
Matching Unstructured Product Offers
to Structured Product Specifications

Anitha Kannan
Search Labs

Microsoft Research
ankannan@microsoft.com

Inmar E. Givoni
∗

PSI Group
University of Toronto
inmar@psi.toronto.edu

Rakesh Agrawal
Search Labs

Microsoft Research
rakesha@microsoft.com

Ariel Fuxman
Search Labs

Microsoft Research
arielf@microsoft.com

ABSTRACT
An e-commerce catalog typically comprises of specifications
for millions of products. The search engine receives millions
of sales offers from thousands of independent merchants that
must be matched to the right products. We describe the
challenges that a system for matching unstructured offers
to structured product descriptions must address, drawing
upon our experience from building such a system for Bing
Shopping. The heart of our system is a data-driven compo-
nent that learns the matching function off-line, which is then
applied at run-time for matching offers to products. We pro-
vide the design of this and other critical components of the
system as well as the details of the extensive experiments
we performed to assess the readiness of the system. This
system is currently deployed in an experimental Commerce
Search Engine and is used to match all the offers received
by Bing Shopping to the Bing product catalog.

Categories and Subject Descriptors
H.2.8 [Information Systems]: Database Management
Database applications Subjects: Data mining

General Terms
Experimentation, Measurement, Performance

Keywords
Matching, Structured data, Unstructured data, Commerce
search

∗Work done while author was an intern at Search Labs

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD ‘11 August 21-24 2011, San Diego, California, USA.
Copyright 2011 ACM 978-1-4503-0813-7/11/08 ...$10.00.

1. INTRODUCTION
With the increasing widespread use of the Internet, there

has been tremendous growth in the amount of commerce
conducted over the web. A recent ComScore study reports
record-breaking $43.4 billion in Q4 2010 U.S. retail e-commerce
spending, which is up 11% from the previous year [1]. Nearly
seven out of ten consumers say that the Internet has become
important in providing them with information to help make
buying decisions. More than 70% of consumers are likely to
shop online before making an offline purchase [14].

A comprehensive product catalog is a prerequisite for the
effectiveness of an e-commerce search service. Such a cata-
log at web-scale contains information about every product as
well as sales offers from various merchants. For instance, the
Bing Shopping catalog (shopping.bing.com) has information
on more than five million products and more than ten mil-
lion offers from upwards of tens of thousands of merchants.
The product information consists of various attributes and
their corresponding values, stored in a structured record
comprised of attribute 〈name, value〉 pairs. Many products
do not have universal unique identifiers. The product infor-
mation is obtained from multiple product aggregators (e.g.,
CNET, PriceGrabber), each providing only partial, but dif-
ferent, information. Information from different aggregators
is combined to arrive at the specification for a product. How-
ever, the catalog can still have multiple data records corre-
sponding to the same product, each somewhat different from
the other.

Similarly, offers come from multiple merchants (e.g.,
buy.com, gadgettown.com). Generally, there is very little
structure in the offers. Typically, an offer consists of a con-
cise textual description of the product for which the offer
is being made. Embedded in the description are some at-
tribute values and sometimes attribute names along with
other terms, which the merchant presumes might be suffi-
cient for the offer to be matched to the intended product.
The text of the description is often not grammatically well-
formed. Different merchants often use different names for
the same attribute. Many offers have no identifier that could
be used for matching the offer to the corresponding product.
The matching is currently done using rules written manually
– a costly and brittle process. Consequently, many offers are
matched incorrectly and millions of offers go unmatched.

When a consumer searches for a product, the search en-



Structured Record (Product) 

Attribute Name Attribute Value

category

brand

product line

model

sensor resolution

color

weight

width

height

depth

display: type

display: technology

display: diagonal size

audio input  type

flash memory: form factor

flash memory: storage capacity

video input: still image format

video input: digital video format

lens system: optical zoom

digital camera

Panasonic

Panasonic Lumix

DMC-FX07

7 megapixel

silver

132 g

9.4 cm

5.1 cm

2.4 cm

LCD display

TFT active matrix

2.5 in

none

memory stick

8 MB

JPEG

MPEG-1

3.6lens system: optical zoom

…

3.6

Panasonic DMC-FX07EB digital camera silver

Panasonic Lumix DMC-FX07 digital camera [7.2 megapixel, 2.5”, 3.6x 

optical zoom, LCD monitor ]

Unstructured Text  (Offer-1)

Lumix FX07EB-S, 7.2 MP

Unstructured Text  (Offer-2)

Unstructured Text  (Offer-3)

Figure 1: Structured product record for ‘Panasonic
DMC-FX07 digital camera’ and textual descriptions
from three matching offers.

gine also shows offers paired with the product. Thus, the
ability to correctly match offers to their corresponding prod-
ucts is of paramount importance for the success of the search
engine.

Fig. 1 shows part of the structured record for a Panasonic
DMC-FX07 digital camera as well as three merchant offers
for this product as they appear in the Bing Shopping catalog.
We observe the following:

• While Offer-1 is the most detailed one, it still con-
tains only a small part of the information in the struc-
tured record. The phrase ‘Panasonic Lumix’ indicates
both the brand (Panasonic) as well as the product line
(Panasonic Lumix). Some of the attribute values only
match approximately (7.2 megapixel vs. 7 megapixel,
LCD monitor vs. LCD display). The only attribute
name present in the offer is optical zoom (called ‘lens
system: optical zoom’ in the structured record), with
corresponding values 3.6x and 3.6, respectively.

• Information provided in Offer-2 is largely a subset of
what is provided in Offer-1. This offer provides the
values of the category and brand, but the value of the
model has an extra suffix. It additionally provides the
value of the color attribute.

• Offer-3 is even more interesting. It provides part of
the value of the product line (Lumix) and a somewhat
different value for the sensor resolution (7.2 MP vs.
7 megapixel) as well as for the model (FX07EB-S vs.
DMC-FX07). It neither provides the category nor the
brand information.

• With respect to Offer-3, note further that Panasonic
also makes other 7.2 megapixel Lumix digital cam-
eras (e.g., DMC-TZ3K, DMC-LZ6, and DMC-FX12).
Moreover, there is also a field controller product with
model number FX07.

Clearly, we have on our hands a hard problem of matching
free-text descriptions of products to their structured records
for which it is desirable to have an algorithmic solution. The
matching system must have high precision. Our enquiry
revealed that for the system to be deployable, the precision
must be at least 85%. Since a large number of offers are
received on a daily basis and only a fraction of them can be
shown, lower recall is not as detrimental as lower precision.
In this paper, we present the design and performance of an
experimental system that satisfies this desiderata.

The rest of the paper is organized as follows. Section 2
discusses related work. Section 3 gives the design of our
system. Section 4 describes the datasets and metrics we
used for evaluating the performance of the system. We also
present experimental results in this section. We conclude
with a summary and directions for future work in Section 5.

2. RELATED WORK
The problem of matching records has been studied under

various topics including record linkage [13, 21, 23, 27], du-
plicate detection [12, 24], entity resolution [2, 3, 26], and
merge/purge [15]. While our solution continues this rich
lineage of work, there are distinguishing traits in our set-
ting that call for fresh approaches and techniques. For in-
stance, while the work of Newcombe [21] (later formalized
by Fellegi and Sunter in [13]) pioneered the probabilistic
approach to matching, their work (and much of the sub-
sequent record linkage literature) tacitly assumes that the
data to be matched consists of properly structured records
with a well-defined schema. The work on duplicate detec-
tion, merge/purge, and entity resolution is also targeted at
structured and properly segmented records.

At the other end of the spectrum, the work in natural
language processing [19] focuses on the detection of mentions
of the same entity in free text. In contrast, in matching offers
to products, there are components from both bodies of work:
the offers consist of only free text, while the products are
properly structured under a given schema.

Much of the prior work has relied on the presence of val-
ues for all attributes in the data records, and the goal has
been to design a similarity metric either at the entire record
level [9, 20] or at the attribute level that are subsequently
combined to measure record level match [5, 8]. This as-
sumption is not valid in our setting. Since offers consist
of free text, their tokens need to be mapped to attributes.
However, some tokens may not map to any attribute (e.g.,
the token ‘monitor’ in Offer-1 of Fig. 1), and when they
do map, they can be ambiguously mapped to multiple at-
tributes (e.g., the token ‘Panasonic’ in Offer-1 of Fig. 1).
So, unlike previous settings, the matching algorithm needs
to disambiguate among the multiple possible interpretations



of the offers. These problems also arise in the context of un-
derstanding queries [22, 25]. In [25], a probabilistic model is
introduced to identify the annotation of a query which cor-
responds to best explanation of that query. In our work, we
propose the notion of optimal parse which is defined with
respect to a product the offer will be matched against.

The design of a matching function in prior work has fo-
cused primarily on the computation of weights for value
matches and mismatches for the different fields of a record
[5, 8], but the explicit modeling of missing values has not
received much attention. An exception is [11], wherein a
comparison feature vector is augmented to encode presence
or absence of values. However, that approach does not ex-
plicitly penalize mismatches at the attribute level, and there-
fore does not leverage a strong signal for matching offers to
products.

Additional related work includes research in assigning
database entities to text documents [7, 10]. These approaches
assume that the documents consist of well-formed English
sentences. Closest to us is the work of Michelson and Knoblock
[17], who also consider the problem of matching concise tex-
tual descriptions to structured records. Their techniques
differ from ours in how blocking as well as matching are
done. For blocking, they learn rules for constructing the
blocks whereas we use the natural organization of products
into categories for this purpose. For matching, they employ
the entire unstructured text, whereas our matching func-
tion uses only those segments of the text that are deemed
relevant on a per-attribute basis.

Specifically in the commerce domain, Bilenko et al. [4]
proposed techniques for clustering merchant offers, but as-
sume that the offers have structured information. Many of
the challenges of matching unstructured offers to structured
product specifications disappear when clustering structured
offers.

3. SYSTEM DESIGN
We have a database S of product descriptions, represented

as structured records. Every structured record s ∈ S con-
sists of a set of attribute 〈name, value〉 pairs, denoted by Qs.
The attributes can be numeric or categorical. We receive as
input an unstructured offer, u, which is a concise free-text
description that specifies values for a subset of the attributes
in S in an arbitrary manner. The text may also contain ad-
ditional words and may be grammatically ill-formed. Our
objective is to match u to one or more structured records in
S. We use the metric of precision and recall for judging the
quality of the matching system.

We take a probabilistic approach and find the product
s ∈ S that has the largest probability of match to the given
offer, u. Our matcher is learned in an offline stage (see
Algorithm 1). For this, we postulate a small training set U
of unstructured offers. Each u ∈ U has been matched to one
structured record in S (set M). We also have mismatched
records from S, one for every u ∈ U (set N ).

In the subsequent online stage (Algorithm 2), new offers
are matched one at a time. We first do candidate selec-
tion, and then choose the best matched product amongst
the candidates by applying the learned model.

We next describe the key components required of our sys-
tem:

3.1 Semantic Parsing
Our matching algorithm is based on understanding the

semantics of the offer descriptions and using these semantics
to aid matching. Thus, the first step in matching is the
semantic parsing step. This step is performed in a three
stage process consisting of tagging the offer with attributes,
identifying plausible parsings based on the tags, and finally
obtaining an optimal parse. We describe each of these steps:

Tagging: The tagging step discovers attribute names
present in the offer and associates corresponding strings from
the offer to them. This step is performed as follows. Let A
represent all the attributes present in structured data avail-
able in product descriptions S. We first build an inverted
index D from S such that D(v) returns a set of attribute
names (in A) associated with string v. Note that multi-
ple attributes can be associated with the same value. We
perform standard preprocessing such as unit conversion and
name synonymization, while building the dictionaries. Let
Zu represent the set of all n-grams (up to n = 4) present in
u. Then, the tagging step identifies the set of all attribute
〈name,value〉 pairs in u:

Ru =
{〈
a, {v|v ∈ Zu, a ∈ D(v)}

〉
|a ∈ A

}
(1)

Fig. 2(a) shows an offer for digital camera, and the output
of the tagging step. A portion of the output from this step
is { {brand, {‘panasonic’}}, {product line, {‘lumix’, ‘pana-
sonic lumix’}}, where brand and product line are the two of
the identified attributes, with brand having a single value
‘panasonic’ and product line having a set of two values {‘lu-
mix’, ‘panasonic lumix’}. In the same example, the value
‘3.6x’ is associated with both optical and digital zoom: {
{optical zoom, {‘3.6x’}}, { {digital zoom, {‘3.6x’}}

Plausible parse: Given the tagging, a plausible parse
of an offer is defined to be a particular combination of all
attributes identified in the tagging step such that each at-
tribute is associated with exactly one value. Thus, if each
attribute a has ka values, then there are

∏
a ka plausible

parses in the offer. Typically, ka is small and thus, only a
small number of parses are plausible.

The example in Fig. 2(a) has a single value for six of the
seven identified attributes and the ‘product line’ attribute
has two values. Thus, this offer has two plausible parses,
one parse in which ‘lumix’ is the ‘product line’ and another
in which ‘panasonic lumix’ is the ‘product line’.

Multiple plausible parses arise because of ambiguities in
the data. Therefore, we maintain these plausible parses until
the offer is paired with a product which gives rise to the
optimal parse of the offer with respect to that product.

Optimal parse: When an offer u is paired with a prod-
uct s, we use the parse of u in which the maximum number
of attributes agree in their values with s. We call this plau-
sible parse the optimal parse of the offer with respect to the
product:

R∗u,s =
{〈
a, v
〉
|
〈
a, v
〉
∈ Ru AND

(〈
a, v
〉
∈ Qs

OR a is numeric OR s.val(a) = ∅
)}
, (2)

where s.val(a) is the value of attribute a in product s. Note
that in addition to keeping those attribute 〈name, value〉
pairs in u that match with attribute 〈name, value〉 pairs in s,
we also retain those attribute 〈name, value〉 pairs for which
there is no corresponding pair in s (because s has a missing



Panasonic Lumix DMC-FX07 digital camera [ 7.2 megapixel , 2.5“,  3.6x optical zoom, LCD monitor]

brand model optical sensor 

resolution
display 

diagonal size
display type

optical zoom, 

digital zoom

Attribute Type Attribute Value Optimal Parsing of Offer (a)

s1 brand

product line

model

display diagonal size

display type

Panasonic

Panasonic Lumix

DMC-FX05

2.5 in

LCD

s2 brand

model

Panasonic

DMC-FX07

product line

Panasonic Lumix DMC-FX07 digital camera 

[ 7.2 megapixel , 2.5“,  3.6x optical zoom, LCD monitor]

Panasonic Lumix DMC-FX07 digital camera 

(a)

(b)

model

optical sensor resolution

optical zoom

DMC-FX07

7.2 megapixel

3.6x

Panasonic Lumix DMC-FX07 digital camera 

[ 7.2 megapixel , 2.5“,  3.6x optical zoom, LCD monitor]

Figure 2: (a) An offer u with all its plausible parses, one in which ‘panasonic lumix’ is the product line and
the other in which ‘lumix’ is the product line(b) Two products s1 and s2 with their structured information.
Note that the optimal parse of u is different depending on the product that u is paired with.

value for that attribute) or if the attribute is numeric. As we
will see momentarily, the missing values and numeric values
are treated differently when we define the similarity func-
tion between offer and product. Observe that optimal parse
is defined only with respect to a particular product. Differ-
ent products can give rise to a different choice of plausible
parse to be optimal. Continuing with our example using
Fig. 2(b), the optimal parse of u corresponding to product
s1 is the plausible parse with ‘Panasonic Lumix’ as the prod-
uct line. When u is paired with s2, both plausible parses are
optimal since s2 does not have the product line specified.

3.2 Similarity Feature Vectors
The similarity between an offer and a product is defined

in terms of their similarity on the values of the attributes
present in them. We consider all attributes K ⊂ A that are
present in at least one offer. We would like the similarity
function to take into account not only the match in values
of certain attributes, but also reflect mismatches or missing
values in either products or offers. The function should pe-
nalize mismatches differently from missing values; in fact, a
mismatched value is a stronger indicator of the correspond-
ing offer and product mismatch. In addition, an attribute
that is frequently missing reflects its lower importance for
the purposes of matching.

The similarity feature vector we define in the sequel satis-
fies the above design considerations. Let R∗u,s (Eq. 2) repre-
sent the optimal parse of offer u with respect to product s.
Then, for the pair 〈u, s〉, we compute the similarity feature
vector f by determining similarity levels between u and s for
each attribute kj ∈ K:

fj =


0 if R∗u,s(kj) = ∅ OR s.val(kj) = ∅

(−1)
I[
|R∗u,s(kj)−s.val(kj)|

max(R∗u,s(kj),s.val(kj))
>λ]

if kj is numeric

(−1)I[R
∗
u,s(kj)=s.val(kj)] otherwise

(3)
where I[z] is the indicator function. Note that when either

the optimal parse of the offer or the product has a miss-
ing value for an attribute, the corresponding feature value
is 0. In addition, when the attribute values mismatch, the
corresponding feature value is -1. This definition enables pe-
nalizing the matching score differently when u or s is missing
an attribute value than if they disagree on that attribute.

For categorical attributes, we use binary loss rather than
a string similarity measure (c.f. [6]). The reason for this de-
cision was that while string similarity measure can be useful
in certain situations (e.g., product lines ‘canon powershot’
and ‘powershot’ are similar), we found it to be detrimen-
tal more often (e.g., model numbers ‘a1000’ and ‘a100’ of
Canon powershot cameras are close in string similarity but
refer to distinct products). Numeric attributes, on the other
hand, frequently have imprecise values because of round-off
errors (e.g. 7 MP vs. 7.2 MP) or difference in conversion
factors (1GB = 1000 MB or 1GB =1024 MB). Hence, we
allow for approximation in measuring their similarity. After
some experimentation, we set λ to 0.1.

3.3 Matching Function
We would like a matching function that can provide a

probabilistic score of match between an offer and a product.
In addition, since the number of attributes in S is large,
and not all attributes are present in the offers, the function
needs to automatically infer attributes that are required to
be matched and also learn the relative importance among
them.

The binary logistic regression lends itself to satisfy these
criteria. Given labeled data of good and bad matches, and
features that measure similarity between the attributes, it
can automatically learn the relative importance between the
attributes, and in turn provide a function that measures the
match between an offer and product in terms of a proba-
bilistic score. We use binary logistic regression of the form:

F(w, f) = P (y = 1|f ,w) =
1

1 + exp {−(b+ fTw)} (4)



Algorithm 1 Off-line Training

Input:
U = {u1 . . . uN} - a set of offers
S = {s1 . . . sM} - a set of structured product descriptions,
M >> N
M = {〈ui, sj〉i}Ni=1, (ui ∈ U , sj ∈ S) - pairs of correctly
matched records, one for every ui.
N = {〈ui, sk〉i}Ni=1 - similarly, pairs of mismatched
records.
Output:
D - dictionaries,
w - algorithm parameters
Preprocess:
D ⇐ CreateAttributeDictionaries(S) - build dictionaries
of attributes and their values using S
Train:
for all u ∈ U do
u ⇐ SemanticParsing(u,D) - Extract plausible parses
(Section 3.1)

end for
for all pairs ∈M and pairs ∈ N do

fMi ⇐ ExtractSimFeatures(pairi)
fNj ⇐ ExtractSimFeatures(pairj) - Construct similarity
feature vector for matched and mismatched pairs (Sec-
tion 3.2)

end for
w∗ ⇐ arg maxw LearnToMatch(F(w, f), {fMi }, {fNj }) -
Train a function that maps feature vectors to match prob-
ability, F(w, f) : f → [0, 1] (Section 3.3)
Return: w∗,D

The logistic regression learns a mapping from the similarity
feature vector f to a binary label y, through the logistic
function. The parameter w is the weight vector wherein
each component wj measures the relative importance of the
feature fj for predicting the label y.

In addition to the human-labeled matched training pairs,
we construct mismatched pairs as follows. We pair each
offer in the matched training pair with a small number of
products(10) that are matched to offers, other than the offer
under consideration. This addition of mismatched pairs in-
troduces variability among the mismatched pairs. Some are
completely different (e.g., ‘Canon EOS 40D camera’ mis-
matched to ‘Olympus MJU 300’) while others are highly
overlapping products (e.g., ‘Canon EOS 40D camera’ mis-
matched to ‘Canon 50D camera’).

Having the matched and mismatched training pairs, let
fi = [fi1, fi2, . . . , fi|K|] be the feature vector for pair i. Let
{F,Y} = {(f1, y1), . . . , (fT , yT )} be the set of feature vectors
along with their corresponding binary labels. Here, yi = 1
indicates that the ith pair is a match, otherwise yi = 0.
Logistic regression maximizes an objective function which is
the conditional log-likelihood of the training data:

arg max
w

logP (Y|F,w) = arg max
w

T∑
i=1

logP (yi|fi,w), (5)

where P (yi = 1|fi,w) is defined by Eq. 4. Note that a fea-
ture with positive weight will affect the score by increasing
the probability of match for a pair with agreement on the
feature, by decreasing the score in the case of a mismatch,
and by leaving the score unaffected in the case of a missing
value.

Algorithm 2 Online Matching

Input:
u - offer
S,D,w
Output: s∗ - best matching s ∈ S
u⇐ SemanticParsing(u,D) - (Section 3.1)
Blocking:
ki ⇐ Top attributes with largest weights in w
S∗ ⇐ Subset of S with ∪i(u.val(ki) = s.val(ki)
for all si ∈ S∗ do

fi ⇐ ExtractSimFeatures(〈u, si〉,K) - (Section 3.2)
P (match(si, u)) ⇐ F(w, fi) - Matching score of a pair
(Section 3.4)

end for
Return: s∗ = arg maxsi P (match(u, si)) - Best Matching
score of all pairs (Section 3.4)

3.4 Online Matching
During the online phase, we are given a previously unseen

offer u, and the goal is to identify the best matching product
s ∈ S.

The scoring function learned during the offline phase pro-
vides the probability of match for a pair 〈u, s〉. Naively, we
can find the best match by pairing u with every s ∈ S, calcu-
lating the pair match score, and choosing the s∗ that results
in the highest score. However, such naive pairing will cost
O(|S|) operations for each offer.

Instead, we design a staged blocking strategy [15, 16, 27].
We note that the products are categorized into a taxonomy.
Therefore, in the first stage, we use a classifier trained on
product data to categorize the given offer into a category
node in this taxonomy[18]. This reduces the candidate set
to only those products that belong to the offer category.

Further, within the category, we would like to reduce the
number of candidate products to match against the offer.
For that, we make the following observation. The goal of
the matching process is to match the offer to the product
that has the largest matching score. To obtain this large
score, a product needs to agree with the offer, especially
on the values of the attributes that contribute large weights
to the matching function. Using this insight, in the sec-
ond stage, we further reduce the candidate set by identify-
ing those top weighing attributes that can potentially give a
matching score of at least θ in Eq. 4. Specifically, after iden-
tifying attributes in the offer using method in Section 3.1,
we choose subset of attributes, {kj} ∈ K, in the descending
order of weights until the following condition is satisfied:

∑
j

fjwj ≥ log
θ

1− θ − b (6)

Here, θ corresponds to P (y = 1|f ,w). This equation can be
derived from Eq. 4 by rearranging terms and taking the log.
This set of attributes {kj} are then used to retrieve products
such that the retrieved products match on the value of at
least one of the attributes in {kj}. The union of all these
products becomes the candidate set of products. Note that
this candidate set is a superset of products that can poten-
tially match to offer since we consider all products that have
at least one matching value within this attribute set.



4. EVALUATION
The central goal of our work is to develop a system that

can be deployed to match offers to products on a daily basis.
The main requirement for us is to have, for every deployed
category, at least 85% precision in matching. In general, this
is a tall order for any system to achieve. In our setting, we
find two main sources of difficulty that further compound
this problem: First, some categories lack sufficient struc-
tured information required for matching. This prevents the
matcher from performing semantic analysis effectively, and
thus in turn, affects the learning of the matching function.
Second, the offers are not correctly specified by the mer-
chants, thereby contributing to reduction in matching pre-
cision. Thus, identifying error-prone categories become im-
portant. This identification enables either augmenting such
a category with more structured information or reporting to
the merchants about poor quality of their offers.

In this section, we discuss how we select deployable cate-
gories and describe the experiments we conducted to study
the performance of our technique.

4.1 Algorithms Studied

Variants of our Algorithm
We defined the following variants of our matching function
in order to study its characteristics:

1. Equal Weights (EW): This is the simplest version
where the number of agreeing attributes between the
offer u and the product s is used as the predictor for
matching. The product s having the largest number of
attributes in agreement with u is taken to be the best
match.

2. Learned Weights (LW): In this version, we learn
the relative importance between the attributes, but we
treat missing and mismatched attributes equally. For
attribute k, the value of feature fk is -1 when either the
values are missing or when the values are mismatched.

3. LW with distinction between Mismatched and
Missing (LWMM): Here, relative importance be-
tween attributes is learned taking into account whether
attribute values are mismatched or missing. For at-
tribute k, the value of feature fk for missing values
is 0, and it is -1 for mismatched values. This version
implements the full functionality of Algorithm 1.

Baseline
Inspired by the work in record linkage [4, 9, 20], we em-
ploy a baseline, which we call TFIDF. It uses the tf-idf
weighted cosine similarity as the measure of agreement be-
tween the offers and products. Each token is associated with
the tf-idf score defined as log(TF(token)+1) log(IDF(token))
[9]. Here, TF(token) is the frequency of the token in the
offer/product and IDF(token) is its corresponding inverse
document frequency; IDF(token) is computed across all the
products in the category. Before matching, the structured
specifications of a product are converted into a string repre-
sentation by concatenating the content of the record.

TFIDF, instead of treating all tokens equally, weighs to-
kens inversely to their popularity. Thus, a token such as
‘40D’ (corresponding to the model number of a ‘Canon EOS
40D’ digital camera) will have higher tf-idf score than ‘digi-
tal camera’ that is ubiquitous in the digital camera category.

Typically, tokens that are unique such as model numbers
and brands are the ones that are useful in matching. Since
TFIDF can choose such unique tokens, it provides a reason-
able baseline to our approach.

4.2 Performance Metrics
For evaluation purposes, we have access to a test set of

offers, u ∈ T . We also know the correctly matched product
s∗ for every u. The matcher has no knowledge about the
matching product, but instead predicts the best matched
product s̃ with probabilistic score γu,s̃. By best matched we
mean that there is no other s that can match u with a higher
score. Thus, instead of a standard classification task, we are
considering a harder task of the matcher finding the best
matching s for every offer u. We require the match score to
be at least some η ∈ [0, 1] before calling out a match. We
define precision and recall at threshold level η as:

Precision(η) =

∑
u∈U I[(γu,s̃ > η) AND (s∗ = s̃)]∑

u∈U I[γu,s̃ > η]
(7)

Recall(η) =

∑
u∈U I[(γu,s̃ > η) AND (s∗ = s̃)]

|T | , (8)

where I[z] is the indicator function. We also combine preci-
sion and recall values into the F-measure, defined as:

F-measure(η) =
2Precision(η)Recall(η)

Precision(η) + Recall(η)
. (9)

4.3 Dataset
The dataset comprised of 54 categories related to electron-

ics (e.g., televisions, mp3 players), computing (e.g., desktop
computers, laptops) and cameras and accessories (e.g., dig-
ital cameras, camera accessories). We had a labeled set of
20,000 offers from these categories, each labeled with the
corresponding matched products. There were on average
425 offers/category; the smallest category had 50 offers.

For each category, we randomly sampled 100 offers (20
if the number of offers is less than 200) and used them for
training the matcher. We used whatever offers were left
within a category as the test set for that category. Thus,
the training set for each category had at most 100 samples.
The test set size varied from category to category as we
made use of all the available samples, but in no case was the
test set smaller than 30 samples. Results are obtained using
5-fold cross validation.

Note that other than using a separate training set for each
category, we do not use any category-specific features and
the same code is used for different categories. We use small
training set (100 offers per category), which can be curated
easily from successful matches (e.g., high click throughs) in
a running system. We also do not have any parameters that
needs to be tuned. These characteristics are critical for a
solution to work at web scale.

4.4 Selecting Categories for Deployment
We use a small validation set to compute precision of

matches, and select only those categories that meet our pre-
cision criteria of at least 85% precision. This enables us
to do two important things required for deployment: (a)
this technique can be applied at regular intervals to ensure
quality control, (b) excluded categories can be analyzed for
rectification, either by obtaining additional structured data



Offer Description Products
imation 4gb nano usb 2.0
flash drive - 4gb - usb - ex-
ternal

imation nano flash drive
usb flash drive - 4 gb

imation 2gb usb 2.0 clip
flash drive

Table 1: Sample offer and two products from the
memory cards category.

or reporting to merchants about their data quality. In addi-
tion, after the issues are fixed, we can re-train matchers for
these categories and decide whether or not to deploy.

By using the validation set, LWMM was able to select 37
categories for immediate deployment, each having the pre-
cision of at least 85% and we were able to initiate corrective
action for others. We found that there was a correlation be-
tween the economic value of a category and the data quality;
the higher the economic value of products in a category, the
higher the data quality. Many of the categories that did not
pass our filter correspond to low economic value categories
(e.g., accessories). An example is the ‘computer memory
card’ category. Table 1 shows example offer and products
from this category. As we can see from this example, an
important attribute for this category is the capacity of the
memory card. However, as this attribute is missing in all but
two products (out of 7500 products), the matcher learned to
ignore this attribute, and hence was not able to learn the
function that can find appropriate products.

We also computed the precision achieved on the excluded
categories using TFIDF. The numbers were average preci-
sion of 51% (largest precision of 70%) and 32% recall, rein-
forcing further that these categories are indeed error-prone.

4.5 LWMM Performance
We present precision and recall values for deployed cate-

gories. Fig. 3 shows the scatter plot of precision-recall values
that the LWMM algorithm exhibits. Each circle corresponds
to a category, and the area of the circle is proportional to the
test set size. We have labeled some of the categories. The
macro average precision is 93% while the macro average re-
call is 54% 1. The corresponding micro average numbers are
93% precision and 41% recall. We studied some of these cat-
egories. The ‘laptops’ category has high precision and low
recall. The main reason for low recall is that many of the
offers have a large number of attributes that are missing,
and hence the matcher decides not to match these offers to
any product, so as to maintain high precision. In contrast,
the ‘printers’ category has both high precision and recall,
because a very large fraction of offers specify the attributes
for matching. This difference partly arises from the nature
of the categories - ‘laptops’ require a more detailed specifica-
tion than ‘printers’ and hence it is easier for the merchants
to include information needed for matching ‘printers’.

By way of comparison, the average precision and recall
values for TFIDF are 64% and 11% respectively. Fig. 4
shows the relative precision of LWMM and TFIDF. We see
that LWMM performs better than TFIDF for all categories.
The reason is that TFIDF weighs the relative importance

1The macro precision (or recall) is obtained by averaging the
precision (or recall) of every categories, while the micro pre-
cision(recall) is computing the precision (recall) of all offers
across all categories.

Recall 

P
re

c
is

io
n

 

Printers 
Televisions 

Audio Video 

receivers 

Laptop 

computers 

Mounts 

Projector 

screens 

Camcorders 

Figure 3: Performance of LWMM

P
re

c
is

io
n
 o

f 
L
W

M
M

 

Precision of TFIDF 

Processors 
Televisions 

Lenses 

Figure 4: LWMM v.s. TF-IDF

of the tokens, but only as measured by the frequency of
their presence in the product collection. It is not cognizant
of what tokens are semantically important. As an example,
the token ‘canon’ gets down-weighted in the ‘digital cameras’
category because there are many ‘Canon’ cameras. However,
‘canon’ as the brand is a very good indicator of a product
identity.

4.6 Importance of Learning Weights
Fig. 5(a) shows the ratio of the LWMM’s F-measure over

EW’s F-measure. Clearly, learning weights makes matching
better. We notice that the gains are much larger for some
categories than others. To understand this difference, we
focus on two categories – digital cameras and televisions.

Fig. 5(b) shows the precision-recall values for digital cam-
eras. For this category, there were seven attributes present
in at least one offer during the offline training phase. These
attributes were brand, model, product line, color, resolu-
tion, optical zoom, viewfinder type and video input type.
EW weighs these attributes equally. At low recall, EW in-
sists on all key attributes to agree on their values, and hence
the precision becomes high. However, as we increase recall
by reducing the number of agreements in attributes, pre-
cision drops. It is as expected, since certain combinations
of attributes provide spurious matches (e.g., agreement on
color and resolution of a camera). On the other hand, by
learning the relative importance of the attributes, LWMM
matches a larger fraction of offers without sacrificing much
precision.

The precision-recall values for televisions are shown in



F
 m

e
a

s
u

re
 o

f 
L
W

M
M

 

F measure for EW 

Televisions 
Digital cameras 

(a) LWMM v.s. EW

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

ci
si

on

EW

LWMM

(b) LWMM v.s. EW (Digital Cameras)

0 0.2 0.4 0.6 0.8 1
0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si

on

EW

LWMM

(c) LWMM v.s. EW (Televisions)

Figure 5: Importance of learning weights.

F
 m

e
a
s
u
re

 o
f 
L
W

M
M

 

F measure for LW 

Digital cameras 

Televisions 

Power supplies 

Keyboards 

Figure 6: Treating mismatching attributes differ-
ently from missing attributes.

Fig. 5(c). For this category, only five attributes (brand,
model, product line, diagonal screen size, projection display
technology) are present in the offers during the offline train-
ing phase. We found that these attributes were often all
present in the data and their values were generally correct.
Hence, the performance of EW is quite high and it performs
almost as well as its learned counterpart, LWMM.

4.7 Importance of Treating Mismatching and
Missing Values Differently

Fig. 6 shows the scatter plot comparing the F-measures
between LWMM and LW. We can see that there is a gain
in F-measure for all categories, when we treat missing at-
tributes differently from mismatched values. The gain is
less pronounced for high economic value categories such as
digital cameras than for low economic value categories such
as keyboards and power supplies. The reason, we speculate,
is that in the case of the former, the merchants have the
incentive to provide better offer descriptions containing all
the necessary attributes needed for matching. Hence, miss-
ing attributes becomes less of an issue.

4.8 Scalability
We perform staged blocking at the time of matching. In

the first stage, offers are classified into categories, and then
they are matched to products within that category. This
substantially reduces the number of products to compare
against. Subsequently, as described in Section 3.4 only a
viable subset of products is selected to be matched against
the given offer. Fig. 7 shows the number of candidates con-
sidered for each category. Each stem corresponds to a par-
ticular category; the length of the stem is one standard de-
viation of the average number of candidates across the offers
in that category. We can see that the candidate set size is
much smaller than the number of products in most of the
categories.

5. SUMMARY AND FUTURE WORK
We described a system for matching unstructured textual

descriptions to structured data records that arises in the
context of matching sales offers to product specifications in
e-commerce websites. The highlights of our solution include:

1. Semantic understanding of offers by leveraging struc-
tured information in the database:



0 2000 4000 6000 8000
0

1000

2000

3000

4000

5000

6000

# of products

A
ve

ra
ge

 #
 o

f p
ro

du
ct

s 
co

ns
id

er
ed

 p
er

 o
ffe

r 
 

Memory
 cards

Laptops

Figure 7: Scalability contributor during online
matching

• The semantics is defined using plausible parses

• The same offer has different optimal parse with
respect to different products, and thus no hard de-
cision is made about the attribute 〈name, value〉
pairs in the offer until it is paired with a product

2. A match function based on the semantics is learned to
find the product that has the largest match probability
to the given offer:

• Takes into account matches as well as mismatches
in attribute values between offer-product pairs

• Differentiates between missing attribute values and
mismatch of attribute values.

• Infers the relative importance of different attributes
in the matching.

3. Built-in strategies for the solution to work at web scale:

• Avoiding domain-specific features in the match-
ing system

• Reducing the candidate set of products that can
potentially match a given set of offers

Extensive experiments using the Bing Shopping catalog
demonstrate the effectiveness of our solution.

While presented in the context of commerce search, our
system is applicable to any vertical search domain where
there is the notion of an offer and a repository of structured
data. As an example, in travel search there are offers for
hotels (from various travel agencies) and a database with
information about the hotels. Similarly, in local search, the
system can be applied to match deals at restaurants against
a restaurant database. As future work, we plan to apply our
system to such domains.

6. REFERENCES
[1] Comscore reports record-breaking 43.4 billion in Q4 2010

U.S. retail e-commerce spending, up 11 percent vs. year
ago.
http://www.comscore.com/Press_Events/Press_Releases/
2011/2/comScore_Reports_Record-Breaking_43.4_
Billion_in_Q4_2010_U.S._Retail_E-Commerce_Spending,
Accessed Feb 15 2011.

[2] R. Agrawal, R. Bayardo, C. Faloutsos, J. Kiernan,
R. Rantzau, and R. Srikant. Auditing compliance with a
hippocratic database. In VLDB, pages 516–527, 2004.

[3] O. Benjelloun, H. Garcia-Molina, D. Menestrina, Q. Su,
S. E. Whang, and J. Widom. Swoosh: a generic approach to
entity resolution. The VLDB Journal, 18(1):255–276, 2009.

[4] M. Bilenko, S. Basu, and M. Sahami. Adaptive product
normalization: Using online learning for record linkage in
comparison shopping. In ICDM, pages 58–65, 2005.

[5] M. Bilenko, R. Mooney, W. Cohen, P. Ravikumar, and
S. Fienberg. Adaptive name matching in information
integration. IEEE Intelligent Systems, 18(5):16–23, 2003.

[6] M. Bilenko and R. J. Mooney. Adaptive duplicate detection
using learnable string similarity measures. In KDD, pages
39–48, 2003.

[7] V. Chakaravarthy, H. Gupta, P. Roy, and M. Mohania.
Efficiently linking text documents with relevant structured
information. In VLDB, pages 667–678, 2006.

[8] M. Cochinwala, V. Kurien, G. Lalk, and D. Shasha.
Efficient data reconciliation. Information Sciences,
137(1-4):1–15, 2001.

[9] W. Cohen. Integration of heterogeneous databases without
common domains using queries based on textual similarity.
In SIGMOD, pages 202–212, 1998.

[10] N. Dalvi, R. Kumar, B. Pang, and A. Tomkins. Matching
reviews to objects using a language model. In EMNLP,
pages 609–618, 2009.

[11] N. S. D. DuBois. A solution to the problem of linking
multivariate documents. Journal of the American
Statistical Association, 64(325):163–174, 1969.

[12] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios.
Duplicate record detection: A survey. IEEE Trans. on
Knowl. and Data Eng., 19(1):1–16, 2007.

[13] I. P. Fellegi and A. B. Sunter. A theory for record linkage.
Journal of the American Statistical Association,
64(328):1183–1210, 1969.

[14] G. Fulgoni. State of the U.S. Retail Economy in Q2 2009.
Technical report, Comscore, August 20 2009.

[15] M. A. Hernández and S. J. Stolfo. The merge/purge
problem for large databases. In SIGMOD, pages 127–138,
1995.

[16] A. Mccallum, K. Nigam, and H. L. Ungar. Efficient
clustering of high-dimensional data sets with application to
reference matching. In In Knowledge Discovery and Data
Mining, pages 169–178, 2000.

[17] M. Michelson and C. Knoblock. Creating relational data
from unstructured and ungrammatical data sources.
Journal of Artificial Intelligence Research, 31:543–590,
2008.

[18] T. Mitchell. Machine Learning. McGraw Hill Higher
Education, 1997.

[19] R. Mitkov. Anaphora Resolution. Longman, 2002.

[20] A. Monge and C. Elkan. The field-matching problem:
algorithm and application. In KDD, 1996.

[21] H. B. Newcombe, M. J. Kennedy, S. J. Axford, and A. P.
James. Automatic linkage of vital records. Science,
130:954–959, October 1959.

[22] K. Q. Pu and X. Yu. Keyword query cleaning. In PVLDB,
pages 909–920, 2008.

[23] P. Ravikumar and W. W. Cohen. A hierarchical graphical
model for record linkage. In UAI, 2004.

[24] S. Sarawagi and A. Bhamidipaty. Interactive deduplication
using active learning. In KDD, pages 269–278, 2002.

[25] N. Sarkas, S. Paparizos, and P. Tsaparas. Structured
annotations of web queries. In SIGMOD, pages 771–782,
2010.

[26] S. Singh, K. Schultz, and A. McCallum. Bi-directional joint
inference for entity resolution and segmentation using
imperatively-defined factor graphs. In ECML-PKDD, pages
414–429, 2009.

[27] W. E. Winkler. Overview of record linkage and current
research directions. Technical report, Bureau of the Census,
2006.


