Technical Report ITL-99-4

June 1999

US Army Corps

of Engineers
Waterways Experiment
Station

An Introduction to Software Quality

by Buvaneswari K. Venkataraman, William A. Ward, Jr.,
University of South Alabama

WE

Approved For Public Release; Distribution Is Unlimited

Prepared for Headquarters, U.S. Army Corps of Engineers

The contents of this report are not to be used for advertising,
publication, or promotional purposes. Citation of trade names
does not constitute an official endorsement or approval of the use
of such commercial products.

The findings of this report are not to be construed as an

official Department of the Army position, unless so desig-
nated by other authorized documents.

@PRINTED ON RECYCLED PAPER

Technical Report ITL-99-4
June 1999

An Introduction to Software Quality

by Buvaneswari K. Venkataraman, William A. Ward, Jr.

Faculty Court West 20

School of Computer and Information Sciences
University of South Alabama

Mobile, AL 36688

Final report

Approved for public release; distribution is unlimited

Prepared for U.S. Army Corps of Engineers
Washington, DC 20314-1000

Under Contract No. DACA39-93-K-0016

Monitored by U.S. Army Engineer Waterways Experiment Station
3909 Halls Ferry Road, Vicksburg, MS 39180-6199

it

US Army Corps

of Engineers
Waterways Experiment
Station

INFORMATION
| TECHNOLOGY
LABORATORY

HEADQUARTERS

BUILDING —.- Z3

GEOTECHNICAL
LABORATORY

MAIN
ENTRANCE

FOR INFORMATION CONTACT:
PUBLIC AFFAIRS OFFICE

U.S. ARMY ENGINEER

WATERWAYS EXPERIMENT STATION
3909 HALLS FERRY ROAD
VICKSBURG, MISSISSIPPI 39180-6199
PHONE: (601) 634-2502

ENVIRONMENTAL §
LABORATORY —|

SCALE
] 500 m

e e —]
AREA OF RESERVATION : 2.7 sq km

Waterways Experiment Station Cataloging-in-Publication Data

Venkataraman, Buvaneswari K.

An introduction to software quality / by Buvaneswari K. Venkataraman, William A. Ward, Jr. ; prepared for
U.S. Army Corps of Engineers ; monitored by U.S. Army Engineer Waterways Experiment Station.

40 p. :ill. ; 28 cm. — (Technical report ; ITL-99-4)

Includes bibliographical references.

1. Computer software — Quality control. 2. Total quality management. I. Ward, William A. 1I. United
States. Army. Corps of Engineers. lll. U.S. Army Engineer Waterways Experiment Station.
IV. Information Technology Laboratory (U.S. Army Engineer Waterways Experiment Station) V. Title.
VI. Series: Technical report (U.S. Army Engineer Waterways Experiment Station) ; ITL-99-4.
TA7 W34 no.ITL-99-4

Contents

Preface. e e iv
1—INtroducCtion e 1
Why Software Qualit? 1
Definition of Software Qualt 2
2—Software Qualit via Better Qualif Evaluation 4
McCall's Model. 5
ISO 9126, . ..o 5
Other Models e 7
3—Software Qualit via Better Measurement 8
Choice Of MetriCs.o e e 10
Metrics for the Software Lifeyle 10
Metrics for Oect-Orientation. 11
Combinirg Individual Metrics i 11
4—Software Qualit via Better Processes 13
Total Qualiy Management. 14
ISO9000 Standard. 15
Capability Maturity Model 18
Personal Software ProcessModel 19
5—Software Qualit via Better Tools. i 20
Industly Practice.ot 20
CASE Tools and Environments.t 22
6—CONCIUSIONS 24
References 25
SF 298

Preface

The production of this report was sponsored by Headquarters, U.S. Army
Corps of Engineers, and monitored by the U.S. Army Engineer Waterways
Experiment Station (WES) Information Technology Laboratory (ITL) under
Contract No. DACA39-93-K-0016 from 1 January 1995 through 30 June 1995.
The contract was monitored by Dr. Windell F. Ingram, Chief, Computer Science
Division, ITL. Dr. N. Radhakrishnan was Director, ITL.

This report was prepared by Ms. Buvaneswari K. Venkataraman and
Dr. William A. Ward, Jr., of the University of South Alabama.

At the time of publication of this report, COL Robin R. Cababa, EN, was
Acting Directer of WES.

The contents of this report are not to be used for advertising, publication, or
promotional purposes. Citation of trade names does not constitute an
official endorsement or approval of the use of such commercial products.

1 Introduction

Why Software Quality?

Software has become pervasive in modern civilization. Virtually all
businesses use computers to perform billing, payment, inventory control, pur-
chasing, process control, business forecasting, and numerous other crucial func-
tions. Personal computers are in a large percentage of American households and
are used to manage household expenses, file income taxes, and access Internet
services, as well as for recreational purposes. These visible computer systems,
however, are outhnumbered by a host of invisible systems embedded in every-
thing from appliances to automobiles. Poor performance or failure of these
systems may result in annoyance to the customer, loss of customers, or even loss
of life. The quality of the software controlling these systems is, therefore, an
important concern. Some examples of the consequences of poor software quality
serve to emphasize this point.

In the late 1970s, the U. S. General Accounting Office performed a study
(Comptroller General of the United States 1979) of nine software development
projects performed for the Department of Defense costing $6.8 million. That
amount was distributed as follows:

a. $3.2 million for software delivered to the Government but never
successfully used

b. $1.95 million for software never delivered

c. $1.3 million for poor quality software requiring extensive modification or
ultimate abandonment

d. $198,000 for software requiring modification before being used
e. $119,000 for software used as delivered

This study has been criticized as being unrepresentative or too small in scope,
but the problems it noted are still with us.

Chapter 1 Introduction

Space programs provide spectacular examples of software failure. Less than
five minutes after its launch on July 22, 1962, the rocket carrying the
U.S. Mariner | Venus probe had to be destroyed because of an error in the pro-
gramming of a ground guidance control computer (Sethi 1996). On June 4,
1996, because of a software exception in an on-board computer, the French
rocket Ariane 5 exploded less than one minute after launch (SIAM News 1996).
The exception was caused because the author of the program believed that the
particular program variable involved would never be subject to an overflow
error, and so did not include code to trap and handle that condition. Ironically,
the program involved was written in Ada, a language which claims program
reliability and robustness as strengths.

On a more somber note, several individuals were fatally injured due to a
malfunction in the Therac 25, a medical device for administering therapeutic
radiation to patients (Joyce 1987). The machine was designed to operate in two
modes, brief high radiation dosages and longer low dosages; the original, non-
computerized versions of these machines had mechanical interlocks to prevent a
long high radiation mode. As a cost saving measure, the Therac 25 implemented
this interlock in software; under certain combinations of inputs, the software
interlock could (and did) fail. Other examples of software disasters are noted by
Brown, Earl, and McDermid (1992) and by Gibbs (1994).

Definition of Software Quality

The International Standards Organization (ISO) formally defines quality as
“the totality of characteristics of an entity that bear on its ability to satisfy stated
and implied needs.” More generally, people think of quality as conformance and
compliance to specifications continuously and consistently. According to Garvin
(1984), quality is multifaceted and can be viewed from several perspectives, the
transcendental view, the user-based view, the product-based view, the manufac-
turing view, and the value-based view. The transcendental view equates the
quality of a product to “innate excellence” that cannot be described but can only
be recognized if exposed to it. If this view is correct, then quality is inherently
unmeasurable and the use of quantitative methods to improve quality is a waste
of time. Engineers in general, and software engineers in particular, deny this
view.

The user-based approach views the quality of a product as the ability of the
product to provide maximum satisfaction to the user by being durable and
performing to the best of its capability. The expectations of users (including
businesses as well as individuals) have to be met for a product to be successful.
The number of businesses that depend on purchased software has multiplied
dramatically, and their requirements range from consumer products to space
applications. Due to the critical nature of many of these applications, it is
imperative that software consistently meets its specified functions. Thus, the
pervasiveness of software over the past decade in virtually all walks of life has
brought about an increased emphasis on the user-based view of software quality.

Chapter 1 Introduction

Also, the increased use of PCs and the multiplicity of software packages for PCs
has increasingly tied the user-based view to the product view and the value-
based view (to be discussed below).

The product-based view considers that quality is dependent on the inherent
characteristics of a product and can be quantified based on the presence or
absence of a number of attributes. Organizations all over the world allocate
considerable resources for their quality assurance programs due to the belief that
a product's market share and profitability are firmly tied to its quality. An organ-
ization's reputation and market gains are thus a measure of the quality of its
products. Good quality also results in lower rework costs, thereby improving
profits.

The manufacturing view focuses on “conformance to requirements” and
defines quality as being a function of the process quality. Therefore, it is not
surprising that in almost every organization involved in manufacturing, there are
groups that exclusively monitor and control quality. Like any other manufac-
turer, a software development organization also has independent teams that
thoroughly test/audit the software product, removing every possible error or bug
before it reaches the customer (Brooks 1995). In fact, these teams serve as the
customers for the product development team. Such teams are indispensable for
organizations that make a conscious effort to deliver products of high quality.
Quality is of strategic importance to organizations, and by constantly delivering
products of the highest quality, they can retain their competitive edge in the
market.

The value-based approach defines quality as that which provides the required
performance at affordable and acceptable costs. Therefore the other aspects of
software quality must be obtained without inordinate expenditure. As will be
seen, this implies defect detection and repair early in the software life cycle,
when these activities are cheaper to perform. This means that the quality of the
development process contributes significantly to product quality, and so the
value-based view is influenced by the manufacturing view.

The rest of this report is organized as follows. Chapter 2 discusses software
guality improvement through better evaluation methods and models. Chapter 3
deals with measuring software quality. Improved management and development
processes and standards are the topic of Chapter 4. Use of quality tools and
environments to develop quality software is discussed in Chapter 5. Chapter 6
presents some concluding remarks.

Chapter 1 Introduction

2 Software Quality via Better
Quality Evaluation

Almost every organization has its own internal standards that provide a
guideline for measuring and monitoring quality. Standards increase the level of
understanding of the process by the project members, thereby promoting better
communication. In addition to standards, organizations need clearly defined
quality models to effectively meet the demands from customers. Such models
list major attributes that a high-quality software product should possess (e.qg.,
reliability and maintainability). The model may then break down the major
attributes into subattributes to produce a tree-type hierarchy. Another possibility
involves relating the major attributes to the subattributes in such a way that one
or more of the latter are each shared with several of the former to produce a
graph (instead of a tree). The model may also be accompanied by an evaluation
methodology indicating what should be measured to produce a score for each of
the the attributes and ultimately for the the entire software product.

Models for software quality evaluation facilitate clearer understanding of the
entire process of software engineering. Quality models are useful in predicting
reliability, in managing quality during the development process, and in assessing
the complexity of software (Kan, Basili, and Shapiro 1994). Generally, reliabil-
ity models use statistical methods to measure the reliability of software. Most
guality management models focus on defect-removal and defect-tracking during
the development process. The complexity models look at the structure of the
software to determine quality. Every software development organization has a
guality evaluation model whether it realizes it or not. Often the model is uncon-
sciously selected as a side effect of some other business decision (e.g., setting a
deadline or allocating personnel to particular activities). It is important for such
organizations to explicitly develop a quality model that best suits their interests
and implement it. Over the past few years, many quality models have been built
by a number of researchers to aid in this effort.

Chapter 2 Software Quality via Better Quality Evaluation

McCall's Model

One of the earliest quality models was proposed by McCall (McCall,
Richards, and Walters 1977); this model describes quality as being made up of a
hierarchical relationship between the quality factors, quality criteria, and quality
metrics. McCall's systematic approach to quantify quality is as follows.

a. Determine all of the factors that would have an effect on the software
quality.

b. Identify the criteria for judging each factor.

c. Define metrics for each of the criteria and establish a normalization
function that defines the relationship between the metrics of all the
criteria pertaining to each factor.

d. Evaluate the metrics.

e. Correlate the metrics to a set of guidelines that every software
development team could follow.

f. Develop recommendations for the collection of metrics.

The term “quality factor” defines some key characteristic that a product would
exhibit. “Quality criterion” represents some attribute of the quality factor that
defines the product. “Quality metric” denotes a measure that can be used to
guantify the criterion. McCall identified a number of criteria like traceability,
simplicity, machine-independence, storage efficiency, operability, error toler-
ance, expandability, conciseness, etc. that could be associated with the quality
factors. The metrics he developed involved questions dealing with the degree of
compliance to the criteria and had either a “yes” or a “no” for an answer. The
responses for these questions would be highly subjective and generally difficult
to interpret into reasonable indicators of quality. McCall's quality factors and
their associated critera are shown in Table 1; note that some criteria are shared
by more than one factor.

ISO 9126

Recently, a new standard for software product evaluation, ISO 9126, has been
developed by the ISO (1992). This standard has identified six basic quality char-
acteristics that must be present in a quality software product (Kitchenham and
Pfleeger 1996). The standard also provides a sample decomposition of these
basic characteristics into subcharacteristics; these are listed in Table 2. An alter-
nate decomposition of the ISO 9126 basic characteristics is described in
Tervonen (1996). Tervonen's model combines aspects of the software quality
metrics (SQM) model (McCall, Richards, and Walters 1977) with ISO 9126 to

Chapter 2 Software Quality via Better Quality Evaluation

Table 1

McCall's Software Quality Factors and Their Associated Criteria

Factor Criteria

Correctness Traceability, completeness, consistency
Reliability Consistency, accuracy, error tolerance
Efficiency Execution efficiency, storage efficiency
Integrity Access control, access audit

Usability Operability, training, communicativeness

Maintainability

Simplicity, conciseness

Testability Simplicity, instrumentation, self-descriptiveness, modularity

Flexibility Self-descriptiveness, expandability, generality, modularity

Portability Self-descriptiveness, software-system independence, machine independence
Reusability Self-descriptiveness, generality, modularity, software-system independence,

machine independence

Interoperability

Modularity, communications commonality, data commonality

! From McCall, Richards, and Walters (1977)

Table 2

ISO 9126 Software Quality Characteristics and Subcharacteristics

Characteristic Subcharacteristics

Functionally Suitability, accuracy, interoperability, security
Reliability Maturity, fault tolerance,recoverability
Usability Understandability, learnability, operability
Efficiency Time behavior, resource behavior

Maintainability

Analyzability, changeability, stability, testability

Portability

Adaptability, installability, conformance, replaceability

! Adapted from a figure in Kitchenham and Pfleeger (1996)

produce the SQM synthesis model. Unlike the previous two models, this model
has three levels; the ISO characteristics (a) are decomposed into criteria

(b) which are in turn broken down into factors (c). Tervonen proposes associat-
ing each of the factors with several checklists. These checklists are made up of
guestions that a knowledgeable software inspector may answer regarding fea-
tures in the code. The scores for these checklists would ultimately be combined
to produce quality measures for the factors, the criteria, and finally the character-
istics. Tervonen also discusses the use of software tools to support the assess-

ment process.

Chapter 2 Software Quality via Better Quality Evaluation

Other Models

A model based on a variation of the value-based view of quality has been
proposed by Simmons (1996). In her study, nine Australian organizations were
surveyed to determine how they measured the effectiveness of information tech-
nology projects. The aspect of software quality addressed here was not the qual-
ity of code itself, but what the software did to improve business. The results
indicated that six of the nine believed that measuring this effectiveness was
important. All nine generally wanted a quantifiable financial metric, and some
even used alternative nonfinancial measures. Based on these results, the author
constructed a framework for categorizing benefits according to whether they
increased efficiency, increased effectiveness, added value, produced a market-
able product, or provided necessary infrastructure for other activities. Simmons
noted that economic measures were generally used for the first, second, and
fourth categories, but that there were no direct measures for the third and fifth.

A general framework for constructing software quality models has been pro-
posed by Dromey (1996) who notes, “We cannot build high-level quality attri-
butes like reliability or maintainability into software. What we can do is identify
and build in a consistent, harmonious, and complete set of product properties
(such as modules without side effects).” The problem then becomes one of
linking the measurable product properties to the high level attributes. To solve
this problem, he suggests the use of four categories of quality-carrying proper-
ties: correctness properties, internal properties, contextual properties, and
descriptive properties. A five-step process for constructing models is based on
these properties.

a. Specify the high-level quality attributes (e.g., reliability or
maintainability).

b. Determine the various components of the product at an appropriate level
of detail (package, subroutine, statement).

c. For each component, determine and categorize its most important quality-
carrying properties. For example, a subroutine component should have
the “side-effect free” quality-carrying property; this property is classified
as “contextual.”

d. Propose links relating the quality-carrying properties to the quality attri-
butes, or, alternatively, use links from the four property categories to the
attributes.

e. Iterate over the above steps, using a process of evaluation and refinement.

Dromey illustrates the use of this procedure by constructing an imple-

mentation quality model, a requirements quality model, and a design quality
model.

Chapter 2 Software Quality via Better Quality Evaluation

3 Software Quality via Better
Measurement

There are a variety of decision support systems and information systems that
are available off-the-shelf for predicting the cost, schedules, and other strategic
details whenever a software project is initiated. However, quality itself cannot
be predicted just by employing such tools. Therefore, it is essential that organi-
zations clearly define and quantify the quality that is desired from the software
product. To make realistic assessments about the quality of a software product,
it is imperative that measurements be performed. This enables organizations to
establish and regulate the levels of acceptable quality, predict quality, and to
continuously strive to improve quality. Collection of data about the process and
the product is the primary way of monitoring quality in a number of organiza-
tions. Generally, an organization's requirements and goals dictate the types of
measurement that would be suitable.

Halstead (1977), in his pioneering work on software physics, proposed a
number of methods for measuring software. He quantitatively evaluated key
characteristics or metrics that facilitate effective measurement of a program.
Some of these are program level, intelligence content, modularity, program
volume, redundancy factor, branch count, total operators and operands, and
program length. These metrics not only facilitate software measurements but
also help in making realistic estimates of requirements for future programming
projects. The other benefits of using such exhaustive metrics are initial error
rate assessment, programming language evaluation, and the effects of writing
modular code. In any programming project, a great deal of time and effort are
spent on troubleshooting errors in the code. Hence, an understanding of the
initial error rate would definitely help in scheduling the release date of a soft-
ware product. Decisions about the program implementation language could be
made with a greater degree of awareness with metrics like the program level and
the program volume.

Boehm (1987) identified ten metrics in the software development process.
Some of those that pertain to software quality are as follows:

Chapter 3 Software Quality via Better Measurement

a. The cost of correcting an error after delivery to the customer is 100 times
more than for correction of an error that is detected earlier.

b. About 60 percent of the software development time is spent on require-
ments and testing. Only 25 percent of the time is spent on testing.

c. The most cost-effective way of detecting and correcting software error is
inspection, which can capture about 60 percent of all errors.

As far as the size of the software is concerned, the most important metrics are
the noncomment lines of code and function points (Fps). The number of lines of
source code was the primary metric used to measure productivity until 1979
when Albrecht of IBM developed the FP metric (Jones 1997). FPs measure the
size of a system in terms of its constituent components, namely, its inputs, out-
puts, inquiries, and files (Kemerer and Porter 1992). Depending on the function-
ality that needs to be implemented in a system, the number of source lines of
code that have to be written could be found out. Reuse of parts of code has a
dramatic effect on productivity as well as quality. To evaluate the quality of a
software product, the most common metric employed is the number of defects
per thousand lines of code (KLOC).

The other commonly employed metric is complexity (Arthur 1993). Com-
plexity could be measured using McCabe's (1976) cyclomatic complexity (CC).
This is a mathematical technique to identify the constituent modules of a soft-
ware product that would be difficult to test and maintain. It is widely believed
that a CC measure of 10 or less results in zero-defect software and would also
facilitate reuse and maintenance. These factors, no doubt, influence the end
quality of a software product. The actual steps involved in developing measure-
ment procedures could be summarized as follows:

a. Establish the objectives of the measurement clearly.
b. Develop models for the process of collecting data.

c. ldentify the resources (people, training, tools) needed to accomplish the
measurement.

d. Create and implement the measurement process.
e. Evaluate the results of the measurement.

f. Constantly monitor the measurement process for continuous
improvement.

During the software testing process, code inspections and walk-throughs are
generally performed to evaluate the quality of software. The average lines of
code inspected, the average inspection rate, the average effort per KLOC, and
the defect-removal efficiency are some of the metrics that are typically collected
during this stage (Barnard and Price 1994). Even if a number of measurements

Chapter 3 Software Quality via Better Measurement

10

are performed and metrics data are collected, they are of absolutely no use unless
rigorous analyses are performed on the data to determine ways to continuously
improve the development process.

Obviously this chapter can only touch on the issues and concepts related to
software measurement. Interested readers should refer to Pfleeger (1997) as a
starting point for further study.

Choice of Metrics

It is not necessary to employ an overwhelming number of metrics. The qual-
ity control team has to select only those metrics that would yield relevant, accur-
ate, and useful information about the process and the product. Metrics that are
established arbitrarily could have a negative impact on the quality procedures of
an organization. Each metric, before selection, has to be subjected to severe
scrutiny with regard to measurement scale, validity, reliability, and predictability
(Kan, Basili, and Shapiro 1994). A valid metric is that which has the capability
to measure the intended parameter, and reliability refers to the ability of the
metric to consistently measure the parameter correctly. Once all the metrics are
collected, they have to be viewed in an integrated context to clearly discern the
effect on the total quality of the product. This approach is feasible only if a
coherent, integrated model of the process, product, and desired quality is built.

The Goal/Question/Metric paradigm (Basili and Weiss 1984) is a technique
for establishing and evaluating a set of operational goals. It is based on the fact
that the goals of an organization are the driving forces behind its quality stan-
dards. This is a methodical approach to integrate the goals or the objectives with
the process and quality models, based on the specific requirements of the project,
the customer, and the organization. Once the goals are defined, they are trans-
lated into a set of quantifiable questions that would extract information from the
models (Kan, Basili, and Shapiro 1994). With these questions and the models,
metrics are established that enable data collection and interpretation.

Metrics for the Software Life Cycle

Metrics collection should encompass each and every stage of the software
development process. Quality consciousness must be instilled into the devel-
opers' minds in such a way that quality checks are performed at every stage of
the software development life cycle. Most of the defects in a software product
are introduced during the requirements and the design stage. The major diffi-
culty that is faced by organizations after the completion of projects is that the
systems do not conform to the user's specifications. Consequently, validation
checks that would focus on specific aspects of the system at every stage of the
software life cycle would be beneficial.

Chapter 3 Software Quality via Better Measurement

Chapter 3 Software Quality via Better Measurement

The requirements stage generally yields descriptions of the expected inputs
and outputs of the system. Therefore, the parameters that would be of interest at
this stage are correctness, consistency, and completeness. The next step, design,
should be validated with the degree of modularity, coupling, and cohesion in the
design document. At the end of the analysis phase, the efficiency, complexity,
appropriateness, ease of understanding, and ease of implementation of the design
are reviewed. Once the design has been implemented into code, thorough testing
is performed to validate the parameters, conformance to standards, documenta-
tion, maintainability, and reliability. The testing phase of the software life cycle
generally is subject to rigorous evaluation as to the feasibility of the test proce-
dures, thoroughness, and functionality. During maintenance, operational evalua-
tion is performed that considers availability, performance, and effectiveness.

Metrics for Object-Orientation

In recent years, the object-oriented paradigm has been regarded as yielding
significant improvement in the quality of software. The basic characteristics of
the object-oriented methodology, encapsulation, inheritance, and polymorphism
are instrumental in achieving better quality. The analysis, design, and testing
stages are inextricably woven together in this paradigm so testing is generally
incremental. Inspection, code walk-throughs, and compilation are some of the
techniques used in testing object-oriented software. Due to the encapsulated
nature of the software, several levels of testing may be done. Class testing deals
with developing test cases and thoroughly testing the basic unit of the software.
In cluster testing, the focus is on the interaction among cooperating classes.
System testing deals with testing after integration of all components. The major
goal of object-orientation is developing reusable, extensible, and reconfigurable
code (McGregor and Korson 1994). Therefore, any testing methodology for
object-oriented software has to address this goal. Metrics have to be developed
to evaluate the reusability, interactive behavior, structure, and functionality of
the software.

Combining Individual Metrics

Assuming that an appropriate software model has been used, and that metrics
have been gathered for each of the lowest level features in the model, the next
step is to combine the scores at the lowest level to produce scores for the higher
levels and, ultimately, an overall score. An appropriate technique to accomplish
this is the multi-element component comparison and analysis (MECCA) method-
ology (Ulvila and Brown 1982). The application of MECCA requires a hier-
archy of attributes, which should already be provided by the quality model.

Every attribute is assigned a weight indicating its importance in the software
guality evaluation; these are assigned so that the sum of the child weights sum to
one for each individual parent. Scoring is accomplished by assigning scores to
each of the leaf nodes; a parent's score is the weighted average of the scores of
its children. This method has been successfully used by Magnavox Electronic

11

12

Systems Company (1990) in their evaluation of software development
environments for Version 1 of the Advanced Field Artillery Tactical Data
System.

Chapter 3 Software Quality via Better Measurement

4 Software Quality via Better
Processes

The quality of the final product in every manufacturing discipline is directly
dependent on the quality of the process. Standards are generally established that
clearly explain the sequence of steps to be followed to create the product.
Adherence to the steps by every member of the manufacturing team is an impor-
tant criterion in the successful implementation of the standards. This is true in
the case of software development as well. Establishment of a well-defined pro-
cess infrastructure is instrumental in facilitating continuous improvement of the
process.

The software process maturity (Paulk et al. 1993) of a software development
organization is defined as “the extent to which a specific process is explicitly
defined, managed, measured, controlled, and effective.” The software process
capability is defined as “describing the range of expected results that can be
achieved by following a software process.” Immature organizations generally
have the following problems.

a. No organized standards base.
b. Existence of standards not known to many developers.
c. Procedures and standards exist but are not enforced rigorously.

d. Standards followed most of the time but schedule crunches cause slack in
testing.

Crisis management is the norm in such organizations. Whenever there is a
dispatch schedule that has to be met, it is done at the cost of testing and reviews.
The quality of the final product would be compromised in such situations. In
mature organizations, effective planning is performed to establish well-defined
procedures for the software development process, and the procedures are reli-
giously followed throughout.

The remainder of this chapter discusses software process quality from several
increasingly specific perspectives. Total quality management (TQM) is a

Chapter 4 Software Quality via Better Processes

13

14

management approach to quality that may be applied by organizations in any
field to produce quality products. While TQM is a rather general concept, the
next section addresses the ISO 9000 Standard, which provides standardized
guidance in the areas of production and management for achieving quality. The
Capability Maturity Model (CMM) (Paulk et al. 1993), developed by the Soft-
ware Engineering Institute (SEI), is the subject of the next section. Its guidance
is specific to software development organizations and teams. Finally, the Per-
sonal Software Process (PSP) is discussed; it addresses the performance of
individual software engineers.

Total Quality Management

TQM is another popular concept that has been adopted by many companies to
achieve long-term success. Specific implementation methodologies for realizing
TQM have been proposed in the past decade (Kan, Basili, and Shapiro 1994).

W. E. Deming, one of the best known quality advocates in recent years, treats
quality as a way of life. His philosophy stresses the importance of management
commitment toward setting quality objectives. Some of Deming's principles are:

a. Quality is the responsibility of the management.
b. Quality should not be compromised at any expense.
c. Defects, if present, are caused by the system rather than the workers.

d. The process should be managed in such a way that quality is built into the
system.

e. Incentives, rankings, and appraisals to judge individual achievement
basically threaten and frighten the workers. This would adversely affect
their feelings of security and motivation. Such merit systems have to be
eliminated in order to foster cooperation among the workers.

f. Vendors and subcontractors should be chosen based on their ability to
deliver quality products and not on the sole basis of cost.

Recently, several novel techniques have been deployed for total quality
management during every stage of the software development life cycle (Haag,
Raja, and Schkade 1996). Statistical process control is one such technique that
could be widely used to gain insight into the software development process
(Card 1994). Techniques such as this are dependent on measuring the quality of
software during its development so that improvements can be made. The sig-
nificance of quantitative evaluation of software is thus evident.

Quality management and compliance to quality standards are influential fac-
tors that have started having a substantial effect on the software industry all over
the world. Due to the customers' increased awareness of these global standards,

Chapter 4 Software Quality via Better Processes

it has now become imperative that organizations that were indifferent to
implementing good quality practices take a serious look at their software
process.

ISO 9000 Standard

The other important factor that influences quality management principles in
the software development process is the ISO 9000 standard developed by the
ISO. More than 50 nations all over the world have adopted the ISO 9000
standards (Schmauch 1994). The main driving force behind the global accep-
tance of this standard lies in its adoption by Europe. This has put a lot of pres-
sure on manufacturers worldwide who are interested in the European market.
The development and deployment of international standards such as the 1ISO
9000 have brought about a universal measure of quality in many products. The
basis for the ISO 9000 standard is the premise that a right production and man-
agement system produces the right product. These standards are applicable to
any type of environment because they are generic models and not specific to any
type of business. The ISO 9000 standard places much emphasis on documenta-
tion of each and every procedure that exists in the process. Good documentation
ensures a greater degree of control, auditability, verification/ validation, and pro-
cess improvement (Schmauch 1994).

ISO 9000 certification is granted to an organization when it demonstrates that
its quality system conforms to the 1ISO standard during an audit by a third party
accredited registrar. There are five sections to the ISO 9000 standard, and, based
on the type of business they are in, organizations decide which standard to use.
There are 20 standards elements specified by the ISO standard; they are
described in the following paragraphs. Most of these standards elements are
applicable to the software development environment directly. However, some of
them require proper interpretation in order to be useful in that environment.

a. Management responsibilityA quality policy must exist for the entire
organization and must be understood and implemented by every
employee. Management must show its commitment to quality by author-
izing a high-level manager who is responsible for the quality system and
its periodic review. This is applicable to software development organi-
zations as well.

b. Quality system A clearly defined quality system should be present to
ensure that a product meets its specified requirements. Generally, organ-
izations develop a quality manual that documents their quality
procedures.

c. Contract review The organization should have methods to ensure that
the customer requirements concerning the product are understood thor-
oughly and are agreed upon by both parties.

Chapter 4 Software Quality via Better Processes

15

16

Design contral Well-documented procedures should exist for the design
process and design review and for design change control.

Document control All necessary documents should be available to the
right persons at the right time. Documents have to be current, and obso-
lete documents have to be removed. The documents produced during the
different stages of the development process have to be monitored,
updated, and approved by the document control team.

Purchasing In addition to maintaining quality in-house, if there are com-
ponents that are purchased from outside vendors, there should be some
system to evaluate the vendor based on previous history of performance,
quality, and timeliness.

Purchaser-supplied productf some components are supplied by the
customer, there should be some means of ensuring safe storage and main-
tenance of those parts.

Product identification and traceabilityAt any stage during the dev-
elopment process, it should be possible to trace which component went
into which final product. This element of the ISO standard is oriented
toward a manufacturing environment. Nevertheless, it is applicable to
the software process where component parts of a huge software product
are invariably developed by small teams. Version control and config-
uration management of software are directly related to this element.

Process control In software development, the term “process” could be
interpreted as the implementation stage of the software development life
cycle. Controlling the process thus means establishing procedures for
proper monitoring and step-by-step verification of the development of
code.

Inspection and testingldentification of parameters that should be sub-
jected to testing and documentation of the test procedures and results
have to be performed.

Inspection, measuring, and test equipmehy test equipment that is

used should be periodically calibrated and inspected, and all documents
pertaining to these activities should be available. In the software realm,
this could be interpreted as ensuring that tools for testing, verification,
and measurement are maintained properly.

Inspection and test statud he test status that a product is in at any point
of time should be known.

. Control of nonconforming productMethods for dealing with defective

or nonconforming components should be present. In software develop-
ment, any defective part is generally reworked thoroughly until it passes
all the tests.

Chapter 4 Software Quality via Better Processes

n. Corrective action It is not enough to identify and control defective
parts; the root cause of the defects needs to be investigated and corrected.
This would prevent any recurrence of the defects. Again, procedures
must exist to deal with these contingencies. Complete records of the
corrective actions have to be maintained to aid future problem
rectification.

0. Handling, storage, packaging, and deliver@omplete documentation
should be maintained for managing the manner in which products are
delivered to customers. There should be verification procedures to
ensure that the intended product and only the intended product is
delivered to the customer.

p. Quality records Once the quality system is in place, it is necessary to
maintain records to demonstrate that all procedures are carried out effec-
tively. Identification of the types of records needed for this purpose is
essential. Product and process metrics would generally fall under this
category.

g. Internal quality audits Periodic review of the entire process by qualified
personnel should be carried out according to documented procedures.

r. Training. The various levels of skills exhibited by employees and train-
ing needs, if any, have to be identified. For every task in the process, the
required skill level must be documented.

s. Servicing Procedures for after-sales service for the products have to be
chalked out.

t. Statistical techniquesThe various measures and metrics employed dur-
ing the process must be validated. Data collection methods and the cal-
culation of metrics have to be tested for accuracy.

In order to ensure that the ISO 9000 standard is interpreted correctly and
applied in the appropriate manner to information technology (IT), a registration
scheme named TickIT has been developed under the auspices of the TickIT
project office of the U.K. Department of Trade and Industry. This has also been
supported by the British Computer Society. Under this scheme, auditors are
required to follow the Ticklt guide that is based on ISO 9000-3, which specifies
the guidelines for the application of ISO 9001 to the development, supply, and
maintenance of software. This scheme has not yet achieved universal
acceptance.

Chapter 4 Software Quality via Better Processes

17

18

Capability Maturity Model

The CMM provides a layered approach in describing software process
maturity. There are five maturity levels that could be correlated to the process
management methodology of an organization. Each level has specific process
goals, and, if an organization satisfies those goals, it could aim at reaching the
subsequent levels of process maturity, thereby working on continuous improve-
ment. The five CMM levels are described as:

a. Initial. The software processes are not completely defined. Ad hoc man-
agement is performed when sudden crises occur.

b. Repeatable This level is characterized by the existence of process stan-
dards that could be employed to repeat earlier types of projects. Infra-
structure for predicting business factors, such as cost and schedules, is in
place.

c. Defined Organizations in this level have clearly defined, well-
documented procedures for process control, and all software projects
undertaken by the organization follow these standards.

d. Managed The software process is understood thoroughly, and metrics
are collected to constantly monitor and control the quality of the process.

e. Optimizing At this level, the metrics are analyzed and feedback is pro-
vided to enhance the quality of the process. New, innovative techniques
are employed for continuous improvement.

Organizations that have their process maturity at level 1 (Initial) of the CMM
model generally do not possess predictable quality, product functionality, or
schedules. Project success, if any, would be highly dependent on individuals,
and in their absence the situation would become chaotic. This type of organiza-
tion typically is crisis-driven and all procedures are ad hoc. Quality control
measures are abandoned when customer schedules have to be met.

Organizations in the repeatable level generally have basic software standards
defined and followed by the development teams. Earlier successful projects
could be repeated because of the discipline in tracking.

In the defined level, software processes are stable and repeatable throughout
the organization. Separate process engineering groups exist in some organiza-
tions for tailoring any software project to align with the organizational needs.

At the managed level, software quality is considered to be of strategic impor-
tance, and measurements are performed to collect and analyze data about the
process. A framework for evaluation of any software product or process is pre-
sent because of the availability of metrics. When standards are followed and all

Chapter 4 Software Quality via Better Processes

processes are well organized, there is no doubt that products of high quality will
be delivered to the customers.

Organizations at the optimizing level are interested not only in high-quality
products but in striving for continuous improvement. They employ statistical
procedures for understanding the process better.

The maturity level of an organization plays an important role in predicting its
capability in meeting demands of cost, schedules, product functionality, and
quality. Therefore, organizations have to work toward improving their maturity
level incrementally. The awareness of CMM has increased recently among
organizations and their customers, and this is a good development from the
quality perspective.

The CMM and the 1ISO 9000 standard have been instrumental in bringing
about an immense change in the quality outlook of the software industry.
Several factors in the CMM could be correlated to the elements of the ISO
standard and vice versa. A considerable amount of overlapping could also be
observed in these standards. This is due to the fact that both are fundamentally
based on the principle “say what you do and do what you say” (Paulk 1995).
Moreover, in both these standards, the emphasis is on monitoring the process and
its continuous improvement. While the ISO 9000 standard is applicable to vir-
tually all manufacturing and service industries, the CMM is exclusively a soft-
ware development standard. Software development organizations should
consider adhering to both these standards in their quality plans to achieve wider
market acceptance and better process control.

Personal Software Process Model

The PSP, described by Humphrey (1996), is a personal version of the CMM.
Indeed, Humphrey believes that for an organization to move beyond CMM
level 3, individual staff and team members must implement software process
improvement at a personal level. The PSP provides four steps for accomplishing
this. In PSPO, a software engineer must learn to measure development time, rate
of defect creation, and rate of defect removal. Next, in PSP1, these data are used
to estimate the size and development time of new programs. PSP2 emphasizes
the significance of focusing on quality from the beginning of a project by requir-
ing the creation and use of planning checklists for design and implementation
reviews. Finally, PSP3 provides guidance on repeatedly using the first three
steps to allow individuals to scale up to creation of modules several KLOC long.
Humphrey believes that one of the keys to industry-wide adoption of the PSP is
to include it in the university software engineering curriculum.

Chapter 4 Software Quality via Better Processes

19

20

5 Software Quality via Better
Tools

Industry Practice

The industry leaders in software like AT&T, IBM, Motorola, and Hewlett
Packard generally have well-established quality control methods and seem to
follow similar procedures, methodologies, and tools in their quality programs
(Jones 1994). These companies have invested a substantial amount of time and
money on quality management, and their current leadership position in the
industry is a direct consequence of this. Their approach is based on proven
measurements, methodologies, and tools.

a. MeasurementsThey typically measure defect volume, severity, and
origin at every stage of the software development process. These metrics
are collected on a daily basis and summarized and reported monthly,
quarterly, and annually. They also conduct user satisfaction surveys on
an annual basis (Jones 1994).

b. Methodologies They rely on formal inspection of design and code to a
great extent. This ensures that when the software product reaches the
testing stage, most of the problems have already been detected and cor-
rected. Separate quality assurance groups exist in these industries that
have the express purpose of ascertaining product and process quality.

c. Tools Tools for estimating quality, measuring defect rates, planning test
procedures, analyzing test results, and predicting reliability are generally
used. Statistical analysis is performed, and reports are generated.

d. Culture All employees exude quality consciousness. Training programs
are generally conducted to instilll quality consciousness. IBM, in addi-
tion to measuring customer satisfaction, also monitors the CUPRIMDSO
(Kan, Basili, and Shapiro 1994) satisfaction levels (capability, usability,
performance, reliability, installability, maintainability, documentation,
service, and overall satisfaction). Hewlett-Packard relies on measuring
FURPS (functionality, usability, reliability, performance, and

Chapter 5 Software Quality via Better Tools

Chapter 5 Software Quality via Better Tools

supportability). Up-and-coming companies and those that lag behind the
leaders in maintaining sound quality practices could benefit by following
in their footsteps.

At Hitachi Software (Onoma and Yamaura 1995), a competitive atmosphere
has been created between the software design department and the quality assur-
ance department to cultivate quality consciousness among the employees. The
software development process is jointly carried out by three departments, design,
guality assurance, and production administration. The design department devel-
ops the software and is also responsible for the documentation, cost, schedules,
and quality. The quality assurance department runs a quality probe that com-
prises a small percentage of the complete regular test. Only if satisfactory
results are obtained are the products subjected to exhaustive testing. Otherwise,
the software product is returned to the design department. Several iterations and
frequent feedback may be necessary at times. Such rigorous test practices have
brought about a remarkable decrease in system failures.

Program Checking List (PCL) and Quality-Progress Diagrams (QPD) are two
of the most important quality control tools used in Hitachi (Onoma and Yamaura
1995). For PCL, test items are identified, based on thorough analysis of the
requirement specifications, and test cases are developed for each of them. The
expected results are recorded and checked against observed outputs. The advan-
tages of using PCL are:

a. Easy repetition of noncompliant test cases.
b. Monitoring test item quality.
c. Testing and debugging need not be performed by the same person.

d. Statistical data collection. The QPDs deal with the number of PCLs
tested and the number of cumulative faults detected per day. The QPD
curves indicate the number of untested PCLs, cumulative faults found,
and the backlogs of faults.

Defect-casual analysis is another low-cost technique that could be easily
implemented to reduce software error rates (Card 1993). This was initially
developed at IBM but has been accepted in many organizations. It is more of a
common sense method based on the fact that personnel involved in the actual
software development process have an intimate knowledge about the problems in
software and could suggest methods to avoid future occurrences. The testing
department generates reports, and the development team members meet periodic-
ally to review and discuss the problems. Another team with greater authority
performs follow-up action.

In some cases, the quality techniques employed by the hardware manufactur-
ing industry have been adapted and extended to serve the software development
process. An example of this is a model developed to determine the quality levels
of several releases of a software product. This is based on Hoadley's Quality

21

22

Measurement Plan (Weerahandi and Hausman 1994). The average process qual-
ity level and the quality indices for the software could be determined using this
methodology.

Motorola has adopted the six-sigma concept to achieve total quality through-
out the organization. “Six sigma” is a statistical term that denotes a state of zero
defects or as close to zero-defect as is humanly possible (Branthwaite 1994). It
roughly translates to 3.4 defects per million or 99.9997 percent perfection. The
six fundamental steps to realize six sigma are described here.

a. ldentification of the product or service provided to the customer.

b. Identification of the customer.

o

Identification of the requirements of the customer.

d. Definition of the process.

e. ldentification of potential errors and elimination of wasted efforts.
f. Measurement and analysis to ensure continuous improvement.

The implementation of the six-sigma concept brought about a tremendous
improvement in profits for Motorola during the late 1980s. This was due to
reduction in rework costs, nonconformance costs, and warranty repair costs.

CASE Tools and Environments

Computer-aided software engineering (CASE) tools are increasingly being
employed by software development teams to facilitate improved requirements
management, configuration management, documentation control, project verifi-
cation, system validation, and process management. Productivity improvements
have been reported by several organizations using such tools (Chikofsky and
Rubenstein 1988). A study on the productivity perceptions of software engineers
also supports these claims (Norman and Nunamaker 1989). However, the princi-
pal gain is expected to be in the quality because errors and inconsistencies could
be detected early in the life cycle and refinement of specifications could be per-
formed to suitably reflect customer needs. Reliability of a system could also be
assessed using these tools even before implementation. The number of CASE
tools commercially available for different phases of the software development
process is truly mind-boggling. There are workbenches, toolkits, and integrated
environments performing modeling, project management, analysis, design, and
validation. It is quite a challenging task to identify the exact tool that would be
apt for an application.

CASE tools for testing and quality control are available from a number of
vendors. SQA Enterprise TestSuite from Software Quality Automation, Inc., is

Chapter 5 Software Quality via Better Tools

a tool for testing and debugging software that could be used for testing Windows
client/server applications. Recently, Microsoft has released Visual Test, another
testing/debugging tool (Sarna and Febish 1996). Most tools have the ability to
generate test cases and repetitive testing to aid the developers. They also have a
record/playback feature to store user commands and input sequences and reenact
them. Automated Test Facility (ATF) from Softbridge, Inc., has a feature that
enables it to run test programs concurrently on workstations that interact with
each other (Wallace 1994). SQLBench (Seque 1998) is a CASE tool that can be
used to test design feasibility, for creating benchmark tests, and for evaluation

of results. TestGen by Scientific ToolWorks (1996) comprises three tools that

aid in all software phases. It has a design review expert assistant that analyzes
Ada pseudo-code and prepares reviews, a unit test strategy generator, and a test
coverage analyzer.

In addition to discrete CASE tools, there are many software development
environments that provide life cycle support for software development. One
such product is Software through Pictures, a product from Interactive Develop-
ment Environments (1996) that includes testing capability. Rational's TestMate
is a tool for automatic creation, management, execution, and evaluation of soft-
ware tests for complex and sophisticated Ada systems. TestMate is a part of
Apex, Rational's popular integrated software-engineering environment.

Though there is an obvious need for CASE tools/environments, many organi-
zations use them only in a limited fashion. Some of them abandon usage very
soon after implementation. The learning-curve plays a very important role in the
acceptance and adoption of such tools (Kemerer 1992). Some software engi-
neering environments extending life cycle support pose greater difficulty mainly
due to the enormous amount of learning required for effective utilization.

A complete discussion of software engineering environments is beyond the
scope of this report; interested readers may refer to Barstow, Shrobe, and
Sandewall (1984); Brown, Earl, and McDermid (1992); and Hiinke (1981) for
further information.

Chapter 5 Software Quality via Better Tools 23

6 Conclusions

The development of large, complex, mission-critical software systems has
long been plagued by schedule delays, budget overruns, and poor quality (Jones
1995). Though severe in nature, these problems are not entirely insurmountable
if proper methodologies are practiced by the organization. A host of new stand-
ards, models, techniques, and metrics are continuously being invented by dedi-
cated researchers to overcome these problems and improve software quality.
Not only should metrics and novel technigues be employed, but they must be
verified periodically for accuracy and suitability of purpose. The IEEE Com-
puter Society has published a framework (Vollman 1993, Schneidewind 1993)
for the standarization of software metrics called the Software-Quality Metrics
Methodology 1061 which provides guidelines for identifying, implementing, and
validating the metrics used by an organization. Although a number of quality
models are readily available, no one model suits all types of organizations.
Therefore, each organization has to develop its own models that are in line with
its processes, products, and goals.

Implementation of good quality practices often involves considerable time
and effort and requires total commitment from the management and all the
people involved. However, it has to be realized that there is really no other
alternative but to incorporate quality principles in every part of the organization
if success in business is the objective.

Chapter 6 Conclusions

References

References

Arthur, L. J. (1993).Improving software quality-an insider's guide to TQM
John Wiley & Sons, New York.

Barnard, J., and Price, A. (1994). “Managing code inspection information,”
IEEE Softwarel1(2), 59-69.

This paper describes a system involving nine metrics to monitor, control,
and improve the software code inspection process used at AT&T Bell
Laboratories. The total noncomment lines of source code per thousand
lines of code (KLOC), the average lines of code inspected, the average
preparation rate, the average inspection rate, the average effort per
KLOC, the average effort per fault detected, the average faults detected
per KLOC, the percentage of reinspection, and the defect-removal effi-
ciency are the nine metrics employed. Combinations of these metrics
not only facilitate assessment of quality but also aid in determining the
status of the inspection process and its effectiveness.

Barstow, D. R., Shrobe, H. E., and Sandewall, E., ed. (198%ractive
programming environmentdMcGraw-Hill, New York.

Basili, V. R., and Weiss, D. M. (1984). “A methodology for collecting valid
software engineering datd EEE Transactions on Software Engineering
SE-10(6), 728-738.

This paper describes effective data collection from a goal-oriented
perspective. The methodology involves setting up goals and then
generating a list of questions to be answered to acheive those goals.
After the questions are formulated, the data categories can be estab-
lished. The next step involves the design of forms to collect data. Once

the data has been collected and validated, analyses could be performed.

Several examples and some key lessons learned by following this meth-
odology have been provided.

Boehm, B. (1987)IEEE Softwared(5), 84-85.

25

In a letter to the “Quality Time” section, Boehm has presented his top 10
industrial software metrics. He stresses the importance of code walk-
throughs. He also says that fixing a problem after a software product has
been delivered to the customer is 100 times more expensive than if it
were fixed earlier. The verification of the software performance against
the requirements early in the life cycle is crucial.

Branthwaite, D. “Six sigma,” http://manscil.uwaterloo.ca/~msci604/six_s.html
(January 1994).

Six sigma is a quality philosophy adopted by Motorola and many other
organizations. The steps involved in the implementation of six sigma
quality and the obstacles that could be faced during implementation are
explained. The financial implications of this quality methodology on
Motorola have also been discussed.

Brooks, F. P., Jr. (1995)T'he mythical man-month: essays on software
engineering Addison-Wesley Publishing Company, Reading, MA.

This is the twentieth anniversary update to the pioneering and still-
classic work on software engineering and software project management
as applied to large software systems (a field we now refer to as mega-
programming). Brooks draws on his considerable experience as leader
of the development of OS/360 to provide timeless principles as well as
warnings to would-be project leaders. The central thesis of the book is
that building large software systems is a fundamentally different process
from building small ones (just as building a skyscraper is quite different
from building a one-story frame house). He elaborates on team struc-
tures, tools, procedures, and policies necessary for success in this field.

Brown, A. W., Earl, A. N., and McDermid, J. A. (199 oftware engineering
environments: automated support for software engineerige McGraw-
Hill international series in software engineering, McGraw-Hill, London.

Card, D. N. (1993). “Defect-causal analysis drives down error rdesE
Softwarel0(4), 98-100.

Defect-causal analysis (DCA) is an inexpensive technique that was orig-
inally developed at IBM to reduce software error rates. This method
relies on periodic review meetings between project members. The
underlying philosophy is that software developers, who would have the
most familiarity with the software, would be the ideal candidates for
reviewing the test reports and suggesting measures to prevent errors in
the future. Follow-up action is performed by another team with more
authority. DCA brings about a better awareness of quality, a strong
commitment to the process, and a recognition for measurement of qual-
ity. The author also cautions about pitfalls like delays and
procrastinations.

References

Card, D. N. (1994). “Statistical process control for softwarEEE Software
11(3), 95-97.

Many software professionals generally believe that software does not
lend itself to measurement. However, statistical process control could
still be applied to the software world since the focus is on the develop-
ment process itself and not on the product. Although absolute ratings
could not be associated with any process problem, analysis using statis-
tical methods is bound to throw some light on the general functioning of
the development process. Some methods of implementing statistical
process control are developing simple process models and then monitor-
ing the performance to determine quality. Good candidates for perfor-
mance indication are the error-insertion rate in coding and the
error-detection rate in testing. Control charts facilitate performance
monitoring and indicate the lower and upper control limits. This can be
compared with the expected performance. Statistical process control is
not always simple to implement. Poor documentation of the process,
noncompliance to standards, lack of training, and improper selection of
measures are some of the major problems that have to be considered.

Chikofsky, E., and Rubenstein, B. (1988). “CASE: reliability engineering for
information systems,[EEE Softwares(2), 11-16.

The advantages of using Computer-Aided Software Engineering (CASE)
tools for increasing programmer productivity, improving the cost-
effectiveness of the software development process, and for producing
reliable, good quality systems are discussed.

Comptroller General of the United States. (1979). “Contracting for computer
software development--serious problems require management attention to
avoid wasting additional millions,” Report FGMSD-80-4, U.S. General
Accounting Office, Washington, DC.

Dromey, R. G. (1996). “Cornering the Chimen&EE Softwarel 3(1), 33-43.

A significant shortcoming in many quality models is the disconnect
between high-level attributes and low-level software characteristics.
More specifically, it is very difficult to say how the measurable prop-
erties of software and software development processes affect general
features (e.qg., reliability and maintainability). The author presents a
framework, or metamodel, for building quality models which is intended
to help remedy this problem. As examples of his approach, software
quality models for implementation, requirements, and design are
presented.

Garvin, D. (1984). “What does “product quality” really mear8dan
Management Reviei5-45.

References

28

Quality is viewed by people from different disciplines in different ways.
The transcendental approach, the product-based approach, the user-

based approach, the manufacturing-based approach, and the value-based

approach are the five major approaches to quality that are prevalent.
Garvin has also identified eight elements or dimensions that could be

used as a framework to determine the quality of a product: performance,

features, reliability, conformance, durability, serviceability, aesthetics,
and perceived quality. One or more of these elements could be targeted
by organizations to achieve increased market gains and reduced cost.

Gibbs, W. W. (1994). “Software's chronic crisiSgientific Americar271(3),
86-95.

Yet another discussion of the problems involved in the development of
large software systems. It includes the problem-plagued software-
controlled baggage handler at the new Denver airport as an example.

Haag, S., Raja, M. K., and Schkade, L. L. (1996). “Quality function deployment

usage in software developmenfdmmunications of the ACBB(1), 41-50.

Total Quality Management (TQM) comprises three important activities:
planning, Quality Function Deployment (QFD), and statistical process
control. The authors have adapted and extended QFD that is generally
used in the manufacturing environment to suit the software development
process and have named it as Software Quality Function Deployment
(SQFD). This method focuses on software process quality improvement
by implementing novel techniques during the requirements phase of the
software life cycle. After the requirements are obtained from the cus-
tomer, they are translated into technical specifications. A correlation
matrix is then completed to detect incompatibilities. The requirement
priorities for the customer and the technical specification priorities are
then developed. The advantages of using SQFD are discussed in detail.

Halstead, M. H. (1977)Elements of software sciencElsevier North-Holland,
New York.

The pioneering work in the field of software metrics.

Interactive Development Environments. “Software through Pictures profile,”
http://www.ide.com/Products/stpsumserv.html (1996).

Humphrey, W. S. (1996). “Using a defined and measured personal software

process,IEEE Softwarel3(3), 77-88.

The author argues effectively that improving software quality not only
requires improving an organization's development approach a la CMM)
but also at the level of individual software engineers. This personal soft-

ware process (PSP) model is defined and discussed, and some statistical

results measuring the PSP maturity of software engineers are presented.

References

Hinke, H., ed. (1981)Software engineering environmenfdorth-Holland,
Amsterdam.

International Standards Organization. (19980 9126 information technology
- software product evaluation - quality characteristics and guidelines for
their use Geneva, Switzerland.

Jones, T. C. (1994). “Software quality tools, methods used by industry leaders,”
Computer27(4), 12.

Software industry leaders such as Motorola, AT & T, and Hewlett-
Packard employ well-established quality management procedures for
their quality assurance programs. They rely on measuring the process
parameters regularly and cultivating a quality culture throughout the
organization. Defect prevention methods are used to ensure that the
majority of faults are detected and corrected well before the software
product enters the testing phase.

. (1995). “Patterns of large software systems: failure and success,”
Computer28(3), 86-87.

Typically, large software systems are plagued by schedule delays and
budget overruns. Improper and inadequate project management and
planning appear to be the primary reasons for such problems. Excessive
defect levels and poor reliability even cause cancellation of nearly

20 percent of software projects. Clearly, there is a need for exhaustive
procedures to maintain software quality. The deployment of state-of-
the-art estimating tools and focus on quality control are some of the
recommendations to prevent software disasters.

. (1997). “What are function points?”
http:/www.spr.com/library/Ofuncmet.htm.

The advantages of using function points (FP) as a metric to measure
software productivity are elaborately discussed in this article from Soft-
ware Productivity Research. An extension of the FP metric called feat-
ure points developed by this group is also been described.

Joyce, E. (1987). “Software bugs: a matter of life and liabiligtamation
33(10), 88-92.

This article chronicles accidents involving the Therac 25, a radiation
therapy device. Embedded software was used in place of mechanical
interlocks to prevent high dosages of radiation. After failure of this soft-
ware resulted in several deaths, hardware interlocks were finally
installed.

References

Kan, S. H., Basili, V. R., and Shapiro, L. N. (1994). “Software quality: an
overview from the perspective of total quality manageméBi Systems
Journal 33(1), 4-18.

This paper describes software quality from the Total Quality Manage-
ment (TQM) perspective. Irrespective of the manner of implementation,
TQM typically comprises the key characteristics, customer focus, pro-
cess improvement, process measurement, analysis, and human factors
like management commitment and total participation. The advent of
new technologies like object-oriented development, software engineer-
ing environments, and quality models and their effect on the quality of
software have also been discussed.

Kemerer, C. F. (1992). “How the learning curve affects CASE tool adoption,”
IEEE Softwared(3), 23-28.

In spite of the obvious need for CASE tools, the acceptance of CASE
has been below expectations. Organizations use these tools sparingly or
abandon usage very soon after implementation. The learning curve
plays an important role in the adoption of CASE technology. The author
discusses the necessity for developing learning curve models and their
usefulness in estimating the schedules for future projects and better
management.

Kemerer, C. F., and Porter, B. S. (1992). “Improving the reliability of function
point measurement: an empirical Stud§gEE Transactions on Software
Engineeringl8(11), 1011-1020.

To ensure proper control of the software process, measurements have to
be performed. The key metric used until a few years ago to measure
productivity was the source lines of code (SLOC). An alternative metric
has been developed by Albrecht at IBM called the function points (FP)
metric. This describes a system in terms of its inputs, outputs, inquiries,
and files and has been widely accepted. Though used predominantly as
an MIS productivity metric, FP has also been used in cost estimation,
software development productivity evaluation, software maintenance
evaluation, software quality evaluation, and software project sizing.
Researchers have found FP to be a reliable but imperfect metric. There-
fore, the authors conducted an empirical study to identify the major
sources of variation and establish FP as a more reliable metric. The
effects of the variation have also been estimated from case studies con-
ducted using commercial systems. The results of the study have indi-
cated that a small number of factors affect the reliability in a big way.

Kitchenham, B., and Pfleeger, S. L. (1996). “Software quality: the elusive
target,”IEEE Softwarel3(1), 12-21.

Companies all over the world have invested a lot of resources to find
ways to improve the quality of their software. There are several

References

References

perspectives, viz., the transcendental, user-based, manufacturing,
product-based, and value-based, that look at quality from different
viewpoints. The measurement of quality has different perspectives as
well. Users of software might measure the quality of the product based
on reliability and ease of use, understanding, and installation. At the
same time, the manufacturer's view is based on defect counts and rework
costs. Quality is defined as a hierarchy of factors, criteria, and metrics
in the McCall's quality model and as being made up of characteristics
like reliability, usability, efficiency, maintainability, and portability in

the 1ISO 9126 model. Both these models look at product quality. Pro-
cess quality is also of considerable importance, but, above all, an organ-
ization's view of quality is based on its business goals.

Magnavox Electronic Systems Company. (1990¢velopment software sup-

port environment (DSSE) evaluation for Version 1 of the Advanced Field
Artillery Tactical Data System (AFATDS)ort Wayne, Indiana.

An evaluation performed by Magnavox of three software development
environments for Ada is described. The three were a DEC VAX-based
environment, the Rational Environment, and the Army Tactical Com-
mand and Control System programming support environment. This
study awarded the Rational Environment the highest score.

McCabe, T. J. (1976). “A complexity measu&EE Transactions on

software engineerin§E-2(4), 308-320.

McCabe talks about the development of a mathematical technique based
on graph theory to determine if program modules would be potentially
difficult to test and maintain. The only metric that was considered
important at that time was the number of source lines of code. McCabe
has provided a formula for calculating the cyclomatic complexity of

code modules. Instead of limiting the physical size of the code, if the
complexity of modules is kept below 10, testing and maintenance could
be better managed.

McCall, J. A., Richards, P. K., and Walters, G. F. (1977). “Factors in software

quality,” AD/A-049-014/015/055, National Technical Information Service,
Springfield, VA.

McGregor, J. D., and Korson, T. D. (1994). “Integrated object-oriented testing

and development processe§gmmunications of the ACBV(9), 59-77.

An integrated approach to software development and testing by employ-
ing object-oriented methods is the focus of this paper. The development
process and the testing process are not two sequential steps but have to
be interwoven. Early detection of faults is possible since testing is per-
formed frequently.

31

Norman, R. J., and Nunamaker, J. F., Jr. (1989). “CASE productivity percep-
tions of software engineering professiona@gmmunications of the ACM
32(9), 1102-1108.

The authors conducted a study to determine the productivity perceptions
of MIS professionals who use CASE technology. They used a psycho-
metric scaling method called multidimensional scaling to represent the
similarities between objects spatially. The subjects of the study were
requested to rank pairs of CASE functionalities in terms of effect on
productivity. The results indicated that programmers using CASE did
perceive productivity improvements. The other observations from the
study have also been listed.

Onoma, A. K., and Yamaura, T. (1995). “Practical steps toward quality
development,IEEE Softwarel2(5), 68-78.

The quality methods followed by Hitachi Software to reduce system fail-
ure levels have been explained in detail in this paper. Program Checking
List (PCL), Quality-Progress diagrams (QPD), and quality probes are
some of the tools and techniques that have been employed to monitor the
process. The advantages of these techniques include easy repetition of
noncompliant test cases and statistical data collection.

Paulk, M., Curtis, B., Chrissis, M., and Weber, C. (1993). “Capability maturity
model for software, version 1.1,” Technical Report CMU/SEI-93-TR-24,
Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA.

This is the description of the Capability Maturity Model (CMM) which
serves to rate the capability of an organization to effectively produce
software.

Paulk, M. C. (1995). “How ISO 9001 compares with the CMMEEE
Softwarel2(1), 74-84.

The similarities and the differences between the 1SO 9000 standard
developed by the International Organization for Standardization (1SO)
and the Capability Maturity Model (CMM) developed by the Software
Engineering Institute (SEI) are described in this article. The author is
one of the developers of the CMM. The ISO standard addresses the
minimum requirements for a quality system that would be acceptable. It
could be applied to any manufacturing or service industry. But, the

CMM is exclusively a software industry standard. Both standards stress
the importance of documentation. Some elements of the ISO could be
directly mapped to the CMM standard while some others need proper
interpretation. Direct correlation between the ISO 9000 standard and the
CMM is not always possible. However, organizations need to consider
both for their quality process. The CMM is necessary due to its special-
ized treatment of software, and ISO is necessary to cover a wider market.

References

Pfleeger, S. L. (1997). “Assessing measurem#éBEE Softwarel4(2),
25-26.

This is the guest editor's introduction to an issue of IEEE Software
devoted to software metrics and measurement. Articles address the cur-
rent state-of-the-art of software measurement, how to implement an
effective software measurement program, software reliability, and the
relationship between defect density and software component size.

Rational. (1998). “Rational Apex: Straight anwers to tough questions about
team-based development,” White Paper, http://www.rational.com/products/
apex/prodinfo/whitepapers/dynamics.jtmpl.

Sarna, D. E. Y., and Febish, G. J. (1996). “Our favorite toDigtamation
42(4), 24-26.

Computer-aided software engineering tools for the various phases of the
software life cycle have been described in this article. The authors have
named the best tools for specific tasks.

Schmauch, C. H. (1994)SO 9000 for software developerASQC Press,
Milwaukee, WI.

Schneidewind, N. F. (1993). “New software quality metrics methodology
standard fills measurement nee@@mputer26(4), 105-106.

This article describes 1061, the standard for a software quality metrics
methodology issued by IEEE. The philosophy behind the standard and
its scope for implementing and validating software metrics have been
explained. Correlation, tracing, consistency, predictability, discrimina-
tive power and reliability are recommended as some of the validation
criteria.

Scientific Toolworks. “TestGen—the Ada-based software test tool,”
http://www.cyberg8t.com/ssd/testgen.html (1996).

Sethi, R. (1996) Programming languages: concepts and consttucts
Addison-Wesley, Reading, MA.

This is a standard text on programming languages; the introduction gives
the Mariner rocket failure as an example of software failure in the con-
text of this subject.

SIAM News. (1996). “Inquiry board traces Ariane 5 failure to overflow error,”
SIAM News 29(8), 1, 12-13.

This is a newspaper-style article which provides details on the inquiry
into the rocket/software failure.

References

33

Simmons, P. (1996). “Quality outcomes: determining business v#hkeE”’
Softwarel3(1), 25-32.

Nine Australian organizations were surveyed to determine how they
measured the effectiveness of information technology projects. The
aspect of software quality addressed here was not the quality of code
itself but what the software did to improve business. The results indi-
cated that six of the nine believed that measuring this effectiveness was
important. All nine generally wanted a quantifiable financial metric, and
some even used alternative nonfinancial measures. Based on these
results, the author constructed a framework for categorizing benefits
according to whether they increased efficiency, increased effectiveness,
added value, produced a marketable product, or provided necessary
infrastructure for other activities.

Seque. (1998). “Silk performer: e-business load & performance testing,”
http:/www.seque.com/html/s_solutions/silk/s_performer.htm.

Tervonen, |. (1996). “Support for quality-based design and inspeclitaZ
Softwarel3(1), 44-54.

The author presents an extension to the software quality metrics (SQM)
model which he terms the SQM synthesis model. This extended model
is shown to be ISO 9126-compliant. Software tools to aid software engi-
neers in applying the model in an actual development project are
discussed.

Ulvila, J. W., and Brown, R. V. (1982). “Decision analysis comes of age,”
Harvard Business Review30-141.

The the multi-element component comparison and analysis (MECCA)
methodology for computing scores associated with a hierarchy of attri-
butes is described. MECCA works by assigning weights which sum to
one to all of the child nodes of each parent node in the attribute hier-
archy. After scores are assigned to the leaf nodes, the weights are used
to propagate scores to the root.

Vollman, T. E. (1993). “Software quality assessment and stand&@uaisiputer
26(6), 118-120.

The quality characteristics defined by ISO 9126 serve as an effective
framework for evaluating the quality of competing software products.
These characteristics have to be refined into a set of attributes that the
software products should exhibit. Quality could then be determined by
rating each attribute. However, this would be a subjective method.
Recently, the IEEE Computer Society has published a standard 1061
(standard for a software quality metrics methodology) that provides a
methodology for proper metrics usage. Several approaches have been
suggested to objectively measure software. The French National

References

References

Standards Body has recommended a list of requirements that all mem-
bers of a specific class of software should possess for certification.

Wallace, P. (1994). “Testing client/server applications as they're built,”
InfoWorld 16(21), 90.

Automated tools for testing and debugging software take out the drudg-
ery of repetitive testing. Input sequences could be recorded and played
back to verify consistency of performance by the software.

Weerahandi, S., and Hausman, R. E. (1994). “Software quality measurement
based on fault-detection datdEE Transactions on Software Engineering
20(9), 665-677.

The Quality Measurement Plan (QMP) proposed by Hoadley to deter-
mine the quality of hardware during the manufacturing process has been
adapted and extended by the authors to develop a parametric model to
determine the quality levels of several releases of a software product.
Fault detection data are collected after a number of releases of the soft-
ware product. Analysis of this data using the new methodology allows
the authors to estimate the average process quality level and the quality
indices for the software.

35

REPORT DOCUMENTATION PAGE Fom Approved o

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining
the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions
for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the
Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
June 1999 Final report

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

An Introduction to Software Quality

6. AUTHOR(S)
Buvaneswari K. Venkataraman, William A. Ward, Jr.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Faculty Court West 20 REPORT NUMBER
School of Computer and Information Sciences
University of South Alabama
Mobile, Alabama 36688

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
U.S. Army Engineer Waterways Experiment Station AGENCY REPORT NUMBER

3909 Halls Ferry Road Technical Report ITL-99-4
Vicksburg, MS 39180-6199

11. SUPPLEMENTARY NOTES
Available from National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161.

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution is unlimited.

13. ABSTRACT (Maximum 200 words)

This report is an introduction to the concepts which must be understood and the issues which must be resolved in g
produce quality software. Quality software is defined. Motivation for studying software quality, in the form of examples
past software fiascos, is presented. Various approaches for producing software quality, including better evaluation
techniques, better quality measurement, better development processes, and better development tools, are each addre
separate chapters. An annotated bibliography is provided.

rder to
of

ssed in

14. SUBJECT TERMS 15. NUMBER OF PAGES
Software metrics 40

Software quality

; 16. PRICE CODE
Total quality management

17. SECURITY CLASSIFICATION |18. SECURITY CLASSIFICATION |19. SECURITY CLASSIFICATION |20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

Destroy this report when no longer needed. Do not return it to the originator.

