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Abstract

Recently, a new community has started to emerge around the development of new information research methods for

searching and analyzing semi-structured and XML like documents. The goal is to handle both content and structural

information, and to deal with different types of information content (text, image, etc.). We consider here the task of

structured document classification. We propose a generative model able to handle both structure and content which is

based on Bayesian networks. We then show how to transform this generative model into a discriminant classifier using

the method of Fisher kernel. The model is then extended for dealing with different types of content information (here

text and images). The model was tested on three databases: the classical webKB corpus composed of HTML pages, the

new INEX corpus which has become a reference in the field of ad-hoc retrieval for XML documents, and a multimedia

corpus of Web pages.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Document classification is used in many different contexts in information retrieval: document filtering,
word sense disambiguation, document classification in hierarchies like those of Yahoo!, etc. This field

mainly developed over the last ten years, using techniques originating from the pattern recognition and

machine learning communities. Almost all classification techniques which have been proposed in recent

years (e.g. neural networks, support vector machines, decision trees and decision lists, etc.) have been tested

on this problem. All these methods do operate on flat text representations and do not consider text

structure information. Some attempts have recently been made to relax the traditional word independence

assumption. Denoyer, Zaragoza, and Gallinari (2001) for example consider a limited form of sequence

information and use hidden Markov models for text and passage classification. The recent paper (Sebas-
tiani, 2002) gives a very good survey of the literature on textual document classification. With the devel-

opment of structured textual and multimedia documents, and with the increasing importance of structured
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document formats like XML, the document nature is changing. Structured documents usually have a much

richer representation than flat ones. They have a logical structure. They allow the incorporation of addi-

tional information such as metadata and are often composed of heterogeneous information sources (e.g.

text, image, video, etc.). The development of classifiers for structured content is a new challenge for the
machine learning and IR communities. Since this is a new area there is not yet a consensus on what the

main tasks and challenges of structured document classification are. A major change with structured

documents compared to flat documents is the possibility to access document elements or fragments.

Accordingly, a classifier for structured documents should be able to classify both full documents and

document parts. It is also important to be able to make use of the different content information sources

present in an XML document. A classifier should then easily adapt to a variety of different sources. A final

requirement is that the system be able to scale with large document collections.

We propose here a new model for the classification of structured documents. It is a generative model
based on Bayesian networks. Each document will be modelled by a Bayesian network, the size of which

being proportional to the size of the document. Classification will then amount to perform inference in this

network. The model is able to take into account the structure of the document and different types of content

information. It also allows one to perform inference either on whole documents or on document parts taken

in their context, which goes beyond the capabilities of classical classifier schemes. In this paper, the elements

we consider are defined by the logical structure of the document. They typically correspond to the different

components of an XML document. Different types of Bayesian models could be used for the documents.

For keeping the computations to a reasonable complexity level and for allowing robust parameter esti-
mation, we have to restrict ourselves to simple models exploiting local structural dependencies. We further

show how these generative models can be turned into discriminant classifiers using Fisher kernels. Doing

this, we lose part of the potential of the Bayesian network model. Compared to the latter, the Fisher kernel

classifier does not offer a natural framework for classifying document fragments but increases the classi-

fication accuracy for full documents. It could also be trained for classifying predefined fragment types at a

price of an increased complexity.

We first review previous work in Section 2, we then introduce structured documents in Section 3 and our

core Bayesian network model in Section 4. We describe in Section 5 how to learn the network parameters
from a document corpus. We introduce the Fisher kernels in Section 6. In Section 7 we show on an example

how the model may be used with different types of content information. We then describe tests on three

collections (Section 8): a classical benchmark where textual documents correspond to academic Web sites, a

large corpus of XML documents and a large collection of Web sites where both the textual and image

content are considered for classification.
2. Previous works

Handling structured documents for different IR tasks has recently attracted an increasing attention.

However, it rapidly appeared that designing new information retrieval systems so that they can handle
structured documents is far from trivial. Many questions are still open for designing such systems so that we

are only in the early stages of this development. Most of the work in this new area has concentrated on ad

hoc retrieval. Two recent Sigir workshops (2000 and 2002) where dedicated to this subject. A series of

papers describing on-going research on different aspects of structured document storage and access, ranging

from database problems to query languages and IR algorithms is available in a special issue of JASIST

(Baeza-Yates, Carmel, Maarek, & Soffer, 2002). There is now a small but active community on this area.

Most teams involved in this research gather around the recent initiative for the development and the

evaluation of XML IR systems (INEX) which has been launched in 2002. Problems which are debated at
INEX concern: indexing structured document, defining different types of ‘‘content and structure’’ queries
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for structured documents, designing query languages, defining what type of relevant fragments should

be retrieved, extending IR models or designing new models for semi-structured document access, defining

new evaluation criteria (Fuhr, Govert, Kazai, & Lalmas, 2002).

Besides this mainstream of research, some work is also developing around other generic IR problems like
clustering and classification for structured documents. For now, clustering has mainly been dealt with in the

database community. This work has focused on structure clustering for indexing XML databases, and

ignored the document content (Termier, Rousset, & Sebag, 2002; Zaki & Aggarwal, 2003). Structured

document classification has also recently motivated some research. Since this is the focus of the paper, this

is discussed in greater length below.

From a modeling perspective, there have been two main approaches for classifying structured docu-

ments. The first one concerns the majority of published papers. It makes use of different flat text classifiers

operating on distinct document elements, these base classifiers are then combined for classifying the whole
document. A second family attempts to design new types of classifiers adapted for structured documents.

The first approach has mainly been developed for the categorization of whole HTML pages using the

semantic of HTML tags. Quek (1997) for example combines three classifiers operating respectively on the

textual information of a page, the page and section titles and hyperlinks. Results show that title and hy-

perlink information are relevant for the task and improve the performance compared to a simple flat text

classifier. The approach by Yang, Slattery, and Ghani (2002) is similar: three classifiers respectively use

linked pages textual information, HTML tags and metadata. Cline (1999) maps a structured document

onto a fixed-size vector where each structural entity (title, links, text, etc.) is encoded into a specific part of
the vector using classical tf-idf. A single classifier then processes this vector. In his experiments, he did not

find any improvement compared to flat classifiers on the webKB corpus (webKB, 1999). In another work

(Dumais & Chen, 2000) make use of the HTML tags information to select the most relevant part of each

document. Chakrabarti, Dom, and Indyk (1998) propose to use the information contained in neighboring

documents of an HTML pages. All these methods explicitly rely on the HTML tag semantic. For example,

the models by Quek (1997) or Yang et al. (2002) need to ‘‘know’’ the semantic of the HTML tags, i.e.

whether they correspond to a title, a link or a reference, etc. They are HTML dependent, they cannot adapt

to more general structured categorization tasks where for example the tag semantic is not known in advance
or can vary from a document collection to another. Most of these models rely on a vectorial description of

the document and do not offer a natural way for dealing with document fragments. We will show in Section

4 that our model is not dependent of the semantic of the tags and is able to learn which parts of a document

are relevant for the classification task.

The second family of models uses more principled approaches for structured documents. Yi and Sun-

daresan (2000) propose a vector representation for tree-like structured documents. They develop a prob-

abilistic model for whole document classification. A characteristic of this model is that it makes use of local

word frequencies which depend on the path from the document root to content nodes. They then face a
very severe estimation problem for their local probabilities. They performed experiments on two small

document collections, each with a very basic structure. Diligenti, Gori, Maggini, and Scarselli (2001)

propose the hidden tree Markov model (HTMM). This is an extension of HMMs to tree like structures.

One generative model is built per class. Each model has a fixed number of hidden variables responsible for

the emission of the document content. For modeling a document, a hidden tree is built with the same

structure as the document. Nodes in this tree correspond to hidden variables. Observations correspond to

the textual content of the document and are emitted by the hidden variables. The probability of a document

being emitted by a particular model (i.e. class) is the summation of the tree probabilities for all allowable
configurations of the hidden variables. This is similar to HMMs summing over all possible state sequences.

The textual content of document elements is encoded as a vector of 0/1 denoting the presence or absence of

terms. The model is trained using EM. They performed tests on the webKB collection showing a slight

improvement over Naive Bayes (1%). This model is close to ours in the sense that it makes use of tree like
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probabilistic models, and uses somewhat similar simplifying assumptions for computing document prob-

abilities. Their model was initially inspired for image classification and there are important differences with

ours. We do not use hidden variables. This avoids summing over all the hidden variable values combi-

nations over the document nodes. Since this is combinatorial, this is unfeasible for large documents even for
a small number of hidden states. We also use a richer content description. Outside the field of information

retrieval, some related models have also been proposed. The hierarchical HMM (HHMM; Fine, Singer, &

Tishby, 1998) is also a generalization of HMMs. It has not been proposed to deal directly with structures

but with sequences which exhibit multi-scale and recursive structures. Hidden nodes in this model emit

sequences instead of symbols for classical HMMs. States may be activated recursively which allows for

modelling nested subsequences. Compared to our model, the HHMM is aimed at discovering substructures

in sequences instead of processing structured data.

Generative models have been used for document classification and clustering for a long time. The best
known model is the Naive Bayes (Lewis, 1998). This is the simplest instance of a Bayesian networks. Naive

Bayes extensions like the ‘‘Tree Augmented Naive Bayes’’ (TAN) designed for taking into account local

dependencies between terms have also been tested for document classification (Koller & Sahami, 1997).

They may offer slight improvements with respect to Naive Bayes in some cases. Probabilistic models with

latent variables have been used recently for text clustering and classification by different authors. The

general idea is to model via latent variables some hidden relations between textual elements. These models

are usually trained with the EM algorithm. Vinokourov and Girolami (2001) train a generative model for

building document hierarchies. They also propose to use a Fisher kernel derived from their generative
hierarchy model for classifying the documents in the collection. Hofmann and co-workers proposed a series

of latent variable models for different IR task. Hofmann proposed probabilistic latent semantic analysis

(PLSA; Hofmann, 1999b) which is a generative model for analyzing co-occurrence data. In Hofmann

(1999a) it is proposed to perform document clustering by considering simultaneously document similarity

and word specificity for characterizing documents. Cai and Hofmann (2003) propose to use automatically

extracted concepts together with classical word-based representations for classifying documents. All these

models do operate on flat document representations. Using the same type of ideas, Blei and Jordan (2003)

describe a series of models of increasing complexity for learning the correspondence between images or
image regions and image captions. Their models may be used for modeling both the joint distribution of

images and associated words, and conditional distributions of words given images. Modeling the latter

conditional distributions allows the authors to perform tasks like automatic annotation or text based image

retrieval. This is an original aspect of their work. Density models for image and captions operate on flat

content representations. They perform experiments on the Corel image database where captions are

composed of 2–4 words. This model has been designed for learning dependencies between two different

representations of the same object, it does not handle structured representations. The focus of their work is

on dependencies which are presumably much simpler than those present between the different elements of a
large structured document.

Finally, Bayesian networks have been used for the task of ad-hoc retrieval both for flat documents

(Callan, Croft, & Harding, 1992) or for structured documents (Myaeng, Jang, Kim, & Zhoo, 1998;

Piwowarski, Faure, & Gallinari, 2002). This is different from classification since the information need is

not specified in advance. The models and problems are therefore different from those discussed here.
3. Structured document

In the following, we will consider that a document is a tree where each node represents a structural

entity. This corresponds to the usual representation of XML documents and this is also the classical
structured document representation. A node in the tree will contain two types of information:
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Fig. 1. A tree representation for a structured document. This document is composed of an introduction and two sections. The first

section has two paragraphs and the second one has only one paragraph. Circle and Square nodes are respectively structural and textual

nodes.
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• A label information which represents the type of the structural entity. A label could be for example par-

agraph, section, introduction, title, etc. The set of labels depends on the documents corpora we are dealing

with. Usually, for XML documents, these labels are defined in the DTDs.

• A content information: for a multimedia document this could be either text, image or signal. For exam-

ple, for a node with label paragraph, the content will be the paragraph text.

We will talk of structural and content nodes for these two types of information.

Fig. 1 gives an example for a simple textual document: structural and content nodes are respectively

indicated as circles and square nodes.

For simplification, we will describe our model by considering only textual documents. We will then show

in Section 7 how it can be naturally extended for handling different types of content.
4. Modeling documents with Bayesian networks

We will now describe the probabilistic structured models used for the documents.

Let us first define the notations:
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• Let C be a discrete random variable which represents a class from the set of classes C.
• Let K be the set of all the possible labels for a structural node.

• Let V be the set of all the possible words. V � denotes the set of all possible word sequences, including the

empty one.
• Let d be a structured document consisting of a set of features ðs1d ; . . . ; s

jdj
d ; t1d ; . . . ; t

jdj
d Þ where sid is the label

of the ith structural node of d (sid 2 K), tid is the textual content of this ith node (tid 2 V �) and jdj is the
number of structural nodes. d is a realization of a random vector D. In the following, all nodes are

supposed to have a unique identifier, indicated here as superscript i.

Documents will be modeled using Bayesian networks. This is a suitable framework for modeling the

dependencies and relations between the different elements in a structured document. We will associate a

network model to each document. Since we focus here on the logical document structure, each network will
be defined according to the corresponding document structure. For our classification task, the network

parameters will be learned on all the documents from the same class in the training set. Documents from the

same class will then share their parameters and there is one set of such parameters for each class.

Different networks could be used for modeling a document, depending on the which type of relation we

would like to take into account. We have only considered here the explicit document structure and we will

not try to uncover any hidden or implicit structure between the document elements. With this in mind, some

of the natural relations which could be modeled are: ‘‘is a descendant of’’ in the document tree, ‘‘is a sibling

of’’, ‘‘is a successor of’’––given a preorder visit of the document tree––, and combinations of these different
possibilities. In Figs. 2 and 3 we give two examples of document models encapsulating different relations.

There are two types of variables corresponding respectively to structure nodes (s) and content nodes (t). In
the simplest one (2), the network structure is similar to the document tree structure. The network only

encodes the ‘‘is a descendant of’’ relation. More complex networks using additional local structural

dependencies may also be used, the second example (Fig. 3) makes use of a TAN network at each level of

the tree. This model takes into account an ordering relation between structural siblings and sub-trees which

is not the case for the first one. Although it might be desirable to model rich relations between document

elements, there is as usual a trade-off between complexity and efficiency. In order to test the potential of
different models for the classification task, we performed a series of tests with models encapsulating dif-

ferent types of relations. They did not show a clear superiority of one model over the others with respect to

the classification performances. In the following, we will then focus on the simple tree like model illustrated

by the example in Fig. 2. Note that the development we present for this model can be easily adapted for

more complex ones. As far as we limit ourselves to models with regular local dependencies, and for which

all structural nodes do have the same fixed number of parents, there is no fundamental difference for

inference and learning. Of course the model expressivity might be very different. From now on, we will then

consider tree like Bayesian networks. The network structure is built from the document tree, but need not
be identical.
4.1. Tree-like model for structured document classification

For this model, we make the following assumptions:

• There are two types of variables corresponding to structure and content nodes.

• Each structure node may have zero or many structure sub-nodes and zero or one content node.
• Each feature of the document depends on the class c we are interested in.

• Each structural variable sid depends on its parent paðsidÞ in the document network.

• Each content variable tid depends only on its structural variable.
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Fig. 2. The final Bayesian network encoding ‘‘is a descendant of’’ relation.
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The generative process for the model corresponds to a recursive application of the following process: at

each structural node s, one chooses a number of structural sub-nodes, which could be zero, and the length

of the textual part if any. Sub-nodes labels and words are then sampled from their respective distribution
which depends on s and the document class. The document depth could be another parameter of the model.

Document length and depth distributions are omitted in our model since the corresponding terms fall out

for the classification problems considered here.

Using such a network, we can write the joint probability
P ðd; cÞ ¼ P ðcÞ
Yjdj
i¼1

Pðsid jpaðsidÞ; cÞP ðtid jsid ; cÞ ð1Þ
Note that the textual part tid could be empty since it belongs to V � the set of all possible strings.
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Fig. 3. The final Bayesian network making use of a TAN network at each level of the tree.
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Eq. (1) can be rewritten in order to make appear a structural (1) and a textual (2) probability
P ðd; cÞ ¼ P ðcÞ
Yjdj
i¼1

P ðsid jpaðsidÞ; cÞ
 !

ð1Þ

Yjdj
i¼1

P ðtid jsid ; cÞ
 !

ð2Þ

ð2Þ
Structural probabilities P ðsid jpaðsidÞ; cÞ can be directly estimated from data using some smooth estimator.

Since tid is defined on the infinite set V �, we shall make additional hypothesis for estimating the textual

probabilities P ðtid jsid ; cÞ. Once again there are different possibilities for that. In the following, we use a Naive

Bayes model for text fragments (Lewis, 1998), but this is not a major option and other models could do as
well. Let us define tid as the sequence of words t

i
d ¼ ðwi

d;1; . . . ;w
i
d;jtid j

Þ where wi
d;k 2 V and jtid j is the number of
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word occurrences, i.e. the length of tid . According to Naive Bayes, the textual probability is rewritten as

follows:
P ðtid jsid ; cÞ ¼
Yjtid j
k¼1

P ðwi
d;kjsid ; cÞ ð3Þ
The joint probability for this model is then
P ðd; cÞ ¼ P ðcÞ
Yjdj
i¼1

Pðsid jpaðsidÞ; cÞ
 ! Yjdj

i¼1

Yjtid j
k¼1

P ðwi
d;kjsid ; cÞ

0
@

1
A ð4Þ
Fig. 4 shows the final belief network obtained for the document in Fig. 1. For simplification, the class

variable is omitted.
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Fig. 4. The final document sub-net. In the full Bayesian network, all nodes also have node c for parent.
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4.2. Classifying document parts

Eq. (4) tells us how to compute the posterior P ðcjdÞ for the whole document d. Suppose now that d is a

large heterogeneous document and that fragments of d correspond to different predefined classes. We could
be interested into classifying any sub-part d 0 of d into one of these classes. If d 0 corresponds to a sub-tree of

d and if we consider d 0 out of any context, we simply use Eq. (4) by replacing d with d 0. We could also be

interested into classifying d 0 within the context of document d. For this, we need to compute Pðd 0; cjdd 0 Þ,
where dd 0 represents d with d 0 removed. Let s0 the structural node which is the father of d 0 root node.

Considering the structure of the Bayesian network, we get P ðd 0; cjdd 0 Þ ¼ P ðd 0; cjs0Þ, which in turn can be

estimated via:
P ðd 0; cjs0Þ ¼ P ðcÞ
Yjd 0 jþk0

i¼k0
P ðsid jpaðsidÞ; cÞ

0
@

1
A Yjd 0 jþk0

i¼k0

Yjtid j
k¼1

P ðwi
d;kjsid ; cÞ

0
@

1
A ð5Þ
where k0 is the index for the root of d 0 and structure nodes are supposed ordered according to a preorder

traversal of the tree. The interesting thing here is that by computing P ðd; cÞ, one automatically gets

P ðd 0; cjdd 0 Þ and that both quantities make use of the same probabilities and probability estimates. If d 0 does

correspond to a partial sub-tree of d instead of a full sub-tree, one gets a similar expression by limiting the
structure and content terms in the products in Eq. (5) to those in d 0. This is also true if d 0 corresponds to

different sub-trees in d. Classifying d 0 fragments is then easily performed with the generative classifier. This

compositionality property allows carrying out computations on a global object (a document) by combining

the computations performed on its components (document elements). It is achieved in this model via the

probabilistic conditional independence assumptions.

Compositionality is usually not a property shared by discriminant classifiers. Suppose we have a dis-

criminant classifier trained on a vector representation of full documents. Since fragment vector represen-

tations could occupy a very different place in the vector space than full documents, the classifier will
probably get very poor results when classifying these fragments. An alternative would be to train a set of

classifiers on different types of document fragments. This could be prohibitive when the number of frag-

ment types is large.
5. Learning

In order to estimate the joint probability of each document and each class, the model parameters must be
learned from a training set of documents. Let us define the h parameters as
h ¼
[
c

[
n2K;m2K

hc;sn;m
[

n2V ;m2K
hc;wn;m

 !
ð6Þ
where hc;sn;m is the estimation for the P ðsid ¼ njpaðsidÞ ¼ m; cÞ and hc;wn;m is the estimation for
P ðwi

d;k ¼ njsid ¼ m; cÞ. s in h�;s�;� indicates a structural parameter and w in h�;w�;� a textual parameter. Note that

for the classification task we are dealing with, there is one set of parameter for each class.

For learning the hs using the set of training documents DTRAIN, we will maximize the log-likelihood L
for DTRAIN:
L ¼
X

d2DTRAIN

log PðcÞ þ
Xjd j
i¼1

log hc;ssid ;paðsid Þ

 !
þ

Xjdj
i¼1

Xjtid j
k¼1

log hc;wwi
d;k ;s

i
d

0
@

1
A ð7Þ
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The learning algorithm solves for each parameter hc;�n;m (where � corresponds to s or w) the following

equation:
oL
ohc;�n;m

¼ 0 ð8Þ
under constraints:
8m 2 K;
X
n2K

hc;sn;m ¼ 1

8m 2 K;
X
n2V

hc;wn;m ¼ 1
ð9Þ
Let Dc
TRAIN be the sub-set of all documents in DTRAIN with class c, let Nd;c

n;m be the number of times a node

with label n (in V or K) has his parent with label m in document d, the solution of the learning problem is

then
hc;�n;m ¼
P

d2Dc
TRAIN

Nd;c
n;mP

i

P
d2Dc

TRAIN
Nd;c

i;m

ð10Þ
For the experiments we will use the following smooth estimator:
hc;�n;m ¼
P

d2Dc
TRAIN

Nd;c
n;m þ 1P

i

P
d2Dc

TRAIN
Nd;c

i;m þ D
ð11Þ
where D is equal to jV j if n 2 V or jKj if n 2 K.
The complexity of this learning algorithm is Oð

P
Dc

TRAIN
jdj þ jtd jÞ. In a classical structured document, the

number of structural nodes jdj is usually smaller than the number of words jtd j. The complexity is then

Oð
P

Dc
TRAIN

jtd jÞ which is the complexity of the classical Naive Bayes model on flat documents (Lewis, 1998).

The generative classifier can cope with both the content and structure information of structured doc-

uments. It also allows one to perform inference on the different nodes and sub-trees of the network.
Document parts can then be classified in the context of the whole document. More generally decisions can

be made by taking into account only a sub-part of the document or when information is missing in the

document.

We will show below that this classifier can also be turned into a discriminant classifier. Discriminant

techniques are known to be generally more efficient for classification than generative ones. Note that this is

not the only criterion for selecting a classifier. For example doing so, we lose the possibility to easily add

new classes. As discussed in Section 4.2, inference on document parts is also much less natural with this

approach.
6. Improving discriminant abilities using Fisher kernel

In order to improve the discriminative abilities of generative models, Jaakkola, Diekhans, and Haussler

(1999) proposed a new method based on the Fisher scores. They developed this method for classifying

sequences modeled with HMMs and this led to a significant performance increase on biological data.
We show below how this idea naturally extends to tree generative models.
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6.1. Fisher score and Fisher kernel

The key idea of Jaakkola et al. (1999) is to derive from a learned generative model, a representative

vector for each example x and to use a classical discriminant classifier on this vector representation.
The fisher score for an example x and a generative model with parameters h is defined as
Ux ¼ rh log P ðxjhÞ ð12Þ
where rh is the gradient operator with respect to the h parameters.

The Fisher score is a fixed-size vector which explains how much parameters of the model do contribute

to generate the example. Using this vector, we can then create a kernel function Kðx; yÞ as follows:
Kðx; yÞ ¼ UT
x M

�1Uy with M ¼ EX ½UT
X UX � ð13Þ
This kernel function can be used with any kernel-based classifier like for example support vector machines.

This kernel defines a distance between two examples x and y. We explain below how the Fisher kernel could

be used with our model.
6.2. Fisher score for the Bayesian network model

We shall consider one Fisher score for each document d and each class c defined as
Uc
d ¼ rhc;��;� P ðd; cjhÞ ð14Þ
Using Eq. (7), we compute the Fisher score component for each parameter hc;�n;m:
o logPðd; cjhÞ
ohc;�n;m

¼
Nd;c

n;m

hc;�n;m
ð15Þ
6.3. Computational considerations

Additional tricks are needed to make the Fisher kernel method work. We use two such modifications

here. They have been chosen after different trials. The first simplification is to approximate the M matrix

with the identity matrix as it is done in Hofmann (2000), Vinokourov and Girolami (2001) and Jaakkola
et al. (1999). In order to get a better scaling of the vector features, we also compute the gradient of the

likelihood with respect to 2
ffiffiffiffiffiffiffiffi
hc;�n;m

q
instead of hc;�n;m, this has been suggested in Hofmann (2000). The final

formula for our model is then
o logPðd; cjhÞ
o2

ffiffiffiffiffiffiffiffi
hc;�n;m

q ¼
Nd

n;mffiffiffiffiffiffiffiffi
hc;�n;m

q ð16Þ
Let K ¼ fkigi2½1;...;jKj� and V ¼ fvigi2½1;...;jV j�; for each document d and class c we obtain a vector vc;d corre-

sponding to the document representation in the Fisher space. This vector is detailed in Fig. 5.

We used here the kernel function with a binary SVM classifier. For each class c, we used the kernel

function corresponding to the generative model learned on this class. The Fisher score is proportional to

the frequency of each word in a particular tag and decreases when hc;�n;m increases. tf-idf behaves almost

similarly: it is an increasing function of the term frequency and it decreases when the word appears in many

documents. The main difference is that df is computed on the whole collection whereas hc;�n;m depends on
class c.



Fig. 5. The Fisher score for document d in class c. This vector is composed of two parts: one for the structural probability and another

for the textual probability.
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7. Considering different types of information: text and image

The above models could be used not only with text, but with any other type of content. The only

requirement is that we have a generative model for scoring the different content types. We describe below an

extension of the structured document model using a generative model for images. It will be used in Section

8.3 for classifying Web pages using both text and image information. We do not ambition here to describe a

state of the art model for image classification. Instead, we merely want to show, using as an example a basic

image model, how different modalities could be handled in the structured document classifier. More

sophisticated image models could be used in order to get better performance.
Let us now consider that tid can be either text or image. The new set of labels will be denoted by

K2 ¼ K [ fIg where as before K is the set of label for textual content and I is a unique label for nodes with

image information (multiple image labels could be considered as well).

For the remainder of the section, tid represents either text information if sid 2 K or image information

if sid ¼ I .
Eq. (4) can be rewritten:
P ðd; cÞ ¼ P ðcÞ
Yjdj
i¼1

Pðsid jpaðsidÞ; cÞ
 ! Yjdj

i¼1

P ðtid jsid ; cÞ
 !

¼ P ðcÞ
Yjdj
i¼1

Pðsid jpaðsidÞ; cÞ
 ! Yjdj

i¼1=sid2K
Ptextðtid jsid ; cÞ

0
@

1
A Yjdj

i¼1=sid¼I

Pimageðtid jsid ; cÞ

0
@

1
A ð17Þ
where Ptextðtid jsid ; cÞ is a textual probability and Pimageðtid jsid ; cÞ is an image probability.

Our image model is the following: we rescale all images to a fixed size of Np pixels and represent this

scaled image by an histogram consisting of Ncolor colors. We then use the following Naive Bayes model:
Pimageðtid jsid ; cÞ ¼
YNcolor

k¼1

Pðpid;kjsid ; cÞ; 8
XNcolor

k¼1

pid;k ¼ Np ð18Þ
where P ðpid;kjsid ; cÞ is the probability that the image of node i has pid;k pixels of color k.
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Fig. 6. A text + image document: the image is represented by an histogram in the lower right corner.
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Although this is a basic image model, it performed reasonably well for our tests. We also did some

experiments by adding texture and form characteristics to the color characteristic. This did not led to any

improvement compared to color alone. Similar observations have also been made by many authors for
Web images classification.

Figs. 6 and 7 represent respectively a multimedia document and the associated Bayesian network.

Eq. (17) can now be rewritten:
P ðd; cÞ ¼ P ðcÞ
Yjdj
i¼1

P ðsid jpaðsidÞ; cÞ
 ! Yjdj

i¼1=sid2K

Yjtid j
k¼1

P ðwi
d;kjsid ; cÞ

0
@

1
A Yjdj

i¼1=sid¼I

YNcolor

k¼1

P ðpid;kjsid ; cÞ

0
@

1
A ð19Þ
8. Experiments

The structured document model has been tested on three different corpora. We performed extensive

experiments on the INEX corpus (Fuhr et al., 2002) which is a large collection of XML documents. We

present additional experiments on a corpus of textual HTML pages (webKB, 1999) which has already been

used by different authors for comparing flat classifiers. Finally we show how the model behaves on mul-

timedia data. The corpus for this experiment has been gathered inside the European project NetProtect for

testing Web page filtering tools. Since the task of classifying XML documents is new, there is not yet any
relevant corpus for evaluating document fragment classification. For the three corpora, we then present
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Fig. 7. The network built for the document in Fig. 6. Pk ¼ u for an image node means that there are u pixel with color k in the image.
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tests only for the classification of whole documents. We first present below the results obtained on INEX

and then discuss experiments on webKB and NetProtect.
8.1. INEX: a large XML corpus

The INEX corpus has been recently developed for ad hoc retrieval on XML documents. It is composed

of 15,000 articles from journals and proceedings of the IEEE Computer Society. Articles are issued from 18

different journals or proceedings. There are about seven million nodes (doxels) and each document is a tree
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of about 590 nodes. This corpus was not initially aimed at categorization, however it is reasonable to

believe that the different journals and proceedings may be classified according to their content and struc-

ture. We thus chose as classes the 18 different journal and proceeding ‘‘headers’’. Documents were pre-

processed using the Porter stemmer and words appearing in less than 20 documents were pruned. In order
to keep only the body of the articles, the header of each document which explicitly contains the class of the

document was also removed. Note that each document is assigned to a unique class.

8.1.1. Evaluation measure

We performed two classification tasks on the INEX corpus. The first one is multi-class single label

classification (see Sebastiani, 2002) where each document is assigned a unique class. The second one

is document ranking. The goal here is to rank the documents according to their relevance for each class.

This is the usual binary classification problem considered in IR. Performance measures are different for

each task and are detailed below.

8.1.1.1. Multi-class single label categorization. This is the classical classification task in machine learning.

The usual measure is the classification accuracy. The set of classes is C ¼ fcigi2½1;...;jCj�.
The class cd of a document d is predicted according to
cd ¼ argmax
c2C

P ðcjdÞ ð20Þ
We have used as measure the macro and micro-average accuracies. The former is the mean accuracy over
all classes and the latter is the mean accuracy when each class is weighted by its size. Macro-average puts an

equal weight on all classes whereas micro-average is dominated by large classes. Note that since each

document is assigned a unique class, accuracy is equivalent to micro-recall. Since we are only interested into

classifying documents in one class, precision does not bring any additional information and it is omitted

here.

8.1.1.2. Ranking. For each class, the documents are ranked according to their probability P ðcjdÞ. The
classical evaluation measure here is the precision–recall curve. As in Joachims (1998), we use the micro-

average break-even point and the macro-average break-even point to summarize these curves.

8.1.1.3. Results. We used two baseline models for comparison, Naive Bayes and SVM. SVM has been used

with a tf-idf encoding (Joachims, 1998). We have used the binary classifier version of SVM where one class

is learned against all others. SVM outputs have been scaled to ½0; 1� using the algorithm proposed by Platt

(2000). In the structured generative classifier, large elements tend to dominate the model score. This is not

desirable since elements with only a few words may be characteristic of a given class. We then normalized

the scores of the textual document elements for giving a similar importance to elements with different

length. The Fisher method was evaluated with both Naive Bayes (Naive-Bayes Fisher) and the structured
document classifier (Bayesian network Model Fisher).

Multi-class single label results are given in Fig. 8. Figs. 9 and 10 respectively show the micro- and macro-

average precision–recall curves obtained for document ranking.

If we compare the generative models, for both multi-class categorization and ranking, the Bayesian

network model outperforms Naive Bayes. For multi-class categorization, the improvement is about 6% on

macro-average recall and 2% on micro-average recall which means that improvements mainly concern

small classes. For ranking, the improvement is about 4% on macro-average breakeven point and 5% on

micro-average. The two precision–recall curves in Figs. 9 and 10 show a clear improvement of the ranking
quality using the structured generative model over Naive Bayes. As could be expected, all discriminant

models do outperform the generative ones on the multi-class single label document classification task. The



Macro-average recall Micro-average recall
Naive Bayes 61 [59.8; 62.1] 64 [62.8; 65.1]

BN Model 67 [65.8; 68.1] 66 [64.8; 67.1]

SVM 71 [69.8; 72] 70 [68.8; 71.1]
Naive Bayes Fisher 69 [67.8; 70.1] 69 [67.8; 70.1]

BN Model Fisher 72 [70.8; 73] 71 [69.8; 72]

Fig. 8. Performance of the textual models over the INEX corpus: macro-average and micro-average recall with 95% confidence

intervals in multi-class single label classification.
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Fig. 9. Performance over the INEX corpus: micro-average precision–recall curves and micro-average breakeven point for the ranking

task.
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Fisher model for the Bayesian network is slightly better than SVM, but this is not significant since the

confidence intervals overlap. For ranking, micro-average performance of all models are very close, this is

because one of the large classes dominates. The macro-average precision–recall curves show that the Fisher

Bayesian network model outperforms all others and that the generative Bayesian network is very close to

SVM.

Note that this is the first time a classification experiment has been performed on this recent and reference

XML collection.



0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

1

0  0.2  0.4  0.6  0.8 1  1.2  1.4

BN-Fisher
BN-Model

Naive-Bayes
NB-Fisher
SVM-TfIdf

BreakEven point

Naive Bayes 0.58

Bayesian Model 0.62

SVM TF-IDF 0.62

Naive Bayes Fisher 0.62

BN Fisher 0.68

Fig. 10. Performance over the INEX corpus: macro-average precision–recall curves and macro-average breakeven point for the

ranking task.

824 L. Denoyer, P. Gallinari / Information Processing and Management 40 (2004) 807–827
8.2. HTML corpus: webKB

The webKB corpus (webKB, 1999) has become a reference corpus in the machine learning community

for HTML page categorization. It is composed of 8282 HTML documents from computer science

department Web sites. These documents are issued from seven topics, but we used only six topics (student,

faculty, course, project, department and staff) as is usually done. We are then left with 4520 documents. For

preprocessing, we used Porter Stemming and pruned words that appeared in less than five documents. The

vocabulary V is then composed of 8038 terms. We only kept tags with higher frequency (H1, H2, H3,

TITLE, B, I, A). We used a fivefold cross-validation with 80% of the documents for training and 20% for
testing.

Experiments on this HTML corpus confirm the results obtained on INEX which shows that the model is

valid for different types of structured documents. We then present results only for multi-class single label

categorization, using the micro-average and the macro-average accuracy as is done in Diligenti et al. (2001).

The results are given in Fig. 11.

Macro-average accuracy is similar respectively for the two generative models and for the three discri-

minant models. The latter models outperform the former ones. With respect to micro-average, the struc-



Macro-average recall Micro-average recall
Naive Bayes 70 [68.4;71.4] 81 [79.6;82.2]

BN Model 70 [68.4;71.4] 83 [81.7;84.1]

SVM 73 [71.5;74.4] 85 [83.7;86.1]
Naive Bayes Fisher 72 [70.5;73.4] 85 [83.7;86.1]

BN Model Fisher 73 [71.5;74.4] 87 [85.8;88]

Fig. 11. Performance on the webKB corpus: macro-average and micro-average recall with 95% confidence intervals in multi-class single

label classification.

Macro-average recall Micro-average recall
Naive Bayes 89.9 [89.2;90.4] 88.4 [87.7;89]
BN Text only 92.5 [91.9;93] 92.9 [92.3;93.3]
BN Image only 83 [82.2;83.7] 82.7 [81.9;83.4]

BN Text+Image 93.6 [93.1;94] 94.7 [94.2;95.1]

Fig. 12. Performance of text + image model over the NetProtect corpus: macro-average and micro-average recall with 95% confidence

intervals.

L. Denoyer, P. Gallinari / Information Processing and Management 40 (2004) 807–827 825
tured generative model is 2% better than Naive Bayes and the Fisher Bayesian network is also 2% better
than the tf-idf SVM model. Confidence intervals overlap in both cases.
8.3. Multimedia corpus: NetProtect corpus

The text and image model was tested over a corpus of 19,652 HTML pages with two topics (classes). All

pages in this corpus contain text and image informations. We pruned each word that appeared in less than

50 documents. We then used 50% of the documents for training and the remaining 50% for testing. This

experiment was designed for testing the ability of the structured generative model to handle different
information types. We thus only performed experiments with the generative models here. The Bayesian

network was also tested using the text and image page content separately. The results are shown in Fig. 12.

They show that the Structured model significantly outperforms Naive Bayes (+6% for micro-average and

+4% for macro-average) and is able to take benefit from the two information sources present in the page.

Globally, the proposed generative model performed well on the three different collections. For full

document classification, its performance is above the baseline Naive Bayes while being still less than that of

discriminant classifiers. For the ranking task on the INEX corpus, the model performance is similar to

SVM. This generative model has desirable capabilities: it is easy to integrate different information sources
and to perform inference on document parts. These properties are usually not shared by discriminant

methods operating on vector representations. We believe that these qualities are essential for future

applications of structured document classifiers. The Fisher model built on top of the generative one is a

discriminant vector classifier which slightly improves the baseline SVM.
9. Conclusion

We have presented a new generative model for structured document. It is based on Bayesian networks
and allows one to model the structure and the content of documents. It has been tested here for the classical
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task of whole document classification. We have described how this model can be turned into a discriminant

model using the Fisher kernel method. We have also shown how our model can be easily extended to take

into account different types of information and have presented an example of multimedia classification. We

have performed tests on three different document collections which show that the model behaves well on a
variety of situations. Further investigations are needed for analyzing its behavior on document fragments

classification. The model could also be modified for learning implicit relations between document elements

besides using the explicit structure. An interesting aspect of the generative model is that it could be used for

other tasks relevant to IR. It could serve as a basis for clustering structured documents. The difference with

the classification application is that in this case we miss the class information. The natural solution is to

consider a mixture of Bayesian network models where parameters do depend on the mixture component

instead of the class as it is the case here. Estimation maximization (EM) equations can be easily derived for

such a mixture model. Schema mapping and document structuring are new tasks that are currently being
investigated in the database and IR communities. The potential of the model for performing inference on

document parts when information is missing in the document could be helpful for this type of application.
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