Estimating the Execution Time Distribution
for a Task Graph
in a Heterogeneous Computing System*

Yan Alexander Li
Intel Corporation, SC9-15
2200 Mission College Blvd.
Santa Clara, CA 95052-8119 USA
ali2@mipos3.intel.com

Abstract

The problem of statically estimating the execution
time distribution for a task graph consisting of a col-
lection of subtasks to be executed in a heterogeneous
computing (HC) system is considered. Ezecution time
distributions for the individual subtasks are assumed
to be known. A mathematical model for the communi-
cation network that interconnects the machines of the
HC system is introduced, and a probabilistic approach
s developed to estimate the overall execution time dis-
tribution of the task graph. It is shown that, for a given
matching and scheduling, computing the exact distri-
bution of the overall execution time of a task graph
is very difficult, and thus impractical. The proposed
approach approximates the exact distribution and re-
quires a relatively small amount of calculation time.
The accuracy of the proposed approach is demonstrated
mathematically through the derivation of bounds that
quantify the difference between the exact distribution
and that provided by the proposed approach. Numer-
ical studies are also included to further validate the
utility of the proposed methodology.

1 Introduction

A heterogeneous computing (HC) system provides
a variety of architectural capabilities, orchestrated to
perform an application whose subtasks have diverse
execution requirements [1]. HC has become a sub-
ject of intensive research within the high-performance
computing community in the quest of systems that
are versatile and provide good performance. For a
description of example HC applications and a list of
related references, refer to [1].

*This work was supported by Rome Laboratory under grant
number F30602-96-1-0098.

John K. Antonio
Department of Computer Science
Texas Tech University
Lubbock, TX 79409-3104 USA
antonio@cs.ttu.edu

Throughout this paper, an HC system is assumed
to consist of a suite of independent machines of differ-
ent types interconnected by a high-speed network. HC
requires the effective use of diverse hardware and soft-
ware components to meet the distinct and varied com-
putational requirements of a given application. Im-
plicit in the concept of HC is the idea that subtasks
with different machine architectural requirements are
embedded in the applications executed by the HC sys-
tem. The concept of HC is to decompose a task into
computationally homogeneous subtasks, and then as-
sign each subtask to the machine where it is best suited
for execution [1].

Unlike in distributed homogeneous systems (e.g., a
network of workstations of the same type and configu-
ration), it is generally difficult and impractical to sus-
pend the execution of a subtask on one machine and
resume that subtask’s execution on another machine
of a different type in an HC system. Thus, a challenge
in making effective use of an HC system is to minimize
the need for such dynamic subtask migration, which
implies an increased importance on the static prob-
lems of assigning subtasks to machines (matching)
and ordering the execution of subtasks assigned to the
same machine (scheduling).

Performance prediction is the basis of matching and
scheduling techniques for HC systems. Many match-
ing and scheduling algorithms make the simplifying
assumption that the execution time for each subtask
is a known constant for each machine in the system
(e.g., [2, 3]). However, there are elements of uncer-
tainty, such as the uncertainty in input data values
or in inter-machine communication time, which can
impact the execution times. Machine choices for exe-
cuting subtasks can also affect the execution time and
its degree of uncertainty.

In this paper, the task to be executed on the HC
system is modeled as a task graph consisting of a col-
lection of subtasks. A mathematical model for the



communication network that interconnects the ma-
chines of the HC system is introduced, and a prob-
abilistic approach is developed to estimate the overall
execution time distribution of the task graph. This
overall distribution depends on the individual subtask
execution time distributions, the inter-machine com-
munication time distributions, the data dependency
structure among the subtasks, the matching of sub-
tasks to machines, and the scheduling of subtasks
matched to a common machine. It is shown that,
for a given matching and scheduling, computing the
exact distribution of the overall execution time of a
task graph is very difficult, and thus impractical. The
proposed approach approximates the exact distribu-
tion and requires a relatively small amount of calcula-
tion time. The accuracy of the proposed approach is
demonstrated mathematically through the derivation
of bounds that quantify the difference between the ex-
act distribution and that provided by the proposed
approach. Numerical studies are also included to fur-
ther validate the utility of the proposed methodology.

Section 2 presents the basic assumptions and an
overview of the approach. A mathematical framework
for the approach is presented in Section 3. Section 4
demonstrates the generic difficulty associated with cal-
culating the exact execution time distribution for a
task graph. An approximate approach is then pro-
posed based on the conditions set forth by the Klein-
rock independence approximation [4]. Section 4 con-
cludes with a mathematical derivation of a bound for
quantifying the difference between the exact distribu-
tion and that associated with the proposed approach.
In Section 5, execution time distributions determined
using the proposed approach are compared with corre-
sponding distributions obtained by simulation of ex-
ample task graphs. These studies indicate that the
proposed approach predicts the execution time distri-
bution for a large class of practical task graphs with
high accuracy.

2 Assumptions and Overview

Tt is assumed that the HC system consists of a dedi-
cated network of machines under the control of a single
matching/scheduling mechanism. The type of appli-
cation task considered is composed of a number of
subtasks, each of which is to be executed on a partic-
ular machine in the HC system. The execution time
distribution for each individual subtask is assumed to
be known or estimated for the machine on which it is
to be executed. Previous approaches for determining
the execution time distribution of (parallel) programs

(e.g., [5, 6]) could be applied for estimating the execu-
tion time distribution of subtasks. Estimates of sub-
task execution time distributions based on empirical
measurements could also be utilized in the framework
assumed here.

The subtask-to-machine matching and the order of
execution for multiple subtasks assigned to the same
machine (i.e., the subtask scheduling for each ma-
chine) are assumed to be static and known. The prob-
lems of optimal matching and scheduling represent
large bodies of research in the field of HC, e.g., see
[3, 7]. How to determine good solutions to the match-
ing and scheduling problems is beyond the scope of
this paper. The goal here is to develop a new prob-
abilistic approach for analyzing the overall task exe-
cution time for given matching and scheduling poli-
cies. From this probabilistic modeling foundation, fu-
ture matching and scheduling techniques may be de-
veloped that are based on probabilistic metrics for per-
formance.

For each subtask, all input data items must be
present at the subtask’s designated machine before
computation starts, and output data items can be
transferred to other machines only after computa-
tion of the subtask is completed. Data-dependencies
among the subtasks are represented by a task graph.
A task graph is a directed acyclic graph in which
nodes represent subtasks and arcs represent the data-
dependencies among the subtasks.

To compute the execution time distribution of the
entire task, the assumed execution time distributions
of all subtasks (on their designated machines) are uti-
lized. These distributions correspond to the compu-
tation time of the subtasks only; distributions for the
times required to input and output any data structures
are defined separately.

For each subtask, the machine from which each re-
quired input data item is fetched is assumed to be
specified. In general, these machines will depend on
the subtask-to-machine matching that is used. For ex-
ample, fetching a data item from the machine at which
it was first generated (or was initially stored) is a sim-
ple rule that is often assumed for this type of analysis.
However, the model devised here allows for more gen-
eral refinements in how the data is distributed and
retrieved. For example, the model is general enough
to account for the data-reuse and multiple data-copies
situations [8], which allow the fetching of data items
from a machine other than the one where it was gen-
erated.

Network I/O at each machine is assumed to be non-
blocking (e.g., handled by a stand-alone I/O proces-



sor). Therefore, computation and inter-machine com-
munication can be overlapped in time. Each subtask is
assumed to start computation when its designated ma-
chine is ready and all its input data items are available
on this machine. Immediately after computation for a
subtask completes, the machine is made available for
executing the next subtask scheduled for execution on
that machine. Also, the output data items produced
by the completed subtask are made available for all
subsequent subtasks to be executed on that machine.
If multiple data items produced by a subtask are to be
transferred to other machines, the order in which they
are sent is assumed to be specified. All outgoing data
items at a given machine are assumed to be buffered
when the machine is transmitting another data item.

In general, the network transmission time for a
given data item (including the uncertain delay caused
by network contention) depends on factors such as the
size of the data item being transferred, the topology
and bandwidth of the network, the type of switching
used, the types of machine-network interfaces used,
and the overall network load. For the purpose of this
analysis, a network model in which the transmission
time is modeled according to a probabilistic distribu-
tion is assumed. In this model, the shape of the dis-
tribution is fixed (e.g., the variance is fixed), and the
mean of the distribution is defined to be the sum of a
fixed overhead and a term proportional to the size of
data item transfered. The fixed overhead corresponds
to the latency of the network, and the coefficient for
the second term corresponds to the inverse of the chan-
nel bandwidth. This represents one possible model
for the transmission time for a network. Other net-
work models are possible and could be used in place of
the one assumed here. Furthermore, the transmission
time can be source-destination dependent. The only
requirement, is that the transmission time be modeled
according to a probabilistic distribution.

Three separate random variables are used to rep-
resent the start time, execution time, and completion
time for each subtask. The values of the start and fin-
ish times are defined with respect to a global time-line,
and the subtask execution time represents the length
of an interval on this time-line. The task is assumed
to start execution at time 0. A subtask is called a
terminal subtask if it corresponds to a node with no
successors in the task graph and is the last subtask
executed on its designated machine. The maximum of
the completion times over all terminal subtasks defines
the finish time of the entire task.

3 Mathematical Model of Task Graph Exe-
cution in an HC System

In this section, random variables are used to model
the data communication times among the machines
and the start time, execution time, and finish time
for each subtask. The relationships among these ran-
dom variables are derived. These are used in the next
section to compute the overall task execution time dis-
tribution by performing appropriate operations to the
distribution functions of these random variables.

It is assumed that there are m machines in the HC
system, labeled M;, ¢ = 0,1,...,m — 1. The task
consists of n subtasks, labeled S;, j =0,1,...,n — 1.
The subtask-to-machine matching is defined by the
function

M:{0,....n—1} = {0,...,m — 1}. (1)
Thus, subtask S; is to be executed on machine M ;-
For each machlne M;, the number of subtasks assigned
to M; is denoted as a;, and the execution schedule
for these «; subtasks is defined by the function A
{0,...,a; — 1} = M~1(i), which is a bijection. Thuq
Xi(k), 0 g k < «;, defines the (k + 1)-th task to be
executed; the sequence of execution on machine M; is
from subtask Sx, () t0 Sx;(a;i—1)-

For each subtask S;, 0 < j < n, define ng and n?

to be the number of associated input and output data
items, respectively Input data items of S; are labeled
DI 0<wv< n . Output data items of S are labeled

j.ur

DO 0<u< no If multiple output data items of a

jou?

subtask need to be transmitted to other machine(s),
then they are transmitted serially in aqcending index
order, i.e., D?u is transmitted before D7 ¢, for u < £.
For each subtask Sj;, the times at which computa-
tion starts and finishes is modeled by random vari-

ables T_q and TF, respectively. The execution time
of S'7 is modeled by random variable TF defined as

TF TS Note that throughout this paper, val-
ues of random variables involving the letter “T"” corre-
spond to points on the global time-line, and those that
use “7” represent lengths of intervals on this time-line.
It is assumed that the execution times of all subtasks
are independent, i.e., TJE, 0 < j < n, form a set of mu-
tually independent random variables. This has been
an assumption made by other researchers as well, e.g.,
[9]. Based on the definition of TjE, a useful expression
for TJF is given by:

7 =1} 4. @



For each subtask S , the time at which input data
item D] 0 0<u< n becomes available on machine
M pq(j) is defined by T'
data items are pre- loaded to the machines that will
first use them, i.e., the time required to load these
data items is not considered in the analysis. Thus,
the available time for all pre-loaded data items is de-

fined as 0. The sum of the queuing time, denoted by

ﬁ, and the network time, denoted by TJAL defines

the time period starting at time TJF and ending when
data item Dj u
If the destination qub‘raqk of D?u is on the same ma-
chine as S, then both Tj’ and Tj ', are defined to be
0. Otherwise, Tj?u represents the time Dj?u waits in
the queue before machine M y,(;) begins to transmit
it, and TJ{\L represents the amount of time (including
any delay caused by network contention) to transfer
Dgu through the network to its destination. Network
times for different output data items are assumed to
be independent (i.e., the random variables TJAL are in-
dependent).

. It is assumed that all initial

is available at its destination subtask.

In the following discussion, let output data item u
of S; (i.e., DO ) be input data item v of subtask S,

(ie, DY, = DI »)- Also, if S; and S, are aqqigned to

the same machme, ie., M(g) = M(j), then T] , =0
for all u. If u = 0 (i.e., DY, = DY is the first data

item transmitted), then the queuing time is zero, i.e.,
Q Q

7;0 = 0. Hence, the general expression for 7,7, is:
0 ifu=0
Q _ o
Tj,u - or M(J) - M(g)7 (3)
Tj?ufl + T;Yu,] otherwise.

It is assumed that D_g?u is available to S, immediately
upon arriving at machine M ;). Let T] ,, define this
arrival time, then

T8, =T, =TF + 72, + 7, (4)

Assume now that subtask S; is to be executed on
machine M;, i.e., M(j) = i, and is the (k + 1)-th
subtask scheduled for execution, i.e., X;(k) = j. Let
TjM denote the time that M; becomes available for
executing S;. If k=0, ie., S; is the first subtask
scheduled to execute on M;, then TM is defined to be
0. Otherwise, Sx,(x—1) is the prev10us subtask that
executes on M;, and TjM is defined to be the finish
time of Sx,(x—1). Therefore, the general relation for
the time when machine M; becomes available for exe-

cuting subtask Sy, (1) is:

o 0 i k=0, i
Xi(k) {T/—ﬁ_(kl) otherwise. (5)

The start time of a subtask is the maximum of the
available time of the designated machine and the max-
imum of all arrival times of its input data items:

TJS—max{T max{ ]v}} (6)

Equations (2) through (6) establish the relation-
ships among the defined random variables, and are
used to derive their associated probability distribution
and/or density functions. In par‘ricular distributions
for the random variables 7/ and 7/, are assumed to be
specified, and distributions for the other random vari-
ables are defined based on the relationships derived in
this section. The overall execution time distribution
of a task graph is analyzed in the next section.

4 Calculating the Execution Time Distribu-
tion for a Task Graph

4.1 Difficulty with exact calculation

In a task graph, subtasks that require input data
items from a common subtask have correlated start
and finish times, and thus their associated random
variables are not independent. This correlation can
propagate to the start and finish times of subsequent
subtasks that get data from these subtasks. All such
subtasks correspond to nodes in the task graph that
have a common ancestor. It is shown in this subsection
that this type of correlation generally makes the exact
derivation of the overall execution time distribution of
a task graph difficult and impractical.

Before demonstrating the difficulty of performing
basic operations on correlated random variables, the
summation and maximum operations for independent,
random variables are first reviewed. From basic prob-
ability theory, recall that the density function of the
summation of independent random variables is the
convolution of the density functions of the individ-
ual random variables [10]. Thus, for two independent
random variables, say R and V with density functions
fr(:) and fy(-), the density function of Y = R+ V is
given by the convolution of fg(-) and fy (), denoted
by fy(:) = fr(:) * fv (), which is defined by:

-/ " faly — 0 fv (D). )



Also recall that the distribution function of the maxi-
mum of independent discrete random variables is the
product of the distribution functions of the individual
random variables [10]. Thus, for two independent dis-
crete random variables, say R and V' with distribution
functions Fr(-) and FYy (-), the distribution function of
Z = max{R,V} is given by

Fz(Z) :FR(Z)-Fv(Z). (8)

Figure 1: An example task graph whose overall exe-
cution time distribution is difficult to derive.

Consider the task graph with five subtasks shown in
Fig. 1. Assume there are two machines in the HC sys-
tem. Subtasks Sy, S; and S, are assigned to machine
My, and subtasks S; and S3 are assigned to machine
M. To simplify the presentation, the network com-
munication times are assumed to be zero, i.e., T7Nu =0
for all j and u. Recall that TjE denotes the given execu-
tion time distribution of .S; on its designated machine.
The start time of subtask Sy can be derived by using
Equations (2)—(6) as follows.

TOF = T(Fv

TlF = T1E7

Ty =T =7,

Tsig = max{TOF,Tlp} = max{r[{;,TlE},
Ty =10 +713,

TS = max{ry’, 7’} + ¥,

Ty = max{T)", T}

= max{rL + 7f max{rf tF} + rF}. (9)

Because T and T3F are not independent, Equa-
tion (8) is not applicable for computing the distribu-
tion of T;7. The only way to compute the exact dis-
tribution for T is to consider T as a function of 7,
. 7P, and 7F (which are assumed to be indepen-
dent random variables) and use direct integration. To
simplify the notation, let 7¥ = A, 7f = B, #F = C,
¥ = D, and Ty = X. With these substitutions,

Equation (9) is
X = max{A + C,max{A4, B} + D}.

An exact derivation of the distribution function for
X (i.e., T}) based on basic probability theory is as
follows.

Fx(’r)
= Pr[max{(A + C),max{A, B} + D} < z]
=Pr[A+ C < z,max{A,B}+ D < z]

= /Pr[A+C’ < z,max{A,B} + D < z|D = d]
dF'p(d)
= /Pr[A-I— C < z,max{A,B} <z —d] dFp(d)

://Pr[A+C§m,max{A,B}§m7d|B:b]
dFp(b) dFp(d)

://Pr[A+C§m,max{A,b}§mfd]
dFp(b) dFp(d)

= ///Pr[A+C§m,maX{A,b}§m7d|A:a]
o dFa(a) dFp(b) dFp(d)

— [[[piic <5 amaxtapt < a

dFx(a) dFg(b) dFp(d)

— [[[ Fote - rmax{a.p} <o )

dF(a) dFg(b) dFp(d), (10)

where I(-) is the “indicator function,” defined for
this case as follows: if max{a,b} < z — d, then
I(max{a,b} < x — d) = 1; otherwise I(max{a,b} <
x—d)=0.

The above example illustrates that even for a sim-
plified model (i.e., ignoring the communication over-
head) of the considered task graph, the derivation of
the exact execution time distribution is non-trivial. In
particular, the production of a string of equalities is
required (based on basic principles of probability the-
ory) in order to derive the final expression given in
Equation (10). Thus, although the final expression
can be evaluated in this case, it was not straightfor-
ward to derive.

Practical task graphs will be more complicated than
that of Fig. 1, and dependencies imposed by machine
availability could further complicate the relationships
among the start and finish times of subtasks. Al-
though exact derivation for general task graphs may



be possible, there is no clear systematic approach for
automating such a derivation. A goal of this paper is
to devise an approach for systematically determining
(or suitably approximating) the execution time dis-
tribution of a task graph. In the remainder of this
section, such a technique is proposed for estimating
the overall execution time distribution based on the
Kleinrock independence approximation. This approx-
imation enables the usage of the simple formulas for
summation and maximum of random variables (i.e.,
Equations (7) and (8)).

4.2 Independence assumption

As demonstrated in the previous subsection, sub-
tasks corresponding to nodes in the task graph that
have a common ancestor can have correlated random
variables associated with the start and finish times. In
such cases, deriving an expression for the exact distri-
bution of the overall execution time distribution can
become unrealistic for general task graphs. However,
conditions exist for which the associated random vari-
ables can nevertheless be treated as uncorrelated de-
spite this type of interaction. The Kleinrock indepen-
dence approximation [4] is a well-known condition for
describing this situation, and is used here as the basis
for assuming independence among random variables
that may technically be correlated.

To understand the original rationale of the Klein-
rock independence approximation, consider a data
network in which there are many interacting trans-
mission queues. A traffic stream departing from one
queue enters one or more other queues, perhaps af-
ter merging with portions of other traffic streams
departing from yet other queues. Although packet
inter-arrival times of data packets can become de-
pendent (i.e., correlated) after a traffic stream leaves
the first queue, the Kleinrock independence approxi-
mation concludes that the merging of many different
packet streams on a transmission line has an effect
similar to restoring the independence of inter-arrival
times and packet lengths [11].

Similarly, in a task graph, a subtask may take input
from many other subtasks, and multiple subtasks may
be assigned to the same machine, where they must
wait for the machine to become available before ex-
ecution. The effect is analogous to that of merging
many traffic streams in a data network. Thus, it is
assumed that the input of data from many other sub-
tasks has the effect of restoring independence among
the start and finish times of subtasks that have a com-
mon ancestor in the task graph. This approximation
of independence is the basis for justifying the use of

Equations (7) and (8) to compute the distribution of
start and finish times of subtasks. The degree to which
this independence approximation is violated (or not)
will influence the resulting accuracy of the calculated
distribution. The estimation error is analyzed mathe-
matically in Subsection 4.4, and is investigated further
in Section 5 through numerical simulation studies.

4.3 Proposed approach for calculating the exe-
cution time distribution

Subtask start and finish time distributions are cal-
culated in an order determined by the data depen-
dency structure of the task graph and machine avail-
ability, which depends on the given matching of sub-
tasks to machines and local scheduling for each ma-
chine. The key to calculating the start and finish time
distributions is to partition the subtasks into layers,
which requires the definition of an immediate prede-
cessor. Subtask S; is an immediate predecessor of sub-
task S, if either of the following conditions is satisfied:
(1) S, requires data from S; (i.e., there is an arc in
the task graph from S; to S,;) or (2) S; and S, are
assigned to the same machine and S; is scheduled to
execute immediately before S,. Those subtasks with-
out an immediate predecessor are put into layer 1. A
subtask is put into layer k41 if the highest layer num-
ber of its immediate predecessors is k. Based on this
definition (which implies a constructive procedure),
there is no data dependence among subtasks of the
same layer. The main difference between this layer-
ing approach and those found in the literature (e.g.,
Cluster-M model in [12]) is the resource dependence
determined by scheduling is also considered, i.e., con-
dition (2) above, is also considered.

Subtask start and finish time distributions are first
computed for subtasks in layer 1. Distributions for
the time each output data item is available on its tar-
get machine are then calculated. These steps are re-
peated for subtasks in layer 2, and so on. In this
way, when the start time distribution of each subtask
is computed, the distributions for available times of
the designated machine and all input data items are
known.

For each subtask S; considered in the “layered” or-
der, the following four calculations are performed.

1. Compute distribution function for subtask start
time:

Frs() = Fou() [ Frr (- (11)

v=0



2. Compute density function for subtask completion
time:
Frr () = frs() % fum (). (12)
3. Let the next subtask to be executed on machine
M pq(j) be Sy. Define the density function for ma-
chine avallable time for Sy:

Frys () = fre (). (13)

4. For each u from 0 to n — 1, let output data

item DJOU be the input data item h of subtask S,

(i.e., Dq »)- Compute the distributions for queu-
ing time, arrival time for D] «» and the available

L)

I
time for Dg’h.

f,.]Q“ )

a() if w =0 or M(j) = M(g),
- foMH () = fo,]uﬂ(') otherwise. (14)
fT]ffu () = qu’h()
= far e £, ()% fon, 0 (15)

(8(-) represents the Dirac delta function [13].)

After completing the above four steps for each sub-
task (ordered according to the layer numbers), the
overall distribution of the task execution time is com-
puted. Let ¢ be ‘rhe number of terminal subtasks, and
let {Sj,,Sjs---, Sj,_.} be the set of terminal sub-
tasks. Then the probability distribution function of
the completion time of the entire task is:

Fre (- H Frr () (16)

4.4 Error analysis

In this subsection, the difference between the dis-
tribution computed by the proposed approach (Sub-
section 4.3) and the exact distribution is analyzed for
a special class of task graphs for which the Kleinrock
independence assumption is (apparently) violated. An
analytical expression for the difference of the means of
these distributions is derived. Based on this expres-
sion, it is shown that the proposed approach always
overestimates the actual mean of the execution time.
A bound for the difference of the means is also de-
rived that depends on the parameters of the assumed
subtask distributions involved. Finally, conditions are
determined for which the distribution of the proposed

approach equals the exact distribution for this class of
task graph.

In a task graph, a fork-join structure between two
subtasks S¢ and Sj contains a set of two or more dis-

joint paths from S¢ to S; (“t” is for fork and “”

is for join). Let W denote the set of subtasks in a
fork-join structure, excluding S¢ and Sj. For a given
subtask-to-machine matching and a given scheduling
for each machine, a fork-join structure is called an
isolated fork-join structure if every immediate prede-
cessor of a subtask in W belongs to W U {S¢}. Ex-
amples of isolated fork-join structures are shown in
Fig. 2, in which each subtask is assumed to be as-
signed to a distinct machine. The conditions of the
Kleinrock independence approximation are clearly vi-
olated in an isolated fork-join structure. This is be-
cause the data that flows from Sy to Sj (e.g., So to
S3 in Fig. 2(a)) does not merge with other data origi-
nating from subtasks outside that fork-join structure.
Therefore, the effect of restoring independence of ar-
rival times of input data items for S; by merging data
flows from different subtasks/machines does not oc-
cur. Perhaps surprisingly, it is shown that even for
this “worst case” structure (i.e., the isolated fork-join
structure), the proposed approach still can provide
reasonably accurate estimate of the exact distribution.
Under certain conditions, it is shown that the distri-
bution from the proposed approach actually coincides
with the exact distribution.

@ (b) ©

Figure 2: Examples of isolated fork-join structures.
Each subtask is assumed to be assigned to a distinct
machine for each example.

Isolated fork-join structures are characterized by
the number of disjoint paths that connect S¢ to Sj.
In Fig. 2(b), note that the chains S; — S3 — S5 and
So — S can each be reduced to a single subtask, re-
sulting in a structure identical to that in Fig. 2(a).



Therefore, without loss of generality, only structures
in which there is exactly one subtask on each path
between S¢ and Sj (such as Figs. 2(a) and (c)) are
studied here.

In general, for multiple subtasks matched to the
same machine, a fork-join structure may not be an
isolated fork-join structure. For example, consider
Fig. 3 in which the subtasks are matched to machines
as indicated by the ovals. Although Sy through S;
form a fork-join structure, the scheduling of S; and
S5 on M; determines whether it is an isolated fork-
join structure. In particular, if S5 is scheduled be-
fore S1, then it is not an isolated fork-join structure,
because S5 is an immediate predecessor of S; and

Ss & WU {So} = {So, 51, So}.

Figure 3: Example task graph in which its character-
ization as an isolated fork-join structure depends on
the scheduling.

Consider the isolated fork-join structure shown in
Fig. 2(a). For clarity of presentation and without loss
of generality, network communication times are ig-
nored. Let A, B, and C denote the execution time
distribution of Sy, Si, and Sy on their designated ma-
chines, respectively. The start time of S3 can be de-
rived as:

Ty =T =Ty = A
T = A+ B,
Ty =A+C,
Ty = max{T} , Tf} = max{A + B, A+ C}.

Note that the distributions for T and T are ob-
tained by convolving the appropriate density functions
(iews fre() = fa()x f5() and fre () = fa()x fo()).
The proposed approach estimates the distribution of
TS as FT1F‘(')FT2F('). For notational convenience, let
X denote the random variable with distribution func-
tion Fpr () Fpr(+), and let X* = T, ie., X and X*
represent the estimated and exact value of T}, respec-
tively.

In [6], the exact distribution for X* is derived and
the difference between X and X* is analyzed mathe-
matically. Due to space limitations, only the results
of this analysis is included here (refer to [6] for the de-
tailed derivation). To state the results, some notation
is needed for quantifying the ranges of the random
variables A, B, and C. Because these random rep-
resent the execution times of Sy, Sy, and Ss, it is as-
sumed that they are finite and have finite range. Thus,
there exists constants 0 < a1 < aq, 0 < by < by, and
0 < ¢1 < ¢, such that Pr[A < a;] = Pr[A > ay] = 0,
Pr[B < b1] = Pr[B > bs] = 0, Pr[C < ¢1] = Pr[C >
CQ] =0.

The following is a summary of the results proven in
[6].

1. The proposed approach always overestimates the
mean, and the estimation error for the mean is
upper-bounded by the length of the range of A:

0<EX —EX*<as—ai, (17)

where EX and EFX™* denote the expected values
(i.e., means) of the approximate and exact distri-
butions, respectively.

2. The proposed approach yields the exact distri-
bution if the length of the range of A is shorter
than the length of combined range of B and C.
Mathematically, this condition on the length of
the range of A is stated as:

as —ay < max{bs,co} — min{by,c;}.

Thus, if the above inequality is satisfied, then the
distribution produced by the proposed approach
equals the exact distribution (i.e., X = X*).

These two results share a common theme  the
smaller the range of possible values for A, the smaller
the estimation error. The second result is most inter-
esting, and perhaps most surprising. It states that if
the range of values for A is sufficiently small (with re-
spect to the corresponding ranges for B and C), then
the estimated distribution actually equals the exact
distribution (i.e., there is no estimation error). An
important key in deriving these results is the finite
range assumption for the random variables A, B, and

C.
5 Numerical Studies

5.1 Overview

In this section, the accuracy of the execution time
distributions determined from the proposed approach



(Subsection 4.3) is evaluated through numerical stud-
ies. Due to the size and complexity of the task graphs
considered, derivation of the exact distributions (as
done for the simple task graphs considered in the pre-
vious section) is not feasible. Thus, detailed simu-
lations of the task graphs are performed as a means
of determining the actual distributions. The results
show that the proposed approach predicts simulated
task graph execution time distribution with high ac-
curacy. Task graph structures for which the indepen-
dence among the random variables is apparently vio-
lated to a substantial degree are also studied. Even
for these task graph structures, the distributions com-
puted by the proposed approach match those from the
simulation reasonably well. On a Sun SPARCstation
5, the time required to compute distributions based
on the proposed approach is about 10 times less than
that based on simulating the task graph over 4000 in-
stances.

For this study, each subtask execution time distri-
bution (associated with the random variable TjE for
subtask S;) is assumed to be either a uniform or a
normal distribution. (This is for convenience only;
any distribution could be used in this framework.)
Each network transmission time distribution (associ-
ated with the random variable Tj%) is assumed to be
a normal distribution with a fixed standard deviation,
and the mean defined as the sum of a fixed overhead
and a term proportional to the size of data item to be
transfered. (Each normal distribution N(u,o) with
mean p and standard deviation o is discretized in the
range of (max{u— 40,0}, u+40).) The parameters of
these distributions are included in an input file. Also
included in this file is the subtask-to-machine match-
ing and execution schedule of each individual machine.
A program was written in C to parse this input file and
output a Matlab program for simulating the execution
time of task graph (see [6] for details).

For each instance of the simulation, the execution
time of a subtask is determined by generating a ran-
dom number according to its assumed distribution,
and network transmission times are determined sim-
ilarly. The overall execution time of the task graph
is calculated according to data dependency structure
of the task graph and execution schedule of the indi-
vidual machines. Subtask start and finish times are
first computed for subtasks in layer 1. The time each
output data item of layer 1 subtasks is available on its
target machine are then calculated. These steps are
repeated for subtasks in layer 2, and so on. In this
way, when the start time of each subtask is computed,
the available times of the designated machine and all

Key for arc labels (d, k):
d: amount of data to be transfered

k: order index of output data item

Figure 4: Example task graph.

input data items are known. The overall execution
time of the task graph is the maximum of the finish
times over all terminal subtasks. For each task graph
studied, 4000 simulation instances were performed to
collect the sample distribution of the overall execution
time of the task graph.

5.2 Comparison of estimated distribution and
simulated sample distribution

The first task graph studied is shown in Fig. 4.
There are 12 subtasks in the graph, labeled from S, to
S11. Each arc is labeled with an ordered paired (d, k),
where d is the amount of data to be transfered and &
is the output data index for the source subtask. (Re-
call if a subtask has multiple output data items to be
transmitted to other machine(s), they are transmitted
in ascending index order.) It is assumed that there are
four machines in the HC system, labeled from M, to
M3;. The assumed subtask-to-machine matching, exe-
cution schedule of each machine, and execution time
distribution of each subtask on its designated machine
are defined in Table 1. Three subtasks are assigned to
each machine. Each row corresponds to parameters
for a subtask; the first column is the label of the sub-
task, the second column is the label of its designated
machine, the third column is the order of execution on
that machine, and the forth column parameterizes its
execution time distribution.

The network transmission time is modeled by a nor-
mal distribution with a standard deviation of 3. Two
separate models for the mean of the network network
transmission time were used. In the first, the mean is
equal to 10 + (5 x d), and in the second, the mean is
equal to 20 + (30 x d). These two models represent
different computation to communication ratios. For



subtask || machine | schedule | exe. time distr. |

0 0 0 U(125, 146)

1 0 N(203,10.3)
2 2 0 U(244,325)
3 0 1 N (301, 24.3)
4 3 0 U(203, 248)
5 1 1 N (350, 27.3)
6 2 1 U(271, 324)
7 0 2 N(283,26.1)
8 3 1 N (201, 34.1)
9 1 2 U(278,321)
10 2 2 U(130, 183)
11 3 2 N(231,29.4)

Table 1: Assumed matching, scheduling, and execu-
tion time distribution for subtasks of Fig. 4. U(a, b):
uniform distribution between a and b. N(u,o): nor-
mal distribution with mean u and standard deviation
.

each model, the distribution for the execution time of
the entire task graph are obtained through simulation,
and the corresponding distribution is also computed
by the proposed approach.

The results of these studies are shown in Figs. 5
and 6. For each study, the difference between the sim-
ulated mean execution time and the estimated mean
execution time is less than 0.4%, and the difference for
standard deviation is less than 6.3%. From this, it is
concluded that the proposed approach accurately es-
timates the distribution of execution time for the task
graph considered.

Simulation was also performed for the task graph
shown in Fig. 7. The task graph is nearly the same
structure as that of Fig. 4. The only difference is the
arc Sy — Sg (in Fig. 4) has been changed to become
arc S¢ — S11 (in Fig. 7). However, this small change
in the structure of the task graph creates an isolated
fork-join structure (Sa, Sg, S7, S11). The subtask-to-
machine matching, subtask execution time distribu-
tion, and execution schedules of individual machines
remain unchanged. Simulations are performed using
the same two network communication models as used
for Fig. 4. The resulting distributions are compared
with estimates in Figs. 8 and 9. Still, the proposed
approach provides a good approximation for the task
graph execution time distribution. The error between
estimated and simulated results is less than 1.08% for
the mean execution time and less than 10.4% for the
standard deviation. This example demonstrates the
robustness of the proposed approach when some as-
sumptions are violated. (Recall that even for isolated

0.014-
mean=989.65

0.012- standard deviation=42.19
o 001
8
2
g
5
80.008
3
k]
2
2 0.006
3
[
=S

0.004

0.002

900 950 1000 1050 1100 1150 1200 1250 1300
task graph execution time
(a)
0.014-
mean=992.97

0.012- standard deviation=39.56
o 0.01F
8
2
g
5
80.008
3
k]
2
2 0.006
3
[
=S

0.004

0.002

950 1000 1050 1100 1150 1200 1250
task graph execution time

(b)

1300

Figure 5: Distributions of execution time for task
graph in Fig. 4 where the mean of network transmis-
sion time is equal to 10 + (5 x d). (a) Sample distri-
bution. (b) Estimated distribution.

fork-join structure, the estimation error for the mean
execution time is upper-bounded by the width of the
density of execution time of the fork node, and con-
ditions exists under which exact results could be ob-
tained.)

6 Summary

In this paper, a methodology for estimating the ex-
ecution time distribution for a task graph executed in
an HC system is introduced. Individual subtask ex-
ecution time distributions are assumed to be known
or estimated using analytical or empirical techniques.
A probabilistic model for the data transmission time
is developed. Random variables are used to represent



0.014r 1
mean=1085.0

0.012- standard deviation=45.46 1
o 0.01F b
S
e
I
5
£0.008 1
3
S
2
£0.006 B
2
S
=Y

0.004

0.002

P @
1050 1100 1150 1250 1300
task graph execution time

(a)

0.014- 1
mean=1085.1

0.012- standard deviation=44.76 1

probability of occurrence

1050 1100 1150
task graph execution time

(b)

Figure 6: Distributions of execution time for task
graph in Fig. 4 where the mean of network trans-
mission time is equal to 20 + (30 x d). (a) Sample
distribution. (b) Estimated distribution.

Key for arc labels (d, k):

d: amount of data to be transfered

k: order index of output data item

Figure 7: Example task graph in Fig. 4 with arc Sy —
56 moved to 56 — 511.

0.014- B
mean=997.05
0.012- standard deviation=41.20 1

probability of occurrence

850 900 950 1000 1050 1100 1150 1200 1250 1300
task graph execution time

(a)

0.014- B
mean=1008.4
0.012- standard deviation=36.93 1

probability of occurrence

1000 1050 1100 1150 1200 1250
task graph execution time

(b)

Figure 8: Distributions of execution time for task
graph in Fig. 7 where the mean of network transmis-
sion time is equal to 10 + (5 x d). (a) Sample distri-
bution. (b) Estimated distribution.

the duration of subtask executions and network trans-
missions, as well as the start and finish times. Data
dependency and machine availability are used to de-
rive the relationships among these random variables.

It is demonstrated that deriving the exact execution
time distribution for general task graphs is extremely
difficult. The Kleinrock independence approximation
is applied to make the computation of associated prob-
ability distributions tractable. Graph structures for
which the independence assumption is violated are
identified, and an upper bound of the estimation error
for the mean execution time is derived for this case.
Simulations were performed for various task graphs.
The simulation results indicate that the proposed ap-
proach provides accurate estimates for execution time
distribution.



probability of occurrence

probability of occurrence

0.014-
mean=1086.2

0.012- standard deviation=45.22

=3

o

2
T

=)
=)
S
®
T

0.006

0.0041

0.0021

1050 1100 115
task graph execution time

(a)

50 1300

0.014-
mean=1093.1

0.012- standard deviation=40.88

900 950

1000 1050 1100 1150
task graph execution time

(b)

1200 1250

Figure 9: Distributions of execution time for task
graph in Fig. 7 where the mean of network trans-

mission time is equal to 20 + (30 x d).

(a) Sample

distribution. (b) Estimated distribution.

References

[1] H.

J. Siegel, J. K. Antonio, R. C. Metzger,
M. Tan, and Y. A. Li, “Heterogeneous Com-
puting,” in Handbook of Parallel and Distributed
Computing, A. Y. Zomaya, ed., pp. 725-761,
McGraw-Hill, New York, NY, 1996, (also Purdue
EE School technical report TR-EE 94-37).

D. W. Watson, J. K. Antonio, H. J. Siegel, and
M. J. Atallah, “Static Program Decomposition
Among Machines in an SIMD/SPMD Hetero-
geneous Environment with Non-Constant Mode
Switching Costs,” in Proceedings of the Heteroge-
neous Computing Workshop (HCW °94), pp. 58
65, Apr. 1994.

[3]

[4]

R. F. Freund, “Optimal Selection Theory for Su-
perconcurrency,” in Proceedings of Supercomput-
ing ‘89, pp. 47 50, Nov. 1989.

L. Kleinrock, Communication Nets: Stochastic
Message Flow and Delay, McGraw-Hill, New
York, NY, 1964.

Y. A. Li, J. K. Antonio, H. J. Siegel, M. Tan,
D. W. Watson, “Estimating the Distribution of
Execution Times for SIMD/SPMD Mixed-Mode
Programs,” in Proceedings of the Heterogeneous
Computing Workshop (HCW ’95), pp. 35-46,
Apr. 1995.

Y. A. Li, A Probabilistic Framework for Estima-
tion of Ezecution Time in Heterogeneous Com-
puting Systems, Ph.D. Dissertation, School of
Electrical and Computer Engineering, Purdue
University, Aug. 1996.

S. Chen, M. M. Eshaghian, A. Khokhar, and
M. E. Shaaban, “A Selection Theory and
Methodology for Heterogeneous Supercomput-
ing,” in Proceedings of the Workshop on Hetero-
geneous Processing, pp. 15-22, Apr. 1993.

M. Tan, J. K. Antonio, H. J. Siegel, and Y. A. Li,
“Scheduling and Data Relocation for Sequentially
Executed Subtasks in a Heterogeneous Comput-
ing System,” in Proceedings of the Heterogeneous
Computing Workshop (HCW °95), pp. 109 120,
Apr. 1995.

A. B. Tayyab and J. G. Kuhl, “Stochastic Perfor-
mance Models of Parallel Task Systems,” in Pro-
ceedings of the 1994 ACM SIGMETRICS Confer-
ence on Measurement and Modeling of Computer
Systems, pp. 284-285, May 1994.

A. M. Mood, F. A. Graybill, and D. C. Boes,
Introduction to the Theory of Statistics, McGraw-
Hill, New York, NY, 1974.

D. Bertsekas and R. Gallager, Data Networks,
Prentice-Hall, Englewood Cliffs, NJ, 1987.

M. M. Eshaghian and R. F. Freund, “Cluster-M
Paradigms for High-Order Heterogeneous Proce-
dural Specification Computing,” in Proceedings of

the Workshop on Heterogeneous Processing, pp.
47 49, May 1992.

J. B. Thomas, An Introduction to Applied Prob-
ability and Random Processes, Robert E. Krieger
Publishing Company, Huntington, NY, 1981.



Biographies

Yan A. Li received his B.E. degree from Tsinghua
University, Beijing, China, in 1991, and his MSEE
and Ph.D. degrees, both from Purdue University, West
Lafayette, Indiana, U.S.A., in 1993 and 1996, respec-
tively. He is currently a Senior System Architect at
Intel Corporation. He is a member of IEEE and Eta
Kappa Nu. His major research interest includes par-
allel processing, high-performance heterogeneous com-
puting, computer architecture, and computer systems
simulation.

John K. Antonio received the B.S., M.S., and Ph.D.
degrees in electrical engineering from Texas A&M Uni-
versity, College Station, TX. He currently holds the
position of Associate Professor of Computer Science
within the College of Engineering at Texas Tech Uni-
versity. Before joining Texas Tech, he was with the
School of Electrical and Computer Engineering at Pur-
due University. During the summers of 1991-94 he
participated in a faculty research program at Rome
Laboratory, Rome, NY, where he conducted research
in the area of high performance computing. His cur-
rent research interests include heterogeneous systems,
configuration techniques for embedded parallel sys-
tems, and computational aspects of control and opti-
mization. He has co-authored over 50 publications in
these and related areas. For the past four years, he has
organized the Industrial Track and Commercial Ex-
hibits portions of the International Parallel Processing
Symposium. He is a member of the IEEE computer
society and is also a member of the Tau Beta Pi, Eta
Kappa Nu, and Phi Kappa Phi honorary societies. Or-
ganizations that have supported his research include
the Air Force Office of Scientific Research, National
Science Foundation, Naval Research Laboratory, Or-
incon, Inc., and Rome Laboratory.



