underlying noise levels. Our combination of these two approaches
provides a set of observations rich enough to separate and measure
contributions of noise components at the decision stage. The MCR
procedure can be used whenever meaningful external noise ma-
nipulations can be defined for the stimulus set (see below).

We demonstrated the efficacy of our framework by simulating
MCR experiments for observers with a number of underlying noise
configurations. We modeled the data from each of these experi-
ments and found that precision and accuracy of parameter fits
improved by increasing the number of trials and passes. For each
tested configuration, we found these measures improved when
averaged over all parameters as well as when considering only the
worst performing parameters. That each of these improvements
depended on the number of trials and passes gives us strong
evidence that response frequencies and response agreement esti-
mates together constrained the extended SDT model with decision
noise. More important, models with mismatched decision rules
generally provided worse x? with worsening results as the number
of trials increased. This suggests that the framework is robust to
model miss-specification and that methods of model selection
could help identify underlying decision rules in addition to model
parameters.

We also deployed this framework in a visual detection
confidence-rating task with multiple passes. MCR procedures af-
forded estimates of response agreement in addition to response
frequencies. For both subjects, the data were better explained by an
extended SDT model with decision noise for tasks with five
response categories. When only using three response categories,
the decision noise model did not provide significantly better fits
than the classical SDT model without decision noise. For many
applications of SDT in which subjects may respond with a limited
number of alternative categories, our result suggests the static

criterion assumption of classical SDT remains valid and useful.
However, ROCs for our subjects included features consistent with
decision noise like peaked midpoints and lower performing oper-
ating characteristics for five but not three response categories.
When a task structure offers a larger number of response catego-
ries, decision noise may become an important determinant in
trial-by-trial response outcomes. Of course, the models we use to
interpret our data affect what kinds of conclusions we may draw,
and the classical signal detection model can be elaborated in a
number of ways. A mixture model with static criteria (DeCarlo,
2002) provided very good fits as well when applied to our data.
Moreover, the assumption of a latent distribution in the mixture
model seems no less plausible than the assumption of fluctuating
criteria in decision noise models. It may be the case that the
decision noise models considered here misattribute an underlying
latent distribution to greater variability in the criteria. To test this
consideration we ran 250 additional simulated experiments of an
MCR procedure to emulate an observer with static criteria. We
assumed equal variance for signal-absent and signal-present dis-
tributions, sensitivity (d') equal to one, and a 5% rate of attention
lapses modeled by sampling from a latent signal-present distribu-
tion with mean of zero. We simulated six passes of 500 trials each
to match our experimental procedure and then fit these simulated
data sets with each of our decision noise models. The median
model fits showed recovered parameters quite close to the actual
generative parameters used in the simulations. In particular, me-
dian fits for criterion variances were very nearly zero and median
estimates of the positions of these criteria only slightly underesti-
mated the true locations along the decision axis. The median fits
for encoding parameters also closely matched the underlying gen-
erative parameters, although in this case the solutions converged
with considerable variability and sometimes resulted in entirely
unrealistic parameter values. Distinguishing between elaborated
SDT models positing alternative mechanisms will require future
experimental work and the developments presented in this article
allow for the consideration of explanations involving decision
noise that were not previously available.

Key features of ROC and zZROC data do not depend on the static
criterion assumption and in some cases contradict it. In the case of
rating procedures, our framework now provides a way to identify
and quantify the separate contributions of encoding and decision
noise to these features. For example, some researchers have noted
that the “peaks” in empirical ZROCs could emerge with highly
stable central criteria and highly variable criterion boundaries at
more extreme positions (Mueller & Weidemann, 2008; Wickel-
gren, 1968). In the current study, one subject exhibited a peaked
zROC and our model fits verified this prediction quantitatively.
The framework introduced here may shed light on other anomalies
observed in zZROC data as well. Previous work has argued that
decision noise is induced in rating tasks when task instructions
require subjects to use the rating categories with equal frequency
(Murray et al., 2002) or, more generally, when task instructions
alter criterion placement from default positions that subjects would
use absent any instruction (Kellen et al., 2012; Wixted & Gaitan,
2002). These authors suggest that decision noise emerges from the
conflict between subject’s preconditioned preferences acquired
over extensive lifetime experience, and instructions that bias sub-
jects to adopt criterion positions conflicting with these default
preferences. The subjects in our study had extensive practice in
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psychophysics experiments, so we expect that default preferences
were moderated. Moreover, while we asked subjects to utilize the
full scale, we did not request that subjects use each response
category with equal frequency. Still, we remain agnostic as to
whether decision noise results from conflicts between response
instruction and predisposition, or whether this arises because of
limitations on the resolution of a representation-response mapping,
or for any other reason. The method we propose here may prove
useful in determining the degree to which response instruction and
subject expertise influence response variability.

Ours is not the first attempt to resolve decision and representa-
tional processes in signal detection tasks. For example, Wickelgren
(1968) proposed a “criterion operating characteristic” that allowed
for comparison of the variances of criteria adopted across different
signal strengths. The method’s validity, however, assumes equal
noise SDs for all signal strengths. An alternative framework has
been developed to separate decision and representational noise in
the domain of perception with the decision noise model (DNM) of
Mueller and Weidemann (2008). In memory recognition, Benja-
min et al. (2009) developed an Ensemble Recognition task in
which participants gave confidence ratings on whether stimulus
ensembles of a variable number of words were previously ob-
served on a study list. These authors compared fits from a number
of models and reached the conclusion that decision noise played a
significant role in subject performance. However, Kellen et al.
(2012) introduced their own model generalization approach for
memory recognition that interleaved trials of a 4AFC-ranking task
with those of a confidence rating procedure. These authors found
no evidence of decision noise in their study and offered a critique
of the conclusions drawn by Benjamin et al. The merits and
shortcomings of each of these frameworks are discussed in detail
in Kellen et al. (2012) and Benjamin (2013).

In our view, both the Ensemble Recognition and the model
generalization approach advance our understanding of response
variability considerably, although they reach contradictory conclu-
sions about the significance of decision noise in confidence rating
tasks for recognition memory. One potential limitation with both
of these approaches is the strong constraints imposed between
different noise components. The Ensemble Recognition paradigm
assumes that a single variance term applies to the noise at all
criterion boundaries. Likewise, the model generalization approach
assumes either a single variance for decision noise across all
criteria (adopting the LCJ as a decision rule) or a single variance
for the confidence boundaries (adopting the DNM decision rule).
Our own experimental results suggest that criterion noise may vary
considerably across criterion boundaries when decision noise is
significant (see Appendix C for details). Further, the model gen-
eralization approach assumes that representational noise is con-
stant across forced choice and rating-response paradigms, and that
no decision bias (and by extension no decision noise) is present
during the forced choice tasks. Though Kellen et al. argue that the
decision bias observed in forced choice tasks only applies when
trial stimuli are presented in sequence, the presence or absence of
any such bias is ultimately unknown and is not precluded by their
model. Bias has been shown to play a role in similar experimental
paradigms that had previously assumed a bias free framework
(Klein, 2001; Yeshurun, Carrasco, & Maloney, 2008). If decision
noise contributes to response variability in n-alternative forced
choice tasks, it may appear as inflated representational noise

CABRERA, LU, AND DOSHER

during model fitting; this inflated estimate of representation vari-
ability may then incorrectly discount the effects of any decision
noise in the corresponding rating task. More generally, the con-
straints imposed by these models may lead to parameter estimates
that do not accurately reflect underlying processes in representa-
tion and decision-making. Rosner and Kochanski’s (2009) LCJ
model allows independent parameter estimates for variance terms
at the decision stage in paradigms with at least three stimulus
intensities and at least four response categories. Although this
model provides a powerful new tool to understand categorical
judgment, it does not apply to the frequently used signal detection
task with two stimulus classes without introducing constraints
among the noise components. The framework presented here fills
that gap for tasks with at least three response categories while
allowing independence among noise components.

An essential feature of our approach requires the implementa-
tion of external noise. Research in recognition memory has not
generally implemented this method, but the external noise method
is not fundamentally incompatible with investigations of higher-
level cognitive processes (Lu & Dosher, 2008, p. 71). For example,
Tsetsos, Chater, and Usher (2012) used external noise to examine
decision biases and preference reversals in the domain of eco-
nomic value integration. With regard to the MCR method in
particular, however, mnemonic representations of both studied and
unstudied items will likely change with the number of times
stimuli are presented during test trials. However, the MCR para-
digm is only one of a number of methods that use multiple
presentations to investigate levels of internal noise (Burgess &
Colborne, 1988; Swets, Shipley, McKey, & Green, 1959). In
particular, Nosofsky (1983) used multiple presentations without
the use of external noise to estimate the representation and crite-
rion noise in an auditory identification task. Nosofsky deployed
this method to study noise contributions to the range effect, but this
technique might offer a means of determining decision noise for
tasks with only binary response alternatives. The Ensemble Rec-
ognition task of Benjamin et al. (2009) in the domain of recogni-
tion memory bears some resemblance to this approach insofar as
additional presentations (or larger ensemble size) of stimulus sam-
ples lead to less variability in processes underlying representation.

Recent studies have brought to light the importance of a deci-
sion rule that resolves ambiguities that arise with noisy criterion
boundaries in signal detection tasks with three or more response
categories (Klauer & Kellen, 2012). When trial-sampled criteria
overlap, category assignment becomes ambiguous without specific
decision rules accounting for contingencies owing to positional
relations among criteria and representations. However, any possi-
ble set of rules unambiguously resolving trial-sampled represen-
tations to category assignment may serve as a decision rule. Our
experiments used either three or five response categories. The
symmetry (or lack thereof) in the number of response categories
may influence the choice of rule adopted by our subjects. Sym-
metric response structures have an odd number of category bound-
aries and an even number of response categories. These response
structures might induce the adoption of an initial, central, and
binary decision boundary with participants only subsequently uti-
lizing the remaining criteria as a confidence rating on their ante-
cedent choice. This is dubbed a sequential rule, along with any rule
whereby subjects compare trial stimuli with trial-sampled criteria
in a sequential manner. Asymmetric response structures have an
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even number of category boundaries. Because asymmetric re-
sponse structures, like the one we examined in this study, do not
naturally suggest any particular criterion as a central designation as
in symmetric response structures, we restricted our examination to
simultaneous rules in this article. However, rating category asym-
metry may naturally allow for the emergence of a neutral category
that subjects use as a preferred classification during trials with
lapses of attention and so may not wholly reflect categorization
based on representational determinants. Although we cannot de-
termine a priori which decision rule a subject might adopt, specific
data signatures may reflect idiosyncratic strategies to deal with
significantly different processing constraints in the course of en-
coding information and making decisions about that information.
Previous studies lend weight to the idea that task instructions
(explicitly; Treisman & Faulkner, 1985), response structure (im-
plicitly), and individual subject differences (Petrov, 2009) may all
influence decision rule adoption. We hope to explore alternative
decision rules and hybrid rules in future studies.

Klauer and Kellen (2012) showed that if an observer’s criterion
boundaries were centered and distributed evenly about the mean of
an underlying representational distribution, the LCJ would yield
asymmetric response distributions. They argued instead for a mod-
ified decision rule that determined response selection according to
the proximity of an internal representation to the trial-sampled
criteria and that would result in a symmetric distribution of re-
sponse frequencies. We have instantiated that alternative rule here
as LCJ .., but have found it underperformed relative to LCJ in our
data sets for which decision noise was deemed significant. Given
the limitations of our experimental study, we hesitate to make
strong claims regarding the general validity of alternative decision
rules in operation for specific tasks or individuals. Other tasks or
experimental manipulations may very well induce subjects to
adopt another decision rule such as LCJ,, and the framework
introduced here may allow us to identify that rule.

Experimental paradigms investigating perceptual and cognitive
processes obtain information about these underlying processes by
examining responses conditioned on input stimuli, task instructions,
subject population, and so forth In the case of an MCR procedure, we
collect additional information by conditioning subject responses on
specific samples of external noise. By presenting these samples over
multiple passes, we can estimate response agreement to test more
nuanced hypotheses than would be feasible otherwise. Sequential
dependence, for example, may offer a potential target for investigation
insofar as the phenomenon of these dependencies introduce a form of
systematic decision noise. Trial-by-trial dependencies certainly bear
on estimates of agreement in multipass psychophysics tasks. Sequen-
tial dependencies influenced by stimulus schedule (Fernberger, 1920;
Parducci, 1959), response choice (Howarth & Bulmer, 1956), or
feedback (Carterette et al., 1966) could generate greater response
agreement to the degree that these factors are preserved across passes.
In this case, estimates of the internal to external noise ratio are at a
lower bound. If response dependencies artificially increase agreement
estimates, then removing these dependencies will reduce covariance
estimates, which in turn leads to greater estimates of internal noise
(Green, 1964). Levi et al. (2005) proposed randomizing the sequence
of trials from pass to pass to mitigate agreement effects deriving from
stimulus-response dependencies. The current study followed the pre-
scription of Levi et al. by randomizing the stimulus schedule from
pass to pass, but we did not examine response data for synchronized

stimulus schedules across passes. Comparing internal to external
noise ratios measured in multipass experiments with and without
randomized trial ordering suggests itself as one way to begin teasing
apart the purely stimulus related factors on trial outcomes from other
contributions to response agreement.

Elaborated observer models makes more detailed claims regarding
the functional mechanisms transforming stimulus inputs to overt
responses (Lu & Dosher, 2008, 2013). Many of these models empha-
size the account of representational processing, but use the simplified
decision processes of standard SDT. When ignored, response vari-
ability arising from decision processes will redound to representa-
tional processes instead, potentially leading to erroneous model pre-
dictions. When task conditions call for increasing the number of
response categories, decision boundaries may become more variable
(Ratcliff & Starns, 2009). In these cases, observer models incorpo-
rating our framework may lead to a more detailed understanding of
the transformation from stimulus to response.

The aim of analyzing noise contributions is a fundamental objec-
tive in cognitive psychology. Isolating component sources of noise
helps us to characterize corresponding component processes in human
behavior and decision making (Brunton, Botvinick, & Brody, 2013;
Ratcliff & Starns, 2009). The MCR paradigm makes available new
research directions involving noise analysis and decision strategy. The
importance of the MCR procedure and analyses in future research will
depend upon the amount of decision noise present for a given task,
subject population, and experimental condition. If the decision noise
is relatively negligible, a simpler SDT model will serve as a more
parsimonious and efficient explanation for the observed outcomes.
The experimental results presented here suggest that decision noise is
not a significant determinant for tasks with few response alternatives,
but may become more influential when the number of response
alternatives increase.

Conclusion

In this article, we present a new framework that combines two
well-established procedures in psychophysics: a confidence rating
response procedure and a multipass experimental paradigm. In
combination, these procedures allow estimation of response agree-
ment as well as response frequency for each response category. We
provide evidence that data collected with this framework suffi-
ciently constrains extended SDT models with decision noise. Our
simulation study showed that the parameters of a decision noise
model fitted to responses from simulated experiments led to in-
creasing accuracy and precision with increasing trials and passes.
These simulations also demonstrated that decision noise models
matched to the decision rule adopted by the subject will outper-
form mismatched models. We also conducted a visual detection
rating experiment with multiple passes. Our results showed that
decision noise was negligible when subjects responded with three
confidence rating categories, but that it influenced trial responses
with as few as five response categories. For tasks with few re-
sponse alternatives, classical SDT may adequately account for the
observed data. However, for tasks offering a large number of
response alternatives or where decision noise is suspected, the
framework presented here offers a more detailed description of the
underlying processes.



n or one of its allied publishers.

ghted by the American Psychological Associa

This document is copyri
This article is intended solely for the personal use of the individual user anc

is not to be disseminated broadly.

448

References

Barlow, H. B. (1957). Increment thresholds at low intensities considered as
signal/noise discriminations. The Journal of Physiology, 136, 469—488.
http://dx.doi.org/10.1113/jphysiol.1957.sp005774

Benjamin, A. S. (2013). Where is the criterion noise in recognition?
(Almost) everyplace you look: Comment on Kellen, Klauer, and Sing-
mann (2012). Psychological Review, 120, 720-726. http://dx.doi.org/
10.1037/a0031911

Benjamin, A. S., Diaz, M., & Wee, S. (2009). Signal detection with
criterion noise: Applications to recognition memory. Psychological Re-
view, 116, 84—115. http://dx.doi.org/10.1037/a0014351

Benjamin, A. S., Tullis, J. G., & Lee, J. H. (2013). Criterion noise in
ratings-based recognition: Evidence from the effects of response scale
length on recognition accuracy. Journal of Experimental Psychology:
Learning, Memory, and Cognition, 39, 1601-1608. http://dx.doi.org/
10.1037/a0031849

Braida, L. D., & Durlach, N. L. (1972). Intensity perception: II. Resolution
in one-interval paradigms. The Journal of the Acoustical Society of
America, 51, 483-502. http://dx.doi.org/10.1121/1.1912868

Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10,
433-436. http://dx.doi.org/10.1163/156856897X00357

Britten, K. H., Shadlen, M. N., Newsome, W. T., & Movshon, J. A. (1992).
The analysis of visual motion: A comparison of neuronal and psycho-
physical performance. The Journal of Neuroscience, 12, 4745-4765.

Brunton, B. W., Botvinick, M. M., & Brody, C. D. (2013). Rats and
humans can optimally accumulate evidence for decision-making. Sci-
ence, 340, 95-98. http://dx.doi.org/10.1126/science.1233912

Burgess, A. E., & Colborne, B. (1988). Visual signal detection. IV.
Observer inconsistency. Journal of the Optical Society of America A, 5,
617-627. http://dx.doi.org/10.1364/JOSAA.5.000617

Busemeyer, J. R., & Diederich, A. (2010). Cognitive modeling. Atlanta,
GA: Sage.

Carterette, E. C., Friedman, M. P., & Wyman, M. J. (1966). Feedback and
psychophysical variables in signal detection. Journal of the Acoustical
Society of America, 39, 1051-1055. http://dx.doi.org/10.1121/1.1909991

DeCarlo, L. T. (2002). Signal detection theory with finite mixture distri-
butions: Theoretical developments with applications to recognition
memory. Psychological Review, 109, 710-721.

Dosher, B., & Lu, Z.-L. (1998). Perceptual learning reflects external noise
filtering and internal noise reduction through channel selection. Pro-
ceedings of National Academy, 95, 13988—-13993.

Dosher, B. A., & Lu, Z.-L. (1999). Mechanisms of perceptual learning.
Vision Research, 39, 3197-3221. http://dx.doi.org/10.1016/S0042-
6989(99)00059-0

Durlach, N. I., & Braida, L. D. (1969). Intensity perception. I. Preliminary
theory of intensity resolution. Journal of the Acoustical Society of
America, 46, 372-383. http://dx.doi.org/10.1121/1.1911699

Egan, J. P., Shulman, A. L., & Greenberg, G. Z. (1959). Operating char-
acteristics determined by binary decisions and by ratings. Journal of the
Acoustical Society of America, 31, 768—-773. http://dx.doi.org/10.1121/
1.1907783

Fernberger, S. W. (1920). Interdependence of judgments within the series
for the method of constant stimuli. Journal of Experimental Psychology,
3, 126-150. http://dx.doi.org/10.1037/h0065212

Friedman, M. P., Carterette, E. C., Nakatani, L., & Ahumada, A. (1968).
Comparisons of some learning models for response bias in signal de-
tection. Perception & Psychophysics, 3, 5-11. http://dx.doi.org/10.3758/
BF03212703

Gold, J., Bennett, P. J., & Sekuler, A. B. (1999). Signal but not noise
changes with perceptual learning. Nature, 402, 176-178. http://dx.doi
.org/10.1038/46027

Graham, N. V. S. (1989). Visual pattern analyzers. New York, NY: Oxford
University Press.

CABRERA, LU, AND DOSHER

Gravetter, F., & Lockhead, G. R. (1973). Criterial range as a frame of
reference for stimulus judgment. Psychological Review, 80, 203-216.
http://dx.doi.org/10.1037/h0034281

Green, D. M. (1964). Consistency of auditory detection judgments. Psy-
chological Review, 71, 392—407. http://dx.doi.org/10.1037/h0044520

Green, D. M. (1995). Maximum-likelihood procedures and the inattentive
observer. Journal of the Acoustical Society of America, 97, 3749-3760.
http://dx.doi.org/10.1121/1.412390

Green, D. M., & Swets, J. A. (1966). Signal detection theory and psycho-
physics. New York, NY: Wiley.

Howarth, C. I., & Bulmer, M. G. (1956). Non-random sequences in visual
threshold experiments. The Quarterly Journal of Experimental Psychol-
ogy, 8, 163-171. http://dx.doi.org/10.1080/17470215608416816

Hutchinson, T. P. (1981). A review of some unusual applications of signal
detection theory. Quality & Quantity: International Journal of Method-
ology, 15, 71-98. http://dx.doi.org/10.1007/BF00144302

Kac, M. (1962). A note on learning signal detection. I. R. E. Transactions
on Information Theory, 8, 126—128. http://dx.doi.org/10.1109/TIT.1962
1057687

Kellen, D., Klauer, K. C., & Singmann, H. (2012). On the measurement of
criterion noise in signal detection theory: The case of recognition mem-
ory. Psychological Review, 119, 457-479. http://dx.doi.org/10.1037/
20027727

Klauer, K. C., & Kellen, D. (2012). The law of categorical judgment
(corrected) extended: A note on Rosner and Kochanski (2009). Psycho-
logical Review, 119, 216-220. http://dx.doi.org/10.1037/a0025824

Klein, S. A. (2001). Measuring, estimating, and understanding the psycho-
metric function: A commentary. Perception & Psychophysics, 63, 1421—
1455. http://dx.doi.org/10.3758/BF03194552

Lesmes, L. A., Jeon, S.-T., Lu, Z.-L., & Dosher, B. A. (2006). Bayesian
adaptive estimation of threshold versus contrast external noise functions:
The quick TvC method. Vision Research, 46, 3160-3176.

Levi, D. M., & Klein, S. A. (2003). Noise provides some new signals about
the spatial vision of amblyopes. The Journal of Neuroscience, 23,
2522-2526.

Levi, D. M., Klein, S. A., & Chen, 1. (2005). What is the signal in noise?
Vision Research, 45, 1835-1846.

Li, X., Lu, Z.-L., Xu, P., Jin, J., & Zhou, Y. (2003). Generating high
gray-level resolution monochrome displays with conventional computer
graphics cards and color monitors. Journal of Neuroscience Methods,
130, 9-18.

Lu, Z.-L., & Dosher, B. A. (1999). Characterizing human perceptual
inefficiencies with equivalent internal noise. Journal of the Optical
Society of America A, 16, 764-778. http://dx.doi.org/10.1364/JOSAA
.16.000764

Lu, Z.-L., & Dosher, B. A. (2008). Characterizing observers using external
noise and observer models: Assessing internal representations with
external noise. Psychological Review, 115, 44-82. http://dx.doi.org/
10.1037/0033-295X.115.1.44

Lu, Z.-L., & Dosher, B. A. (2013). Visual psychophysics: From laboratory
to theory. Cambridge, MA: The MIT Press.

Lu, Z.-L., & Sperling, G. (1999). Second-order reversed phi. Perception &
Psychophysics, 61, 1075-1088. http://dx.doi.org/10.3758/BF03207615
Luce, R. D., & Nosofsky, R. M. (1984). Attention, stimulus range, and
identification of loudness. In S. Kornblum & J. Raquin (Eds.), Prepa-

ratory states and processes (pp. 3-25). Hillsdale, NJ: Erlbaum.

Luce, R. D., Nosofsky, R. M., Green, D. M., & Smith, A. F. (1982). The
bow and sequential effects in absolute identification. Perception &
Psychophysics, 32, 397-408. http://dx.doi.org/10.3758/BF03202769

Macmillan, N. A., & Creelman, C. D. (2004). Detection theory: A users
guide. Mahwah, NJ: Erlbaum.

Macmillan, N. A., Kaplan, H. L., & Creelman, C. D. (1977). The psycho-
physics of categorical perception. Psychological Review, 84, 452—471.
http://dx.doi.org/10.1037/0033-295X.84.5.452


http://dx.doi.org/10.1113/jphysiol.1957.sp005774
http://dx.doi.org/10.1037/a0031911
http://dx.doi.org/10.1037/a0031911
http://dx.doi.org/10.1037/a0014351
http://dx.doi.org/10.1037/a0031849
http://dx.doi.org/10.1037/a0031849
http://dx.doi.org/10.1121/1.1912868
http://dx.doi.org/10.1163/156856897X00357
http://dx.doi.org/10.1126/science.1233912
http://dx.doi.org/10.1364/JOSAA.5.000617
http://dx.doi.org/10.1121/1.1909991
http://dx.doi.org/10.1016/S0042-6989%2899%2900059-0
http://dx.doi.org/10.1016/S0042-6989%2899%2900059-0
http://dx.doi.org/10.1121/1.1911699
http://dx.doi.org/10.1121/1.1907783
http://dx.doi.org/10.1121/1.1907783
http://dx.doi.org/10.1037/h0065212
http://dx.doi.org/10.3758/BF03212703
http://dx.doi.org/10.3758/BF03212703
http://dx.doi.org/10.1038/46027
http://dx.doi.org/10.1038/46027
http://dx.doi.org/10.1037/h0034281
http://dx.doi.org/10.1037/h0044520
http://dx.doi.org/10.1121/1.412390
http://dx.doi.org/10.1080/17470215608416816
http://dx.doi.org/10.1007/BF00144302
http://dx.doi.org/10.1109/TIT.1962.1057687
http://dx.doi.org/10.1109/TIT.1962.1057687
http://dx.doi.org/10.1037/a0027727
http://dx.doi.org/10.1037/a0027727
http://dx.doi.org/10.1037/a0025824
http://dx.doi.org/10.3758/BF03194552
http://dx.doi.org/10.1364/JOSAA.16.000764
http://dx.doi.org/10.1364/JOSAA.16.000764
http://dx.doi.org/10.1037/0033-295X.115.1.44
http://dx.doi.org/10.1037/0033-295X.115.1.44
http://dx.doi.org/10.3758/BF03207615
http://dx.doi.org/10.3758/BF03202769
http://dx.doi.org/10.1037/0033-295X.84.5.452

n or one of its allied publishers.

ghted by the American Psychological Associa

This document is copyri
This article is intended solely for the personal use of the individual user anc

is not to be disseminated broadly.

SEPARATING DECISION AND ENCODING NOISE

McClelland, G. H. (2011). Use of signal detection theory as a tool for
enhancing performance and evaluating tradecraft in intelligence analy-
sis. In B. Fischhoff & C. Chauvin (Eds.), Intelligence analysis: Behav-
ioral and social scientific foundations (pp. 83—-100). Washington, DC:
National Academies Press.

McFall, R. M., & Treat, T. A. (1999). Quantifying the information value of
clinical assessments with signal detection theory. Annual Review of
Psychology, 50, 215-241. http://dx.doi.org/10.1146/annurev.psych.50.1
215

Miller, G. A. (1956, March). The magical number seven plus or minus two:
Some limits on our capacity for processing information. Psychological
Review, 63, 81-97. http://dx.doi.org/10.1037/h0043158

Mueller, S. T., & Weidemann, C. T. (2008). Decision noise: An explana-
tion for observed violations of signal detection theory. Psychonomic
Bulletin & Review, 15, 465-494. http://dx.doi.org/10.3758/PBR.15.3
465

Murray, R. F., Bennett, P. J., & Sekuler, A. B. (2002). Optimal methods for
calculating classification images: Weighted sums. Journal of Vision, 2,
79-104. http://dx.doi.org/10.1167/2.1.6

Nosofsky, R. M. (1983). Information integration and the identification of
stimulus noise and criteral noise in absolute judgment. Journal of
Experimental Psychology: Human Perception and Performance, 9,
299-309. http://dx.doi.org/10.1037/0096-1523.9.2.299

Parducci, A. (1959). An adaptation-level analysis of ordinal effects in
judgment. Journal of Experimental Psychology, 58, 239-246.

Parks, T. E. (1966). Signal-detectability theory of recognition-memory
performance. Psychological Review, 73, 44-58. http://dx.doi.org/
10.1037/h0022662

Pelli, D. G. (1990). The quantum efficiency of vision. In C. Blakemore
(Ed.), Vision: Coding and efficiency (pp. 3-24). Cambridge: Cambridge
University Press.

Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics:
Transforming numbers into movies. Spatial Vision, 10, 437—-442. http://
dx.doi.org/10.1163/156856897X00366

Peterson, W. W., Birdsall, T. G., & Fox, W. C. (1954). The theory of signal
detectability. IRE Professional Group on Information Theory, 4, 171-
212. http://dx.doi.org/10.1109/TIT.1954.1057460

Petrov, A. A. (2009). Symmetry-based methodology for decision-rule
identification in same—Different experiments. Psychonomic Bulletin &
Review, 16, 1011-1025. http://dx.doi.org/10.3758/PBR.16.6.1011

Pollack, I. (1952). The information of elementary auditory displays. The
Journal of the Acoustical Society of America, 24, 745-749. http://dx.doi
.org/10.1121/1.1906969

Ratcliff, R., & Starns, J. J. (2009). Modeling confidence and response time
in recognition memory. Psychological Review, 116, 59—83. http://dx.doi
.org/10.1037/a0014086

Rosner, B. S., & Kochanski, G. (2009). The law of categorical judgment
(Corrected) and the interpretation of changes in psychophysical perfor-
mance. Psychological Review, 116, 116—128. http://dx.doi.org/10.1037/
20014463

Sorkin, R. D., & Dai, H. (1994). Signal detection analysis of the ideal
group. Organizational Behavior and Human Decision Processes, 60,
1-13. http://dx.doi.org/10.1006/0bhd.1994.1072

Sorkin, R. D., Hays, C. J., & West, R. (2001). Signal-detection analysis of
group decision making. Psychological Review, 108, 183-203. http://dx
.doi.org/10.1037/0033-295X.108.1.183

Spiegel, M. F., & Green, D. M. (1981). Two procedures for estimating
internal noise. The Journal of the Acoustical Society of America, 70,
69-73. http://dx.doi.org/10.1121/1.386583

449

Swets, J. A., Shipley, E. F., McKey, M. J., & Green, D. M. (1959).
Multiple observations of signals in noise. The Journal of the Acoustical
Society of America, 31, 514. http://dx.doi.org/10.1121/1.1907745

Tanner, W. P., Jr. (1961). Physiological implications of psychophysical
data. Annals of the New York Academy of Sciences, 89, 752-765.
http://dx.doi.org/10.1111/j.1749-6632.1961.tb20176.x

Tanner, W. P., Jr., & Swets, J. A. (1954). A decision-making theory of
visual detection. Psychological Review, 61, 401-409. http://dx.doi.org/
10.1037/h0058700

Thomas, E. A. C. (1973). On a class of additive learning models: Error-
correcting and probability matching. Journal of Mathematical Psychol-
ogy, 10, 241-264. http://dx.doi.org/10.1016/0022-2496(73)90017-5

Thomas, E. A. C. (1975). Criterion adjustment and probability matching.
Perception & Psychophysics, 18, 158-162. http://dx.doi.org/10.3758/
BF03204104

Torgerson, W. S. (1958). Theories and methods of scaling. New York, NY:
Wiley.

Treisman, M. (1984). A theory of criterion setting: An alternative to the
attention band and response ratio hypotheses in magnitude estimation
and cross-modality matching. Journal of Experimental Psychology:
General, 113, 443—463. http://dx.doi.org/10.1037/0096-3445.113.3.443

Treisman, M., & Faulkner, A. (1984). The setting and maintenance of
criteria representing levels of confidence. Journal of Experimental Psy-
chology: Human Perception and Performance, 10, 119-139. http://dx
.doi.org/10.1037/0096-1523.10.1.119

Treisman, M., & Faulkner, A. (1985). Can decision criteria interchange
locations - some positive evidence. Journal of Experimental Psychology:
Human Perception and Performance, 11, 187-208.

Treisman, M., & Willaims, T. C. (1984). A theory of criterion setting with
an application to sequential dependencies. Psychological Review, 91,
68—111. http://dx.doi.org/10.1037/0033-295X.91.1.68

Treutwein, B. (1995). Adaptive psychophysical procedures. Vision Re-
search, 35, 2503-2522. http://dx.doi.org/10.1016/0042-6989(95)
00016-X

Tsetsos, K., Chater, N., & Usher, M. (2012). Salience driven value inte-
gration explains decision biases and preference reversal. Proceedings of
the National Academy of Sciences of the United States of America, 109,
9659-9664. http://dx.doi.org/10.1073/pnas.1119569109

Wichmann, F. A., & Hill, N. J. (2001). The psychometric function: I.
Fitting, sampling, and goodness of fit. Perception & Psychophysics, 63,
1293-1313. http://dx.doi.org/10.3758/BF03194544

Wickelgren, W. A. (1968). Unidimensional strength theory and component
analysis of noise in absolute and comparative judgments. Journal of
Mathematical Psychology, 5, 102—122.

Wickelgren, W. A., & Norman, D. A. (1966). Strength models and serial
positions in short-term recognition memory. Journal of Mathematical
Psychology, 3, 316-347. http://dx.doi.org/10.1016/0022-2496(66)
90018-6

Wixted, J. T., & Gaitan, S. C. (2002). Cognitive theories as reinforcement
history surrogates: The case of likelihood ratio models of human recog-
nition memory. Animal Learning & Behavior, 30, 289-305. http://dx
.doi.org/10.3758/BF03195955

Wonnacot, T. H., & Wonnacot, R. J. (1981). Regression: A second course
in statistics. New York, NY: Wiley.

Yeshurun, Y., Carrasco, M., & Maloney, L. T. (2008). Bias and sensitivity
in two-interval forced choice procedures: Tests of the difference model.
Vision Research, 48, 1837-1851. http://dx.doi.org/10.1016/j.visres.2008
.05.008

(Appendices follow)


http://dx.doi.org/10.1146/annurev.psych.50.1.215
http://dx.doi.org/10.1146/annurev.psych.50.1.215
http://dx.doi.org/10.1037/h0043158
http://dx.doi.org/10.3758/PBR.15.3.465
http://dx.doi.org/10.3758/PBR.15.3.465
http://dx.doi.org/10.1167/2.1.6
http://dx.doi.org/10.1037/0096-1523.9.2.299
http://dx.doi.org/10.1037/h0022662
http://dx.doi.org/10.1037/h0022662
http://dx.doi.org/10.1163/156856897X00366
http://dx.doi.org/10.1163/156856897X00366
http://dx.doi.org/10.1109/TIT.1954.1057460
http://dx.doi.org/10.3758/PBR.16.6.1011
http://dx.doi.org/10.1121/1.1906969
http://dx.doi.org/10.1121/1.1906969
http://dx.doi.org/10.1037/a0014086
http://dx.doi.org/10.1037/a0014086
http://dx.doi.org/10.1037/a0014463
http://dx.doi.org/10.1037/a0014463
http://dx.doi.org/10.1006/obhd.1994.1072
http://dx.doi.org/10.1037/0033-295X.108.1.183
http://dx.doi.org/10.1037/0033-295X.108.1.183
http://dx.doi.org/10.1121/1.386583
http://dx.doi.org/10.1121/1.1907745
http://dx.doi.org/10.1111/j.1749-6632.1961.tb20176.x
http://dx.doi.org/10.1037/h0058700
http://dx.doi.org/10.1037/h0058700
http://dx.doi.org/10.1016/0022-2496%2873%2990017-5
http://dx.doi.org/10.3758/BF03204104
http://dx.doi.org/10.3758/BF03204104
http://dx.doi.org/10.1037/0096-3445.113.3.443
http://dx.doi.org/10.1037/0096-1523.10.1.119
http://dx.doi.org/10.1037/0096-1523.10.1.119
http://dx.doi.org/10.1037/0033-295X.91.1.68
http://dx.doi.org/10.1016/0042-6989%2895%2900016-X
http://dx.doi.org/10.1016/0042-6989%2895%2900016-X
http://dx.doi.org/10.1073/pnas.1119569109
http://dx.doi.org/10.3758/BF03194544
http://dx.doi.org/10.1016/0022-2496%2866%2990018-6
http://dx.doi.org/10.1016/0022-2496%2866%2990018-6
http://dx.doi.org/10.3758/BF03195955
http://dx.doi.org/10.3758/BF03195955
http://dx.doi.org/10.1016/j.visres.2008.05.008
http://dx.doi.org/10.1016/j.visres.2008.05.008

n or one of its allied publishers.

0

B
2
2
8
=}

°

S
S
%

[aW)
8
3

<
Q
>

e}

=
2

o

This document is copyri

is not to be disseminated broadly.

This article is intended solely for the personal use of the individual user

450

CABRERA, LU, AND DOSHER

General Appendix

Detailed Derivations and Experimental Procedures

Equation 1 illustrates a schema of noise components comprising the
total variability of response, o7, 10 stimulus S, at a single criterion, C. We
now consider how three different task structures may constrain and
identify these various components. These are single criterion—single

pass, single criterion—multi pass, and multiple criterion—multi pass. In
what follows, we denominate the means of criterion boundaries ., as
well as the means of the stimulus distributions, g, in units of o7, T,
and o, depending on convenience of task analysis.

ext

Appendix A

Response Frequencies and Covariance

Single Criterion: Single Pass

In a typical signal detection task for which subjects provide a
binary response to each trial event, we conceive the decision
processes as a comparison of the internal representation of the
stimulus to the position of the criterion boundary along the deci-
sion axis at some position .. The traditional detection paradigm
involves only two stimulus classes, “signal absent and “signal
present”; in the following exposition, we let stimulus class 27 = 0
represent our “signal absent” stimulus and & = 1 represents our
“signal present” stimulus. Then given some internal representation
of a trial sample 85,05, T Ms,0s, from stimulus S, subjects trans-
form this internal response into an explicit response R according to
the following decision rule.

R=

{1 55,05, T s, 05, > T, Al

0 s5,05, T K05, = KOs,

Assuming a subject has sufficient knowledge of the proba-
bility density functions of the representational distribution for
stimulus S, traditional SDT assumes that subjects maintain a
static value of RO, once they understand task instructions,
payoff structure, and have adequate information to compute the
likelihood ratio &g, (hcos Vs (hcos). These affirmative re-
sponses to samples from the stimulus class & are given as,

PR=11S)= [ 5 ) dx
RO,

(A2)

If there is some variability in the criterion, we represent a
trial-sampled criterion offset as co.. Then the decision rule is
slightly modified for a given sample pair as follows.

R=

{1 85,05, T W, 05, = s, T o (A3)

+ < +
0 s5,05, T K, 05, = Mc,Ts, T COc

Let @ be the Gaussian cumulative distribution function and let Q
(x; p, 0) = 1 — & (x; p, o). When dealing with decision noise, the
overall rate of affirmative responses for S, trials is given as,

P(R=11S,) = P(s5,05, + 5,07, > o7, + €OC)
= P(Ssh(Tsh —COCc> PO, MS,IUTO)
= P(s7,07, > (hc — Ws)0T,)

o7,
= O (ke — Bs,)

UTh

(A4)

From Equation A4 we may recover the criterion position rela-
tive to each stimulus distribution /4 in units of the total variability
of each distribution (we make the usual assignments of o7, = 1
and pg, = 1). Additionally, assuming o7, = O, We may also
recover the position Ms, in units of o, We estimate these quan-
tities with the following equations.

AS.a (pe— p,sh)? = —Z[P(R =1 |Sh)]
Tlx
A5.b d' = pg,
=PR=115)] - {PR=1]5)]

(A5)

When o7, F 07, the position of g, can still be recovered in
units of o7, if we induce subjects to adopt different criteria C
through experimental manipulation. In that case, we may recover
the functional relationship z[P (R = 1|S,)] = f(z [P (R = 1|Sy)];
assuming total noise remains constant), and estimate Mg, = e
when z[P(R = 1]S,)] = 0. In addition, the slope of this functional
form gives us o, = O'TO/O'T,I.

(Appendices continue)
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Table Al
Model Variables and Parameters®
Variables/parameters Formal definition Description
Soxt Sewt € G(0, 1) Trial-sampled component of internal response induced by external noise.
ofx, Variance of consistent noise across all possible samples of external noise. We assume
UCX( = 1'
S, sg, € G(0, 1) Tria}-sampled component of internal response because of encoding processes on Sy,
trials.
s, Mean of internal response to 4™ stimulus category.
oih Variance of encoding noise during Sy, trials.
Cpn ¢, € G0, 1) Trial-sampled criterion of the m™ decision boundary.
Re, Mean of representation of m™ criterion boundary.
62C Variance of criterion noise at the m™ decision boundary.
sUhm sy, € G0, 1) Sample of random noise at the decision boundary reflecting variability of encoding and
] .. .
decision processes on S, trials.
crf/h c%,h = céh + UZC Variance of random noise during S, trials at a single decision boundary.
s, 55, € 0,1) Sample of representational noise reflecting encoding processes and external noise on S,
trials.
i[ (r§ = 0-(2))(1 + cé/ Variance of representational noise during S, trials
s;h’ sy, € Go,1) Sample of fotal noise reflecting all stimulus, encoding, and decision factors on S, trials.
U?"h ‘727,, = 0_(2m +op, + UZC Total variance of internal response on S, trials.
R=m (R = m)~B(p) Bernoulli random variable signifying a match of subject response with a given stimulus

category m.

Because the only relevant variance terms in Equation A5 are o7,
and o, the underlying variance components 02C and Uéh are

constrained only by the relations

0 < 0% =< min| o2
c 9 T,
h
2 2 2 2 (A6)
max[O,UT,—UT]S(rS,S(rT,
B h h h h
Vh#h

Therefore, any values o, o, satisfying the equations (rgo +

2 _ 2 2 2 2 : :
oc = o7, and o5 + o = o7, will suffice to explain the obser-

o7,
vations (}LCO - }Lsh)—o and d'. In other words, we cannot sepa-
oy,
. h
rately estimate o and og,

Single Criterion: Multiple Passes

Multi pass experiments ultimately provide more information
from the data, providing not only estimates of response frequency
for each stimulus class but also for each individual noise sample.
Under the assumptions of the multi pass methodology, each ex-

ternal noise sample induces a representation comprised of a repro-
ducible component, for example, s.,,, as well as a random com-
ponent g 0 . The consistent component is presumed to yield
identical values for identical external noise samples, whereas the
random component arising from encoding processes is presumed
to deviate even for identical stimulus samples. Over multiple
presentations across passes, we can estimate the probability that an
observer will provide an affirmative response R given an external
noise sample s., 0., We will derive these probabilities and other
relevant quantities from expected values over response outcomes
EVy and expected values over external noise samples EV, . The
probability of an affirmative response, given sample s, is,

ext

EVRIR= 15, 8)] = P(R= 1|5, Sp) (A7)

3 In addition to their use as samples of random variables, the terms s, ,,
Sg, Sus Ss» ST. and ¢, will sometimes be used as random variables them-
selves. In these cases they will be denoted in boldface.

(Appendices continue)
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The factors contributing to these probability estimates condi-
tioned on s,,, may be expanded as,

ext
P(R =110 Sh) = P(sm + s, T 55,0, > et CO'C)
=P (SEhO'E Sext MS,,)
=P(50,00,> Pc ~ Sext — 1s,)

= Q[(MC T Sext Ms,,)/(fu,,]

CoOc> e~

(A8)

The probabilities expressed in Equation A8 are conditioned on
the consistent component of the internal representation of a spe-
cific stimulus sample. Generally speaking, stimulus samples in-
ducing greater values of s, tend to lead to higher probabilities that
the subject will respond affirmatively to trial stimuli. The overall
“yes” rate for a given stimulus class 7 is the expectation of a “yes”
response with respect to s,

CoV[R, R} | Sp] = EVi{[(R; | S0 S) —

=P(R=1 |Sext’ Sh)2 -

Under the multi pass procedure and using o,,, = 1 as a unit of

measure, Equation AS5.a is restated as,

P«C_P«sh__ _
0'—7',17 fP(R=115,)] (A11)

CovIR;, R;| 5] = EV, {CoV[Ri, R 5. Sy}

PR;=1 |Sh)][(Rj | Sexss Sp) —
=PR;= 1,R; = 15,4, S) —
—P(R;= 1| S)P(R; =

CABRERA, LU, AND DOSHER

P(R=118) = EV, [PR=1]50.5)]

(A9)
= [ PR = 115010 S5 00) e

On the other hand, higher consistency between responses is
conditioned on the total random noise of the internal representa-
tion. This random noise poses the limiting factor for consistent
responses to a repeated stimulus with a given sample of external
noise. When the ratio of total random to consistent noise is very
low, response consistency will be high and the quantities expressed
in Equation A8 will nearly equal zero or one for any given sample
of external noise. On the other hand, when the internal to external
noise ratio is very high, response consistency decreases and the
probabilities in Equation A8 become less extreme. We may ex-
press the covariance of response between corresponding trials of
two passes i and j as,

P(R;=1]5))]

P(R; = 11]S5,), P(R; = 1| .y, Sp) (AL0)

1] o Sp) + P(R; = 1| SPR; = 115),)
2P(R =

1] Sews SP(R =118)) + P(R=118))

Then the observed covariance estimates of responses R across
corresponding trials between the /™ and j™ passes are computed as
the expected values of the covariance with expectation taken with
respect to s

ext*

= [ PR = 115000 $°0(5,) = PR =115,

1 2
:fQ|:((lLC - p“Sh) - Sext)o__:| d)(sext)dsext —PR=1 |Sh)2
Ult

(A12)

1 2
_fQ|: P(R =1 |Sh)](1 + (’-U )VZ exr)o__:| (b(sext)dsext - P(R =1 |Sh)2
Uy

For a given response frequency P(R = 1]S,) the covariance is
monotonically related to oy, That is, a given “yes” rate along with
a covariance estimate corresponds to a specific ratio of random
and consistent response variability. Therefore, by Equation A12,
we may estimate oy, Squaring this term and using Equation 1, we
can compute o7, = (1 + (rUh)V2 Further, we may recover pe —
Bs, = — z[P(R =1 |Sh)](7r as well as the mean of the signal
distribution along the decision axis as, ps, = PR =
1|Sh)]UTh — PR = 1|So)]0'TO-

When the internal noise is equal to zero, the covariance of
response outcomes across i and j passes will equal the expected
variance of the “yes” rate as calculated as a binomial random
variable. That is, as P(R = 1|S,) — P(R = 1]S,)? (see Appendix
B). For higher internal to external noise ratios, the covariance
decreases.

The foregoing analysis shows that the multi pass procedure can
recover the mean of the signal distribution along the decision axis (in
units of o) without the equal variance assumption. Further, if

(Appendices continue)
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internal noise does not change across bias manipulations we can
predict the slope the zZROC at a single criterion measurement. How-
ever, at this point, we have yet to isolate the quantity of response
variability due to decision processes. With a single criterion, the
components of random noise are only constrained by the following
relations.

0 < 0% =< min| o
c u,
Vh
max[O,(r%,,fo%]]so-é,soz,
h h, h h
Yh#h'

(A13)

This implies that any values o, and og consistent with
(réh + (I2C0 = (r%,h may generate the “yes” rates and covariance data
of Equations A9 and A12. We cannot obtain unique solutions for
the two terms from the data. We now attempt to resolve these

components using multiple criteria.

Multiple Criterion: Decision Rules

As mentioned previously, the introduction of decision noise into
signal detection models involving multiple criteria raises the issue
of a decision rule. A decision rule is a strategy that allows an
observer to assign a specific response to an internal representation.
When decision noise is inconsequential for a task, different rules
may prescribe the same decision for trial-by-trial responses. In
these cases, the significance of utilizing any particular rule over
another may be trivial. When decision noise grows significant
enough to affect changes to the response outcomes for each trial,
different rules may lead to distinctly different decision behavior.
Over the course of an experiment, these decision rules may give
rise to idiosyncratic data patterns associated with specific rules. In
our research, we focus on three simultaneous decision rules: LCJ,
LCJ,, and LCJ sym (Klauer & Kellen, 2012; Rosner & Kochanski,
2009).

Multiple Criteria: Multiple Passes

With a simultaneous rule, an observer adopts a decision protocol
with which the internal representation is compared with all crite-
rion boundaries simultaneously. No criterion has any kind of
priority with respect to the others, but we assume that the means of
each criteria maintain their ordinal relation to each other through-
out the duration of the experiment. For our development here, we
consider M + 1 response categories, and we enumerate these
categories according to their ordinal positions along the decision
axis with the set [1,2 ..., M, M + 1].

The formal description of the overall response frequencies under
this decision rule, as well as the LCJ_ and LCJ decision rules,

sym

have been described elsewhere for single-pass procedures (Klauer
and Kellen, 2012; Rosner & Kochanski, 2009). For an MCR
procedure, the consistent noise component of the total response
variability can be separately considered in describing the subject’s
rating response. The separate noise components will be given in
units of the SD of this consistent noise component. Because the
observed quantities of response rates and covariances are given
relative to the level of consistent noise, we may consider the
representational noise in terms of its component terms. For the LCJ
decision rule, an observer subtracts the internal representation
from the trial sampled criteria. The observer then classifies the
representation from stimulus class S, according to the response
category corresponding to the criterion m with the least positive
difference [ue + c,0¢ 1 = [ks, + S50k, + Seq). If the strength
of the internal representation exceeds all the trial-sampled criteria,
then the observer responds with the highest level of confidence,
M+ 1.

We have already described the trial-by-trial response frequency
for LCJ in Equation 3, with the overall response frequencies and
the covariances described by Equations 4 and 5, respectively. For
the LCJ_ decision rule, observers subtract the trial sampled criteria
from the internal representation and classify the internal represen-
tation in the category just above the decision boundary with the
least positive distance. If all differences are negative, the observer
classifies the internal representation with the lowest response
category. For a given sample of external noise, the response
probabilities are given as,

P(R =m+1 |Sext’ Sh)

= f¢(cm$Mcnlv oc,) f (s, i s, T Sexs O,)

+c,,0
MCH! m Cm

o tsp op +s,,
W5, TSETE, T Sext

x I |1-

m'#m

d)(cm' 5 M‘Cm” O-Cm')dcm' dSEthm

'LCm + CmUCIW
(A14)

Finally, for LCJ,,, observers take the difference between the
trial sampled criteria and the internal representation of the stimu-
lus. The observer identifies the decision boundary corresponding
to the least absolute value and classifies the trial in the category
corresponding to the boundary index if the representation falls
short of the boundary, or classifies the trial in the category just
above the boundary index if the representation falls about the
boundary. That is,

(Appendices continue)
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P(R =m| S, Sh) = f¢(sE,l;MSh + Sexns O'E,I)

(b(cm;“'Cm’ 0-Cm)

+sp op +s,
FLS,, EOE, " Sext

ke, Temoc,

x I |1-

m'#m
K

+ f ®(Sg, s, + Sexs O,

I

2 (Msh * E,7E, JrS“"’) B (MC

x I [1-

m'#Fm—1 pe

m

For all the simultaneous rules we have discussed, the overall
response frequencies across all trials are then computed as in
Equation 4 and the covariance between any two response catego-
ries m and m' are described by Equation 5.

Decision noise changes the interpretation of the ROC for the
decision models we have presented here. Ostensibly, the ROC
intends to reflect the operating performance of the receiver during
binary decision tasks for a single criterion positioned according to
a specific likelihood ratio. When decision noise is not present,
ROC analysis in rating tasks assumes that any stimulus inducing a

+5p op 5,y
y VECE, T Vext

,]+Cm—10'Cm,

¢(Cm' i, s O'Cmr)dc de,dsg,

(s, T30, FSew) T (M, Fn0C,,)

(A15)

(b(cm’l;p"cm—l’ UCm—l)
+Cm*l“‘Cm,])

d)(cm’; H‘Cm" 0-Cm')dcm' dcmdSEh

m—1

1

response from a stricter response class should cumulatively re-
dound to less strict response classes. In this case, the ROC accu-
rately reflects the operating performance at the more lax criteria
because every representation classified in the stricter categories
would have been classified in the lower confidence categories if
the stricter classifications had not been available for report. How-
ever, for simultaneous decision rules, classification in every re-
sponse category depends on the trial-by-trial positions of all cri-
teria, so the traditional interpretation of the ROC does not hold for
any HR and FAR pairing.

Appendix B

Variance in Response Frequency

Multi pass methods have utilized measures of agreement (prob-
ability of agreement, correlation, and covariance) together with
response frequency data to estimate total internal noise in psycho-
physical tasks (Burgess & Colborne, 1988; Gold, Bennett, &
Sekuler, 1999; Green, 1964; Lu & Dosher, 2008). For the purposes
of modeling, it may prove useful to state the expected variability

of the observed response frequencies. However, in addition to
modeling, the variability in response frequencies across multiple
passes may also serve as an index of internal noise. The variability
of a subject’s response for a representation s.,,, induced by a given
sample of external noise is formulated as a Bernoulli trial condi-
tioned on s.,,. We express this quantity as,

ext*

Var[R =m | Sexts Sh] = EVR{[(R =m | Sexts Sh) - EVR[R =m | Sext> Sh]]z}

=P[R =504 Sp) — PR =m| 5.4, )

(B1)

(Appendices continue)
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On the other hand, the observed variability of response over an entire pass is the expected value of the variance as formulated in the

equations above, with that expectation taken over all possible samples of s

We express this overall variability as,

ext*

VarlP(R = m|S)] = EV, {(VarlR =m|s. S;]}

= [ 1P(R = 5010 5) = PR = | SP 105l
=PR=m|S) ~ [ PR=m| s SV b(50a)d

(B2)

=P(R=m|S,) — P(R=m|S,)* — Cov[R; = m,R; = m|S]

We may observe here that the overall variability of response
frequencies for a given stimulus class within a multi pass paradigm
generally differs from the overall variability of response frequen-
cies when passes do not contain identical noise samples. This
difference in variability increases with lower internal to external
noise ratios, because the variability of response at a given sample
Sox¢ approaches zero as the internal to external noise ratio ap-
proaches zero. Furthermore, the variability of this response at a
given s, approaches P(R = m|S,) — P(R = m|S)* as the

internal noise increases and overwhelms the external noise. In the
case of a high internal to external noise ratio, the index s,
provides no consequential information and does not significantly
influence subject performance.

As a consequence of the multi pass paradigm, we see from Equa-
tion A16 that 0 = VarlP(R = m|S,)] = P(R = m|S,) — PR =
m|S,)>. Thus, the variance of response frequencies between passes
also provides an index of the total internal to external noise ratio for
each stimulus class.

Appendix C

Application of Method in Visual Detection Experiment

A psychophysical procedure designed to partition internal noise
into representation and decision noise affords at least two mean-
ingful contributions to the study of cognitive processes. First,
separating different sources of noise can contribute to our under-
standing of the functional architecture underlying human decision
behavior. Using the MCR procedure allows us to quantify the
contributions of these two sources of internal variability to re-
sponse variability. Second, this framework provides a test of the
assumptions broadly used within the extensive literature on signal
detection tasks. If decision noise is relatively low in a given signal
detection task, then the simpler traditional SDT model suffices to
explain the data. However, if decision noise is significant in a
given task, then the estimates of sensitivity, response bias, and the
conclusions derived from these estimates will be improved by the
methods described here. We now describe a confidence rating
visual detection experiment in which we analyzed both response
frequencies and covariance across multiple passes to assess how
decision and representational noise influence task performance.

Method

Procedure. We conducted a Gabor detection experiment in
fovea with external noise over multiple passes. Subjects gave
confidence ratings on the presence or absence of a Gabor tempo-

rally embedded in external noise. Two subjects completed exper-
iments with both three and five rating categories in separate
sessions during a day. Each subject completed two consecutive
40-min sessions per day over 5 days with, at minimum, a 15-min
break between sessions. Each session consisted of six passes with
100 trials per pass. Corresponding trials across passes contained
identical stimulus samples but with randomized stimulus sched-
ules. In total, subjects responded to 500 trials per pass for both
three and five response categories after concatenating correspond-
ing sessions across all 5 days. We alternated the order of sessions
so that if subjects started the previous day’s session using three
response categories, they would begin the next day’s session with
five response categories, and vice versa. In all conditions, the
highest category rating corresponded to the highest degree of
confidence in the presence of a signal stimulus for each trial and
the lowest rating corresponded to the lowest degree of confidence
in the presence of a signal stimulus. On each trial, the stimulus
(either external noise alone or external noise with the Gabor
signal) appeared at the center of the computer monitor with a
signal probability of 0.5. A brief auditory cue sounded 133 ms
before stimulus onset to minimize effects of temporal uncertainty
(Spiegel & Green, 1981). The fixation cross and box disappeared

(Appendices continue)
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after 664 ms, followed by the stimulus onset. Five stimulus frames
consisting of two external noise frames, either a Gabor or blank
frame, and two additional external noise frames appeared in se-
quence for 33 ms each, followed by a blank screen until subjects
provided a rating response.

Following each trial response, a trial score (see Table CI)
briefly appeared on the screen, followed by the subject’s cumula-
tive score for the session. Before the first pass on each day,
subjects were instructed to utilize the full range of confidence
ratings and to achieve the highest possible score over the course of
the experiment. The scoring structure for both low and high
response categories is given in Table Cl. Subjects took short
breaks after each pass of 100 trials.

To select a stimulus contrast, we used an Accelerated Stochastic
Approximation Method (Treutwein, 1995) to estimate contrast
thresholds before the MCR detection experiment. This adaptive
procedure varied the contrast of the Gabor from trial to trial so as
to converge on a threshold corresponding to a desired performance
level of d' = 1 in high external noise using binary (yes/no)
responses. Frames of external noise were completely independent
across all trials.

Stimuli. We generated all stimuli with a G4 Macintosh com-
puter utilizing Matlab programs with Psychtoolbox extensions
(Brainard, 1997; Pelli, 1997). Stimuli appeared on a ViewSonic
Professional Series P95f monitor with a refresh rate of 120 Hz and
mean luminance of ~50 cd/m?. A video attenuator modified gray
level display by combining voltages of two graphic channels to
produce 6,144 distinct gray levels for enhanced contrast (Li, Lu,
Xu, Jin, & Zhou 2003). A psychophysical method (Lu & Sperling,
1999) was used to estimate and linearize luminance. Subjects
placed their heads in a chin rest to minimize head movement and
viewed the stimuli from ~1 m under scotopic lighting conditions.

Signal Gabor targets consisted of a 3.75 cpd sine wave grating
oriented 12 degrees to the right of vertical and multiplied by a
Gaussian spatial window with a SD of 0.44 degrees of visual angle.
External noise frames consisted of individual pixels randomly
sampled from a Gaussian distribution with 0 mean and a SD of
0.33 of the full contrast range. Both Gabors and external noise
frames subtended 1.6 X 1.6 degrees of visual angle at the center of
the screen. The box within which the stimuli appeared subtended

Table C1
Payoff Matrix for Rating Detection Task

Subject response

1 2¢ 3 48 5
Signal absent trial 2 1 0 -1 -3
Signal present trial -3 -1 0 1 2

“ The response alternatives indicated in gray comprised the payoff structure
for the three response categories rating tasks, whereas the entire response
range comprised the payoff structure for the five response categories rating
task.

CABRERA, LU, AND DOSHER

the same visual angle as the target stimuli. The fixation cross
subtended 0.12 X 0.12 degrees of visual angle.

Observers. One University of Southern California graduate
student as well as the first author participated in the study. Both
subjects had normal or corrected to normal vision and both had
significant previous experience as subjects in psychophysics ex-
periments.

Data analysis. For each subject and for each rating structure,
we collected response frequencies and covariance estimates across
all 5 days. We computed both within category covariance (cova-
riance between the same rating category across different passes)
and berween category covariance (covariance between different
rating categories across different passes). For the purpose of fitting
the model to the data, we also estimated the variances of all
response rates and covariance estimates (Equations 7 and 8). We
fit our data with a corrected law of categorical judgment (LCJ;
Rosner & Kochanski, 2009), as well as with complimentary (LCJ,)
and symmetrically adjusted (LCJ,,,) modifications of the LCJ
(Klauer & Kellen, 2012), and finally with the classical SDT model
(cSDT) without decision noise. For all model fits we used a
weighted least-squares cost function with a simplex optimization
routine (Nelder-Mead) and assessed parameter fits with a x> sta-
tistic. Our cost functions incurred significant penalty if ordinal
positioning of candidate mean criterion positions became disor-
dered, if variances fell below zero, or if the encoding noise for
signal absent trials exceeded the encoding noise for signal present
trials. We reorganized the response frequencies into standardized
ROC plots according to the usual method of starting with the
highest category rating and cumulatively adding response frequen-
cies to the next strictest response category. We computed covari-
ance estimates for signal absent trials and signal present trials and
separately plotted them to more easily distinguish model fits to
data. We also computed separate correlation statistics for response
frequencies (rkoc) and covariance estimates (1%,,) because these
data do not share a common scale.

Results

Parameter estimates and x* results for all model fits to subject
data are found in Table C2. For both subjects, the best fitting
decision noise model did not provide significantly better fits to
experimental data with three rating categories than the cSDT
model without decision noise (subject YZ: F(2, 3) = 5.6487, p =
0.096; subject CC: F(2, 3) = 0.7259, p > 0.1). For subject YZ, we
found the reduced (¢cSDT) model fits at x2 = 7.1811, rjoc = 0.99,
réoy = 0.96. For subject CC, these fit statistics were Xz = 2.5716,
rkoc = 0.99, 2oy = 0.98.

For the paradigm with five response categories, we found the
decision noise model LCJ fit the data better than any other model
and significantly better than the cSDT model for both subjects
(subject YZ: F(4,17) = 6.8171, p < 0.01; subject CC: F(4, 17) =
10.8981, p < 0.001). Fits for subject YZ with this model were
x> = 8.5944, rgoc = 0.99, and 1%, = 0.95. For subject CC, we
found x> = 6.6640, rkoc = 0.99, 1&g, = 0.95.

(Appendices continue)
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Table C2

Parameter Estimates for Three and Five Response Categories (Joint Model Fits)

Model parameters (in units of o) and x

2

2 criteria Representation 4 criteria Representation

Sub  Mod i Rc2  Oct Oc2 Ogo Ogrr Msi X2 i Rc2 Be3 Bcsa Oct Oc2 O0c3 Ocsa Opo Orr Msi X2

YZ SDT -08 122 — — 147 152 172 7.18 —-1.8 -0.06 125 329 — — — — 148 151 1.64 2238
LCJ —-0.37 1.03 128 125 1.02 1.02 1.66 151 —-19 031 1.21 324 092 0.74 097 038 132 132 1.7 8.59
LCJ. —-093 122 103 0 149 149 1.7 267 —-2.1 —036 1.11 322 136 1.09 045 0.04 136 136 1.68 10.88
LCly, —0.87 121 09 0 148 149 1.69 3.03 —1.83 0.29 1.02 325 023 094 034 002 141 141 1.7 11.78

CC cSDT 1.1 1.68 — — 1.65 1.7 252 257 —1.19 1 .57 39 — — — — 1.74 203 277 19.08
LCJ .1 1.7 0 0 1.66 1.75 2.57 227 -0.36 098 152 373 1.65 0.07 003 039 174 195 262 6.66
LCJ. 1.05 1.5 025 0 1.5 1.62 246 173 —1.22 091 141 356 129 0 0.02 072 15 186 251 941
LCJ 1.31 1.4 0.05 0.03 1.37 141 245 174 —-0.99 0.88 136 344 1 0 0.02 08 141 1.8 241 10.77

sym

Note. c¢SDT = classical signal detection theory model; LCJ = law of categorical judgment; ¢ = complimentary; sym = symmetrically adjusted.

Winning model fits for all subjects and response categories are
shown in Figure Cl. To ensure these fit statistics accurately
represented the predictive power of our model, we ran 100 cross
validation checks on each of our data sets. For each subject,
response condition, and iteration, we sampled (without replace-
ment) 80% of trial stimuli and computed yes rates and covariances
from subject responses to those stimuli across passes. After mod-
eling each partial data set, we computed the expected values of yes
rates and covariances of each fit to predict the yes rates and
covariances of the complimentary portion of each data sample. For
subject YZ with five response categories we used LCJ to deter-
mine the median rkoc = 0.97 and median r,, = 0.87. For subject
CC, rkoc = 0.99 and median 1%, = 0.82 for data with five
response categories.

The LCJ dominated the classical SDT model for both subjects
when using five rating categories and but not for three categories.
We also investigated whether the change in response structure
between low and high number of response categories could change
the representational features of stimuli. To test this hypothesis, we
fit the data from both the three- and five-category rating experi-
ments together with the LCJ model under two distinct assump-
tions. In the first case, we allowed all parameters to vary indepen-
dently; thus, permitting representation noise to vary with response
structure; in the second case, we assumed that the representational
parameters o, 0, and g remained identical across response
structures. We used an F test for nested models to compare these
results and found that the extended model did not significantly
improve fits over the reduced model for either subject (subject CC:
F(3,20) = 1.2443, p > 0.1; subject YZ: F(3, 20) = 0.8803, p >
0.1). From this we conclude that the criterion variability but not
representation variability was affected by the larger number of
rating categories. We further fit our subject data using the classical
SDT model (no decision noise) for the three-category response
structure while jointly modeling data from the five-category re-
sponse structure with the LCJ assuming either completely inde-
pendent parameters or identical representational parameters. The
results again showed no significant improvement using the full

model relative to the restricted model (subject CC: F(3, 22) =
1.1130, p > 0.1; subject YZ: F(3, 22) = 0.9047, p > 0.1). These
parameter fits are listed in Table C3. The fits imply that represen-
tational features do not significantly change with a change in
response structure from three- to five-category rating tasks.

When we fit the data from our five-category rating task with the
classical SDT model with no decision noise, we estimated encod-
ing noise for each of our subjects. For subject CC we estimated
encoding noise at 2.03 for signal present trials and 1.74 for signal
absent trials (relative to o). For subject YZ we estimated encoding
noise for signal present and signal absent trials at 1.51 and 1.48,
respectively. In the case of subject CC, estimates of representation
parameters are quite similar between LCJ and ¢SDT. For subject
YZ, however, cSDT overestimates encoding noise by about 14%
for signal present trials and 12% for signal absent trials.

We also fit data for each subject using five response categories
to the LCJ using only yes rates (i.e., without covariance data). For
these fits, we retained the decision noise parameter results from the
LCJ model and allowed the remaining parameters (criterion posi-
tions, representation noise on signal present trials, and the mean of
the signal present distribution) to vary. When considering only
ROC data, the model estimates each parameter in units of the
representation noise of the signal-absent distribution (rather than
merely the consistent noise). The results of these fits are shown in
Table C4. We recomputed our original parameter estimates for the
LCJ fits to full data sets (ROC and covariance data) for each
subject in units of the entire representational noise for signal-
absent trials. These are shown along with the ROC-only fits for
comparison. The estimates for ROC-only and full data sets are
nearly identical for both subjects.

The emphasis of this report was to illustrate the sufficiency of
the framework to separately estimate contributions of decision and
encoding noise in response data from signal detection tasks. Other
models may explain this data as well. At the suggestion of one
reviewer, we examined the performance of a mixture model (De-
Carlo, 2002) according to which signal present trials are drawn

(Appendices continue)
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Figure C1. Classical signal detection theory (three response categories) and law of categorical judgment (five
response categories) model fits for z-transformed receiver operating characteristic and covariance data for
subjects CC and YZ. Covariance graphs: point [r,r] (gray bars) corresponds to within-category covariance, while
all other points correspond to between-category covariance. See the online article for the color version of this
figure.
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Table C3

Model Fits to Subject Data of Three and Five Rating Categories With Identical Representation Parameters

Model parameters (in units of o,,,)

2 criteria 4 criteria Representation
Subject K1 Rc2 Oci Oc2 i Hc2 c3 Hca Oci Oc2 Oc3 Oca Oko Og1 Hsi
YZ —0.75 1.22 — — -1.9 0.26 1.24 3.31 0.43 0.71 0.76 0.08 1.43 1.43 1.73
CC 1.13 1.75 — — -0.36 0.99 1.52 3.73 1.64 0.07 0.03 0.39 1.73 1.95 2.62

from two underlying distributions depending on whether or not
subjects gave an adequate allocation of attention while sampling
from each trial (mean distribution of attended trials are given as
Mg, mean of nonattended trials assumed equal to zero*). The
mixture model assumes that representational variance is equal for
both signal present distributions as well as the signal absent
distribution. For signal present trials, the portion of trials drawn
from each distribution depends on a mixture parameter, \. For our
experiments with five response categories, fits for subject CC were
x> = 21.02, rkoc = 0.99, 2., = 0.90, whereas for subject YZ we
found x> = 22.02, rkoc = 0.99, r&,, = 0.94. Differences in
performance between three and five response category conditions
were accounted for with a slight decrease in \ for subject YZ (7%
for three vs 5% for five categories) and a more pronounced
increase for subject CC (1% for three vs 9% for five categories).
Applying the same cross validation testing described earlier, we
found median r&oc = 0.98 and median r%,, = 0.82 for subject CC.
For subject YZ, median rkoc = 0.97 and median r%,, = 0.83.
Although these cross validation results for the mixture model are
worse than those obtained for the LCJ decision noise model, the
performance outcomes are still quite similar.

The reasonably good fits of the mixture model raises the ques-
tion of whether a decision noise model might misattribute the
effects of nondecision mechanisms to decision noise. To addressed

Table C4
Parameter Estimates for LCJ Fit to ROC-Only vs. Full Data
Sets for Five Response Categories

Model parameters (in units of total
representational noise on signal absent trials)

4 criteria Representation

Data
Subject modeled e Hca [7es] [Rze OR1 s
YZ ROC -1.14 019 072 197 1 1.02
ROC + Cov  —1.15 0.19 073 196 1 1.03
CcC ROC -0.19 049 075 1.85 1.08 133

ROC + Cov  —0.18 049 076 186 1.09 13

Note. LCJ = law of categorical judgment; ROC = receiver operating
characteristic; Cov = covariance.

this concern, we conducted an additional 250 simulations of an
observer operating under the assumptions of a mixture model
(assuming A = 0.05 in line with estimates typical for psychophys-
ical experiments; Green, 1995; Lesmes et al., 2006; Wichmann &
Hill, 2001) and fit these data using the LCJ, LCJ,, and LCJ,,
decision noise models. Each simulated experiment consisted of six
passes with 500 trials in each pass. We perturbed the true gener-
ative parameters of our mixture model by randomly sampling
from a normal distribution with means matched to the true param-
eters and SD of 0.150,, to obtain initial guess parameters for our
fitting algorithms. The parameters used in the generative mixture
model as well as the recovered parameters from each decision
noise model are shown in Table C5. Each of the decision noise
models accurately estimated the influence of decision noise as
nearly zero when fit to data generated from the mixture model.
Furthermore, the median parameter estimates of the decision noise
models all came very close to the true parameter values of the
generative mixture distribution (excluding \ insofar as this param-
eter does not figure into our decision noise models). The 95%
confidence intervals were quite large for the encoding noise pa-
rameters, with estimates sometimes reaching into nonsensical val-
ues, but this result might be expected when model assumptions fail
to describe the mechanisms underlying the data-generative model.

While we acknowledge the possibility that alternative elaborations
of the SDT model may account for this data, we also noted that our
data are consistent with the prediction issued by Benjamin et al.
(2013) for ROCs generated from rating scales of different size: if
additional criteria results in additional decision noise, then ROCs
generated from larger rating scales should fall below ROCs measured
with smaller rating scales. In our data, we plotted the best fitting line
through zZROC data when each subject used both three and five
response categories. For both subjects, the yes rates from three-
category experiments resulted in points lying above the best fitting
line fitted to the data from five response categories (Figure 12).

4 The mean distribution for unattended trials may be nonzero, but an F
test for nested models showed no significant improvement over the reduced
model. Therefore, we report results for the reduced model only.

(Appendices continue)



n or one of its allied publishers.

ghted by the American Psychological Associa

This document is copyri
This article is intended solely for the personal use of the individual user anc

is not to be disseminated broadly.

460

Table C5
Median Decision Noise Model Parameter Estimates for
Simulated Data From Mixture Distributions

Model parameters (in units of o,,)

Model type Ry Rc2 Oci Oc2 Ogo OE1 s A

1 141  0.05

Mixture model 0.07 0.71

— — 1
LCJ 0.07 0.66 0 0 1 1.05 129
LCJ, 005 065 O 0 1 .01 128 —
LClym 002 058 0 0 098 09 119 —
Note. LCJ = law of categorical judgment; ¢ = complimentary; sym =

symmetrically adjusted.

Discussion

The LCJ model fit the response rates and covariance esti-
mates very well in the five category response experiments, and
accounted for about 95% of the variability in the data for
subject CC and 96% for subject YZ. Even though we computed
separate estimates of 7 for zROC and covariance data, the
model still appears to capture the broad data trends. More
particularly, the standardized ROC plots of subject CC exhibit

CABRERA, LU, AND DOSHER

a “bowing” shape suggesting greater sensitivity for zROC
scores at the center than at peripheral criterion boundaries.
Previous studies have predicted this shape for decision noise
structures in rating tasks when criteria at extreme boundaries
exhibit greater variance than at the more central boundaries
(Mueller & Weidemann, 2008; Wickelgren, 1968). These pre-
dictions are borne out here.

Qualitative patterns in covariance data also provide some insight
into the underlying representation at the decision stage. Greater
encoding noise for a specific stimulus type has the effect of
depressing the absolute value of covariances globally across all
category boundaries but strictly within that stimulus type. On the
other hand, greater criterion noise tends to lower the absolute value
of covariance for both stimulus types. Additionally, both decision
rules and boundary placement influence covariance outcomes.
With internal noise at parity, covariance for within category esti-
mates will reach a maximum as the response frequency for that
stimulus category approaches 0.5 and will decrease with greater or
lesser response rates.
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