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A Robust Error-Pursuing
Sequential Sampling Approach
for Global Metamodeling Based
on Voronoi Diagram and Cross
Validation
Surrogate models are widely used in simulation-based engineering design and optimiza-
tion to save the computing cost. The choice of sampling approach has a great impact on
the metamodel accuracy. This article presents a robust error-pursuing sequential sam-
pling approach called cross-validation (CV)-Voronoi for global metamodeling. During
the sampling process, CV-Voronoi uses Voronoi diagram to partition the design space
into a set of Voronoi cells according to existing points. The error behavior of each cell is
estimated by leave-one-out (LOO) cross-validation approach. Large prediction error
indicates that the constructed metamodel in this Voronoi cell has not been fitted well and,
thus, new points should be sampled in this cell. In order to rapidly improve the metamo-
del accuracy, the proposed approach samples a Voronoi cell with the largest error value,
which is marked as a sensitive region. The sampling approach exploits locally by the
identification of sensitive region and explores globally with the shift of sensitive region.
Comparative results with several sequential sampling approaches have demonstrated
that the proposed approach is simple, robust, and achieves the desired metamodel
accuracy with fewer samples, that is needed in simulation-based engineering design
problems. [DOI: 10.1115/1.4027161]

Introduction

Surrogate models (also known as metamodels) have been
widely used to approximate the real models in order to facilitate
the engineering design and optimization. There are a number of
commonly used metamodels, such as polynomial functions, Krig-
ing models [1], radial basis functions [2,3], and multivariate
adaptive regression splines [4]. Refer to Wang and Shan [5] for a
detailed overview on various metamodeling techniques.

In the surrogate modeling of an engineering problem, extensive
simulations are needed at sampled points in order to construct a
metamodel with acceptable prediction accuracy. A challenging
issue is how to achieve an accurate metamodel with samples as
few as possible. Therefore, the sampling approaches (also known
as design of computer experiments) play an important role in
determining the metamodel accuracy.

In general, conventional sampling approaches can be classified
into two categories: one-stage sampling approaches and sequential
sampling approaches. A wide variety of traditional one-stage sam-
pling approaches are available, such as Latin hypercube design
(LHD) [6] and orthogonal array [7]. In recent years, numerous
researchers have developed more effective and efficient one-stage
sampling approaches, such as the columnwise-pairwise algorithm
[8], the iterated local search heuristics algorithm [9], the transla-
tional propagation algorithm (TPLHD) [10], and the successive
local enumeration algorithm [11]. There is a common issue among
these one-stage sampling approaches, that is, the number of sam-
ples must be determined in advance. In practice, little information

about the real model can be used to predetermine the proper
sample size.

To address the shortcomings of one-stage sampling strategies,
sequential sampling (also known as adaptive sampling or active
learning) strategies are proposed to improve the metamodel accu-
racy over the entire design space of interest by sequentially select-
ing samples. In terms of the ultimate goal, sequential sampling
approaches can be used for metamodel-based design optimization
or global metamodeling. The former sequential sampling
approaches focus on obtaining the global optimum by a trade-off
between a search for the optimum of a metamodel and a search
for unexplored regions to avoid missing promising areas due to
inaccuracy of the metamodel [12], such as efficient global optimi-
zation [13], surrogate management framework [14], sequential
design optimization [15], and model-assisted grid search [16]. The
latter sequential approaches focus on sequentially improving ac-
curacy of the metamodel over the entire design space. Maximin
criterion has been commonly used in these approaches to use the
coordinate information of existing points in the design space.
Such sequential sampling approaches include minimax and maxi-
min designs [17], Audze-Eglais design [18], centered L2 discrep-
ancy [19,20], MSE approach [12], etc. Sequential sampling
approaches [21,22] have, also, been developed to combine the
generally used maximin criterion with LHD [6,20] to obtain sam-
ples with both good space-filling and projective properties. For
instance, Xiong et al. [21] proposed a sequential quasi-LHD sam-
pling approach to overcome the drawback of maximin designs in
high dimensions. Crombecq et al. [22] presented a sequential
approach called mc-intersite-proj-th (MIPT) by using maximin
criterion and a threshold function to obtain the space-filling and
projective properties, respectively. Furthermore, some sequential
sampling approaches have been developed to use not only the in-
formation of existing points but, also, the previous metamodels to
locate new samples. These methods have been demonstrated to
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outperform the aforementioned approaches in terms of the meta-
model accuracy [15,23–25].

For a complex function, intuitively, one would expect to sample
more points in the highly nonlinear regions and fewer points in
the relatively flat regions in order to capture the behavior of this
function with a smaller sample size. Therefore, the trade-off
between global exploration and local exploitation plays a key role
on the performance of sequential sampling approaches [26,24,27].
Turner et al. [28] employed a simulated-annealing approach to
balance the local exploration and global exploitation explicitly. Li
and Aute [25,29] proposed the cross-validation-based sequential
sampling approaches (ACcumulative Error, ACE; Space-Filling
Cross-Validation Tradeoff, SFCVT) to address this issue. Their
methods utilize the prediction errors of samples obtained by LOO
cross-validation method to sample more points on highly nonlin-
ear regions and relatively sparse points on flat regions. This strat-
egy uses the error information of current samples to construct an
error-metamodel to probe errors of unexplored regions. A distance
constraint is employed to prevent new points from clustering
around existing points. Crombecq et al. [30] proposed a novel
hybrid sequential strategy (LOLA-Voronoi) by using the local lin-
ear approximation to recognize the nonlinearity of regions and
Voronoi tessellation to explore the whole design space. This sam-
pling approach simply gives fixed weights of exploration and ex-
ploitation, which may lead to bad performance in some
circumstances.

In this paper, we present a robust error-pursuing sequential
sampling approach for global metamodeling in simulation-based
engineering design and optimization. In each iteration, the entire
design space is partitioned into a set of Voronoi cells according to
the current samples by Voronoi diagram. A Voronoi cell is a sur-
rounding region of an existing point. Its error behavior can be sim-
ply represented by the prediction error of this existing point.
Large prediction error indicates that the constructed metamodel in
this Voronoi cell has not been fitted well and, thus, new points
should be sampled in this cell. In the proposed approach, a Voro-
noi cell with the largest error is marked as the sensitive region and
sampled by using the maximin criterion. By always focusing on
sampling the region with the largest error, the proposed approach
is able to improve the metamodel accuracy rapidly. In addition,
due to the partition of the design space and the identification of
the sensitive region, the proposed algorithm pays attention to the
local region and is able to avoid the additional optimization
required by the methods presented in Li and Aute [25,29], thus,
reducing the complexity of sampling process.

CV-Voronoi Approach

The proposed CV-Voronoi approach intends to improve the
metamodel accuracy by sampling a region with the largest predic-
tion error. If the existing point in this region is removed, the pre-
dicted response of the metamodel constructed by the rest of
existing points will be far away from the actual response. There-
fore, this region is referred to as a sensitive region and should be
sampled more points in order to improve the metamodel accuracy.

Three major issues of the proposed sequential sampling
approach need to be handled: (1) how to properly partition the
design space according to existing samples, (2) how to identify a
sensitive region, and (3) how to determine the location of new
sample in the obtained sensitive region. The remainder subsec-
tions will present detailed descriptions to address these issues.

Partition the Design Space. The first step of the proposed
methodology is to partition the entire design space in order to help
designers to concentrate on local regions rather than the whole
design space in the following steps. Assume a set of points

P¼ fp1; p2;…; pmg 2 Rd represent the current samples. In this
study, Voronoi diagram approach is employed to partition the
entire design space into a set of Voronoi cells

C ¼ fC1;C2; :::;Cmg according to the sample set P. The ith
Voronoi cell, Ci, represents the surrounding region of point pi.
The cell Ci can be defined as [31]

domðpi; pjÞ ¼ p 2 Rd p� pik kj 2� p� pj

�� ��
2

n o
(1)

Ci ¼ \
pj2Pnpi

domðpi; pjÞ (2)

where domðpi; pjÞ is a closed half plane bounded by the perpen-
dicular bisector of pi and pj. The bisector separates all points of
the plane closer to pi from those closer to pj. Figure 1 illustrates a
2D example partitioned by the Voronoi diagram approach.

Since a Voronoi cell is a polyhedron with irregular boundaries
in high dimensions, it is difficult to describe the cell mathemati-
cally. Hence, Monte Carlo method is adopted to generate a large
number of random points to describe the Voronoi cells approxi-
mately. By computing the distances to all existing sample points,
each random point is assigned to its closest point in P. Thus, the
Voronoi cell Ci can be approximately described by a set of ran-

dom points Pi
rand ¼ fpi

r1; p
i
r2; � � �; pi

rkg, as shown in Fig. 2. This
process is described in details in Algorithm 1. The number of ran-
dom points used in the Monte Carlo simulations is N(Prand)¼N(P)
� n � w, where N(P) is the number of existing points, n is the
dimensionality of problems at hand and w is a factor. To investi-
gate the influence of the number of random points on the perform-
ance of proposed approach, we use CV-Voronoi approach to
generate 100 samples for functions Peaks and Hart6 (see Test
Scheme section) with the factor w, respectively, being 100, 200,
and 300. It was found that the impact of the factor w on the meta-
model accuracy is insignificant in these two cases. Therefore,
w¼ 100 is used in this study in order to save computing time.

Algorithm 1. Estimating the Voronoi cells by Monte Carlo
approach. P is the current sample set

Prand  Random points generated in the design space.
for all pr 2 Prand do

if the random point pr is closer to the existing point pi in P
Add pr to the random set Pi

rand.
end

end for

Identify Sensitive Voronoi Cell. In this step, the LOO
cross-validation method is utilized to calculate the prediction
errors of current samples. The LOO error of point pi can be calcu-
lated as

ei
LOO ¼ f ðpiÞ � f̂Pnpi

ðpiÞ
�� �� (3)

Fig. 1 A set of 2D samples and the corresponding Voronoi
cells
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where f ðpiÞ denotes the real response of pi, f̂Pnpi
ðpiÞ denotes the

predicted response of pi by the metamodel constructed on existing
points without pi. The above process is repeated for all points in P
by leaving them out one at a time and finally the prediction errors
of all existing samples will be obtained.

Unlike ACE and SFCVT [25,29], the proposed approach does
not try to probe the errors of unobserved points by constructing an
error-metamodel. Since the Voronoi cell Ci is a surrounding
region of point pi, it is reasonable to assume that the error behav-
ior of all the points in Ci is similar to that of pi. Hence, the error
behavior of cell Ci can be represented by the prediction error of
pi. Large prediction error of point pi indicates that the constructed
metamodel deviates from the real model largely in cell Ci. There-
fore, the prediction error of point pi can be used to represent the
fitting degree in Voronoi cell Ci, which decreases the complexity
of the sampling process.

Next, a Voronoi cell with the largest prediction error will be
selected as the sensitive Voronoi cell denoted by Csensitive. In this
cell, the predicted responses are largely different from the real
responses in current stage. Therefore, in order to improve the
metamodel accuracy efficiently, more points should be sampled in
this sensitive cell. Figure 3 shows the sensitivity analysis of a 2D
example, in which the bigger circle implies the larger prediction
error.

Choose New Sample. In this step, a new sample pnew is
sampled in the cell Csensitive. Since a Voronoi cell can be approxi-
mately described by a set of random points according to Algo-
rithm 1, the sampling process can be sped up by picking a point

from the corresponding random set Psensitive
rand of Csensitive based on a

certain criterion. In order to obtain the information about the real
model as much as possible in Csensitive, the new point and the exist-
ing points around it should evenly spread in Csensitive, which can
be obtained by the maximin criterion. Since all the points falling
in Csensitive are closer to psensitive, the process can be simplified as
picking a random point that is the farthest away from psensitive in

Psensitive
rand . This farthest random point is selected as the next sample

pnew to be evaluated.

Step-by-Step Description for CV-Voronoi. The detailed
description about CV-Voronoi is provided as follows:

Given a set of initial points P¼ fp1; p2;…; pmg 2 Rd and the
corresponding function responses, F ¼ f p1ð Þ; f p2ð Þ;…; f pmð Þf g

Begin:
Step 1: Construct a metamodel f̂ based on the initial points P

and their responses F;
Step 2: According to the current sample set P, Voronoi diagram

is used to partition the entire design space into a set of Voronoi
cells C ¼ fC1;C2; :::;Cmg, each of which is approximately
described by a set of random points according to Algorithm 1;

Step 3: Identify the sensitive Voronoi cell Csensitive by the LOO
cross-validation approach

Step 4: Choose a new sample pnew farthest away from psensitive

from the corresponding random set Psensitive
rand of Csensitive;

Step 5: Evaluate the response f pnewð Þ of the new point pnew and
then P ¼ P [ pnewf g; F ¼ F [ f pnewð Þf g; m ¼ mþ 1: Construct
and update the metamodel f̂ ;

Step 6: Check the stopping criterion. If yes, stop the algorithm,
otherwise, return to Step 2.

End
In Step 1, in order to provide the information about the real

function as much as possible, initial samples should spread over
the entire design space as evenly as possible. Many space-filling
sampling approaches reviewed before can be used here. Since the
Kriging technique is particularly suitable for complex functions, it
is employed to construct the metamodel in Step 1. The MATLAB

toolbox BlindDACE [32] is employed to implement the Kriging
method for metamodeling in this study.

In Step 6, various stopping criteria may be adopted in CV-
Voronoi, such as the root mean square error (RMSE), the maxi-
mum absolute error, the CV, the limited number of simulation
runs, or the limited computing resource. In this study, we employ
RMSE to access the metamodel accuracy, that is defined as

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

t

Xt

i¼1

f ðqiÞ � f̂ ðqiÞ
� �2

vuut (4)

where f ð:Þ is the true function, f̂ ð:Þ is a metamodel built on the
current samples, t represents the number of test points (here,
t¼ 5000) and qi is a point in the test set. A smaller RMSE implies
a more accurate metamodel.

Discussion About CV-Voronoi. As mentioned earlier, ACE
and SFCVT [25,29] try to find a new sample with the largest pre-

diction error on the error-metamodel f̂e ¼ f̂ ðp1; p2;…; pm;
e1

LOO; e
2
LOO;…; em

LOOÞ under an Euclidean-distance-based con-
straint. Its optimization process can be described as

Find pnew ¼ max f̂eðpÞ
s:t: p� pik k2� d 8pi 2 P (5)

For ACE, the critical distance d is defined as

dðpiÞ ¼ min pi � pj

�� ��
2

� �
; 8pi 2 P \ ði 6¼ jÞ

dACE ¼ 0:5�meanðdðpiÞÞ; 8pi 2 P (6)

For SFCVT, it is

Fig. 2 A Voronoi cell described by a set of random points,
where the circle represents the existing sample and the trian-
gles represent the random points

Fig. 3 The prediction errors of some 2D samples and the cor-
responding Voronoi cells, where bigger circle implies larger
error
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dðpiÞ ¼ min pi � pj

�� ��
2

� �
; 8pi 2 P \ ði 6¼ jÞ

dSFCVT ¼ 0:5�maxðdðpiÞÞ; 8pi 2 P
(7)

The distance constraint prevents new samples from clustering
around existing samples. It is observed that dSFCVT is larger than
dACE in each iteration, that leads the samples generated by SFCVT
to distribute more sparsely than those obtained by ACE. In prac-
tice, various definitions of d may be used for different problems in
order to obtain a set of optimal solutions. In general, too large d
may force samples to distribute evenly in the design space. As a
result, the sampling approach may lose the ability to focus on
interesting regions and could not improve the metamodel accuracy
rapidly. Too small d may result in that new samples cluster around
existing samples, which is, also, against the improvement of meta-
model accuracy.

Compared with ACE and SFCVT, the proposed CV-Voronoi
approach always samples the region with the largest prediction
error, which rapidly reduces the metamodel error. Another advant-
age of the proposed approach lies in that no parameters need to be
defined in advance, that reduces the complexity of the sampling
process and makes the approach user-friendly.

A one-dimensional function y ¼ 3ð1� x2Þeð�x2�1Þ � ð2x
�10x3Þe�x2

in the range [�8 8] is used to illustrate the proposed
approach. Figure 4 shows the real function and a Kriging model
through five evenly distributed initial points.

It is observed that the real function has several local optima
around the origin and the rest regions of which are almost zeros.
For this test case, each of the CV-Voronoi, ACE, and SFCVT
approaches is used to generate 20 samples with the aforemen-
tioned five initial samples, as shown in Fig. 5. It is found that
CV-Voronoi adaptively samples more points on the multimodal
region while fewer points on the flat region. ACE prefers to pay
much attention to the highly nonlinear region, while SFCVT
prefers to explore the entire design space.

We introduce a parameter S to reveal the sampling mechanism
of the three cross-validation-based sequential sampling
approaches. This parameter is defined as the minimal distance
from the obtained new point to the existing points during each
iteration, which is mathematically described as

S ¼ min dðpnew; piÞ; pi 2 P (8)

The values of S in each iteration step for CV-Voronoi, ACE, and
SFCVT with the 1D test case are illustrated in Fig. 6. It is
observed that the S value of ACE keeps decreasing during the
sampling process. It indicates that ACE keeps exploiting the

interesting regions so that the sampling density of such regions is
increasing and, thus, the new point gets closer to its neighbors. In
terms of exploration and exploitation, ACE gives priority to ex-
ploitation. It is found that the S value of SFCVT decreases in a
ladder-shaped way. The S remains the same during some steps,
that means in these steps, SFCVT tries to sample the regions with
relatively low sampling density in order to satisfy the space-filling
constraint. The steep decrease in S indicates that SFCVT starts
sampling the design space at a refined level. In terms of explora-
tion and exploitation, the strict space-filling constraint involved in
SFCVT leads this approach to give priority to exploration. Note
that the S value of CV-Voronoi fluctuates during the sampling
process. When S continues to decrease, CV-Voronoi is exploiting
the sensitive region in current stage. When S suddenly increases,
it means the previous sensitive region contains enough points so
that the error of this region in current stage becomes smaller than
another region. Consequently, the proposed approach conveys its
attention to another region.

Therefore, due to the error-pursuing mechanism, the proposed
approach exploits locally by the identification of sensitive region
and explores globally by the shift of sensitive region, as shown in
Fig. 7. Note that the sampling process of the proposed approach is
executed repeatedly at different levels. For instance, at one-stage,
a Voronoi cell, like CellB in Fig. 7, is marked as sensitive region

Fig. 4 A 1D function and a metamodel through five initial
samples

Fig. 5 Samples generated by CV-Voronoi, ACE, and SFCVT for
the 1D test case

Fig. 6 The S values of CV-Voronoi, ACE, and SFCVT during the
sampling process
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and then new samples are sampled in this cell. After adding new
samples, if the prediction error of this cell is smaller than that of
another cell, the proposed approach will move to another cell
even if CellB may have not been fitted well yet. This new sensitive
region may even be a relatively flat region like CellC in Fig. 7. Af-
ter several steps, the Voronoi cell CellB may be identified as a sen-
sitive region again to be resampled. Such a gradually refined
process enables the proposed approach to improve the metamodel
accuracy globally. To give an intuitive view of the local exploita-
tion and global exploration of the proposed approach, Fig. 8
shows the trail of the additional 15 samples generated by the pro-
posed approach in the aforementioned 1D case. It is found that the
proposed approach does not fall into local exploitation. After 11
steps, the approach jumps out of the multimodal regions and
places several samples in those flat boundary regions.

To further confirm the discussions above, we apply the three
approaches for the 1D test case to reach a specified root mean
square error (i.e., RMSE¼ 0.001) with the aforementioned five
initial samples. Each experiment runs 10 times in the MATLAB envi-
ronment in order to avoid unrepresentative numerical results. The
metamodel performance of each approach is illustrated in Fig. 9.
It is observed that CV-Voronoi outperforms the other two
approaches. It requires only 33 samples to reach the desired meta-
model accuracy, while SFCVT needs 39 samples and ACE needs
42 samples to reach the same RMSE. Moreover, from Fig. 9, it
can be observed that for a large critical RMSE (e.g.,
RMSE� 0.6), CV-Voronoi does not outperform SFCVT and
ACE. But at this RMSE level, the constructed metamodel differs
largely from the real model, which is useless in practice. In later
stage with small critical RMSE, CV-Voronoi improves the
metamodel accuracy quickly. It is also observed that because of
the emphasis on exploitation, ACE converges faster than SFCVT
when RMSE� 0.02. However, when targeting toward a
smaller critical RMSE value, SFCVT converges much faster than
ACE.

Examples and Discussions

Test Scheme. In this section, eight test cases with different fea-
tures are used to demonstrate the applicability of the CV-Voronoi
approach. These test cases are classified into two groups: the first
group is a set of test cases with both flat and highly nonlinear
regions. These test cases are in favor of sequential sampling meth-
ods considering both exploration and exploitation; the second
group is a set of test cases with uniform behavior. These test cases
are in favor of exploration-based (space-filling) sequential sam-
pling methods. The eight test cases are summarized in Table 1
and their mathematical functions are listed below.
Peaks function

y ¼ 3ð1� x1Þ2e �x2
1
�ðx2þ1Þ2ð Þ � 10

x1

5
� x3

1 � x5
2

� �
eð�x2

1
�x2

2
Þ

� 1

3
e �ðx1þ1Þ2�x2

2ð Þ; x1;2 2 ½�5 ; 5� (9)

Easom function

y ¼ � cosðx1Þ cosðx2Þ expð�ðx1 � pÞ2 � ðx2 � pÞ2Þ; x1;2 2 ½0; 7�
(10)

Hartman function with 3 variables (Hart3)

y ¼ �
X4

i¼1

ci exp �
X6

j¼1

aijðxj � pijÞ2
" #

; xj 2 ½0; 1�; j ¼ 1; 2; 3

where

aij

	 

j¼1;…;6

¼

3:0 10 30

0:1 10 35

3:0 10 30

0:1 10 36

2
664

3
775 (11)

ci ¼ 1 1:2 3 3:2½ �T

pij

	 

j¼1;…;6

¼

0:3689 0:1170 0:2673

0:4699 0:4387 0:7470

0:1091 0:8732 0:5547

0:0381 0:5743 0:8828

2
664

3
775

Shekel function

Fig. 7 Illustration of local exploitation and global exploration
of the proposed approach

Fig. 8 The trail of the additional 15 samples for the aforemen-
tioned 1D case by the proposed approach

Fig. 9 Convergence histories (mean 1 SD) of CV-Voronoi,
SFCVT, and ACE for a 1D test case
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y ¼
X5

i¼1

1

ci þ
X4

j¼1

ðxj � aijÞ2
; xi 2 ½3 5�; i ¼ 1; 2; 3; 4

where

a ¼

4:0 4:0 4:0 4:0

1:0 1:0 1:0 1:0

8:0 8:0 8:0 8:0

6:0 6:0 6:0 6:0

3:0 7:0 3:0 7:0

2
6666664

3
7777775

and c ¼

0:1

0:2

0:2

0:4

0:6

2
6666664

3
7777775

(12)

Hartman function with 6 variables (Hart6)

y ¼ �
X4

i¼1

ci exp �
X6

j¼1

aijðxj � pijÞ2
" #

; xj 2 ½0; 1�; j ¼ 1;…; 6

where

aij

	 

j¼1;…;6

¼

10 3 17 3:5 1:7 8

0:05 10 17 0:1 8 14

3 3:5 1:7 10 17 8

17 8 0:05 10 0:1 14

2
666664

3
777775

ci ¼ 1 1:2 3 3:2½ �T (13)

pij

	 

j¼1;…;6

¼

0:1312 0:1696 0:5569 0:0124 0:8283 0:5886

0:2329 0:4139 0:8307 0:3736 0:1004 0:9991

0:2348 0:1451 0:3522 0:2883 0:3047 0:6550

0:4047 0:8828 0:8732 0:5743 0:1091 0:0381

2
664

3
775

Ackley function with 10 variables (Ackley10)

y ¼ �20 exp �0:2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

10

X10

i¼1

x2
i

vuut
0
@

1
A

� exp
1

10

X10

i¼1

cosð2pxiÞ
 !

þ 20þ expð1Þ

xi 2 ½�0:6; 0:6�; i ¼ 1; 2;…; 10 (14)

Shubert function

y ¼
X5

i¼1

i cos ðiþ 1Þx1 þ ið Þ
 !

�
X5

i¼1

i cos ðiþ 1Þx2 þ ið Þ
 !

; x1;2 2 ½1; 3� (15)

Rastrigin function

y ¼ 20þ
X2

i¼1

x2
i � 10 cosð2pxiÞ

� �
; x1;2 2 ½0; 1� (16)

In this study, CV-Voronoi is compared with LOLA-Voronoi
[30], SFCVT [25], MIPT [22], and MSE [12] which have shown
their merits in other studies. Note that Aute et al. [29] has demon-
strated that SFCVT outperforms ACE. Therefore, ACE is not
investigated in this comparison.

In this article, we use the TPLHD approach [10] with a one-
point seed to generate the initial design for all test cases. Samples
generated by TPLHD cover the entire design space with both
good space-filling and projective properties. The number of initial
samples is set to 5 � n (n represents the number of variables) and
sensitive analysis about the influence of the number of initial
points on the performance of the proposed approach will be stud-
ied later.

The test scheme is to obtain the sample size required to reach
the desired metamodel accuracy by using different sequential
sampling approaches. The sampling process stops when the
RMSE of a metamodel is below a prespecified value or the itera-
tion reaches to the maximum number of function evaluations (i.e.,
1000 in this study). In this test, each case will run 10 times in the
MATLAB environment in order to avoid unrepresentative numerical
results.

Test Results and Discussion. Table 2 shows the results of all
test cases using different sequential sampling approaches. The
third column in Table 2 lists the critical RMSE for each case. For
the low dimensional cases (less than or equal to 5 variables), the
critical RMSE is required to less than or equal to 0.06. Metamo-
dels at this RMSE level are thought to be a good approximation of
the real functions in practice. For functions with pretty small
responses (e.g., Easom), we set a lower critical RMSE. For the
high dimensional cases (more than 5 variables), the critical RMSE
is set to be a higher value than that for the low dimensional cases,
i.e., 0.10 for function Hart6 and 0.30 for function Ackley10. This
takes into account the challenge of improving the metamodel ac-
curacy in high dimensional space. The results tabulated in Table 2
are the average values from the 10 runs of sampling required to
reach the critical RMSE, and the standard deviation for each sam-
pling approach.

For group 1 with both flat and highly nonlinear regions, they
are in favor of sequential sampling methods considering both
exploration and exploitation. It is observed that CV-Voronoi
outperforms other approaches in all the test cases of group 1 by
achieving the desired metamodel accuracy with the smallest sam-
ple size, especially for functions Peaks and Hart6. According to
the discussions before, because of the strict constraint function,
the performance of SFCVT is similar to that of a space-filling
sequential sampling approach. It is found that SFCVT provides
the worst performance in the first three adaptive sampling
approaches.

It is observed that LOLA-Voronoi performs worse than MIPT
and MSE in function Easom. This is mainly due to the reason that

Table 1 Summary of test cases

Group Test function Range Number of variables Performance

Group 1 Peaks [�5 5]2 2 High nonlinearity in the center region
Easom [0 7]2 2 Nonlinearity in the center region
Hart3 [0 1]3 3 High dimension with high nonlinearity
Shekel [3 5]4 4 High dimension with multimodal
Hart6 [0 1]6 6 High dimension with high nonlinearity

Ackley10 [�0.6 0.6]10 10 High dimension with high nonlinearity

Group 2 Shubert [1 3]2 2 Waving uniformly
Rastrigin [0 1]2 2 Waving uniformly
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Table 2 Summary of test results

Group Test function RMSE CV-Voronoi LOLA-Voronoi SFCVT MIPT MSE

Group 1 Peaks 0.03 133.7 6 10.9 181.6 6 13.0 203.1 6 16.6 262.4 6 18.2 319.7 6 20.5
Easom 0.005 79.0 6 5.1 129.9 6 6.3 81.4 6 10.5 87.5 6 10.0 113.2 6 5.7
Hart3 0.05 90.2 6 8.4 116.6 6 11.0 143.0 6 18.4 121.8 6 10.4 98.2 6 3.1
Shekel 0.06 631.7 6 33.6 >1000 >1000 725.3 6 34.1 >1000
Hart6 0.10 449.6 6 74.1 516.6 6 102.7 710.6 6 68.8 902.8 6 74.8 >1000

Ackley10 0.30 923.6 6 68.9 >1000 >1000 >1000 >1000
Group 2 Shubert 0.05 104.2 6 2.5 118.3 6 6.0 114.9 6 12.1 113.5 6 4.5 95.4 6 1.3

Rastrigin 0.05 98.4 6 5.4 129.4 6 3.3 123.2 6 6.7 95 6 4.1 98.067.8

Fig. 10 Two runs for function Peaks with (a) CV-Voronoi (37
samples) and (b) LOLA-Voronoi (47 samples), separately

Fig. 11 Two runs for function Easom with (a) CV-Voronoi (83
samples) and (b) LOLA-Voronoi (126 samples), separately

Fig. 12 Convergence histories (mean 1 SD) of different approaches for functions: (a) Peaks, (b) Shekel, and (c) Ackley10.
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LOLA-Voronoi gives fixed weights to exploration and exploita-
tion, which could not change with problems at hand. To highlight
the rigidity of LOLA-Voronoi, the function Peaks with two differ-
ent prespecified critical values of RMSE is further investigated in
this study. In the first situation, the prespecified RMSE value for
function Peaks is roughly set to 0.5. Considering that the region
close to the origin of Peaks contains several local optima while
the rest regions are almost zeros, a rapid way to improve the meta-
model accuracy in this situation is to concentrate on exploiting the
highly nonlinear region and ignore the flat region temporarily.
Figure 10, respectively, illustrates a run from CV-Voronoi and
LOLA-Voronoi, where circles represent the initial samples and
triangles represent the new samples. It is observed that CV-
Voronoi achieves the desired RMSE with only 33 samples by giv-
ing priority to exploitation, whereas LOLA-Voronoi requires
nearly 51% more samples to reach the desired value of RMSE
because of the rigid treatment of exploration and exploitation. In
the second situation, the prespecified RMSE value for function
Peaks is set to 0.03. In this situation, the early stage of sampling
process should give priority to exploitation, which is similar to the
first situation, while in the later stage, since the highly nonlinear
region has been fitted relatively well, the priority should be given
to exploration. The proposed error-pursuing approach samples
more points on the multimodal region while still covering the flat
region with relatively sparse points. As a result, CV-Voronoi
achieves the desired RMSE with 134 samples, whereas LOLA-
Voronoi requires nearly 36% more samples.

The results of function Easom offer the further demonstration
about the shortcomings of LOLA-Voronoi. Figure 11, respectively,

picks a run from CV-Voronoi and LOLA-Voronoi for function
Easom. Note that Easom is a single-modal function and the nonli-
nearity of which is smaller than that of the multimodal function
Peaks. As we can see, LOLA-Voronoi puts emphasis on exploiting
the single-modal region, that results in the largest sample size to
reach the desired RMSE in this case. Compared with LOLA-
Voronoi, CV-Voronoi does not have an explicit expression for
describing the relationship between exploration and exploitation.
However, the comparative results show that the proposed approach
provides the best performance in this study.

It is observed that for test cases in group 1, MIPT provides bet-
ter performance than MSE. It is mainly because MIPT generates
samples with both good space-filling and projective properties,
while MSE only considers the space-filling property under the
Bayesian framework. Since samples generated by MSE have the
property of clustering on the boundary of design space in high
dimensions, MSE provides the worst performance in functions
Shekel, Hart6, and Ackley10.

To further verify the discussions above, we plot the conver-
gence histories of different approaches for functions Peaks,
Shekel, and Ackley10 in Fig. 12. It is observed that CV-Voronoi
converges faster than other approaches. For function Shekel,
LOLA-Voronoi, SFCVT, and MSE improve the metamodel accu-
racy so slowly in the later stage that they could not reach the
required RMSE within the limited number of function evalua-
tions. For function Ackley10, it is difficult to improve the metamo-
del accuracy in such a high dimensional domain. No approach
except CV-Voronoi can reach the required RMSE within the lim-
ited computing resource. Note that because the MSE approach

Fig. 13 Required number of samples (mean 1 SD) to reach specified RMSE by CV-Voronoi with different numbers of initial sam-
ples for functions (a) Peaks, (b) Shekel, and (c) Hart6.
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samples more points on the boundary of the design space, it could
not effectively improve the metamodel accuracy for this high
dimensional case.

Moreover, from the convergence histories in Fig. 12, we can
observe the influence of the critical RMSE value on the perform-
ance of each approach. In the early stage with a large critical
RMSE value (e.g., for Shekel, large critical RMSE means
RMSE� 0.2), each approach converges with much fluctuation.
Obviously, at this RMSE level, the constructed metamodel is
coarse and, thus, is meaningless in practice. In later stage with a
small critical RMSE value, the test results show that the proposed
approach provides the most efficient way to improve the metamo-
del accuracy from low to high dimensions.

For test cases in group 2, since the behaviors of these test cases
are similar everywhere, emphasis should be placed on exploration
in order to improve the metamodel accuracy efficiently. As
expected, MIPT and MSE have the best performance in test cases
of group 2 since they sample the design space evenly. Note that
the results of CV-Voronoi are very close to those of MIPT and
MSE, which shows a good adaptability for problems at hand.

Based on the comparative results, it can be concluded that CV-
Voronoi outperforms LOLA-Voronoi and SFCVT. CV-Voronoi
performs significantly better than the space-filling sampling
approaches, such as MIPT and MSE in test cases of group 1, and
has the comparable performance to MIPT and MSE in test cases
of group 2.

Sensitive Analysis of the Number of Initial Samples. An im-
portant factor influencing the efficiency of sampling approaches is
the number of initial samples. Proper number of initial samples
actually depends on problems at hand. Some problems may
require few initial samples (thus allowing for more adaptively
sampled points) while others may require more. Generally, it is
suggested that the number of initial samples should depend on the
dimension of problems.

To study the impact of the number of initial samples on the per-
formance of the proposed approach, we applied CV-Voronoi
approach with different numbers of initial samples for functions
Peaks, Shekel, and Hart6 to reach the specified RMSE listed in
Table 2. Each experiment runs for 10 times. Test results shown in
Fig. 13 indicate that the number of initial samples (5 � n) adopted
in this study is proper for these three cases. In addition, it is
observed that for these three cases, too few initial samples bring
few information and, thus, lead the proposed approach to con-
verge slowly, while too many initial samples make the majority of
the samples not chosen adaptively, which, also, leads the proposed
approach to require more samples to reach the desired metamodel
accuracy.

Conclusions

In this paper, we propose a novel, simple, and robust cross-vali-
dation-based sequential sampling approach that adaptively
improves the metamodel accuracy by the error-pursuing mecha-
nism. First, it employs the Voronoi diagram approach to partition
the entire design space into a set of Voronoi cells according to the
current samples, which helps us to concentrate on several regions
of interest rather than the entire design space. Second, the proposed
approach calculates the prediction errors of current samples by the
leave-one-out cross-validation approach. Since any point falls into
a Voronoi cell Ci is closer to the existing point pi, the prediction
error of pi can be used to simply represent the error behavior of Ci.
Then the proposed approach identifies the sensitive region with the
largest prediction error in current iteration. Finally, a new point is
sampled in the obtained sensitive region based on the maximin cri-
terion. During the sampling process, the CV-Voronoi approach
exploits locally by the identification of sensitive region and
explores globally with the shift of sensitive region.

A comparison study has been conducted to investigate the pro-
posed method with LOLA-Voronoi, SFCVT, MIPT, and MSE on

eight test cases with different features. The test results have dem-
onstrated that the proposed approach is robust and efficient. It
requires the smallest sample size to reach the desired metamodel
accuracy for test cases of group 1, while having a comparable per-
formance to MIPT and MSE for test cases of group 2.

The only information utilized in CV-Voronoi to guide the sam-
pling process is the existing samples and the previously con-
structed metamodels. Hence, CV-Voronoi is simple and runs in a
compact way. It can run with any metamodel technique to
improve the accuracy of global metamodeling efficiently, which is
meaningful for simulation-based engineering problems.
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Nomenclature

C ¼ a set of Voronoi cells
Ci ¼ the corresponding Voronoi cell of point pi

Csensitive ¼ the identified sensitive Voronoi cell

ei
LOO ¼ the prediction error of pi

f ¼ the real model
f̂ ¼ the metamodel of f

NðPÞ ¼ number of samples in P
P ¼ the sample set
pi ¼ an existing sample in P

pnew ¼ a new sample obtained by the proposed approach in
one iteration

psensitive ¼ the existing point contained in Csensitive

Pi
rand ¼ a set of random samples used to describe Ci

Psensitive
rand ¼ the corresponding random set of the sensitive Voronoi

cell Csensitive
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