
Mobile Robot Navigation
using a Sensor Network
by Maxim A. Batalin, Gaurav S. Sukhatme, Myron Hattig

Min-Uk Kim
Theory of Computation Laboratory

Konkuk University
http://tc.konkuk.ac.kr/

minuk@konkuk.ac.kr
2007.12.12

Agenda
• Introduction

• Previous Work

• Probabilistic navigation

• Experiments

• Conclusion

• References

• Appendices
2/39

Introduction

Introduction
• Navigation is a fundamental problem in mobile robotics.

• Navigation problems
– local – deals with navigation on the scale of a few meters
– global – deals with navigation on a larger scale in which the robot

cannot observe the goal state from its initial position

• There are many solutions.

• But their approaches assume that a map
is given a priori.

4/39

Introduction
• Our approach’s properties

– The sensor network is pre-deployed into the environment
– The network are synchronized in time.
– The robot does not have a pre-decided environment map or

access to GPS, IMU or a compass.
– The environment is not required to be static.
– The robot does not perform localization or mapping.
– The robot does not have to be sophisticated.

• The primary computation is performed distributively in the sensor network,
the only sensor required is for obstacle avoidance.

5/39

Previous Work
• Coverage, Exploration and Deployment by a Mobile Robot

and Communication Network(2004)
– Maxim A. Batalin , Gaurav S. Sukhatme
– Deployment of network
– Probabilistic navigation
– Navigation field

• This paper is just experimental report of previous work.

6/39

Probabilistic navigation

Probabilistic navigation
• In order for the robot to be able to navigate through the

environment from A to B, the robot should choose an
action that maximizes its chances of getting to its goal.

• Our approach relies on a pre-deployed sensor network
with determined transition probabilities.

8/39

Probabilistic navigation
• Transition probabilities are probability of arriving at s’

given that the robot started at s and commanded action a
– Actions = {East, West, South, North}
– s is start point(node)
– s’ is next point(node)

• If we want that every nodes have the transition
probabilities about their neighbor, Robot should explore
whole network.

< s = {k}, s’ = {a, b, c, d, e}, Action = East > 9/39

Probabilistic navigation

Planning

Probabilistic navigation
• When the navigation goal is specified, the node that is

closest to the goal triggers the navigation field
computation.

• During this computation, every node probabilistically
determines the optimal direction in which the robot
should move, when in its vicinity.

11/39

Probabilistic navigation
• When the navigation goal is specified, the node that is

closest to the goal send Start Computation packet.

• Nodes that receive the Stat Computation packet initialize
utility.
– The utility of the goal node is set to 1 and of the other nodes to 0.

• Every node in the network updates its utility and computes
the optimal navigation action of its own.

12/39

Probabilistic navigation

• where C(s , a) is the cost associated with moving to the
next node. Usually < -1/k where k is the number of nodes.

• This is an iteration model.
– The utility update equations have to be executed until the desired

accuracy is achieved. For practical reasons, the accuracy in our
algorithm is set to 10-3, which requires a reasonable number of
executions of the utility update equation per node(Approx. 20).

13/39

Probabilistic navigation
• Example: When the navigation goal is specified to 9

• 1. Start Computation packet is sent by 9 to its neighbors

123

456

9 8 7

SC

SC

14/39

Probabilistic navigation
• Example: When the navigation goal is specified to 9

• 2. Node that receive SC packet starts updating its utility.
– If neighbors of all nodes are known exactly, then P(s’|s,a) = 1
– In this paper, every node is preprogrammed with information about

its neighbors.

123

456

9 8 7
1 0.9 0.8

0.70.9 0.8

0.60.8 0.7

nodesofnumber theis
9
11

10
1),(

kwhere
k

asC −=−<−=

15/39

Probabilistic navigation

• After the utilities are computed, every node computes an
optimal policy for itself according to this equation.

• The computed optimal action is stored at each node and is
emitted as part of a suggestion packet that the robot
would receive if in the vicinity of the node.

16/39

Probabilistic navigation
• Example: Compute optimal action at each nodes

• 3. At node 8, I will choose West direction because 9’s
utility is bigger than 7’s utility.

123

456

9 8 7
1 0.9 0.8

0.70.9 0.8

0.60.8 0.7

17/39

Probabilistic navigation

Navigation

Probabilistic navigation
• Note that deployed sensor network discretizes the environment.

• Now we should navigate the robot.

• There are 3 phases.
– 1. Robot accepts command which is given by current node.
– 2. Robot moves ‘forward’ using the VFH algorithm for local navigation

and obstacle avoidance.
– 3. During this phase the current node switches and the navigation

algorithm start from phase 1 again.

• In this manner, the robot can navigate to goal wherever it
locates. This is the node-wise approach.

19/39

Probabilistic navigation
• Suppose initially current node is set to node 1.
• Node 1 suggests the robot to go forward direction.
• In M2 area, current node will be changed to node 2.
• And node 2 will suggest the robot to go left direction.
• Then, How can we switch current node to node 2?

20/39

Probabilistic navigation
• This is the solution about switching current node based on

processing signal strength values.
– Adaptive Delta Percent

21/39

Probabilistic navigation
• This algorithm has 4 phases.

– 1. Compute an initial maximum average Aim – an average of the first
i samples.

– 2. Compute a running average Ar which is an average of j
consecutive samples.

– 3. If R = Ar/Aim < M, where M is the threshold value, then return
from the algorithm. Put R into list LR.

– 4. If y consecutive elements of LR are in nondecreasing order,
then return y and quit the algorithm, else repeat 2~4.

• In case, several nodes returned from the algorithm, pick
the node with the smallest ratio and switch to it.

• Experimentally we determined threshold M = 0.65.
22/39

Experiments

Experiments
• We conducted experiments at Intel Research facilities.

• We used
– a Pioneer 2DX mobile robot.

• with 180° laser range finder used for obstacle avoidance
– a base station(Mica 2 mote)

• for communication with the sensor network

24/39

Experiments
• The sensor network of 9 nodes was pre-deployed.

• Every node is preprogrammed with information about its
neighbors.

25/39

Experiments
• The environment itself resembles a regular cubicleoffice-

like environment with narrow corridors(about 1m),
changing topology, crowded with people and obstacles.

• Figure 5 shows the mobile robot and one of the deployed
nodes in the experimental environment.

< Fig. 5 > 26/39

Experiments
• The experimental scenario that we consider for navigation

is alarm handling.

• An alarm occurs when a certain node detects an event.

• The task of the robot is to navigate from the ‘home
base’(around node 1) towards the triggered alarm.

• Requirements for the successful experiment
– navigation field should yield shortest paths
– robot should stop within 3m of the goal node

27/39

Experiments
• We conducted 10 experiments for 5 different goal nodes.

• This is representative trajectories that the robot took on
its route from the start.

< Goal 3 > < Goal 5 > < Goal 6 > < Goal 8 > < Goal 9 >

28/39

Experiments
• Table I shows the final distances from the robot to the

goal nodes after the robot has signaled that it had
completed navigation.

• The robot was able to navigate to the correct goal node in
all cases.

29/39

Conclusion
• We have presented an algorithm that allows the robot to

navigate using a deployed sensor network.
– without a map, GPS, IMU, compass

• The navigation occurs through node-wise motion from
node to node on the path.

30/39

References
• M. A. Batalin and G. S. Sukhatme, “Coverage, exploration

and deployment by a mobile robot and communication
network,” in The 2nd Intl. Workshop on Information
Processing in Sensor Networks(IPSN ‘03), Palo Alto,
2003, pp.376-391

• M. A. Batalin and G. S. Sukhatme, “Sensor Network-
based Multi-Robot Task Allocation,” in IEEE/RSJ Intl.
Conf. on Intelligent Robots and Systems(IROS ‘03), Las
Vegas, 2003, pp.1939-1944

• I. Ulrich and J. Borenstein, “VFH*:Local Obstacle
Avoidance with Look-Ahead Verification,” in IEEE int.
Conf. on Robotics and Automation, 2000, pp.2505-2511

31/39

Appendices

Appendix A: Node Architecture
• It is not exactly the same

architecture used in this paper.
• But it helpful to understand.

• This architecture is used when
an alarm event may be occurred
different nodes concurrently.

• It assume that there are
several robots.

• Robot has a compass.

33/39

Appendix A: Node Architecture
• ALARM(a,w,hc)

– Id of the node that detected the
alarm

– Weight
– Hop count

• If a node receives an ALARM
msg, the alarm is placed on the
list

• Every node maintains a current
alarm variable, which is the
element of L with largest utility.

34/39

Appendix B: VFH*
• This is an enhancement version of earlier developed

Vector Field Histogram(VFH) method for mobile robot
obstacle avoidance.

• Earlier version VFH+ sometimes fails.
• Figure 1 shows a situation where a mobile

robot travels down a corridor and
encounters two obstacles in its path.

• Obstacles are shown in black,
while the configuration space is gray.

< Fig. 1 > 35/39

Appendix B: VFH*
• The large circle drawn in a dashed line shows the

approximate distance at which an obstacle triggers an
avoidance maneuver.

• At the position shown in the example, VFH+ detects 2
openings.

• Unfortunately, both trajectories A and B appear equally
appropriate to VFH+.

• In problematic situations like this, VFH+ would thus select
the appropriate direction on average only 50% of the time.

36/39

Appendix B: VFH*
• VFH* algorithm overcomes problematic situations like this

one most of the time by combining VFH+ with the A*
search algorithm.

• Figure 5 shows the trajectories of VFH* with 4 different
goal depth values.

37/39

Appendix B: VFH*
• Figure 5 shows that the higher ng is selected, the better

VFH* performs.
• However, this improvement is at the expense of

computational time.
• Table 1 shows an execution time comparison based on the

GuideCane’s embedded computer, a PC 486 running at 66
MHz.

38/39

Appendix B: VFH*
• VFH* which is a local obstacle avoidance algorithm that

uses look-ahead verification can consider more than the
robot’s immediate surroundings.

• While VFH* has the same obstacle avoidance performance
as VFH+ for regular obstacles, VFH* is also capable of
dealing with problematic situations that would require the
robot to substantially slow down or even stop.

39/39

