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Abstract

The compressed-sensing recovery of video sequences driven by multihypothesis predictions
is considered. Specifically, multihypothesis predictions of the current frame are used to gen-
erate a residual in the domain of the compressed-sensing random projections. This residual
being typically more compressible than the original frame leads to improved reconstruc-
tion quality. To appropriately weight the hypothesis predictions, a Tikhonov regularization
to an ill-posed least-squares optimization is proposed. This method is shown to outper-
form both recovery of the frame independently of the others as well as recovery based on
single-hypothesis prediction.

Introduction

Compressed sensing (CS) (e.g., [1, 2]) is a new signal-sampling and recovery model
that has emerged in recent years, and there has been much work invoking CS in
disparate applications such as natural-image acquisition, remote sensing, cognitive
radio, and medical imaging, just to name a few. In these fields, the primary goal has
largely been the blind recovery of CS-acquired signals. Much work has been done in
this area with many different varieties of solvers being actively researched over the
past several years in an effort to decrease recovery computation time without sacri-
ficing distortion performance. For the most part, these reconstruction strategies are
oblivious to the structure of the signal being recovered beyond a general assumption
of sparsity, or compressibility, in some transform basis. Recently, however, several
reconstruction approaches have focused on contexts in which side information about
the signal content is available to aid signal recovery. Some proposed methods, such as
Bayesian CS [3] as well as model CS [4, 5], exploit certain a priori knowledge of signal
structure, or the probability thereof, to guide recovery. These methods, however, do
not address the situation in which one or more predictions of the signal to be recovered
are available to the CS reconstruction process. Video sequences are one form of data
in particular in which predictions are commonly used in various forms of processing.
Specifically, it is typical in video processing that one or more reference frames are
used to make predictions of some current frame such that the resulting residual frame
has dramatically lowered signal energy leading to more efficient representation and
processing.

In this paper, we consider the CS recovery of video sequences in which frame-to-
frame predictions are used to aid the CS recovery process. In effect, we perform CS
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recovery on the prediction residual which is, in most cases, significantly more com-
pressible than the original frame, resulting in a higher-quality CS recovery. Key to our
approach is the use of motion estimation (ME) and motion compensation (MC) such
that the frame-to-frame predictions compensate for object motions between frames.
Such use of ME/MC derives from traditional video-compression algorithms which
make extensive use of sophisticated MC strategies.

One form of MC widely employed in traditional video compression is that of
multihypothesis (MH) prediction in which multiple, distinct predictions are created
and then combined to yield a composite prediction superior to any of the constituent
single-hypothesis (SH) predictions [6]. As the primary contribution of this paper, we
show how such MH prediction can be incorporated into the CS recovery of video so as
to increase reconstruction quality over equivalent SH-driven recovery. Central to this
discussion is a formulation of the MH prediction process in the domain of the random
CS projections; as this formulation results in an ill-posed optimization, we resort to
Tikhonov regularization [7] which is widely used to yield tractable solutions to such ill-
posed problems. In experimental results, we compare our proposed Tikhonov-based
multihypothesis regularization against both an equivalent SH-based reconstruction
as well as the straightforward reconstruction in which each video frame is recovered
independently from the others. We find that our proposed approach yields superior
reconstruction across a broad range of subsampling rates.

Background

In essence, CS combines signal acquisition and dimensionality reduction by measur-
ing a projection of the signal data, x, of dimensionality N using some basis, Φ, of
dimensionality M × N where M ≪ N ; i.e.,

y = Φx, (1)

where x ∈ R
N and y ∈ R

M . If x is sufficiently sparse in some transform basis Ψ, then
x is recoverable from y by the optimization,

x̂ = arg min
x∈RN

‖Ψx‖
1
, such that y = Φx, (2)

as long as Ψ and Φ are sufficiently incoherent, and M is sufficiently large. We define
the subsampling rate, or subrate, imposed by (1) to be S = M/N . Usually, Φ is a
random matrix such that it is incoherent with any chosen Ψ.

In practical applications, most natural signals are not truly sparse in any transform
basis Ψ. Accordingly, a common variant of the recovery problem of (2) is to relax the
equality for a bound; i.e.,

x̂ = arg min
x∈RN

‖Ψx‖
1
, such that ‖y − Φx‖

2
≤ ǫ. (3)

Many different approaches to the relaxed recovery problem of (3) have been proposed
over the years; central to all of these recovery methods, however, is a tradeoff between
computational complexity and the quality of the recovery. Yet, regardless of how this
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tradeoff is chosen, all of these methods are faced with the fact that CS recovery for
large signals, such as a natural image or video of realistic dimensions, is going to be
a time-consuming process.

Gan [8] suggests that, in the case of natural images, the computational complexity
of CS reconstruction can be assuaged by breaking up the image into distinct blocks
during acquisition. Block-based CS (BCS) removes the global sampling of x by a
dense Φ and replaces it with a block-diagonal measurement matrix by which local
sampling of x within distinct blocks of size B × B is accomplished. When the same
ΦB is used for every block, Φ takes on a block-diagonal form,

Φ =











ΦB 0 · · · 0
0 ΦB · · · 0
...

. . .
...

0 · · · 0 ΦB











, (4)

such that (1) can be effectuated in a block-by-block fashion; i.e.,

yi = ΦBxi, (5)

where xi is block i of the image. The size of ΦB is MB ×B2 such that the subrate of
BCS is S = MB/B2.

For recovery, [8] suggests a procedure that couples projected Landweber iterations
with smoothing in the form of Wiener filtering. This smoothed projected Landweber
(SPL) procedure thus combines a fast, iterative solution to (3) with the imposition of
a smoothness constraint designed to eliminate blocking artifacts. In [9], the overall
process of BCS sampling and SPL reconstruction was called BCS-SPL.

BCS-SPL was extended in [9] by use of bivariate shrinkage for thresholding and
directional transforms such as a dual-tree discrete wavelet transform (DDWT) and a
contourlet transform (CT). These modifications provide significant recovery-quality
improvement while maintaining a reasonable reconstruction time. The results in [9]
suggest that BCS-SPL augmented with such directional transforms is competitive
with the state of the art for CS recovery of a single still image. As a consequence, we
use BCS-SPL as the image-reconstruction procedure at the foundation of the video
reconstruction we consider next.

Method

The straightforward application of CS to video would involve the vectorization of a
3D group of frames into a single 1D vector with sampling applied as in (1). However,
the computation and memory issues associated with this approach are prohibitive;
additionally, a global sampling simultaneously across the spatial and temporal extent
of a group of frames is likely to be impractical to implement in a real sampling device
[10]. Consequently, we focus on the situation in which video frames are sampled
independently in a 2D fashion, e.g., by applying a suitable image-acquisition sampler
in a frame-by-frame fashion as in [11]. To cut computation and memory, we focus on
BCS image sampling as in (5) applied frame by frame.
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Given a frame-by-frame acquisition, the most straightforward reconstruction would
be to reconstruct the individual frames independently using the BCS-SPL procedure
discussed above. However, such an independent BCS-SPL reconstruction ignores the
fact that consecutive video frames are usually highly correlated. In traditional video
compression, such frame-to-frame temporal correlation is exploited by using ME/MC
to form a motion-compensated prediction of the current frame and then encoding the
residual between the current frame and its ME/MC prediction. In [12], an approach
to incorporating ME/MC prediction into the CS recovery of video was proposed
such that CS reconstruction was applied to a projection-domain residual between the
current frame and its ME/MC prediction. We overview this residual-reconstruction
approach next.

Residual Reconstruction

Residual reconstruction seeks a sparser representation of a given signal by recover-
ing the difference between the signal and some prediction. The philosophy is very
similar to that of DPCM in traditional source coding—if a prediction is similar to
the signal it is intended to approximate, then the value of the residual over most of
the support should be insignificant in magnitude. In traditional video coding, this
technique is used extensively to create highly compressible residual frames which are
then compressed with a still-image coder.

Residual reconstruction can be easily integrated into the CS paradigm because it
requires no change on the part of the signal acquisition and has a simple implemen-
tation on the reconstruction side. Suppose that we have a given signal, x, with a
measurement basis, Φ, such that measurements, y are calculated via (1). If we are
given some kind of prediction of x in the ambient domain of x—namely, x̃, which
we hope satisfies x̃ ≈ x—then we can find the residual r between the two signals as
r = x − x̃. Because y is acquired simply by taking the inner products of x with the
rows of Φ, the projection of r into the measurement basis is

q = Φr = Φ (x − x̃) = y − Φx̃. (6)

Because of the linear nature of the signal-sampling process, a simple subtraction of
a projection of x̃ provides us with a projected residual signal at the reconstruction
side without changing our signal-acquisition procedure. This residual should be more
amenable to CS recovery because it is expected to be much more compressible than
x itself. The final reconstruction of y, x̂, is calculated as

x̂ = x̃ + Reconstruct(y − Φx̃, Φ), (7)

where Reconstruct(·) is some suitable CS recovery. The quality of x̂ is directly tied
to the ability of the reconstruction to recover r from q; i.e.,

‖x − x̂‖
2

= ‖x − (x̃ + r + er)‖2
= ‖(x − x̃) − r − er‖2

= ‖er‖2
, (8)

where er is the error resulting from a non-exact recovery of r.
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The key to the successful use of residual reconstruction is thus to create a predic-
tion x̃ that is as close as possible to x such that the resulting residual, r, is highly
compressible. Thus, the goal is to carry out the optimization,

x̃ = arg min
x̃

‖x − x̃‖
2
. (9)

However, the creation of the prediction x̃ occurs during CS reconstruction; as a
consequence, x is unknown, and (9) cannot be implemented as written. There are two
strategies to approximate (9) using only information known to the CS reconstruction.
The first would be to approximate x with an initial CS recovery from y and use the
resulting approximation to x to drive the prediction process; i.e.,

x̃ = arg min
x̃

∥

∥

∥
Reconstruct(y, Φ) − x̃

∥

∥

∥

2

, (10)

where Reconstruct(·) is some suitable CS recovery. The resulting x̃ is then used in (7)
to form the final reconstruction x̂ using a CS reconstruction from the measurement-
domain residual, q = y−Φx̃. This approach was used in the CS video reconstruction
presented in [12].

An alternative strategy is to recast the optimization of (10) from the ambient
signal domain of x into the measurement domain of y; specifically,

x̃ = arg min
x̃

‖Φx − Φx̃‖
2

= arg min
x̃

‖y − Φx̃‖
2
. (11)

Although (11) recasts the search for the prediction into the measurement domain,
the Johnson-Lindenstrauss (JL) lemma [13–15] suggests that the solution of (11) will
likely coincide with that of (9). In brief, the JL lemma holds that L points in R

N

can be projected into a K-dimensional subspace while approximately maintaining
pairwise distances as long as K ≥ O(log L). As a consequence, the x̃ closest to x in
(9) should map to the Φx̃ that is closest to y in (11), provided that the number of
candidates searched in the minimizations is not too large.

Our experimental observations reveal that the measurement-domain prediction of
(11) provides better predictions in general than the ambient-domain strategy repre-
sented by (10). This is due to the fact that (10) uses only a noisy approximation
to x, whereas the JL lemma suggests that (11) should nearly duplicate the targeted
procedure of (9). As a consequence, we focus on measurement-domain predictions in
the form of (11) in the remainder of our development.

SH Frame Prediction for CS Reconstruction

In traditional video coding, frame predictions are calculated from temporally neigh-
boring frames which are likely to have similar content to the target frame using
ME/MC. Specifically, the frame at time t to be predicted, xt, is split into blocks of
size B × B. The chosen reference frame or frames are then searched within a spa-
tial region surrounding the location of the target block within xt. The best-matching
block, chosen according to some distortion measurement, in the reference frames then
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forms the prediction of the target block. This is known as SH prediction in the video-
coding community since a single, best-matching hypothesis prediction (a block in one
of the reference frames, in this case) is chosen to represent the target block.

In the CS reconstruction of video wherein each frame has been sampled using BCS
applied frame by frame, the ensemble of measurements for frame xt is yt,i = Φxt,i,
where i is a block index. In order to create a prediction of a given block, xt,i, we
recast (11) as

x̃t,i = arg min
x∈Ht,i

‖yt,i − Φx‖
2
, (12)

where Ht,i is the set of blocks culled from the reference frame or frames within the
search space given for block xt,i (typically a rectangular region about the spatial
location of xt,i in the frame).

MH Frame Prediction for CS Reconstruction

Video coding has long exploited MH methods to improve video-coding quality [6];
common forms include subpixel-accurate MC [16], overlapped block MC [17], bidi-
rectional MC (B-frames), and long-term-memory MC [18]. These techniques can be
viewed as tradeoffs specific to a rate-limited environment; that is, these techniques
impose specific structures on the hypotheses that form the ultimate prediction in
order to limit the amount of additional motion-vector rate overhead entailed by mul-
tiple predictions of a single block. However, in the context of CS reconstruction, the
MH predictions are all calculated at the reconstruction side of the system, there is no
associated rate burden, and we are able to consider more intensive forms of MH pre-
diction, essentially combining the best hypotheses available from the reference frames
without the imposition of rate-limiting structure.

For a MH CS reconstruction, the goal is to reformulate (9) so that, instead of
choosing a single hypothesis, we find an optimal linear combination of all hypotheses
contained in the search set; i.e, (9) becomes

wt,i = arg min
w

‖xt,i − Ht,iw‖
2
, (13)

x̃t,i = Ht,iwt,i, (14)

where we have also recast (9) for block-based prediction with i being the block index.
Here, Ht,i is a matrix of dimensionality B2×K whose columns are the rasterizations of
the possible blocks within the search space of the reference frames, and K = |Ht,i|. In
this context, wt,i is a column vector which represents the optimal linear combination
of the columns of Ht,i; the solution of this optimization can be calculated as a simple
least-squares (LSQ) problem.

Of course, in the case of CS reconstruction, (14), like (9), cannot be implemented—
we cannot calculate wt,i directly because we do not have access to xt,i; we have
only its measurement, yt,i. We thus adopt the measurement-domain approach of
(12), modifying it to the MH case. However, this makes the optimization a much
more difficult, ill-posed problem, because we have to calculate the optimal linear
combination within the projected space of Φ; i.e., combining (12) and (13) yields

ŵt,i = arg min
w

‖yt,i − ΦHt,iw‖
2
. (15)
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In general, wt,i 6= ŵt,i unless Φ is square, which is not the case for CS. The ill-
posed nature of this problem necessitates some form of regularization of the LSQ
optimization.

The most common approach to regularizing an LSQ problem is Tikhonov regu-
larization [7] which imposes an ℓ2 penalty on the norm of ŵt,i,

ŵt,i = arg min
w

‖yt,i − ΦHt,iw‖
2
+ λ ‖Γw‖

2
, (16)

where Γ is known as the Tikhonov matrix. The Γ term allows the imposition of prior
knowledge on the solution; in some contexts, it may make sense to use a high-pass
or difference operator for Γ to obtain a smooth result, or, in others, to set Γ = I to
impose an energy constraint on the solution. In our case, we take the approach that
hypotheses which are the most dissimilar from the target block should be given less
weight than hypotheses which are most similar. Specifically, we propose a diagonal
Γ in the form of

Γ =







‖yt,i − Φh1‖2
0

. . .

0 ‖yt,i − ΦhK‖
2






, (17)

where h1, h2, . . . , hK are the columns of Ht,i. With this structure, Γ penalizes weights
of large magnitude assigned to hypotheses which have a significant distance from yt,i

when projected into the measurement domain. For each block, then, ŵt,i can be
calculated directly by the usual Tikhonov solution,

ŵt,i =
(

(ΦHt,i)
T (ΦHt,i) + λ2ΓT Γ

)−1

(ΦHt,i)
T yt,i. (18)

In this formulation, λ is a scale factor that controls the relative effect of the
Tikhonov-regularization term in the optimization of (16). The choice of λ can have a
large effect on the performance of the regularization, so it is important to find a value
which imposes an adequate level of regularization without causing ‖yt,i − ΦHt,iw‖

2

to become too large. We found in practice that, over a large set of different frames,
a value of λ ∈ [0.1, 0.3] provided the best results; consequently, we use λ = 0.25 from
this point on.

Experimental Results

We consider the first two consecutive frames, x1 and x2, of a given video sequence—
the first frame, x1, is used as a reference frame, while the second frame, x2, is the
“test frame” used to measure reconstruction performance. In all cases, the reference
frame is BCS sampled with a relatively high subrate of S1 = 0.5 and reconstructed
using BCS-SPL. On the other hand, the test frame is BCS sampled using a range of
subrates, S2 ≤ S1. This disparity in subrates is intended to reflect the situation in
which the video sequence is sampled with relatively high subrates for certain “key
frames” which anchor the ME/MC-driven reconstruction process for one or more
intervening “non-key frames” (e.g., [12]). Throughout, we use a block size of B = 16
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for BCS, and a discrete wavelet transform (DWT) with 4 levels of decomposition as
the sparsity basis for BCS-SPL reconstruction.

The reconstructed reference frame is used to create a prediction of each block of
the test frame; afterward, residual reconstruction (i.e., (6)–(7)) of the test frame is
conducted. For comparison, we consider the performance of the SH prediction of (12),
as well as the straightforward BCS-SPL reconstruction of the test frame independently
of the reference frame, which we refer to as “independent reconstruction.” In all cases,
a spatial window size of ±15 pixels about the current block is used as the search space
for finding the hypotheses for both the SH and MH predictions.

The PSNR performance of the test-frame recovery as the subrate, S2, for the test
frame varies is presented in Fig. 1, while Fig. 2 presents visual results of reconstruction
for S2 = 0.2 for the Football sequence. As can be seen in Fig. 1, the proposed
Tikhonov-regularized MH prediction provides superior recovery for x2 across the range
of tested subrates. Both MH and SH methods show significant performance gains over
independent recovery, while the gap between MH and SH broadens as the subrate
increases.

In terms of computation, SH prediction performs much more quickly than MH
prediction, taking just 10 to 20 seconds in our Matlab-based implementation. On
the other hand, the Tikhonov regularization, which can take just a few minutes to
calculate for an entire frame, appears to be a reasonable tradeoff between increased
computation time and performance gain.

Conclusions

In this paper, we considered how the high degree of frame-to-frame temporal cor-
relation in video signals can be exploited to enhance CS recovery by forming MH
predictions using a distance-weighted Tikhonov regularization to find the best linear
combination of hypotheses. The MH predictions were used to create a measurement-
domain residual of the frame to be recovered—such a residual is typically much more
compressible than the original frame making it much more amenable to CS recovery.
This procedure for video recovery shows a significant distortion performance improve-
ment over a straightforward recovery of the frames independently, as well as superior
performance compared to recovery driven by SH prediction.
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