
Estimating the Execution Time Distributionfor a Task Graphin a Heterogeneous Computing System�Yan Alexander LiIntel Corporation, SC9-152200 Mission College Blvd.Santa Clara, CA 95052-8119 USAali2@mipos3.intel.com John K. AntonioDepartment of Computer ScienceTexas Tech UniversityLubbock, TX 79409-3104 USAantonio@cs.ttu.eduAbstractThe problem of statically estimating the executiontime distribution for a task graph consisting of a col-lection of subtasks to be executed in a heterogeneouscomputing (HC) system is considered. Execution timedistributions for the individual subtasks are assumedto be known. A mathematical model for the communi-cation network that interconnects the machines of theHC system is introduced, and a probabilistic approachis developed to estimate the overall execution time dis-tribution of the task graph. It is shown that, for a givenmatching and scheduling, computing the exact distri-bution of the overall execution time of a task graphis very di�cult, and thus impractical. The proposedapproach approximates the exact distribution and re-quires a relatively small amount of calculation time.The accuracy of the proposed approach is demonstratedmathematically through the derivation of bounds thatquantify the di�erence between the exact distributionand that provided by the proposed approach. Numer-ical studies are also included to further validate theutility of the proposed methodology.1 IntroductionA heterogeneous computing (HC) system providesa variety of architectural capabilities, orchestrated toperform an application whose subtasks have diverseexecution requirements [1]. HC has become a sub-ject of intensive research within the high-performancecomputing community in the quest of systems thatare versatile and provide good performance. For adescription of example HC applications and a list ofrelated references, refer to [1].�This work was supported by Rome Laboratory under grantnumber F30602-96-1-0098.

Throughout this paper, an HC system is assumedto consist of a suite of independent machines of di�er-ent types interconnected by a high-speed network. HCrequires the e�ective use of diverse hardware and soft-ware components to meet the distinct and varied com-putational requirements of a given application. Im-plicit in the concept of HC is the idea that subtaskswith di�erent machine architectural requirements areembedded in the applications executed by the HC sys-tem. The concept of HC is to decompose a task intocomputationally homogeneous subtasks, and then as-sign each subtask to the machine where it is best suitedfor execution [1].Unlike in distributed homogeneous systems (e.g., anetwork of workstations of the same type and con�gu-ration), it is generally di�cult and impractical to sus-pend the execution of a subtask on one machine andresume that subtask's execution on another machineof a di�erent type in an HC system. Thus, a challengein making e�ective use of an HC system is to minimizethe need for such dynamic subtask migration, whichimplies an increased importance on the static prob-lems of assigning subtasks to machines (matching)and ordering the execution of subtasks assigned to thesame machine (scheduling).Performance prediction is the basis of matching andscheduling techniques for HC systems. Many match-ing and scheduling algorithms make the simplifyingassumption that the execution time for each subtaskis a known constant for each machine in the system(e.g., [2, 3]). However, there are elements of uncer-tainty, such as the uncertainty in input data valuesor in inter-machine communication time, which canimpact the execution times. Machine choices for exe-cuting subtasks can also a�ect the execution time andits degree of uncertainty.In this paper, the task to be executed on the HCsystem is modeled as a task graph consisting of a col-lection of subtasks. A mathematical model for the

communication network that interconnects the ma-chines of the HC system is introduced, and a prob-abilistic approach is developed to estimate the overallexecution time distribution of the task graph. Thisoverall distribution depends on the individual subtaskexecution time distributions, the inter-machine com-munication time distributions, the data dependencystructure among the subtasks, the matching of sub-tasks to machines, and the scheduling of subtasksmatched to a common machine. It is shown that,for a given matching and scheduling, computing theexact distribution of the overall execution time of atask graph is very di�cult, and thus impractical. Theproposed approach approximates the exact distribu-tion and requires a relatively small amount of calcula-tion time. The accuracy of the proposed approach isdemonstrated mathematically through the derivationof bounds that quantify the di�erence between the ex-act distribution and that provided by the proposedapproach. Numerical studies are also included to fur-ther validate the utility of the proposed methodology.Section 2 presents the basic assumptions and anoverview of the approach. A mathematical frameworkfor the approach is presented in Section 3. Section 4demonstrates the generic di�culty associated with cal-culating the exact execution time distribution for atask graph. An approximate approach is then pro-posed based on the conditions set forth by the Klein-rock independence approximation [4]. Section 4 con-cludes with a mathematical derivation of a bound forquantifying the di�erence between the exact distribu-tion and that associated with the proposed approach.In Section 5, execution time distributions determinedusing the proposed approach are compared with corre-sponding distributions obtained by simulation of ex-ample task graphs. These studies indicate that theproposed approach predicts the execution time distri-bution for a large class of practical task graphs withhigh accuracy.2 Assumptions and OverviewIt is assumed that the HC system consists of a dedi-cated network of machines under the control of a singlematching/scheduling mechanism. The type of appli-cation task considered is composed of a number ofsubtasks, each of which is to be executed on a partic-ular machine in the HC system. The execution timedistribution for each individual subtask is assumed tobe known or estimated for the machine on which it isto be executed. Previous approaches for determiningthe execution time distribution of (parallel) programs

(e.g., [5, 6]) could be applied for estimating the execu-tion time distribution of subtasks. Estimates of sub-task execution time distributions based on empiricalmeasurements could also be utilized in the frameworkassumed here.The subtask-to-machine matching and the order ofexecution for multiple subtasks assigned to the samemachine (i.e., the subtask scheduling for each ma-chine) are assumed to be static and known. The prob-lems of optimal matching and scheduling representlarge bodies of research in the �eld of HC, e.g., see[3, 7]. How to determine good solutions to the match-ing and scheduling problems is beyond the scope ofthis paper. The goal here is to develop a new prob-abilistic approach for analyzing the overall task exe-cution time for given matching and scheduling poli-cies. From this probabilistic modeling foundation, fu-ture matching and scheduling techniques may be de-veloped that are based on probabilistic metrics for per-formance.For each subtask, all input data items must bepresent at the subtask's designated machine beforecomputation starts, and output data items can betransferred to other machines only after computa-tion of the subtask is completed. Data-dependenciesamong the subtasks are represented by a task graph.A task graph is a directed acyclic graph in whichnodes represent subtasks and arcs represent the data-dependencies among the subtasks.To compute the execution time distribution of theentire task, the assumed execution time distributionsof all subtasks (on their designated machines) are uti-lized. These distributions correspond to the compu-tation time of the subtasks only; distributions for thetimes required to input and output any data structuresare de�ned separately.For each subtask, the machine from which each re-quired input data item is fetched is assumed to bespeci�ed. In general, these machines will depend onthe subtask-to-machine matching that is used. For ex-ample, fetching a data item from the machine at whichit was �rst generated (or was initially stored) is a sim-ple rule that is often assumed for this type of analysis.However, the model devised here allows for more gen-eral re�nements in how the data is distributed andretrieved. For example, the model is general enoughto account for the data-reuse and multiple data-copiessituations [8], which allow the fetching of data itemsfrom a machine other than the one where it was gen-erated.Network I/O at each machine is assumed to be non-blocking (e.g., handled by a stand-alone I/O proces-

sor). Therefore, computation and inter-machine com-munication can be overlapped in time. Each subtask isassumed to start computation when its designated ma-chine is ready and all its input data items are availableon this machine. Immediately after computation for asubtask completes, the machine is made available forexecuting the next subtask scheduled for execution onthat machine. Also, the output data items producedby the completed subtask are made available for allsubsequent subtasks to be executed on that machine.If multiple data items produced by a subtask are to betransferred to other machines, the order in which theyare sent is assumed to be speci�ed. All outgoing dataitems at a given machine are assumed to be bu�eredwhen the machine is transmitting another data item.In general, the network transmission time for agiven data item (including the uncertain delay causedby network contention) depends on factors such as thesize of the data item being transferred, the topologyand bandwidth of the network, the type of switchingused, the types of machine-network interfaces used,and the overall network load. For the purpose of thisanalysis, a network model in which the transmissiontime is modeled according to a probabilistic distribu-tion is assumed. In this model, the shape of the dis-tribution is �xed (e.g., the variance is �xed), and themean of the distribution is de�ned to be the sum of a�xed overhead and a term proportional to the size ofdata item transfered. The �xed overhead correspondsto the latency of the network, and the coe�cient forthe second term corresponds to the inverse of the chan-nel bandwidth. This represents one possible modelfor the transmission time for a network. Other net-work models are possible and could be used in place ofthe one assumed here. Furthermore, the transmissiontime can be source-destination dependent. The onlyrequirement is that the transmission time be modeledaccording to a probabilistic distribution.Three separate random variables are used to rep-resent the start time, execution time, and completiontime for each subtask. The values of the start and �n-ish times are de�ned with respect to a global time-line,and the subtask execution time represents the lengthof an interval on this time-line. The task is assumedto start execution at time 0. A subtask is called aterminal subtask if it corresponds to a node with nosuccessors in the task graph and is the last subtaskexecuted on its designated machine. The maximum ofthe completion times over all terminal subtasks de�nesthe �nish time of the entire task.

3 Mathematical Model of Task Graph Exe-cution in an HC SystemIn this section, random variables are used to modelthe data communication times among the machinesand the start time, execution time, and �nish timefor each subtask. The relationships among these ran-dom variables are derived. These are used in the nextsection to compute the overall task execution time dis-tribution by performing appropriate operations to thedistribution functions of these random variables.It is assumed that there are m machines in the HCsystem, labeled Mi; i = 0; 1; : : : ;m � 1. The taskconsists of n subtasks, labeled Sj ; j = 0; 1; : : : ; n� 1.The subtask-to-machine matching is de�ned by thefunctionM : f0; : : : ; n� 1g ! f0; : : : ;m� 1g: (1)Thus, subtask Sj is to be executed on machineMM(j).For each machineMi, the number of subtasks assignedto Mi is denoted as �i, and the execution schedulefor these �i subtasks is de�ned by the function Xi :f0; : : : ; �i� 1g !M�1(i), which is a bijection. Thus,Xi(k), 0 � k < �i, de�nes the (k + 1)-th task to beexecuted; the sequence of execution on machine Mi isfrom subtask SXi(0) to SXi(�i�1).For each subtask Sj , 0 � j < n, de�ne nIj and nOjto be the number of associated input and output dataitems, respectively. Input data items of Sj are labeledDIj;v, 0 � v < nIj . Output data items of Sj are labeledDOj;u, 0 � u < nOj . If multiple output data items of asubtask need to be transmitted to other machine(s),then they are transmitted serially in ascending indexorder, i.e., DOj;u is transmitted before DOj;`, for u < `.For each subtask Sj , the times at which computa-tion starts and �nishes is modeled by random vari-ables TSj and TFj , respectively. The execution timeof Sj is modeled by random variable �Ej , de�ned as�Ej = TFj �TSj . Note that throughout this paper, val-ues of random variables involving the letter \T" corre-spond to points on the global time-line, and those thatuse \�" represent lengths of intervals on this time-line.It is assumed that the execution times of all subtasksare independent, i.e., �Ej ; 0 � j < n, form a set of mu-tually independent random variables. This has beenan assumption made by other researchers as well, e.g.,[9]. Based on the de�nition of �Ej , a useful expressionfor TFj is given by:TFj = TSj + �Ej : (2)

For each subtask Sj , the time at which input dataitem DIj;v; 0 � v < nIj , becomes available on machineMM(j) is de�ned by T Ij;v. It is assumed that all initialdata items are pre-loaded to the machines that will�rst use them, i.e., the time required to load thesedata items is not considered in the analysis. Thus,the available time for all pre-loaded data items is de-�ned as 0. The sum of the queuing time, denoted by�Qj;u, and the network time, denoted by �Nj;u, de�nesthe time period starting at time TFj and ending whendata item DOj;u is available at its destination subtask.If the destination subtask of DOj;u is on the same ma-chine as Sj , then both �Qj;u and �Nj;u are de�ned to be0. Otherwise, �Qj;u represents the time DOj;u waits inthe queue before machine MM(j) begins to transmitit, and �Nj;u represents the amount of time (includingany delay caused by network contention) to transferDOj;u through the network to its destination. Networktimes for di�erent output data items are assumed tobe independent (i.e., the random variables �Nj;u are in-dependent).In the following discussion, let output data item uof Sj (i.e., DOj;u) be input data item v of subtask Sg(i.e., DOj;u = DIg;v). Also, if Sj and Sg are assigned tothe same machine, i.e., M(g) = M(j), then �Qj;u = 0for all u. If u = 0 (i.e., DOj;u = DOj;0 is the �rst dataitem transmitted), then the queuing time is zero, i.e.,�Qj;0 = 0. Hence, the general expression for �Qj;u is:�Qj;u = 8><>: 0 if u = 0or M(j) =M(g),�Qj;u�1 + �Nj;u�1 otherwise. (3)It is assumed that DOj;u is available to Sg immediatelyupon arriving at machine MM(g). Let TAj;u de�ne thisarrival time, thenTAj;u = T Ig;v = TFj + �Qj;u + �Nj;u: (4)Assume now that subtask Sj is to be executed onmachine Mi, i.e., M(j) = i, and is the (k + 1)-thsubtask scheduled for execution, i.e., Xi(k) = j. LetTMj denote the time that Mi becomes available forexecuting Sj . If k = 0, i.e., Sj is the �rst subtaskscheduled to execute on Mi, then TMj is de�ned to be0. Otherwise, SXi(k�1) is the previous subtask thatexecutes on Mi, and TMj is de�ned to be the �nishtime of SXi(k�1). Therefore, the general relation forthe time when machine Mi becomes available for exe-

cuting subtask SXi(k) is:TMXi(k) = � 0 if k = 0,TFXi(k�1) otherwise. (5)The start time of a subtask is the maximum of theavailable time of the designated machine and the max-imum of all arrival times of its input data items:TSj = max(TMj ; nIj�1maxv=0 �T Ij;v) : (6)Equations (2) through (6) establish the relation-ships among the de�ned random variables, and areused to derive their associated probability distributionand/or density functions. In particular, distributionsfor the random variables �Ej and �Nj;u are assumed to bespeci�ed, and distributions for the other random vari-ables are de�ned based on the relationships derived inthis section. The overall execution time distributionof a task graph is analyzed in the next section.4 Calculating the Execution Time Distribu-tion for a Task Graph4.1 Di�culty with exact calculationIn a task graph, subtasks that require input dataitems from a common subtask have correlated startand �nish times, and thus their associated randomvariables are not independent. This correlation canpropagate to the start and �nish times of subsequentsubtasks that get data from these subtasks. All suchsubtasks correspond to nodes in the task graph thathave a common ancestor. It is shown in this subsectionthat this type of correlation generally makes the exactderivation of the overall execution time distribution ofa task graph di�cult and impractical.Before demonstrating the di�culty of performingbasic operations on correlated random variables, thesummation and maximum operations for independentrandom variables are �rst reviewed. From basic prob-ability theory, recall that the density function of thesummation of independent random variables is theconvolution of the density functions of the individ-ual random variables [10]. Thus, for two independentrandom variables, say R and V with density functionsfR(�) and fV (�), the density function of Y = R+ V isgiven by the convolution of fR(�) and fV (�), denotedby fY (�) = fR(�) � fV (�), which is de�ned by:fY (y) = Z 1�1 fR(y � t)fV (t)dt: (7)

Also recall that the distribution function of the maxi-mum of independent discrete random variables is theproduct of the distribution functions of the individualrandom variables [10]. Thus, for two independent dis-crete random variables, say R and V with distributionfunctions FR(�) and FV (�), the distribution function ofZ = maxfR; V g is given byFZ(z) = FR(z) � FV (z): (8)
M1S0 S1S3S4S2M0

Figure 1: An example task graph whose overall exe-cution time distribution is di�cult to derive.Consider the task graph with �ve subtasks shown inFig. 1. Assume there are two machines in the HC sys-tem. Subtasks S0, S2 and S4 are assigned to machineM0, and subtasks S1 and S3 are assigned to machineM1. To simplify the presentation, the network com-munication times are assumed to be zero, i.e., �Nj;u = 0for all j and u. Recall that �Ej denotes the given execu-tion time distribution of Sj on its designated machine.The start time of subtask S4 can be derived by usingEquations (2){(6) as follows.TF0 = �E0 ;TF1 = �E1 ;TS2 = TF0 = �E0 ;TS3 = maxfTF0 ; TF1 g = maxf�E0 ; �E1 g;TF2 = �E0 + �E2 ;TF3 = maxf�E0 ; �E1 g+ �E3 ;TS4 = maxfTF2 ; TF3 g= maxf�E0 + �E2 ;maxf�E0 ; �E1 g+ �E3 g: (9)Because TF2 and TF3 are not independent, Equa-tion (8) is not applicable for computing the distribu-tion of TS4 . The only way to compute the exact dis-tribution for TS4 is to consider TS4 as a function of �E0 ,�E1 , �E2 , and �E3 (which are assumed to be indepen-dent random variables) and use direct integration. Tosimplify the notation, let �E0 = A, �E1 = B, �E2 = C,�E3 = D, and TS4 = X . With these substitutions,

Equation (9) isX = maxfA+ C;maxfA;Bg+Dg:An exact derivation of the distribution function forX (i.e., TS4) based on basic probability theory is asfollows.FX (x)= Pr[maxf(A+ C);maxfA;Bg+Dg � x]= Pr[A+ C � x;maxfA;Bg+D � x]= Z Pr[A+ C � x;maxfA;Bg+D � xjD = d]dFD(d)= Z Pr[A+ C � x;maxfA;Bg � x� d] dFD(d)= ZZ Pr[A+ C � x;maxfA;Bg � x� djB = b]dFB(b) dFD(d)= ZZ Pr[A+ C � x;maxfA; bg � x� d]dFB(b) dFD(d)= ZZZ Pr[A+ C � x;maxfA; bg � x� djA = a]dFA(a) dFB(b) dFD(d)= ZZZ Pr[C � x� a;maxfa; bg � x� d]dFA(a) dFB(b) dFD(d)= ZZZ FC(x� a)I(maxfa; bg � x� d)dFA(a) dFB(b) dFD(d); (10)where I(�) is the \indicator function," de�ned forthis case as follows: if maxfa; bg � x � d, thenI(maxfa; bg � x � d) = 1; otherwise I(maxfa; bg �x� d) = 0.The above example illustrates that even for a sim-pli�ed model (i.e., ignoring the communication over-head) of the considered task graph, the derivation ofthe exact execution time distribution is non-trivial. Inparticular, the production of a string of equalities isrequired (based on basic principles of probability the-ory) in order to derive the �nal expression given inEquation (10). Thus, although the �nal expressioncan be evaluated in this case, it was not straightfor-ward to derive.Practical task graphs will be more complicated thanthat of Fig. 1, and dependencies imposed by machineavailability could further complicate the relationshipsamong the start and �nish times of subtasks. Al-though exact derivation for general task graphs may

be possible, there is no clear systematic approach forautomating such a derivation. A goal of this paper isto devise an approach for systematically determining(or suitably approximating) the execution time dis-tribution of a task graph. In the remainder of thissection, such a technique is proposed for estimatingthe overall execution time distribution based on theKleinrock independence approximation. This approx-imation enables the usage of the simple formulas forsummation and maximum of random variables (i.e.,Equations (7) and (8)).4.2 Independence assumptionAs demonstrated in the previous subsection, sub-tasks corresponding to nodes in the task graph thathave a common ancestor can have correlated randomvariables associated with the start and �nish times. Insuch cases, deriving an expression for the exact distri-bution of the overall execution time distribution canbecome unrealistic for general task graphs. However,conditions exist for which the associated random vari-ables can nevertheless be treated as uncorrelated de-spite this type of interaction. The Kleinrock indepen-dence approximation [4] is a well-known condition fordescribing this situation, and is used here as the basisfor assuming independence among random variablesthat may technically be correlated.To understand the original rationale of the Klein-rock independence approximation, consider a datanetwork in which there are many interacting trans-mission queues. A tra�c stream departing from onequeue enters one or more other queues, perhaps af-ter merging with portions of other tra�c streamsdeparting from yet other queues. Although packetinter-arrival times of data packets can become de-pendent (i.e., correlated) after a tra�c stream leavesthe �rst queue, the Kleinrock independence approxi-mation concludes that the merging of many di�erentpacket streams on a transmission line has an e�ectsimilar to restoring the independence of inter-arrivaltimes and packet lengths [11].Similarly, in a task graph, a subtask may take inputfrom many other subtasks, and multiple subtasks maybe assigned to the same machine, where they mustwait for the machine to become available before ex-ecution. The e�ect is analogous to that of mergingmany tra�c streams in a data network. Thus, it isassumed that the input of data from many other sub-tasks has the e�ect of restoring independence amongthe start and �nish times of subtasks that have a com-mon ancestor in the task graph. This approximationof independence is the basis for justifying the use of

Equations (7) and (8) to compute the distribution ofstart and �nish times of subtasks. The degree to whichthis independence approximation is violated (or not)will inuence the resulting accuracy of the calculateddistribution. The estimation error is analyzed mathe-matically in Subsection 4.4, and is investigated furtherin Section 5 through numerical simulation studies.4.3 Proposed approach for calculating the exe-cution time distributionSubtask start and �nish time distributions are cal-culated in an order determined by the data depen-dency structure of the task graph and machine avail-ability, which depends on the given matching of sub-tasks to machines and local scheduling for each ma-chine. The key to calculating the start and �nish timedistributions is to partition the subtasks into layers,which requires the de�nition of an immediate prede-cessor. Subtask Sj is an immediate predecessor of sub-task Sg if either of the following conditions is satis�ed:(1) Sg requires data from Sj (i.e., there is an arc inthe task graph from Sj to Sg) or (2) Sj and Sg areassigned to the same machine and Sj is scheduled toexecute immediately before Sg. Those subtasks with-out an immediate predecessor are put into layer 1. Asubtask is put into layer k+1 if the highest layer num-ber of its immediate predecessors is k. Based on thisde�nition (which implies a constructive procedure),there is no data dependence among subtasks of thesame layer. The main di�erence between this layer-ing approach and those found in the literature (e.g.,Cluster-M model in [12]) is the resource dependencedetermined by scheduling is also considered, i.e., con-dition (2) above, is also considered.Subtask start and �nish time distributions are �rstcomputed for subtasks in layer 1. Distributions forthe time each output data item is available on its tar-get machine are then calculated. These steps are re-peated for subtasks in layer 2, and so on. In thisway, when the start time distribution of each subtaskis computed, the distributions for available times ofthe designated machine and all input data items areknown.For each subtask Sj considered in the \layered" or-der, the following four calculations are performed.1. Compute distribution function for subtask starttime: FTSj (�) = FTMj (�) nIj�1Yv=0 FT Ij;v (�): (11)

2. Compute density function for subtask completiontime: fTFj (�) = fTSj (�) � f�Ej (�): (12)3. Let the next subtask to be executed on machineMM(j) be Sg. De�ne the density function for ma-chine available time for Sg :fTMg (�) = fTFj (�): (13)4. For each u from 0 to nOj � 1, let output dataitem DOj;u be the input data item h of subtask Sg(i.e., DIg;h). Compute the distributions for queu-ing time, arrival time for DOj;u, and the availabletime for DIg;h:f�Qj;u(�)= (�(�) if u = 0 or M(j) =M(g),f�Qj;u�1(�) � f�Nj;u�1 (�) otherwise. (14)fTAj;u (�) = fT Ig;h (�)= fTFj (�) � f�Qj;u(�) � f�Nj;u (�): (15)(�(�) represents the Dirac delta function [13].)After completing the above four steps for each sub-task (ordered according to the layer numbers), theoverall distribution of the task execution time is com-puted. Let � be the number of terminal subtasks, andlet fSj0 ; Sj1 ; : : : ; Sj��1g be the set of terminal sub-tasks. Then the probability distribution function ofthe completion time of the entire task is:FTC (�) = ��1Y =0FTF (�): (16)4.4 Error analysisIn this subsection, the di�erence between the dis-tribution computed by the proposed approach (Sub-section 4.3) and the exact distribution is analyzed fora special class of task graphs for which the Kleinrockindependence assumption is (apparently) violated. Ananalytical expression for the di�erence of the means ofthese distributions is derived. Based on this expres-sion, it is shown that the proposed approach alwaysoverestimates the actual mean of the execution time.A bound for the di�erence of the means is also de-rived that depends on the parameters of the assumedsubtask distributions involved. Finally, conditions aredetermined for which the distribution of the proposed

approach equals the exact distribution for this class oftask graph.In a task graph, a fork-join structure between twosubtasks Sf and Sj contains a set of two or more dis-joint paths from Sf to Sj (\f" is for fork and \j"is for join). Let W denote the set of subtasks in afork-join structure, excluding Sf and Sj. For a givensubtask-to-machine matching and a given schedulingfor each machine, a fork-join structure is called anisolated fork-join structure if every immediate prede-cessor of a subtask in W belongs to W [fSfg. Ex-amples of isolated fork-join structures are shown inFig. 2, in which each subtask is assumed to be as-signed to a distinct machine. The conditions of theKleinrock independence approximation are clearly vi-olated in an isolated fork-join structure. This is be-cause the data that ows from Sf to Sj (e.g., S0 toS3 in Fig. 2(a)) does not merge with other data origi-nating from subtasks outside that fork-join structure.Therefore, the e�ect of restoring independence of ar-rival times of input data items for Sj by merging dataows from di�erent subtasks/machines does not oc-cur. Perhaps surprisingly, it is shown that even forthis \worst case" structure (i.e., the isolated fork-joinstructure), the proposed approach still can providereasonably accurate estimate of the exact distribution.Under certain conditions, it is shown that the distri-bution from the proposed approach actually coincideswith the exact distribution.

(a) (c)(b)

S3S5
S1

S4
S2

S3 S2S0S1
S0

S1 S3S0S2S4S6Figure 2: Examples of isolated fork-join structures.Each subtask is assumed to be assigned to a distinctmachine for each example.Isolated fork-join structures are characterized bythe number of disjoint paths that connect Sf to Sj.In Fig. 2(b), note that the chains S1 ! S3 ! S5 andS2 ! S4 can each be reduced to a single subtask, re-sulting in a structure identical to that in Fig. 2(a).

Therefore, without loss of generality, only structuresin which there is exactly one subtask on each pathbetween Sf and Sj (such as Figs. 2(a) and (c)) arestudied here.In general, for multiple subtasks matched to thesame machine, a fork-join structure may not be anisolated fork-join structure. For example, considerFig. 3 in which the subtasks are matched to machinesas indicated by the ovals. Although S0 through S3form a fork-join structure, the scheduling of S1 andS5 on M1 determines whether it is an isolated fork-join structure. In particular, if S5 is scheduled be-fore S1, then it is not an isolated fork-join structure,because S5 is an immediate predecessor of S1 andS5 62 W [fS0g = fS0; S1; S2g.
M2S3 S2S1 S0S4S5M0

M1Figure 3: Example task graph in which its character-ization as an isolated fork-join structure depends onthe scheduling.Consider the isolated fork-join structure shown inFig. 2(a). For clarity of presentation and without lossof generality, network communication times are ig-nored. Let A, B, and C denote the execution timedistribution of S0, S1, and S2 on their designated ma-chines, respectively. The start time of S3 can be de-rived as:TF0 = TS1 = TS2 = A;TF1 = A+B;TF2 = A+ C;TS3 = maxfTF1 ; TF2 g = maxfA+B; A+ Cg:Note that the distributions for TF1 and TF2 are ob-tained by convolving the appropriate density functions(i.e., fTF1 (�) = fA(�)�fB(�) and fTF2 (�) = fA(�)�fC(�)).The proposed approach estimates the distribution ofTS3 as FTF1 (�)FTF2 (�). For notational convenience, letX denote the random variable with distribution func-tion FTF1 (�)FTF2 (�), and let X� = TS3 , i.e., X and X�represent the estimated and exact value of TS3 , respec-tively.

In [6], the exact distribution for X� is derived andthe di�erence between X and X� is analyzed mathe-matically. Due to space limitations, only the resultsof this analysis is included here (refer to [6] for the de-tailed derivation). To state the results, some notationis needed for quantifying the ranges of the randomvariables A, B, and C. Because these random rep-resent the execution times of S0, S1, and S2, it is as-sumed that they are �nite and have �nite range. Thus,there exists constants 0 � a1 � a2, 0 � b1 � b2, and0 � c1 � c2, such that Pr[A < a1] = Pr[A > a2] = 0,Pr[B < b1] = Pr[B > b2] = 0, Pr[C < c1] = Pr[C >c2] = 0.The following is a summary of the results proven in[6].1. The proposed approach always overestimates themean, and the estimation error for the mean isupper-bounded by the length of the range of A:0 � EX �EX� � a2 � a1; (17)where EX and EX� denote the expected values(i.e., means) of the approximate and exact distri-butions, respectively.2. The proposed approach yields the exact distri-bution if the length of the range of A is shorterthan the length of combined range of B and C.Mathematically, this condition on the length ofthe range of A is stated as:a2 � a1 < maxfb2; c2g �minfb1; c1g:Thus, if the above inequality is satis�ed, then thedistribution produced by the proposed approachequals the exact distribution (i.e., X = X�).These two results share a common theme { thesmaller the range of possible values for A, the smallerthe estimation error. The second result is most inter-esting, and perhaps most surprising. It states that ifthe range of values for A is su�ciently small (with re-spect to the corresponding ranges for B and C), thenthe estimated distribution actually equals the exactdistribution (i.e., there is no estimation error). Animportant key in deriving these results is the �niterange assumption for the random variables A, B, andC.5 Numerical Studies5.1 OverviewIn this section, the accuracy of the execution timedistributions determined from the proposed approach

(Subsection 4.3) is evaluated through numerical stud-ies. Due to the size and complexity of the task graphsconsidered, derivation of the exact distributions (asdone for the simple task graphs considered in the pre-vious section) is not feasible. Thus, detailed simu-lations of the task graphs are performed as a meansof determining the actual distributions. The resultsshow that the proposed approach predicts simulatedtask graph execution time distribution with high ac-curacy. Task graph structures for which the indepen-dence among the random variables is apparently vio-lated to a substantial degree are also studied. Evenfor these task graph structures, the distributions com-puted by the proposed approach match those from thesimulation reasonably well. On a Sun SPARCstation5, the time required to compute distributions basedon the proposed approach is about 10 times less thanthat based on simulating the task graph over 4000 in-stances.For this study, each subtask execution time distri-bution (associated with the random variable �Ej forsubtask Sj) is assumed to be either a uniform or anormal distribution. (This is for convenience only;any distribution could be used in this framework.)Each network transmission time distribution (associ-ated with the random variable �Nj;u) is assumed to bea normal distribution with a �xed standard deviation,and the mean de�ned as the sum of a �xed overheadand a term proportional to the size of data item to betransfered. (Each normal distribution N(�; �) withmean � and standard deviation � is discretized in therange of (maxf��4�; 0g; �+4�).) The parameters ofthese distributions are included in an input �le. Alsoincluded in this �le is the subtask-to-machine match-ing and execution schedule of each individual machine.A program was written in C to parse this input �le andoutput a Matlab program for simulating the executiontime of task graph (see [6] for details).For each instance of the simulation, the executiontime of a subtask is determined by generating a ran-dom number according to its assumed distribution,and network transmission times are determined sim-ilarly. The overall execution time of the task graphis calculated according to data dependency structureof the task graph and execution schedule of the indi-vidual machines. Subtask start and �nish times are�rst computed for subtasks in layer 1. The time eachoutput data item of layer 1 subtasks is available on itstarget machine are then calculated. These steps arerepeated for subtasks in layer 2, and so on. In thisway, when the start time of each subtask is computed,the available times of the designated machine and all

(4; 1)(1; 0) (1; 0)(1; 1)(1; 1)
S10S6 S7 S11 S8 S9S5S4S3S2 S0 S1(1; 0)

(1; 0) (1; 0) (1; 0)(1; 1)(1; 0) (1; 0) (1; 0)
Key for arc labels (d; k):d: amount of data to be transferedk: order index of output data itemFigure 4: Example task graph.input data items are known. The overall executiontime of the task graph is the maximum of the �nishtimes over all terminal subtasks. For each task graphstudied, 4000 simulation instances were performed tocollect the sample distribution of the overall executiontime of the task graph.5.2 Comparison of estimated distribution andsimulated sample distributionThe �rst task graph studied is shown in Fig. 4.There are 12 subtasks in the graph, labeled from S0 toS11. Each arc is labeled with an ordered paired (d; k),where d is the amount of data to be transfered and kis the output data index for the source subtask. (Re-call if a subtask has multiple output data items to betransmitted to other machine(s), they are transmittedin ascending index order.) It is assumed that there arefour machines in the HC system, labeled from M0 toM3. The assumed subtask-to-machine matching, exe-cution schedule of each machine, and execution timedistribution of each subtask on its designated machineare de�ned in Table 1. Three subtasks are assigned toeach machine. Each row corresponds to parametersfor a subtask; the �rst column is the label of the sub-task, the second column is the label of its designatedmachine, the third column is the order of execution onthat machine, and the forth column parameterizes itsexecution time distribution.The network transmission time is modeled by a nor-mal distribution with a standard deviation of 3. Twoseparate models for the mean of the network networktransmission time were used. In the �rst, the mean isequal to 10 + (5� d), and in the second, the mean isequal to 20 + (30 � d). These two models representdi�erent computation to communication ratios. For

subtask machine schedule exe. time distr.0 0 0 U(125; 146)1 1 0 N(203; 10:3)2 2 0 U(244; 325)3 0 1 N(301; 24:3)4 3 0 U(203; 248)5 1 1 N(350; 27:3)6 2 1 U(271; 324)7 0 2 N(283; 26:1)8 3 1 N(201; 34:1)9 1 2 U(278; 321)10 2 2 U(130; 183)11 3 2 N(231; 29:4)Table 1: Assumed matching, scheduling, and execu-tion time distribution for subtasks of Fig. 4. U(a; b):uniform distribution between a and b. N(�; �): nor-mal distribution with mean � and standard deviation�.each model, the distribution for the execution time ofthe entire task graph are obtained through simulation,and the corresponding distribution is also computedby the proposed approach.The results of these studies are shown in Figs. 5and 6. For each study, the di�erence between the sim-ulated mean execution time and the estimated meanexecution time is less than 0.4%, and the di�erence forstandard deviation is less than 6.3%. From this, it isconcluded that the proposed approach accurately es-timates the distribution of execution time for the taskgraph considered.Simulation was also performed for the task graphshown in Fig. 7. The task graph is nearly the samestructure as that of Fig. 4. The only di�erence is thearc S4 ! S6 (in Fig. 4) has been changed to becomearc S6 ! S11 (in Fig. 7). However, this small changein the structure of the task graph creates an isolatedfork-join structure (S2, S6, S7, S11). The subtask-to-machine matching, subtask execution time distribu-tion, and execution schedules of individual machinesremain unchanged. Simulations are performed usingthe same two network communication models as usedfor Fig. 4. The resulting distributions are comparedwith estimates in Figs. 8 and 9. Still, the proposedapproach provides a good approximation for the taskgraph execution time distribution. The error betweenestimated and simulated results is less than 1.08% forthe mean execution time and less than 10.4% for thestandard deviation. This example demonstrates therobustness of the proposed approach when some as-sumptions are violated. (Recall that even for isolated

850 900 950 1000 1050 1100 1150 1200 1250 1300
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

task graph execution time

pr
ob

ab
ili

ty
 o

f o
cc

ur
re

nc
e

mean=989.65

standard deviation=42.19

(a)

850 900 950 1000 1050 1100 1150 1200 1250 1300
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

task graph execution time

pr
ob

ab
ili

ty
 o

f o
cc

ur
re

nc
e

standard deviation=39.56

mean=992.97

(b)Figure 5: Distributions of execution time for taskgraph in Fig. 4 where the mean of network transmis-sion time is equal to 10 + (5 � d). (a) Sample distri-bution. (b) Estimated distribution.fork-join structure, the estimation error for the meanexecution time is upper-bounded by the width of thedensity of execution time of the fork node, and con-ditions exists under which exact results could be ob-tained.)6 SummaryIn this paper, a methodology for estimating the ex-ecution time distribution for a task graph executed inan HC system is introduced. Individual subtask ex-ecution time distributions are assumed to be knownor estimated using analytical or empirical techniques.A probabilistic model for the data transmission timeis developed. Random variables are used to represent

850 900 950 1000 1050 1100 1150 1200 1250 1300
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

task graph execution time

pr
ob

ab
ili

ty
 o

f o
cc

ur
re

nc
e

mean=1085.0

standard deviation=45.46

(a)

850 900 950 1000 1050 1100 1150 1200 1250 1300
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

task graph execution time

pr
ob

ab
ili

ty
 o

f o
cc

ur
re

nc
e

standard deviation=44.76

mean=1085.1

(b)Figure 6: Distributions of execution time for taskgraph in Fig. 4 where the mean of network trans-mission time is equal to 20 + (30 � d). (a) Sampledistribution. (b) Estimated distribution.
(1; 1) S4 (1; 0)(1; 0)(1; 0)(1; 0)(1; 0)

S1S2
S10 S11

S5(1; 1)(1; 0)
(1; 0) (1; 1) (1; 0) (4; 1)(1; 0)S8 S9S6 S7

S0 S3
Key for arc labels (d; k):d: amount of data to be transferedk: order index of output data itemFigure 7: Example task graph in Fig. 4 with arc S4 !S6 moved to S6 ! S11.

850 900 950 1000 1050 1100 1150 1200 1250 1300
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

task graph execution time

pr
ob

ab
ili

ty
 o

f o
cc

ur
re

nc
e

standard deviation=41.20

mean=997.05

(a)

850 900 950 1000 1050 1100 1150 1200 1250 1300
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

task graph execution time

pr
ob

ab
ili

ty
 o

f o
cc

ur
re

nc
e

standard deviation=36.93

mean=1008.4

(b)Figure 8: Distributions of execution time for taskgraph in Fig. 7 where the mean of network transmis-sion time is equal to 10 + (5 � d). (a) Sample distri-bution. (b) Estimated distribution.the duration of subtask executions and network trans-missions, as well as the start and �nish times. Datadependency and machine availability are used to de-rive the relationships among these random variables.It is demonstrated that deriving the exact executiontime distribution for general task graphs is extremelydi�cult. The Kleinrock independence approximationis applied to make the computation of associated prob-ability distributions tractable. Graph structures forwhich the independence assumption is violated areidenti�ed, and an upper bound of the estimation errorfor the mean execution time is derived for this case.Simulations were performed for various task graphs.The simulation results indicate that the proposed ap-proach provides accurate estimates for execution timedistribution.

850 900 950 1000 1050 1100 1150 1200 1250 1300
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

task graph execution time

pr
ob

ab
ili

ty
 o

f o
cc

ur
re

nc
e

mean=1086.2

standard deviation=45.22

(a)

850 900 950 1000 1050 1100 1150 1200 1250 1300
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

task graph execution time

pr
ob

ab
ili

ty
 o

f o
cc

ur
re

nc
e

mean=1093.1

standard deviation=40.88

(b)Figure 9: Distributions of execution time for taskgraph in Fig. 7 where the mean of network trans-mission time is equal to 20 + (30 � d). (a) Sampledistribution. (b) Estimated distribution.References[1] H. J. Siegel, J. K. Antonio, R. C. Metzger,M. Tan, and Y. A. Li, \Heterogeneous Com-puting," in Handbook of Parallel and DistributedComputing, A. Y. Zomaya, ed., pp. 725{761,McGraw-Hill, New York, NY, 1996, (also PurdueEE School technical report TR-EE 94-37).[2] D. W. Watson, J. K. Antonio, H. J. Siegel, andM. J. Atallah, \Static Program DecompositionAmong Machines in an SIMD/SPMD Hetero-geneous Environment with Non-Constant ModeSwitching Costs," in Proceedings of the Heteroge-neous Computing Workshop (HCW '94), pp. 58{65, Apr. 1994.

[3] R. F. Freund, \Optimal Selection Theory for Su-perconcurrency," in Proceedings of Supercomput-ing '89, pp. 47{50, Nov. 1989.[4] L. Kleinrock, Communication Nets: StochasticMessage Flow and Delay, McGraw-Hill, NewYork, NY, 1964.[5] Y. A. Li, J. K. Antonio, H. J. Siegel, M. Tan,D. W. Watson, \Estimating the Distribution ofExecution Times for SIMD/SPMD Mixed-ModePrograms," in Proceedings of the HeterogeneousComputing Workshop (HCW '95), pp. 35{46,Apr. 1995.[6] Y. A. Li, A Probabilistic Framework for Estima-tion of Execution Time in Heterogeneous Com-puting Systems, Ph.D. Dissertation, School ofElectrical and Computer Engineering, PurdueUniversity, Aug. 1996.[7] S. Chen, M. M. Eshaghian, A. Khokhar, andM. E. Shaaban, \A Selection Theory andMethodology for Heterogeneous Supercomput-ing," in Proceedings of the Workshop on Hetero-geneous Processing, pp. 15{22, Apr. 1993.[8] M. Tan, J. K. Antonio, H. J. Siegel, and Y. A. Li,\Scheduling and Data Relocation for SequentiallyExecuted Subtasks in a Heterogeneous Comput-ing System," in Proceedings of the HeterogeneousComputing Workshop (HCW '95), pp. 109{120,Apr. 1995.[9] A. B. Tayyab and J. G. Kuhl, \Stochastic Perfor-mance Models of Parallel Task Systems," in Pro-ceedings of the 1994 ACM SIGMETRICS Confer-ence on Measurement and Modeling of ComputerSystems, pp. 284{285, May 1994.[10] A. M. Mood, F. A. Graybill, and D. C. Boes,Introduction to the Theory of Statistics, McGraw-Hill, New York, NY, 1974.[11] D. Bertsekas and R. Gallager, Data Networks,Prentice-Hall, Englewood Cli�s, NJ, 1987.[12] M. M. Eshaghian and R. F. Freund, \Cluster-MParadigms for High-Order Heterogeneous Proce-dural Speci�cation Computing," in Proceedings ofthe Workshop on Heterogeneous Processing, pp.47{49, May 1992.[13] J. B. Thomas, An Introduction to Applied Prob-ability and Random Processes, Robert E. KriegerPublishing Company, Huntington, NY, 1981.

BiographiesYan A. Li received his B.E. degree from TsinghuaUniversity, Beijing, China, in 1991, and his MSEEand Ph.D. degrees, both from Purdue University, WestLafayette, Indiana, U.S.A., in 1993 and 1996, respec-tively. He is currently a Senior System Architect atIntel Corporation. He is a member of IEEE and EtaKappa Nu. His major research interest includes par-allel processing, high-performance heterogeneous com-puting, computer architecture, and computer systemssimulation.John K. Antonio received the B.S., M.S., and Ph.D.degrees in electrical engineering from Texas A&MUni-versity, College Station, TX. He currently holds theposition of Associate Professor of Computer Sciencewithin the College of Engineering at Texas Tech Uni-versity. Before joining Texas Tech, he was with theSchool of Electrical and Computer Engineering at Pur-due University. During the summers of 1991-94 heparticipated in a faculty research program at RomeLaboratory, Rome, NY, where he conducted researchin the area of high performance computing. His cur-rent research interests include heterogeneous systems,con�guration techniques for embedded parallel sys-tems, and computational aspects of control and opti-mization. He has co-authored over 50 publications inthese and related areas. For the past four years, he hasorganized the Industrial Track and Commercial Ex-hibits portions of the International Parallel ProcessingSymposium. He is a member of the IEEE computersociety and is also a member of the Tau Beta Pi, EtaKappa Nu, and Phi Kappa Phi honorary societies. Or-ganizations that have supported his research includethe Air Force O�ce of Scienti�c Research, NationalScience Foundation, Naval Research Laboratory, Or-incon, Inc., and Rome Laboratory.

