A computational view of
Interior-point methods for linear
programming

Report 94-73

J. Gondzio
T. Terlaky

By

U D e I f‘t Faculteit der Technische Wiskunde en Informatica
Faculty of Technical Mathematics and Informatics

Technische Universiteit Delft

Delft University of Technology

ISSN 0922-5641

Copyright © 1994 by the Faculty of Technica Mathematics and Informatics, Delft, The
Netherlands.

No part of this Journal may be reproduced in any form, by print, photoprint, microfilm,
or any other means without permission from the Faculty of Technical Mathematics and
Informatics, Delft University of Technology, The Netherlands.

Copies of these reports may be obtained from the bureau of the Faculty of Technical
Mathematics and Informatics, Julianalaan 132, 2628 BL Ddlft, phone +3115784568.

A selection of these reportsisavailablein PostScript form at the Faculty’s anonymous ftp-
site, ftp.twi.tudelft.nl. They are located in directory /pub/publications/tech-reports. They
can also be accessed on the World Wide Web at:

http://www.twi.tude ft.nl/ TWI/Publications/Overview.html

DELFT UNIVERSITY OF TECHNOLOGY

REPORT 94-73

A COMPUTATIONAL VIEW OF
INTERIOR-POINT METHODS

FOR LINEAR PROGRAMMING

J. Gondzio, T. Terlaky

ISSN 0922-5641
Reports of the Faculty of Technical Mathematics and Informatics 94-73

Delft September, 1994

J. Gondzio

Systems Research Institute, Polish Academy of Sciences,
Newelska 6, 01-447 Warsaw, Poland.

e-mail: gondzio@ibspan.waw.pl

T. Terlaky

Faculty of Technical Mathematics and Informatics, Delft University of Technology,
P.O. Box 5031, 2600 GA Delft, The Netherlands.

e—mail: t.terlaky@twi.tudelft.nl

This research has been done when the first author was visiting the Department of Management Studies
of the University of Geneva. It has been supported by the Fonds National de la Recherche Scientifique
Suisse, grant #12-34002.92.

The second author is on leave from the Eotvos University, Budapest, and partially supported by OTKA
No. 2116.

Copyright (©1994 by Faculty of Technical Mathematics and Informatics,
Delft, The Netherlands.

No part of this Journal may be reproduced in any form, by print, pho-
toprint, microfilm or any other means without written permission from
Faculty of Technical Mathematics and Informatics, Delft University of
Technology, The Netherlands.

ii

Abstract

Many issues that are crucial for an efficient implementation of an interior point algorithm are addressed
wm this paper. To start with, a prototype primal-dual algorithm is presented. Next, many tricks that
make 1t so efficient in practice are discussed in detail. Those include: the preprocessing techniques, the
inttialization approaches, the methods of computing search directions (and lying behind them linear algebra
techniques), centering strategies and methods of stepsize selection.

Several reasons for the manifestations of numerical difficulties like e.g.: the primal degeneracy of optimal
solutions or the lack of feasible solutions are explained in a comprehensive way.

A motivation for obtaining an optimal basis is given and a practicable algorithm to perform this task is
presented. Advantages of different methods to perform postoptimal analysis (applicable to interior point
optimal solutions) are discussed.

Important questions that still remain open in the implementations of interior point methods are also
addressed, e.q.: performing correct postoptimal analysis, detecting infeasibility or resolving difficulties
arising in a presence of unbounded optimal faces. Challenging practical problem of warm start is recalled
and two potentially attractive approaches to it are suggested.

To facilitate the understanding of different implementation strategies, some illustrative numerical results
on a subset of problems from the Netlib collection are presented.

Key Words: Linear programming, interior point methods, primal-dual algorithm, implementation,
numerical linear algebra.

Contents
1 Introduction
2 A prototype primal—dual algorithm

3 Some tricks that make it work

3.1 Presolve e
3.2 Starting point
3.3 The linear algebra
3.4 Stepsize
3.5 Centering and higher order methods Lo
3.6 Stopping criteria L.
3.7 Theoretical vs practical worst—case complexity

4 Remarks on numerical difficulties
4.1 Degeneracy and IPMs

4.2 Ill-conditioned normal equations matrixo

5 Optimal basis identification
5.1 Do we need an optimal basis?

5.2 How to get an optimal basis? L Lo

6 Problems to be solved

6.1 Correct postoptimal analysiso
6.2 Unbounded optimal faces, infeasible problems
6.3 Warmstart e

10
11
16
17
20
20

21
21
22

23
23
24

1 Introduction

Karmarkar’s publication of 1984 of the new polynomial-time algorithm for linear programming (LP) [41]
drew an enormous attention of the mathematical programming community and led to its great activity
during the past ten years resulting in a flood of papers (see, e.g., a bibliography [46]).

The 1dea of crossing the interior of the feasible region in search for an optimum of the linear program was
present at least since the sixties. These were for example: an affine-scaling method of Dikin [17] and a
logarithmic barrier method SUMT of Fiacco and McCormick [21]. For at least two reasons, however, these
methods could not at the time be shown competitive to the Simplex. First, due to the storage limitations,
the size of the problems solved in the late sixties did never exceed a couple of hundred rows and columns
and for such sizes the simplex method is practically unbeatable. Secondly, there were no sparse symmetric
solvers available at that time (they appeared at the beginning of seventies) so the orthogonal projections
must have killed the efficiency of interior point methods (IPMs). TPMs need significantly more memory
than the simplex method which was an unacceptable requirement that time.

Clearly, the situation was quite different in 1984, which encouraged Karmarkar to claim about the excel-
lent efficiency of his new approach. In fact, these claims still had to wait a couple of years to be confirmed
by the computational results [60] and [1, 2].

Soon after Karmarkar’s publication, Gill, Murray, Saunders, Tomlin and Wright [26] built the bridge
between this new interior point method and the logarithmic barrier approach. Barrier methods were
developed for the primal and for the dual LP formulation (see, e.g., the surveys [31, 68]). Early im-
plementations that were based on pure primal or dual methods gave already competitive results with
simplex implementations. Nowadays all the state of the art IPM implementations are those of primal—
dual methods, hence in this paper we concentrate only on primal-dual methods.

First Megiddo [54] proposed applying a logarithmic barrier method to the primal and the dual problems
at the same time. Independently, Kojima, Mizuno and Yoshise [43] developed the theoretical background
of this method and gave complexity results. Tts early implementations [52, 15] showed very much promise
and encouraged further research in this field. For extensions that represent current state-of-the-art
primal-dual implementations see Lustig, Marsten and Shanno [48, 49, 50] and Mehrotra [55, 56].

A primal-dual algorithm is a feasible IPM if all the iterates are primal and dual feasible, respectively.
If the iterates are positive but infeasible then the primal-dual algorithm is called an infeasible IPM.
This algorithm attains feasibility at the same time as optimality is reached. It had been successfully
implemented that way [48] and had shown very good practical convergence long before a theoretical
justification for such a behavior was found by Kojima, Megiddo and Mizuno [44]. The method has
proven polynomial complexity: @(n*L) in [80] and O(nL) in [58, 63].

Although the complexity of the infeasible primal-dual algorithm is worse than the best known complexity
O(y/nL) of most feasible IPMs (see, e.g., the surveys [31, 66]), it is now widely accepted that primal-dual
infeasible IPMs are more efficient in implementations. Since infeasible IPMs are the methods of choice to
date for “state of the art” implementations, throughout the whole paper we mean a primal-dual infeasible
IPM as we speak about a primal-dual algorithm. To facilitate this, in Section 2 we shall then introduce
a prototype primal-dual infeasible IPM algorithm.

A common feature of almost all IPMs is that they can be interpreted in terms of following the path
of centers [69] that leads to the optimal solution (see, e.g., [31] and [66] for the up to date references).
With some abuse of mathematics, a basic iteration of a path—following algorithm consists of moving from
one point in a neighborhood of the central path to another one called target that preserves the property
of lying in a neighborhood of central path and reduces the distance to optimality measured with some
estimation of the duality gap. Such a movement can in principle involve more than one step towards
the target. Depending on how significant is the update of the target (and, consequently, whether just
one or more Newton steps are needed to reach the vicinity of the new target) one distinguishes between

short and long step methods. Due to the considerable cost of every Newton step, usually, (at least in
implementations) one Newton step is allowed before a new target is defined.

Every Newton step requires computing at least one orthogonal projection onto the null space of a scaled
linear operator AD, where A is the LP constraint matrix and D is a positive diagonal scaling matrix
that changes in subsequent iterations. Primal, dual and primal-dual variants of IPMs differ on the
way matrix D is defined but the effort to compute Karmarkar’s projection 1s always the same. Every
orthogonal projection involves inversion of the matrix AD?> AT — the most time—consuming linear algebra
operation that takes about 60-90% of the computation time of a single interior point iteration. Unless the
linear program is specially structured and this structure can be exploited to determine an easily invertible
preconditioner for an iterative method, as e.g., conjugate gradients algorithm (implemented successfully
for network problems [65, 62]), direct methods [18] that compute sparse symmetric factorization (Cholesky
decomposition of the positive definite system AD?AT or Bunch—Parlett [13, 7] decomposition of the
D—2 AT
indefinite augmented system) are the methods of choice. Computing projections onto
A 0
affine spaces seems crucial for the efficiency of any interior point algorithm. We shall thus discuss it
in detail in Section 3 that addresses also other issues of implementation of the IPM as e.g.: the role
of presolve analysis, the choice of the starting point, the choice of the stepsizes in the primal and in
the dual spaces, the role of centering, higher order methods, the termination conditions and, finally, the
comparison of theoretical and practical complexity.

In Section 4 we shall add some remarks on the manifestations of the degeneracy and the ill-conditioning
in the computations of projections.

After about forty years of the application of the simplex method (starting from its discovery in 1947
[16] till Karmarkar’s breakthrough [41]), when it was beyond any competition, the operations research
practitioners got used to seeing linear programming from the simplex perspective. This, in particular,
applies to the use of postoptimality analysis available from the optimal basis solution. In fact, such a
postoptimality analysis is almost always incomplete (frequently incorrect), see e.g., [32, 37, 40]. Never-
theless, there exist many applications in which optimal basis 1s necessary, e.g., reoptimization in integer
programming. In such a case a need arises of identifying optimal basis from the interior point optimal
solution. Fortunately, this can be done in a strongly polynomial time [53]. We shall address the problem
of optimal basis identification in Section 5.

Section 6 will be devoted to some crucial questions that still remain open. Sensitivity analysis based on
interior point optimal solution is generally more expensive but produces correct information. We discuss
how to handle problems with unbounded level sets, how to detect infeasibility and how to implement
efficient warm start in interior point algorithms.

Most relevant issues of interior point method implementations will be illustrated by solving a subset of the
Netlib LP problem test collection using version 2.0 of the HOPDM (Higher Order Primal Dual Method)
code [4, 30]. All of our computations are made on a SUN SPARC-10 workstation.

Later on in the paper we will frequently speak about stability, robustness and efficiency of different
methods. On stability, the usual numerical stability is meant. Talking about robustness, one thinks
about that the algorithm gives reliable answer on a wide range (optimally all) of problem instances.
Finally, efficiency relates to the speed of the algorithm, the speed of the implementation.

2 A prototype primal-dual algorithm

Let us consider a primal linear programming problem

minimize ¢tz

subject to Az = b, (1)
r+s=u,
x,s >0,

where ¢, z,s,u € R*, b € R, A € R”™*" and its dual

maximize by —uTt,
subject to ATy —t+4+z=ec¢, (2)
z,t >0,

where y € R™ and z,t € R".

To derive the primal-dual algorithm let us replace nonnegativity of constraints in the primal formulation
with the logarithmic barrier penalty terms in the objective function, which gives the following logarithmic
barrier function

L(x,s,u):ch—uZlnxj—uZlnsj. (3)
j=1 j=1

The first order optimality conditions for (3) are

Ar = b,
r+s = u,
ATy4+ puXx—te—t = e, (4)
pSle —t = 0.
Substituting
z = pXle,
the first order optimality conditions (4) give
Ar = b,
r+s = u,
ATy+z2-t = ¢ (5)
XZe = e,
STe = pe,

where X, 5,7 and T are diagonal matrices with the elements z;,s;,2; and ¢;, respectively, e is the
n-vector of all ones and yu is a barrier parameter.

The set of solutions of (5) (x(p),s(p)) and (y(p), z(p),#(x)) defines the central path of the primal and
dual problem, respectively. Having any primal and dual feasible solutions (#,s) and (y, z,¢) the quality
of centrality is measured by

n 2 n 2
N 1. T
52(1‘,5,y,z,t,u): (%_ a) + (5]—]_ —) (6)
; Vo Vg ; Voo sjt

Note that (#,s) and (y, z,t) are on the central path iff 6(x,s,y,z,t, 1) = 0. The smaller é is the better
the points are centered.

Let us observe that the first three of the above equations are linear and force primal and dual feasibility of
the solution. The last two equations are nonlinear and become the complementarity conditions for u = 0,

which together with the feasibility constraints provides optimality of the solutions. If some solution with
a certain p is available, then for the complementarity gap one has

etz 4 5Tt = 2ueTe = 2np.

In any IPM, this quantity measures the error in complementarity. Observe that in feasible IPMs the
complementarity gap reduces to the usual duality gap. It, clearly, vanishes at an optimal solution.

A single iteration of the basic primal-dual algorithm makes one step of Newton’s method applied to
the first order optimality conditions (5) with a given p and then u is updated (usually decreased). The
algorithm terminates when infeasibility and the complementarity gap is reduced below a predetermined
tolerance.

Having an z,s,z,t € R,y € R™, Newton’s direction is obtained by solving the following system of
linear equations

A 0 0 0 O Az &
I 0 I 0 0 Ay &u
0 AT o I -—I As | = £, , (7)
Z 0 0 X 0 Az pe — XZe
o o0 T 0 S At pe — STe
where _ - . _ .
& = b— Ar,
b = u—x—s,
and &, = c—ATy— 241,

denote the violations of the primal and the dual constraints, respectively. Primal—-dual infeasible IPMs
do not require the feasibility of the solutions (&,&, and £, might be nonzero) during the optimization
process. Feasibility is attained during the process as optimality is reached. It is easy to verify that if a
step of length one is made in the Newton’s direction (7), then feasibility is reached at once. This is seldom
the case as a smaller stepsize has usually to be chosen (a damped Newton iteration is taken) to preserve
nonnegativity of x, s, z and ¢. If this is the case and a stepsize a < 1 is applied, then infeasibilities &, &,
and &, are reduced 1 — « times.

Let us now look closer to the system of linear equations (7). After elimination

Az = X Ype—XZe— ZAx),
As = £, — Az, (8)
At = S7'(pe—STe —TAs) =S (pe — STe — Té, + TAx),
it reduces to
—-D~? AT Az r
=) (9)
A 0 Ay h
where
D* = (X~ 'Z4s57tryTh
ro= & — X Ype—XZe)+ ST (e — STe) — STITE,, (10)
= &.

The matrix in the augmented system (9) is sparse, symmetric but indefinite. This system of linear
equations can be solved directly by the Bunch—Parlett factorization [13, 7] or, after multiplying the

first equation by AD? and substituting from the second equation,the system can be reduced to sparse,
symmetric and positive definite normal equations system

(AD?*AT)Ay = AD?r + h. (11)

Advantages of both approaches will be discussed in the next section. Here, we only conclude that once
Ay is found from (11), it uniquely determines

Az = D*AT Ay — D?r,
and As, Az and At by (8).

Computing (Az, Ay) from (9) or Ay from (11) is usually (when a direct approach [18] is applied) divided
into two phases: factorization of the matrix to some easily invertible form and the following solve that
exploits this factorization. Usually, the second step is at least an order of magnitude cheaper than the
first one. This observation led [42, 56] to introducing higher order terms when computing direction.
Computing different corrector terms resolves to multiple solution of the same linear system for several
right hand sides (it thus reuses the same factorization and is relatively inexpensive). The most successful
technique that incorporates higher order information into the primal-dual algorithm comes from Mehrotra
[55, 56]. We shall address this technique in more detail in the next section.

For the sake of brief presentation of the method, we assume that some direction (Az, Ay, As, Az, At) is
computed, the maximum stepsizes in it for primal, ap and dual, ap spaces that maintain nonnegativity
of variables are found and, after being slightly reduced with a factor ag, a new iterate 1s computed

¥t = 2 4+ apapAs,
st = §F fagapAs,
Yyt = ¢ 4+ agapAy, (12)
1 = 2 4 agapAz,
thtl = {F + agapAt.

After making the step, the barrier parameter p is reduced and the process is repeated. Formally, the
algorithm can be summarized as follows.

Prototype Algorithm

Input
(2%, s%) and (y°, 2% ¢%): the initial pair of primal and dual solutions,
respectively;
Parameters
¢ 18 the accuracy parameter;
arp 1s the step size;
begin
T = J:(O); s = 5(0); Yy = y(o); z = z(o); .= t(o);
while stopping criteria is not satisfied do
calculate the search directions by (8,9,10);
calculate the new iterates by (12);
end

end.

3 Some tricks that make it work

In this section we shall concentrate on several issues that seem to be crucial for an efficient implementation
of interior point algorithms.

3.1 Presolve

Linear programs solved nowadays have often very large sizes and are usually generated automatically
by some modelling support tools. They are thus often formulated in a way that is not necessarily the
most suitable for a direct application of an LP solver. Hence it is advantageous to analyse and, if
possible, simplify their formulation before passing them to a solver. The important role of presolving in
linear programming was recognized [12] long time ago. It is worth to mention that presolve is strongly
recommended for any solver independently on the method used.

The importance of presolve is even more pronounced when an interior point based solver is applied [2, 30]
due to more involved linear algebra operations and the need of full rank of the matrix A. Preprocessing
aims at three main goals, namely: problem size reduction, problem density reduction and ensuring full
rank of the constraint matrix A.

Problem size reduction

A general purpose presolve of [30] repeats the logical analysis of the LP problem formulation until no
further reduction is obtained (every single reduction creates possibility for further model simplifications).
The following simple operations are applied.

1. Empty rows and columns are removed.

2. Singleton inequality constraints are replaced by bounds on the variables (variable with an entry in
a singleton equality row is fixed and removed).

3. Lower and upper limits for every constraint ¢ are determined
EI Z A5 U5, and b_iI Z g5 U5, (13)
{j:ai;<0} {j:ai;>0}

that clearly satisfy
i (14)

ai]'l‘]' S

|@
IN
~™]
|

Observe that due to the nonnegativity of x, the limits b; and b; are nonpositive and nonnegative,
respectively. If the inequalities (14) are at least as tight as the original (inequality type) LP
constraint, then the constraint i is redundant. If one of them contradicts the LP constraint, then
the problem is infeasible. Finally, in some special cases (e.g.: “less than or equal to” row with
b; = b;, “greater than or equal to” row with b; = b;, or equality type row for which b; equals to one
of the limits b; or E), the LP constraint becomes a forcing one. This means that the only way to
satisfy the constraint is to fix all variables that appear in it on their appropriate bounds.

4. Constraint limits (13) are used to generate implied variable bounds. (Note, that LP variables were
transformed to the standard form 0 < z < u, before). This technique makes use of the original
form of an LP constraint (i.e., its form before a slack variable has been added to it to transform it

to the "standard” equality row of (1)). Assume, for example, that a nonredundant ”less than or
equal to” (LE) type constraint is given, i.e.,

ﬁ< Zaija:j < b;.
J

Then

Vk: a;p >0 bi +ajpay < Zazjl‘j < by,
J
and Vk: a3 <0 Q-I—Clik(l‘k—uk)ﬁzaijl’j < bi,
J

and a new implied bounds are given for all variables involved by row ¢

xp < u;c = (b; — bi)/aix forall k: a; >0,
wp >l =up+ (bi—bi)/ag forall k: ap <O0.

If they are tighter than the original ones, then variable bounds are improved. Note, that a tech-
nique similar to that is decribed above is particularly useful when 1t imposes finite bounds on free
variables. Free variables do not, in such a case, have to be split and represented as the difference
of two nonnegative variables.

. For every singleton column, a row with an entry in it is used to generate implied bounds on a
variable referring to 1t. If these bounds are at least as tight as the original ones, then the variable
becomes an implied free. Consequently, both the row (implied free constraint) and the singleton
free column is eliminated.

. Nonnegative unbounded variables (0 < 2 < +00) refering to singleton columns are used to generate
bounds on dual variables y. Namely, if the variable j refers to a singleton column with an entry
a;; and u; = +oo (i.e., t; =0), then dual constraint (2) becomes an inequality

aijYi < ¢j.
This inequality can be solved and, depending on the sign of a;;, produces a lower or upper bound
on y;.

. Once all dual variables have explicit (possibly infinite) bounds
pZSyZSQZa Z:1a2aama (15)

lower and upper limits for every dual constraint j are generated

¢ = Z a;;q; + Z a;;p;, and T = Z agjp; + Z 5 5. (16)

{i:a;;<0} {i:a;;>0} {i:a;;<0} {i:a;;>0}

These limits are compared with the cost coefficient ¢; and applied to identify variables for which
the sign of the reduced cost z; —t; can be restricted (dominated variables). Dual constraint j
becomes redundant if the above holds, so the dominated variable is fixed on 1ts appropriate bound
and eliminated from the problem. If the reduced cost z; —¢; has a weak sign restriction (it is
nonnegative or nonpositive), then the variable is a weakly dominated one. Surprisingly, if this is
the case, then (under some additional conditions [30]), the variable can also be eliminated.

. Dual constraint limits (16) are used to generate implied bounds on dual variables. A technique
similar to that of point 4 is applied. Implied bounds tighter than the original ones replace those of
(15).

All techniques mentioned by now are worth to be run before and LP solver is applied. They usually reduce
the problem size considerably; sometimes they identify primal or dual infeasibility or unboundedness.

Improving sparsity of the problem

The way in which the LP constraint matrix is involved in interior point iterations justifies further presolve
effort that aims at decreasing the cost of calculating the solution of the equations (7) and improving the
accuracy of solutions. Both (never mind which form of equation is used to compute the search directions
(9) or (11)), are strongly influenced by the sparsity structure of A. The later depends very much on the
conditioning of matrix A and requires at least that it has full row rank.

Sparsity of A can usually be improved. In general, one can look for a nonsingular matrix M € R™*™ such
that the matrix M A is the sparsest possible. Primal feasibility constraints can in such case be replaced
with an equivalent formulation

M Az = Mb, (17)

much more suitable for direct application of interior point solver. Exact solution of this Sparsity Problem
[14] is an NP—complete problem but efficient heuristics [2, 14, 30] usually produce satisfactory nonzero
reductions in A. The algorithm of [30], for example, looks for such a row of A that has a sparsity pattern
being the subset of the sparsity pattern of other rows and uses it to pivot out nonzero elements from
other rows.

Even very sparse A can sometimes produce relatively dense factors in (9) or (11). The later, additionally,
fills dramatically if dense columns are present in A. If the number of dense columns is not excessive, then
the technique of splitting them into shorter pieces [29, 73] might be a remedy. Note that the augmented
system approach (9) suffers less from the presence of dense columns (see e.g., Section 3.3).

Full rank of matrix A

Theoretically, detecting rank deficiency of A is not a problem. One can continue the Gaussian Elimination
on A until zero submatrix is obtained. To make this process reliable, complete pivoting should be used
[28], which is prohibitively expensive due to the destruction of the sparsity structure. A practicable,
generalized Markowitz pivoting [64] can be used to eliminate most linear dependencies with a reasonable
cost. However, not all the codes offer such an option. On the other hand, a lot of linear dependencies
can be identified with a search for duplicate rows and with the heuristics to make A sparser.

Let us observe that, due to primal degeneracy, that is practically always present, the normal equations
matrix (11) becomes rank deficient when optimum is approached even in a case when original A has full
row rank (for more details see section 4.1). All codes are thus equipped with safeguards against such
problems and usually recover from small rank deficiency of A.

Some numerical experiments

Tables 1 and 2 illustrate advantages of presolve effort. They report problem sizes, normal equations
statistics (the number of off-diagonal nonzeros in the adjacency structure AAT | the number of off-diagonal
nonzeros in Cholesky factor L and the number of flops required to compute L), and the iterations and
CPU time to solve some Netlib tests to 8—digits accuracy in two cases: without presolve analysis and
after it, respectively. Additionally, Table 2 reports CPU time of presolve analysis.

Those and all the following computational results reported in this paper have been obtained with the
HOPDM code [4, 30]. The code is written in FORTRAN. It has been compiled with the F77 compiler
with default optimization option (-O) and has been run on a (one processor) SUN SPARC 10 workstation.

Table 1. Original problem sizes and solution statistics.

Problem | Original problem size Normal equations Solution

m n nonz | nz(AAT) nz(L) flops | iters time
25fv47 820 1571 10400 11074 33217 2.42e6 26 21.41
80bau3db | 2235 9301 20413 9972 40038 2.25e6 48 78.23
bnl2 2280 3489 13999 13457 84184 1.32e7 36 103.33
cycle 1886 2857 20720 27714 87322 8.59¢6 27 66.88
d2q06¢ 2171 5167 32417 26991 163407 3.46e7 31 23707
ganges 1309 1681 6912 7656 30563 1.67e6 19 15.19
pilot 1440 3449 41092 59540 204512 5.25e7 44 513.15

pilot87 2029 4663 70682 115951 489267 2.33e8 44 1935.24
pilotnov 951 1968 12186 10857 48992 5.18e6 19 27.81

sctapd 1480 2480 8874 7386 17973 6.61eb 11 5.47
shipl2s | 1042 2763 8178 5345 6457 8.08e4 13 3.48
sierra 1222 2016 7252 4896 11635 2.73eb 18 6.53

stocfor2 | 2157 2031 8343 12738 26282 4.57ed 18 9.00
woodw 1098 8405 37474 20421 48988 3.44e6 28 44.50

The analysis of results collected in Tables 1 and 2 shows that presolve analysis is a valuable technique
that often leads to considerable savings of the solution time. These savings, however, are very much
problem dependent (they are significant for GANGES but only marginal for PILOT).

3.2 Starting point

The choice of a good starting point for an interior point algorithm is still not solved with full satisfaction.
Surprisingly, points that are relatively close to the optimal solution (but are not well centered) lead often
to bad performance and/or numerical difficulties.

IPMs (also infeasible TPMs) are quite sensitive to the choice of an initial point. Fortunate guess of
(2%, 5% 4%, 2% w?) (possible for some well understood linear programs) can reduce the computational
effort considerably. On the other hand, bad choice may be disastrous for the efficiency as many iterations
will have to be done before the iterates get reasonably centered and the algorithm allows large steps.

The starting points in most implementations of primal—-dual infeasible IPMs [4, 48, 55] are some variation
of the approximate solution of the following auxiliary QP problem
minimize ¢’z + £(z7x 4 s7s),
subject to Ax = b, (18)
r+s=u,
where g is a predetermined weight parameter. A solution of (18) can be given by an explicit formula and

can be computed at the cost comparable to a single interior point iteration. It is supposed to minimize
the norm of the primal solution (#, s) and promotes points that are better in the sense of the LP objective.

10

Table 2. Advantages of presolve analysis.

Problem | Size after presolve Normal equations Solution Presolve
m n nonz | nz(AAT) nz(L) flops | iters time time
25fv47 769 1535 9959 10456 33377 2.55e6 28 24.05 1.32
80bau3b | 1965 8736 19048 9176 37320 2.13e6 43 65.55 2.99
bnl2 1848 3007 12458 12242 79538 1.22e7 30 78.49 2.44
cycle 1400 2403 14111 18376 53182 3.5H4e6 41 57.81 2.57
d2q06¢ 2012 4964 30263 24860 139274 2.54e7 41 254.37 5.06
ganges 840 1172 b487 6627 11765 2.43eb 20 6.90 1.17
pilot 1350 3329 40506 58265 199640 5.18e7 44 501.63 7.98
pilot87 1968 4595 70361 115290 469878 2.18e8 43 1696.19 9.54
pilotnov | 830 1861 11466 9175 38896 3.64e6 19 23.89 2.63
sctap3 1346 2356 8229 6694 14767 3.89¢5 13 6.54 1.03
ship12s 340 1919 4273 2139 2191 1.71e4 14 2.96 0.49
sierra 1129 2008 6956 4418 10147 2.07eb 18 7.05 1.27
stocfor2 | 1968 1854 7064 9806 21180 3.30e5 19 8.70 0.71
woodw 703 5347 19727 12611 31237 1.90e6 33 38.28 3.02

As the solution of (18) may have negative components in # and s, those negative components are pushed
towards positive values sufficiently bounded away from zero (all elements smaller than § are replaced by
8, say, § = 1). Independently, an initial dual solution (y, z,t) is chosen similarly to satisfy y = 0 and the
dual constraint (2). Again, all elements of z and ¢ smaller than é are replaced by é.

It is worth to note that the code of [77] shows consistent good efficiency for a simple starting point
(2°,s%,¢4%, 2% w®) = (e,e,0,¢,¢), a phenomena not known for a primal-dual method (for more details see

Sections 6.2 and 6.3).

3.3 The linear algebra

Every iteration of an interior point method for linear programming requires computing at least one
Newton’s direction for the first order optimality conditions. This, in turn, is equivalent to computing
the projection of some vector of R™ onto the null space of the linear operator AD. The diagonal scaling
matrix D depends on the variant of the algorithm but the computational effort remains practically the
same for all interior point algorithms. This explains why a comparison of the efficiency of different
algorithms is often limited to the comparison of iteration numbers to reach the desired accuracy.

As was shown in Section 2, the large, sparse system of Newton’s equations reduces to the so—called
augmented system (9). After scaling the primal component of the search direction AZ = —D~! Az and
substituting ¢ = Dr, this system becomes

= , (19)

where A = AD. Usually this system is referred to as the augmented system. Observe that equations (19)
define the unique orthogonal decomposition of g into Az € Ker(A) and AT Ay € Im(AT) when h = 0.

The system (19) has much better stability properties [6, 7] than its reduced form obtained after eliminating
AZ
(AdT)Ay=dg+h (20)

which is called the normal equation. Direct solution of (19) needs Bunch-Parlett [13] factorization of the
large, sparse, symmetric but not positive definite matrix

S I AT
LALT = | , (21)
A 0

where L is a unit lower triangular matrix and A is a block diagonal matrix with diagonal blocks of size
one or two. As the matrix is indefinite, there is no guarantee that nonzero diagonal elements can be found
in all intermediate steps of (symmetric) Gaussian Elimination. Cholesky decomposition thus cannot, in
general, be found and the possible way to overcome the difficulties is to allow indefinite 2x2 block pivots
in A. The augmented system approach has several advantages:

1. Good accuracy properties.

2. Easily generalizable to exploit the sparsity of KKT systems arising in nonseparable quadratic
programming and linear complementarity problems.

3. Naturally handles free variables. If x; € (—o0, +00), then D]»_2 in (9) is replaced by zero.

4. Dense columns of A do not degrade its efficiency, do not lead to significant fill in.

It has two important disadvantages. It is more complicated to implement and it remains, in the average,
less efficient (about 40%) than its counterpart applying Cholesky decomposition to the normal equations
matrix (20)

LT = AAT. (22)

The reason of the efficiency of the Cholesky decomposition comes from the fact that matrix AAT is always
positive definite therefore the sparsity preserving sequence of pivots (ordering) in which the symmetric
Gaussian Elimination is performed can be defined in advance, 1.e., before the numerical operations start.
Thus the Analyse phase is completely separated from the Factorise phase [18]. Even more important, the
sparsity pattern of AAT is the same in all interior point iterations so the Analyse phase has to be done
only once, before optimization.

If we choose to solve the augmented system (19) by Gaussian Elimination with 1x1 pivots from the upper
left diagonal block, we end up with the normal equations. Due to stability and fill-in reasons, other pivot
sequences, possibly including 2x2 pivots, are preferable. These sequences are influenced by the numerical
values in (19). They cannot be determined in advance on the sole basis of the sparsity structure analysis.
To choose stable pivots (to get an improvement over normal equations) one has to inspect actual numerical
values at the same time. Hence the analyse and factorize phases cannot be separated: the factorization
is more expensive than in the normal equations approach. Additionally, due to changes of the diagonal
scaling matrix D in subsequent IPM’s iterations, the pivot sequence should be redefined. In practice, 1t
suffices to update it once every couple of iterations (only if numerical stability detoriates) and, as the
experience of [22] shows, rarely more than one such update is needed. An advantage of the augmented
system approach is that more freedom in the pivot choice opens the possibility of getting sparser factors
than in the normal equations approach (e.g., degrading influence of dense columns can be avoided).

Before we pass to a brief description of the Cholesky decomposition let us comment again on the accuracy
of the two competitive approaches. System (19) is definitely more stable than (20) [7]. To further improve

12

Table 3. Augmented system vs normal equations.

Problem | Augmented system Normal equations

nz(L) flops | nz(AAT) flops(AAT) nz(L) flops(L) total flops
25fv4T 48183 3.41e6 10456 8.56e4 33377 2.55e6 2.64e6
80bau3b | 60965 2.36e6 9176 5.76e4 37320 2.13e6 2.19e6
bnl2 93113 1.24e7 12242 5.87e4 79538 1.22e7 1.23e7
cycle 65687 2.72¢6 18376 1.33¢5 53182 3.54e6 3.68e6
d2q06¢ 177415 2.41e7 24860 3.77eb 139274 2.54e7 2.58e7
ganges 22005 4.97eb 6627 4.71e4 11765 2.43eb 2.90eb
pilot 221610 4.20e7 58265 1.09¢6 199640 5.18e7 5.29e7
pilot87 - - 115290 2.5be6 469878 2.18e8 2.21e8
pilotnov | 57614 5.3beb 9175 1.31e5 38896 3.64e6 3.77¢6
sctap3 24405 5.69eb 6694 3.58e4 14767 3.89¢5 4.25¢eb
ship12s 10656 8.44e4 2139 9.94e3 2191 1.71e4 2.70e4
sierra 20886 3.12¢5 4418 2.52e¢4 10147 2.07e5 2.32€e5
stocfor2 28119 4.11eb 9806 3.90e4 21180 3.30e5 3.69¢e5
woodw 56641 2.30e6 12611 1.06eb 31237 1.90e6 2.01e6

stability both approaches can be equipped with easy to implement techniques that improve their accuracy,
like e.g., iterative refinement or the use of a regularizing term added to AAT (that results in bounding
all pivots away from zero). Computational experience proves that the normal equations approach also
produces sufficiently accurate directions to reach the desired 8-digits correct solutions for practical linear

programs [30, 23, 50].

Although this is the case, several researchers [19, 22, 72, 74] have decided to incorporate the augmented
system approach [7] in their IPM implementations. We thus find it interesting to give a bit of insight in
the computational effort of the two competitive approaches. Table 3 reports results of running them on
several Netlib problems. Tt reports the number of nonzeros in triangular factors and the effort (flops) to
compute them. In case of normal equations, we distinguish the effort to form AA” and to factorize it
and we report the total effort being the sum of the former two. The results for normal equations come
from HOPDM code while the results for the augmented system approach have been reproduced from
Table A.3 of [22]. Note that the problem PILOTS87 was not solved in [22].

It would undoubtedly be advantageous to be able to pick up the preferable approach after the prelimi-
nary analysis of the sparsity structure of the LP constraint matrix A. This needs both methods to be
incorporated to the implementation, which is quite unusual yet.

Theoretically the most difficult in an efficient implementation of the Cholesky decomposition is the
Analyse phase, i.e., reordering for sparsity. The goal of it is to find a permutation matrix P such that the
Cholesky factor of PAAT PT is the sparsest possible. This is, unfortunately, an NP—complete problem
[78]. In practice, a suboptimal solution is usually found by applying some reordering heuristics. These
heuristics work very well in practice. In a marginal time spectacular density reduction of the factors is
reached. The most popular of them are the minimum degree and the minimum fill-in orderings that we
shall now briefly describe.

13

Minimum degree ordering

Markowitz [51] observed that in the kth step of an (unsymmetrical) sparse Gaussian Elimination locally
the best pivot candidate a;; is the one that minimizes

fij = (ri = D(e; = 1),

where r; and ¢; are the numbers of nonzero entries of row ¢ and column j in the kth Schur complement.
The value f;; gives the number of flops required by the kth step of Gaussian Elimination and, at the
same time, estimates the potential fill-in caused by this step. The pivot sequence found that way should
thus well prevent excessive fill-ins and ensure a low cost of the factorization. Tinney and Walker [71]
applied this strategy to symmetric matrices. When symmetric positive definite systems are considered,
pivot selection is restricted to diagonal elements, hence the Markowitz merit function simplifies to

fi = (c; = 1), (23)

and leads to a simple rule that the best candidate for the pivot column is the one with the minimum
number of nonzero entries. Interpreting this process in terms of the elimination graph [25], one sees that
this 1s equivalent to the choice of the node that has the minimum degree, which gave the name to this
heuristic.

The key point of an efficient implementation of the minimum degree ordering is the representation of
fill-ins as the elimination proceeds [18, 25]. The algorithm keeps trace of the elimination process storing
only pivotal cliques. A clique denotes here a set of row numbers of all, say, p rows that are active in a
given pivotal step. The storage of a clique needs remembering only p row numbers, while the symmetric
matrix represented by it has p(p+1)/2 elements. The sparsity pattern of the Schur complement at the kth
step of Gaussian Elimination (needed to determine the next minimum degree column) is thus represented
implicitly by the sparsity pattern of the decomposed matrix and the pivotal cliques from previous steps
of the elimination.

Modern implementations of the minimum degree ordering use several enhancements of the basic algorithm
[25] and are extremely powerful. Their detailed discussion is beyond the scope of this paper. However, we
would like to focus on one of them that plays a particularly important role. It is a technique that takes
advantage of the presence of indistinguishable nodes called also supernodes in the elimination graph (a set
of columns with identical sparsity patterns). Instead of storing several identical cliques, this technique
handles the whole supernode with only one clique, which leads to obvious savings in a time-consuming
degree update step of the reordering algorithm. Note that the form of the normal equations matrix

n

AAT = Zaja]»T,

ji=1

where a; denotes the jth column of matrix A, explains the natural tendency to creating many supernodes
as every column a; of A creates (subject to a symmetric row and column permutation) a dense window
in AAT and larger windows produced by denser columns often cover smaller ones.

Minimum fill-in ordering

Let us observe that, in general, the function (23) considerably overestimates the expected number of fill-
ins in a given iteration of the Gaussian Elimination because it does not take into account the fact that
in many positions of the predicted fill-in, nonzero entries already exist. It is possible that another node,
although more expensive in terms of (23), would produce less fill-in as the elimination step would mainly
update already existing nonzero entries of the Schur complement. An analysis that exactly predicts
fill-in and chooses the pivot producing the minimum number of it (minimum fill-in ordering) is much

14

more involved than the minimum degree ordering. To count predicted fill-in one has to simulate the
elimination step, which is quite an expensive operation. Surprisingly, in general, this technique does not
offer sufficient advantage over the minimum degree ordering to justify its use.

Our discussion concentrated by now on the Analysis phase of the decomposition. However, the dominating
term in the computational effort of the interior point algorithm is the (repeated several times) numerical
factorization. From the mathematical point of view, once the pivot order has been found, the effort of
the numerical factorization is uniquely determined

FLOPS =12, (24)

i=1

where [; denotes the number of nonzero elements in column ¢ of L. However, in practice, its efficiency
still depends very much on how the computations are organized and how well do they exploit the specific
computer architecture like parallelism, vectorization, cache memory, the use of Basic Linear Algebra
System (BLAS) routines, etc. Lower level BLAS routines offer, for example, loop unrolling technique
that vectorizes very well. Higher level BLAS routines contain block versions of decomposition algorithms
that take advantage of the more efficient organization of the matrix-vector and matrix-matrix products.
The gain that results from the use of BLAS may vary significantly on different computers.

Detailed discussion of these issues is beyond the scope of this paper. Undoubtedly, specializations of the
interior point implementations to different computer architectures will draw much attention of the LP
community in the near future. The interested reader may consult preliminary results of [10, 35] and the
references therein. A variant of the Cholesky decomposition that suits particularly well parallelization
comes from [20].

Instead, we shall present a technique that gives considerable time savings on all computer architectures.
The savings vary significantly for different computers. This technique consists in a switch to dense
code near the end of decomposition [18]. Tt exploits the fact that triangular factors become practically
completely dense in the last steps of Gaussian Elimination. Loops over nonzero entries of the pivot
column can then avoid indirect addressing (needed to handle sparse columns).

Table 4 compares the efficiency of our implementation in the case when a switch to dense mode is done
(default) with the case when it is disabled. Tt, additionally, reports the number of decomposition flops
required to compute Cholesky factorization of AAT | that part of this effort which is done in dense mode
and the size of the dense window. Even on a SUN SPARC 10 computer (without any vectorization
facilities) considerable savings are obtained if a dense window is large. Obviously, the savings would be
remarkably larger on other computer architectures that take advantage of the specific processor features

(e.g., on IBM’s RISC 6000 workstation).

Our discussion in this section has naturally concentrated on direct approaches to solving reduced KKT
systems that for general large scale LPs are definitely the methods of choice. Saunders’ remark [67]:
”Major Cholesky would feel proud” seems thus well summarize current state of the art of IPMs imple-
mentations.

To complete the discussion of different methods of computing projections, let us mention also terative
approaches. A classical method from this family, 1.e., conjugate gradients algorithm has been applied
to solving reduced KKT systems by several researchers but, up to our knowledge, it has never proved
competitive when applied to general large scale linear programs. The reason of this is an always present
ill-conditioning of KKT systems. The only way to overcome extremely slow convergence of an iterative
method is the use of a good preconditioner but, for general linear programs there is no way, to date,
to find such a preconditioner at an acceptable computational effort. Instead, for specially structured
problems good preconditioner derived from the problem interpretation can sometimes be found [65, 62].

15

Table 4. Advantages of switch to dense mode.

Problem No window With dense window

iters time | iters time Total flops Dense flops window
25fv4T 28 26.78 28 24.05 2.5beb 1.25e6 155
80bau3b 43 69.43 43 65.55 2.13e6 7.41eb 130
bnl2 30 93.79 30 78.49 1.22e7 7.92e6 287
cycle 41 60.39 41 57.81 3.54e6 9.05e5 139
d2q06¢ 41 300.06 41 2b4.37 2.54e7 1.49e7 354
ganges 20 7.02 20 6.90 2.43eb 5.10e4 53
pilot 44 575.02 44 501.63 5.18e7 2.27e7 408
pilot87 43 2172.71 43 1696.19 2.18e8 1.51e8 768
pilotnov 19 25.75 19 23.89 3.64e6 1.25e6 155
sctap3 13 6.82 13 6.54 3.89eb 1.12e5 69
ship12s 14 2.96 14 2.96 1.71e4 - -
sierra 18 7.39 18 7.05 2.07e5 8.53e4 63
stocfor2 19 9.07 19 8.70 3.30eb 1.62e4 36
woodw 33 40.11 33 38.28 1.90e6 4.62eb 111

3.4 Stepsize

Most of interior point methods require that all iterates belong to a neighborhood of the central path [31].
One way to keep this condition satisfied is to allow only small reduction of the barrier parameter with a
factor

1
L4+7/vn’

where y € (0,0.1) that, in consequence, leads to very short steps (short step methods). Although, such
an approach allows proving nice theoretical properties of the algorithm (all iterates are very close to the
central path), it leads to hopelessly slow convergence as the worst case behavior becomes the practice.

B = (25)

In medium step methods (when v = Q(1)) and long step methods (when y = Q(y/n)), a more optimistic
target 1s chosen and, consequently, the iterates are allowed to move in a much larger neighborhood of the
central path but more damped Newton steps are required to get close to the new target. The complexity
of the long step methods becomes O(n), which is worse than that of the the short step methods. In
practice, these methods offer very fast convergence, significantly faster than is given by the worst case
complexity analysis.

In current implementations we do not bother about getting really close to the target. The target is
updated after each Newton step. Even worse, different stepsizes are used in primal and dual spaces and
the only concern is preserving the nonnegativity of the variables. More precisely, maximum possible
stepsizes are determined by the formulae

ap = maxa>0: (z,5)+ a(Az,As) >0, (26)
and ap = maxa>0: (z,1)+a(Az, At) >0,

16

Table 5. Different stepsizes in different spaces.

Problem ap=oap | ap £ ap
25fv4T 31 28
80bau3b 44 43
bnl2 33 30
cycle 49 41
d2q06¢ 45 41
ganges 21 20
pilot 47 44
pilot87 45 43
pilotnov 19 19
sctapd 13 13
ship12s 15 14
sierra 20 18
stocfor2 21 19
woodw 35 33
whole Netlib 1996 1778

and these stepsizes are slightly reduced with a factor ag = 0.99995 to prevent hitting the boundary. The
use of such a stepsize rule saves about 40% of the iterations number compared with the case when the
theory of the long step methods is strictly followed.

The use of different stepsizes in different spaces is due to Kojima et al. [45]. However, to preserve the
polynomial complexity, some additional safeguards were needed.

In another paper Kojima, Megiddo and Mizuno [44] prove the global convergence of the infeasible primal—
dual method. In their stepsize selection, only nonnegativity of variables is concerned like in (26) but
additional conditions are imposed that ensure more uniform progress in reducing both primal and dual
feasibility and approaching optimality.

The results collected in Table 5 illustrate the efficiency of our primal-dual implementation measured with
the number of iterations to reach optimality in two cases: 1) always identical stepsizes are chosen in both
spaces and 2) different stepsizes are allowed (default). These results clearly show that restricting primal
and dual stepsizes to be the same causes remarkable loss of the efficiency (218 iterations on 90 problems).

3.5 Centering and higher order methods
Almost all interior point algorithms compose the direction step (Az, As, Ay, Az, At) (denoted with A

for short) from two parts

A=A+ A, (27)

17

i.e., combine affine-scaling, A, and centering, A, components. The term A, is obtained by solving (7)
for 11 = 0 and A, is the solution of equation like (7) for the right hand side

0,0,0, e — X Ze, pe — STe)"
(0,0,0, 1 :
where p1 > 0 is some centering parameter (p = %, for example, refers to centering that does not

change the current complementarity gap). The term A, is responsible for ”optimization” while A, keeps
the current iterate away from the boundary.

All path—following methods can benefit from the use of the predictor—corrector technique. This technique
takes into account higher order terms in the Newton’s direction and estimates targets that are more likely
to be achieved. Undoubtedly, one of the reasons why it proved so successful in the primal-dual method is
the very good Mehrotra’s heuristics defining the new target (28) that takes advantage of the knowledge
of a current and predicted complementarity gap. We shall now address this technique in more detail.

Introducing higher order terms is combined in it with the adaptive choice of the barrier parameter p based
on the analysis of the reduction of the complementarity gap achievable when movingin a (predictor, 4 = 0)
primal-dual affine scaling direction.

The affine scaling (predictor) direction A, solves the linear system (7) for the right hand side equal to
the current violation of the first order optimality conditions for (1)—(2), i.e., with g = 0. This direction
is usually "too optimistic” — if a full step of length one could be made in 1t, the LP problem would
be solved in one step. Predictor—corrector makes a hypothetical step in this direction. The maximum
stepsizes in the primal, ap, and in the dual, ap, spaces preserving nonnegativity of (z,s) and (z,1),
respectively are determined and the predicted complementarity gap

ga = (. + ozpan)T(z + apgsAz)+ (s + ozpaAs)T(t + apgAtl)

is computed. It is then used to determine the barrier parameter

p= (o) o (28)

q n

where ¢ = z72 4 sTt denotes current complementarity gap. The term g,/g measures the achievable
progress in the affine scaling direction. If only a small step in the affine scaling direction can be made,
then g,/¢ is close to one and u = g/n, which means that we only want to improve centrality. If the
affine scaling direction offers considerable progress in the reduction of the complementarity gap, then
more optimistic target (closer to the optimum) is chosen.

For such a pu, the corrector direction A, is computed

A 0 0 0 0 Az, 0

I 0 I 0 0 Ay, 0

0 AT 0 I —I As, | = 0 : (29)
Z 0 0 X 0 Az, pe — AX AZqe

0 o T 0 S At, pe — AS AT e

and, finally, the direction A of (27) is determined.

A single iteration of the (second order) predictor-corrector primal-dual method needs thus two solves of
the same large, sparse linear system for two different right hand sides: first to solve (7) with g = 0 and
then to solve (29).

We should note here that the above presentation of the predictor—corrector technique follows the compu-
tational practice. It abuses mathematics in the sense that stepsizes ap and ap are not taken into account

18

Table 6. Efficiency of higher order methods.

Problem Order 1 Order 2 Order 3 Order 4
iters time | iters time | iters time | iters time
25fv4T 44 33.26 28 24.05 25 24.98 23 24.44
80bau3b 65 74.00 43 65.55 35 66.19 40 82.75
bnl2 58 125.54 30 78.49 25 73.20 27 80.42
cycle 63 74.15 41 57.81 33 51.88 33 55.10
d2q06¢ 65 364.35 41 254.37 36 243.84 33 236.53
ganges 32 7.50 20 6.90 19 8.31 19 8.45
pilot 56 617.06 44 501.63 34 405.90 32 389.20
pilot87 63 2419.63 43 1696.19 35 1431.03 33 1384.22
pilotnov 33 33.24 19 23.89 17 24.39 15 23.68
sctap3 24 8.64 13 6.54 12 7.94 11 8.69
ship12s 26 3.63 14 2.96 14 4.46 13 4.75
sierra 30 8.87 18 7.05 16 8.65 16 9.88
stocfor2 31 12.90 19 8.70 17 10.48 17 11.80
woodw 54 49.07 33 38.28 27 41.31 26 43.36

in it (one would expect this when using higher order Taylor approximations). The reader interested to
see a detailed rigorous presentation of this approach is encouraged to consult [56].

Let us observe that the predictor—corrector mechanism can be applied repeatedly leading thus to higher
(than two) order method. Direction A of (27) can be used as a predictor, and a new corrector term A’
can later be computed and added to it. A method of order k& would compute k¥ — 1 corrector terms and
would require solving the same linear system for k£ different right hand sides.

Although the use of higher order terms usually results in the reduction of the number of iterations to
reach optimality, it does not necessarily produce time savings due to the increased effort in a single
iteration. To date, second order methods seem, in the average, to be the most efficient. (They are used
in most implementations [23, 30, 50, 55].) No one knows yet how to benefit practically from higher order
information. A possible way to take advantage of it is to promote higher order terms if the Cholesky
factorization is very expensive compared with a single solve (see, e.g., [4] for details).

We end this section with a demonstration of the use of higher order techniques. Table 6 reports the
number of iterations to reach 8-digits precision in the duality gap and the CPU time for several Netlib
problems for different order methods. The method of order 1 is a pure primal-dual one in which the
direction comes from the solution of (7). The method of order 2 is a classical predictor—corrector one in
which one corrector term has been computed. The method of order k& computes & — 1 corrector terms.

The analysis of results collected in Table 6 shows that the use of higher order information may reduce the
number of iterations to reach optimality. However, this translates into computation time savings only in
a case when Cholesky factorizations are very expensive (compare to the data of Table 4).

19

3.6 Stopping criteria

Interior point algorithms terminate when the relative primal and dual feasibility and the relative duality
gap are reduced to a predetermined tolerance. In case of the primal-dual method, the following conditions
are checked to state p—digits accurate solutions

Az —b -
Az = bl 5 4na lots—ull o (30)
L+ [z L+ [[z[loo + |[sl]oo
ATy 4z —w—
|| y+Z w c|| S 10—p’ (31)
L+ |2]]eo + [|w]]oo
Ty _ (3T — uT
el Ul el T (32)

1+ 0Ty — uTw| —

It is worth to note that scaling may change the left hand sides of equations (30-32) and, consequently,
the measures of the quality of solutions, significantly. The denominators of these left hand sides usually
decrease after scaling the problem.

An 8-digits exact solution (p = 8) is typically required in the literature.

In practice, it is extremely rare that condition (32) is satisfied and at the same time one of the conditions
(30) or (31) does not hold. The explanation of this phenomena comes from the analysis of the first order
optimality conditions (5). Observe that the first three equations, that impose primal and dual feasibility,
are linear. They are thus ”easier” to be satisfied for the Newton’s method than the last two equations
that are nonlinear and, additionally, change in subsequent interior point iterations. Consequently, the
most important and perhaps the only condition that really has to be checked is (32).

Results collected in Table 7 report the numbers of primal-dual iterations at which the primal and the
dual relative feasibilities and the relative optimality gap were reduced to 10~8 for the subset of Netlib
problems. Its last three columns give the relative infeasibilities and the relative optimality gap for the
8-digits optimal solution.

Note, that for infeasible problems or for problems with unbounded level sets the scaling of infeasibilities
is not appropriate. In these cases the iterates diverge, hence the denominator goes to infinity which might
lead to false results. The proper normalization factor, in these cases; would be 1+ ||b||co and 1 + ||¢||oc,
respectively.

3.7 Theoretical vs practical worst—case complexity

Theoretical worst case complexity of the simplex method is not known to be polynomial but this never
caused problems in practice. In fact, modern simplex codes rarely do more than m+ n iterations to reach
optimality.

Although the worst case complexity of interior point methods is polynomial, the situation is somehow
similar. Theoretical bound of O(y/n log %) iterations to obtain an e¢—exact solution to LP is still too
pessimistic. In practice, the number of iterations is something like O(logn). It is very rare for example
that the predictor—corrector primal-dual infeasible IPM makes more that 50 iterations to reach 1073-
optimality. This is never the case when the HOPDM code [30] is applied to solving 90 LPs from the
Netlib suite (only 7 problems need more than 40 iterations to be solved).

20

Table 7. Attaining feasibilities and optimality.

Problem Iterations to reach Accuracy of solution

Pr. Feas. | DI. Feas. | Opt. | Pr. Inf. | DI. Inf. | Opt. Gap
25fv4T 25 13 28 | 3.3e-12 5.8e-9 1.9e-9
80bau3b 23 20 43 | 1.2e-12 9.7¢-9 4.3e-9
bnl2 10 22 30 | 1l.1e-11 | 4.4e-10 6.9e-9
cycle 25 41 41 | 1.3e-14 7.0e-9 2.7¢-9
d2q06¢ 20 13 41 | 7.1e-15 | 5.7e-12 2.5e-10
ganges 15 14 20 | 3.2e-11 4.1e-9 8.3e-11
pilot 44 11 44 4.6e-9 | 1.6e-13 6.6e-9
pilot87 39 43 43 | 2.4e-11 8.8e-9 3.2e-9
pilotnov 15 7 19 | 1.0e-12 | 1.8e-10 2.0e-10
sctap3 13 13 13| 2.9e-12 | 2.4e-12 1.0e-9
ship12s 12 13 14 | 2.6e-10 | 1.1le-12 6.9e-11
sierra 10 16 18 | 7.9e-13 1.8e-9 4.8e-9
stocfor2 13 18 19 | 3.4e-12 | 2.3e-13 1.6e-10
woodw 32 10 33 | 1.8e-12 | 1.2¢-10 3.9e-10

4 Remarks on numerical difficulties

4.1 Degeneracy and IPMs

The main computational step in all IPMs is solving the system of normal equations
AD*ATp = ¢, (33)

for some ¢, where D is a diagonal matrix (11). Giler and Ye [34] showed that in all central path following
methods, any limit point (z*, z*) of the iterates (z*, 2*) is in the relative interior of the optimal faces. In
fact, they prove that there exists a constant v, where 0 < v < 1, such that the relations

'ygxfgl/'y for j e Py, (34)
'ygz]kgl/'y for jeP, (35)
are satisfied for all k > 0. Here (P, P,) is again the optimal partition of the LP problem.

Note that J:P — O and zP — 0in any convergent IPM. Therefore, the limiting behavior of Ap_ (Dk)ZAT
determines the asymptotic behavior of the linear systems (33). For primal-dual path-following methods
we can obtain more information about the matrices DPI as we shall now explain.

For this class of methods (D*)? = X*(Z*¥)~1 so for any i,

2 T
i 7 xlz (36)
2z xTz xz

If i € Py, it follows from relations (34), (35), and (36) that
(37)

where £ 1s an appropriate constant depending on the specific IPM. This shows that the condition numbers
of the matrices D;%I are uniformly bounded and bounded away from zero. Thus, when matrix Ap_ has full
rank, then matrices Ap, (D;%I)zAR also have full rank, and the condition numbers of the later matrices
are uniformly bounded. The rank of Ap, depends on the degeneracy of the problem, which we discuss
below in more detail.

1. If (P) and (D) are both non—degenerate on their respective optimal faces, then both programs
have unique solutions and the matrices Ap, and Ap_ (D;“DE)ZAQ are all non—singular. The linear
systems (33) are well conditioned, at least when £ and # are not too small.

2. If (P) is degenerate and (D) is non—degenerate, matrix Ap_ has less than m columns and so the
rank of Ap, is less than m and Ap, (D},)?A%_is singular. This means that the linear system (33)
is ill-conditioned. Numerical problems caused by these ill-conditioning may arise and, in fact, they
were early recognized [26]. However, as we shall discuss in Section 4.2 the method itself has an
embedded safeguard against them.

3. If (P) is non—degenerate and (D) is degenerate, then the rank of Ap_ is equal to m, hence
APZ(DR)ZAR is non-singular. This implies that the linear system (33) is well-conditioned, again
as long as £ and 7y are not too small. Observe, that if (P) is non—degenerate, the degeneracy status
of (D) matters little from the numerical point of view.

4. Tf both (P) and (D) are degenerate, then not much can be said about the partition (Ap,, Ap,) and
the rank of Ap_. Consequently, we can also say nothing about rank of A(D*)2AT matrices.

4.2 Ill-conditioned normal equations matrix

It became a folklore that every iteration of an IPM needs inversion of the matrix that, as the optimum
approaches, becomes extremely ill-conditioned. Although this is generally true, its impact on the accuracy
of solutions is no as dramatic as one would expect. Ill-conditioning of the coefficient matrix is not the
only factor that determines the difficulty of solving the system of linear equations and the accuracy of
solutions. An equally important factor is the relation between the matrix and the right hand side. The
following important result [70] theoretically justifies the common experience that numerical problems are
rare even if the normal equations matrix is ill-conditioned.

Let us have a closer look at the right hand side of the normal equations system (11). Since it has the
form ¢ = AD?r + h, we may split (11) into two systems of equations

AD?ATp, = AD%r, (38)

and

AD*ATpy, = h, (39)

Stewart [70] proved, that with given A and r, for any positive diagonal matrix D, the solution of equation
(38) belongs to a bounded compact set. In other words, even if the normal matrix become ill-conditioned,
this bad property has limited influence on the solution vector p,.

Unfortunately, in the infeasible primal-dual method, A in (39) is nonzero and has no clear dependence
on A and D. Furthermore r changes (see (10)). If the LP is both primal and dual feasible, then all

22

infeasibilities &, &, and &, go rapidly to zero. Consequently, h (and pp) vanishes while r converges to a
fixed point so Stewart’s result ensures the stability of p,.

If the LP is dual infeasible, then the dual iterates diverge, £, does not converge to zero and r diverges.
The above stability result does not apply and, in practice, serious numerical difficulties are observed.

If the LP is primal infeasible, then the primal iterates diverge, primal infeasibilities (&5, £,) do not converge
to zero and r diverges. Similarly to the dual infeasible case, the stability result does not apply to (38)
and, eventually, as h = & might not converge to zero, the solution of (39) may cause additional numerical
problems.

5 Optimal basis identification

., From now on in the rest of the paper we consider the LP problem and its dual in the standard form, e.g.
the primal variables are nonnegative and have no upper bounds. Such a form simplifies the notations
and makes it easier to explain and understand the underlying ideas. Hence the primal problem that we
consider is

minimize ¢z,
subject to Az = b, (40)
x>0,
and the dual problem is
maximize by,
subject to ATy+z=c¢, (41)
z >0,

where the vectors, matrices have the same dimensions as before.

It is known that a pair of primal and dual feasible solutions z* and (y*, z*) are optimal if X*z* = 0.
The optimal pair is strictly complementary if ©* + z* > 0. In this case we have P, = {i | 7 > 0} and
P, ={i| zf > 0}. Due to the complementarity property P, N P, = (, hence the strict complementarity
property is equivalent to P, U P, = {1,...,n}. The partition (P, P,) is uniquely determined by the
problem data and is called the optimal partition of the LP problem.

5.1 Do we need an optimal basis?

It 1s well known that if the LP problem is solved by the simplex method, then finally an optimal basis
(solution) is produced as the solution of the problem. Of course if the problem is degenerate and multiple
optimal solutions are present, then one of the possible optimal basis solutions is generated. In this case
TPMs (except Iri-Tmai’s [36] method), contrary to the simplex algorithm, does not produce an optimal
basis solution but a primal-dual optimal pair where the primal optimal solution is a solution from the
relative interior of the primal optimal face and the dual optimal solution is a solution from the relative
interior of the dual optimal face. Hence IPMs provide an optimal solution with a maximal number of
nonzero coordinates in both the primal and dual problems (see e.g., Giiler and Ye [34]). Tt is also proved
that these solutions are strictly complementary and they define the optimal partition of the LP problem.

The existence of strictly complementary primal-dual optimal solutions has been proved first by Goldman
and Tucker [27]. Balinski and Tucker [9] propose a pivot algorithm to generate such a strictly comple-
mentary pair. In contrast, as we will see later on, an optimal basis can be obtained from any primal—dual
optimal solution pair in strongly polynomial time.

23

To have an optimal basis might be important for several reasons. For example, basic solutions have a
minimal number of non-zero coordinates, which is advantageous when a solution with a small number of
positive coordinates 1s required for some practical applications. Of course, there are situations when a
strictly complementary optimal solution and the knowledge of the optimal partition is needed (see e.g.,

Greenberg [32]).

Currently, sensitivity and postoptimal analysis are based on the knowledge of an optimal bases in all
commercial packages. People are used to this approach, although several papers recognized the poten-
tial mathematical errors and negative economical consequences of this approach [75, 37, 32]. Correct
postoptimal analysis is possible based on solutions found by IPMs or, on a different cost, by the simplex
method. The decision of which approach is preferable depends on the problem instance and is discussed
in Subsection 6.1.

To our best knowledge, a basic solution is necessary for cutting plane methods in mixed integer program-
ming. In branch and bound methods the problem has to be reoptimized after some small modification.
To date simplex based solvers are more efficient than IPMs if an “almost optimal” solution is available.

For numerical reasons or if we are facing a large mixed integer problem, sometimes a crossover from the
IPMs to the simplex method is needed. The efficient techniques for the crossover are similar to the basis
identification techniques.

These advantages provide sufficient motivation to examine how one can generate an optimal basic solution
from an optimal or near optimal solution obtained by an IPM. It is evident that this question occurs only
in the case of degeneracy, since otherwise the primal and dual optimal solutions are unique and are also
basic solutions.

5.2 How to get an optimal basis?

Several attempts were made to create efficient methods that produce an optimal basis if a (strictly
complementary) optimal solution is available. The best theoretical algorithm, which also turned out to
be very efficient in practice (see e.g., [11]) is due to Megiddo [563]. Tt finds an optimal basis in strongly
polynomial time, provided that optimal solutions are available to both (40) and (41). Due to its theoretical
and practical importance we discuss it in more detail.

Principally, IPM ends up with a strictly complementary pair of optimal solutions but the scheme is
applicable to a slightly more general case. Suppose that z, primal and y, z, dual optimal solutions are
available. Let A = [A1, A3, Ag], @ = (x1,%2,23), 2 = (21, 22, 23), ¢ = (¢1, €2, ¢3) where index 1 refers to
the positive coordinates of z, index 2 refers to the zero coordinates of both « and z, and index 3 refers to
the positive coordinates of z. Then, we have Ajz1 = b, 1 > 0, 25 =0, 23 = 0, and ATy = ¢;, ATy = ¢o,
Agy < c3.

Starting from such a solution and partition we are looking for an optimal basis, 1.e., a disjoint partition
(B, N') of the indices such that submatrix of A built of columns from B is nonsingular, zg > 0, zg = 0,
zy =0, and zy > 0.

The process will subsequently build B up and, if necessary, modify = and z to satisfy the above sign
requirements. Naturally, all columns whose indices enter B must be linearly independent to meet the
nonsingularity requirement. As the process starts from optimal solution, it will not alter the objective
values.

The algorithm is split into three phases. In the first one, a maximal linearly independent subset of the
columns of A; is built up. At the same time some coordinates of 1 are purified and so moved to A5. This
continues until the resulted A; contains only linearly independent columns. The indices of A; form then

24

initial B. If B is already a basis, we are done. Otherwise, in the second phase it is extended to a maximal
independent subset of [A1, A3]. If B still is not a basis, then we proceed with third phase. Every step
of it purifies some indices of z3, 1.e., drives the corresponding coordinates to zero. All the corresponding
columns are independent on the current B and moved to As. They are immediately examined if the
current B can be extended by them (at least one of them has to be egligible). These steps are repeated
until 5 extends to a basis. The complete algorithm is presented below.

Optimal Basis Identification Algorithm

Initialization
Suppose that & primal and y, z dual optimal solutions are available and that = and z
are initially partitioned as explained above.

Reduce the positive part of x:

While the columns of A; are dependent do
begin
Find (e.g., by pivoting) a vector ¢ such that A;¢ = 0 (this implies 7t = 0).
Using t, eliminate a positive coordinate (say j) from z1, while preserving
the non-—negativity of #; (ratio test). Remove column a; from A4; and add
it to Az.

end
Let B = A;. (Note that the columns of B are independent at this stage.)

Extend B to a basis:

Extend B using As:

While rank(B) < rank[4,, 4;] do
begin
If rank[A4;, As] > rank(B) and column a; of [A;, As] is independent from
B, add a; to B.
end

Extend B using As:

While rank(B) < m do
begin
Find (e.g., by pivoting) a vector u such that BTu = 0 (this implies
ATy =0, ATu = 0) and AZu # 0. Note that u satisfies bTu = 0 (since
u?' ATz, = bTu). Using u, eliminate a positive coordinate (say j) from z3,
while preserving the dual feasibility of z (ratio test). Remove a; from As,
and add it to A5 and B.

end
(We now have an optimal complementary pair (z,z), where rank(B) = m. Using the

formulae Bzg = b and BTy = cg, we see that basis B is optimal.)

Note that only Gaussian Elimination steps (pivoting) are necessary to perform this algorithm. The
amount of work involved depends on the degree of degeneracy of the LP problem. In the worst case, not
more than n pivots (the dimension of the space) are necessary to identify an optimal basis. The algorithm

25

uses both primal and dual information and generates optimal basic solutions both to the primal and the
dual problems.

Megiddo also proves the surprising result that the complexity of identifying an optimal bases if just a
primal optimal solution or just a dual optimal solution is available is equivalent to solving an LP problem.
This result also demonstrates that the primal-dual approach has an important advantage compared to
pure primal or dual methods.

Although the above algorithm is clear and elegant, there are several problems to be solved in its practical
implementation. One has, for example, only approximate optimal and approximate complementary
solutions, hence tolerances and some safeguards are needed in implementations. Another problem consists
in finding the partition P,, P,. That is why applying Megiddo’s algorithm initialized from an TPM
optimal pair, the (z2, z2) part usually refers to those variables for which no clear decision can be made if
the variable index belongs to P, or P,. Special care must also be taken to select a stable basis. Megiddo’s
algorithm has been efficiently implemented [11, 47, 5]. In the last reference it is theoretically clarified
when a guaranteed crossover can take place.

6 Problems to be solved

Although great progress is made concerned with the efficiency of IPM implementations, some relevant
questions still remain open. We shall concentrate on only three of them which seem the most important,
namely:

e Implementing postoptimal analysis in a correct way.

e Handling problems which have unbounded optimal faces.
Detecting primal/dual infeasibility.

o Warm start.

6.1 Correct postoptimal analysis

In implementing algorithms for LP one has to consider methods to produce shadow prices and ranges.
Currently, implementations of sensitivity and postoptimal analysis in all commercial codes are based on
the knowledge of an optimal basis. People are used to this approach, although several papers recognized
the potential mathematical errors and negative economical consequences of it ([75, 37, 32]). The ranges
and shadow prices obtained from analyzing an optimal bases are usually incorrect as one would like to
know the linearity intervals of the optimal value function and its left/right derivatives which are the
correct shadow prices. This correct information is obtainable at a different cost. It is proved [3, 37] that
there is a one to one correspondence between the optimal partitions and the linearity intervals, break
points of the value function. These values can be obtained in the cost of the solution of some smaller
LPs. To define these LPs one needs a description of the optimal face. Once a strictly complementary
solution is found, the optimal partiton (P, P,) is also known. The primal optimal face is then given by

P =de|Az=b, >0, zp, =0},
while the dual optimal face 1s

D" ={(y,2) |ATy—|—z:c, z>0, zp, =0}.

26

Alternatively, if the optimal partition is not known just a primal optimal solution #* and a dual optimal
solution (y*, z*) is available then the optimal faces are characterizable as follows.

Pr={x|Ae=0b, Te=c"z" >0},

D ={(y,2) | ATy +2=¢, bTy=0Ty*, >0}

As mentioned above, to get the linearity intervals and correct shadow prices, the solution of some auxiliary
LPs is needed. As illustration, first, we define the two LPs to find the left and right end of the actual
linearity interval [e1cp¢, €rignt] When a single objective coefficient ¢; changes. If the optimal partition
(Py, P,) is known, one need to solve the following two linear programs:

€1ept = min{e | ATy 42 = c+eej, >0, zp, =0},

€right = max{e | ATy+z=c+ eej, >0, zp, = 0}.

If the optimal partition is not available, just optimal solutions are known, the solution of the two LPs
€1ept = min{e | ATy4+z2=c+ ce;, by =clar + exy, » > 0},

and
€right = max{e | ATy4+z=c+ ce;, by =clor + ex;, z >0}

is necessary. Note, that the validity of the resulting ranges follows from the concavity or convexity,
respectively of the optimal value functions.

Similarly, the correct left and right shadow prices can be obtained by solving some auxiliary LP problems.
It is obvious that if we are in the interior of a linearity interval of the value function as ¢; varies, then
the left and right shadow prices are equal and both equals to z;. If ¢; is a breakpoint of the optimal
value function, then the left and right shadow prices (2j_icp¢, j_right) can be computed by solving the
two LP problems

Zj_jepe = max{z; | Av =06, >0, zp, = 0},

Zj_yignt = min{z; | Az =b, >0, zp, =0}

in the optimal partition approach. If the optimal partition is not available the following two LPs are to
be solved:
Zj_jepe = max{x; | Ar = b, de=cle x>0},

Tj_yignt = min{z; | Az = b, Toe=c"o 2> 0}.

If b; varies then the corresponding values can be obtained similarly on the cost of the solution of some
analogous LPs. We do not go into further details here. For a complete analysis based on the optimal
partition see [3, 37, 40]; the alternative approaches when the optimal partition is not available are

discussed in [75, 57, 40].

To close this section we point out that to get the correct ranges and shadow prices for all the primal
and dual variables needs substantially more time than the incomplete (incorrect) optimal basis approach.
Hence it is advisable to select a smaller set of “important” variables and to perform the necessary
calculations just for this set.

27

6.2 Unbounded optimal faces, infeasible problems

As it is discussed in Section 2 the current implementations are based on infeasible IPMs. One of the the-
oretical disadvantages of the implemented infeasible IPMs is that their theoretical complexity is O(nlL)
instead of @(\/nL), the best complexity to date. If the optimal face(s) are unbounded, then the duality
gap converges to zero while the sequence(s) of solutions (primal, dual or both according to the unbound-
edness of the optimal faces, respectively) diverges, hence it is difficult to identify optimal solution(s).
Similar difficulties occur if the primal or dual or both problems are infeasible. This case always manifests
with the divergence of the iteration sequence in infeasible IPMs, which, in practice, might not be easy to
identify. Resolving these difficulties is one of the most interesting problems nowadays.

The so—called skew-symmetric self-dual embedding (SSSD) might be a remedy. The SSSD was first
introduced by Ye, Todd and Mizuno [79] using the standard form problems (40) and (41). They discussed
most of the advantages of this embedding and showed that Mizuno, Todd and Ye’s [59] predictor—
corrector algorithms solve the LP problem in O(\/nL) iterations, yielding the first infeasible IPM with
this complexity. Somewhat later Jansen, Roos and Terlaky [38] presented the SSSD problem for the
symmetric form primal-dual LP pair in a concise introduction to the theory of LP based on IPMs.
Before presenting the SSSD embedding, the surprisingly nice properties of it are summarized.

1. Self-duality, the dual problem is identical to the primal one. One can solve it as an LP or as an

LCP.

2. SSSD is always feasible. Furthermore, the interior of the feasible sets is also non-empty, hence the
optimal faces are bounded. IPMs applied to SSSD always converge to an optimal solution.

3. Optimality of the original problem is detected by convergence, independently from the bounded-
ness/unboundedness of the optimal faces of the original problem.

4. Infeasibility of the original problem is detected by convergence. Primal, dual or primal and dual
rays for the original problems are identified to prove dual, primal or dual and primal infeasibility.

5. A perfectly centered initial pair can always be constructed for SSSD.

6. Polynomial convergence with the best known complexity and local quadratic convergence [79, 76]
are guaranteed.

Self-dual embedding

To exploit fully the symmetry of the SSSD embedding first the problems (40) and (41) are transformed
to the symmetric form. This can be done without increasing the number of variables or the number of
constraints. We may assume that in problem (40) rank(A) = m, otherwise the redundant constraints can
be eliminated. Let B be any basis of A. Let A = [B, N], ¢ = [c§,c&] and 2T = [2L, 2%]. Then Az =
b, > 0 can be written as g + B~ 'Nzy = B~ ', z > 0 or equivalently —B~'Nzx > —B~'b, 25 > 0.
Likewise ¢’z = chzp + chay = cE B Yo+ (ck — cEB=1N)zn, hence (P) can be written equivalently in
the symmetric form as

min {(ck — 5B ' N)zy | — B™'Nay > —B7'b, 2y > 0}.

Note that these transformations need a modified preprocessing of the problem that chooses sparse B and,
hopefully, produces sparse B~ N.

It is not obvious how such a basis can be constructed and, to the best of our knowledge, this has never
been implemented yet. The problem of finding a basis that is optimal in the sense that B~'N is the
sparsest possible, imposes some additional requirements to the sparsity problem (see equation (17)).

28

Hence it seems practically more difficult to find efficient heuristics to solve it. Those heuristics should
naturally generalize the techniques used to solve the sparsity problem.

Having done the above transformations, we redefine the objective vector, the coefficient matrix and the
right hand side vector and denote them again by ¢, A and b, respectively. This produces the LP problem
in the symmetric form

(P) min{ch|Abe, xZO},

where A is an m X n matrix, ¢,z € IR", and b € IR™. The linear program (P) has associated with it the
dual program

(D) max{b'y| ATy <c y>0},
As usual, a pair (2*,y*) will be called strictly complementary if Az* > b, «* >0, ATy* <e¢, y* >0,
(Az* — b)Ty* = (e — ATy*)T2* = 0 and, moreover, y* + (Az* —b) > 0 and z* + (¢ — ATy*) > 0.

To formulate the SSSD embedding we need some further vectors. Let z° 2°,¢ € R™, y° #°,b € R™,
90,7 k% v° € IR and o, 8 € IR be given as follows:

>0 >0, >0, >0, 9°>0, >0, k>0, v'>0,

= 1 B 1
b= W(bTO—Al‘O—FTO), c= W(CTO—ATyO _ZO)’

1
o= W(CTJL‘O — b7y + k0,

- 1
6 — O”_O 4 bTyO _ —Tl,O 4 1/0 — W[(yO)TrO 4 (l‘O)TZO 4 TOK?O] 4 1/0 > 0.
It is worthwhile to note that if 2° is feasible for (P), 7% = 1 and r® = Az® — b, then b=0. Also if 3° is

feasible for (D), 7° = 1 and 2z = ¢ — ATy, then ¢ = 0. With some abuse of mathematics, the vectors b

and ¢ measure the amount of scaled infeasibility of the given vectors z°, »°, y° and 2°.

Now consider the following skew symmetric self-dual LP problem

(SSSD) min B9
s.t. Az +b1 —br >0
—ATy —ct e >0
Ty 4Tz —ar > -0
vy —cTx +av >0

y>0 >0, >0, 7>0.

Due to the selection of the parameters the positive solution = 2%, y = 4°, ¥ = 9%, 7 = 70 is interior

feasible for the SSSD problem. Let us denote the slack variables for the problem SSSD by r, z,v and &

respectively. Also note that if one chooses t = 2% =¢, r=r"=¢, y=y’ =¢, 2 =20 =¢, k= k" =

L,v=v'=1 9=9°=1, 1 =7% =1, then this solution is a perfectly centered initial solution for the

SSSD problem. The following theorem holds (see [79, 38]).

Theorem 1 For the given problems (P) and (D) the SSSD embedding is made. Then one has:
(i) The SSSD problem is feasible, hence both primal and dual feasible and has an optimal solution.
(ii) For any optimal solution of SSSD ¥* = 0.

(iii) SSSD always has a strictly complementary optimal solution (&, y*, 0%, 7).

29

(iv) If 7™ >0, then f—: and 2—: are strictly complementary optimal solutions of (P) and (D), respectively.
(v) If 7 =0, then either (P) or (D) or both are infeasible.

The skew—symmetric self-dual embedding has been implemented [77]. Impressive numerical results are
reported that show this approach to be only slightly less efficient than the primal-dual method on
feasible problems. Additionally, as the experience of the above mentioned paper shows, this method
detects problem’s infeasibility really by a convergence (not by a divergence). Although it needs slightly
different preprocessing and it has to deal with two dense rows and columns bordered to the matrix of
the augmented system (that require special care when solving (11)), the SSSD approach may become a
computationally attractive alternative to the infeasible primal-dual method.

6.3 Warm start

Many practical problems need the solution of a sequence of similar linear programs where small pertur-
bations are made to b and/or ¢. As long as these perturbations are small, we naturally expect that the
optimal solutions are not far from each other and restarting the optimization from the solution of the old
problem (warm start) should be very efficient. This is the case in practice when the simplex method is
used. In contrast, we still do not have efficient implementation of warm start in IPMs, that exploits the
information contained in the old optimal solution.

Several attempts have been made to solve this problem like using shifted barriers to allow infeasibility of
the original variables [24]; applying modified barrier functions [61]; perturbing the problem to throw it
away from the boundary of the positive orthant [50]. However, we may say that, in such a general context,
IPM warm start is still far from working satisfactorily. On the other hand, computational experience
of [8] shows that applying (feasible) projective algorithm [66] to restart from a well centered, almost
optimal solution that is sufficiently far away from the boundary, works well even if problems that have
to subsequently be solved differ considerably.

The difficulty of the IPM warm start comes from the fact that the old optimal solution is very close to
the boundary and well centered. This point in the perturbed problem still remains close to the boundary
but is very badly centered. Consequently, IPM makes long sequence of short steps due to the fact that
the iterates cannot get rid of the boundary (boundary behavior). Therefore one needs well centered point
close to the old optimal one or an efficient centering method (leaving the boundary) to overcome these
difficulties. These two possibilities are discussed below.

Independently on the approach chosen it would be wise to save a well centered almost optimal solution
(say, with 1072 relative duality gap) that is still sufficiently far away from the boundary.

o Efficient centering. The so called target following method offers much flexibility in choosing
achievable targets. Path following methods define targets on the central path that, due to boundary
behavior, are too optimistic in the case of warm start. Using a sequence of traceable targets
that improves centrality allows larger steps, therefore speeds up the centering and, finally, the
optimization process. Practical methods of defining such a sequence of targets are not well studied
yet although the theory is well established (see, e.g., Jansen, Roos, Terlaky and Vial [39] and Roos
and Vial [66] in this volume).

¢ Centered solutions for warm start in SSSD embedding. Among the spectacular properties
of the SSSD embedding listed in the previous section, the ability to always construct perfectly
centered initial point was mentioned. The old well centered optimal or almost optimal solution
¥, vt oyt 2, 9%, 7, v, k", can be used as 20, #%, ¥, 2%, 9%, 79, 0 &P the initial point to
embed the perturbed problem. As we have seen in Section 6.2, b, ¢, & and 3 can always be redefined

bl

30

so that the above solution stays well centered. The construction allows simultaneous perturbations
of b and c. Additionally, it extends to handling new constraints or variables added to the problem
(e.g., in build—up or cutting plane schemes). In these cases, we can keep the solution unchanged
for the old coordinates (let 1 be the actual barrier parameter) and define the initial value of the
new complementary variables to /i as y was the barrier parameter of the old centered solution.
This results in a perfectly centered initial solution.

31

References

(1]

[2]

[16]

[17]

[18]

[19]

Adler 1., Karmarkar, N., Resende, M.G.C. and Veiga, G. (1989) An Implementation of Karmarkar’s
Algorithm for Linear Programming, Mathematical Programmaing 44, 297-336.

Adler 1., Karmarkar, N. Resende, M.G.C. and Veiga, G. (1989) Data Structures and Programming
Techniques for the Implementation of Karmarkar’s Algorithm, ORSA Journal on Computing 1,
84-106.

Adler; 1. and Monteiro, R. D. C. (1992) A Geometric View of Parametric Linear Programming,
Algorithmica 8, 161-176.

Altman, A. and Gondzio, J. (1993) An Efficient Tmplementation of a Higher Order Primal-dual
Interior Point Method for Large Sparse Linear Programs, Archives of Control Sciences 2 (XXXVIII)
1/2, 23-40.

Andersen E.D. and Y. Ye (1994) Combining Interior-Point and Pivoting Algorithms for Linear
Programming, Research Report, May 1994, Department of Management Studies, The University of
Towa, lowa City TA, USA.

Arioli, M., Demmel, J.W. and Duff, I.S. (1989) Solving Sparse Linear Systems With Sparse Backward
Error, STIAM Journal on Matriz Analysis and Applications 10, 165-190.

Arioli, M., Duff, I.S. and de Rijk, P.P.M. (1989). On the Augmented System Approach to Sparse
Least—Squares Problems, Numerische Mathematik b5, 667-684.

Bahn O., Goffin J.-L., Vial J.-P. and du Merle O. (1994) Experimental behaviour of an interior
point cutting plane algorithm for convex programming: an application to geometric programming,
Discrete Applied Mathematics 49, 3-23.

Balinski, M. L. and Tucker, A. W. (1969) Duality theory of linear programs: A constructive approach
with applications. STAM Review 11, 499-581.

Bisseling, R.H., Doup, T.M. and Loyens, L.D.J.C. (1993) A Parallel Interior Point Algorithm for
Linear Programs on a Network of Transputers, Annals of Operations Research 43, 51-86.

Bixby, R. E. (1994) Progress in Linear Programming, ORSA Journal on Computing 6, 15-22.

Brearley, A.L., Mitra, G. and Williams, H.P. (1975) Analysis of Mathematical Programming Prob-
lems Prior to Applying the Simplex Algorithm, Mathematical Programmaing 15, 54-83.

Bunch J. R. and Prlett B. N. (1971) Direct Methods for Solving Symemtric Indefinite Systems of
Linear Equations, STAM Journal on Numerical Analysis 8, 639-655.

Chang, S.F. and McCormick, S.T. (1992) A Hierarchical Algorithm for Making Sparse Matrices
Sparser, Mathematical Programming 56, 1-30.

Choi, I.C., Monma, C.L. and Shanno, D.F. (1990) Further Development of a Primal-Dual Interior
Point Method, ORSA Journal on Computing 2, 304-311.

Dantzig, G.B. (1963) Linear Programming and Extensions, Princeton University Press, Princeton

N.J.

Dikin, I.I. (1967) Tterative Solution of Problems of Linear and Quadratic Programming, Doklady
Akademii Nauk SSSR 174, 747-748. Translated in : Soviet Mathematics Doklady 8, 674-675.

Duff, I1.S., Erisman, A.M. and Reid J.K. (1989) Direct Methods for Sparse Matrices, Oxford Univer-
sity Press, New York.

Duff 1.S., Gould N.I.M., Reid J.K., Scott J.A. and Turner K. (1991) The Factorization of Sparse
Symmetric Indefinite Matrices, IMA Journal of Numerical Analysis 11, 181-204.

32

[20]
21]
[22]
23]
[24]
[25]

[26]

[27]

[28]

Duff, 1.S. and Reid, J.K. (1983) The Multifrontal Solution of Indefinite Sparse Symmetric Linear
Equations, ACM Transactions on Mathematical Software 9, 302-325.

Fiacco, A.V. and McCormick, G.P. (1968) Nonlinear Programming: Sequential Unconstrained Min-
tmization Techniques, Wiley, New York.

Fourer, R. and Mehrotra, S. (1993) Solving Symmetric Indefinite Systems in an Interior Point Method
for Linear Programming, Mathematical Programming, 62, 15-39.

Forrest, J.J.H. and Tomlin, J.A. (1992) Implementing Interior Point Linear Programming Methods
in the Optimization Subroutine Library, IBM Systems Journal 31, 26-38.

Freund, R. M. (1991) Theoretical Efficiency of a Shifted Barrier Function Algorithm for Linear
Programming, Linear Algebra and Its Applications 152, 19-41.

George, A. and Liu, JW.H. (1989) The Evolution of the Minimum Degree Ordering Algorithm,
SIAM Review 31, 1-19.

Gill, P.E., Murray, W., Saunders, M.A., Tomlin, J.A. and Wright, M.H. (1986) On Projected Newton
Barrier Methods for Linear Programming and an Equivalence to Karmarkar’s Projective Method,
Mathematical Programming 36, 183-209.

Goldman, A. J. and Tucker, A. W. (1956) Theory of Linear Programming, in Linear Inequalities
and Related Systems (H. W. Kuhn and A. W. Tucker, eds.), Annals of Mathematical Studies, No.
38, Princeton University Press, Princeton, New Jersey, 53-97.

Golub G.H. and Van Loan, C. (1989) Matriz Computations, (2nd ed.) The Johns Hopkins University
Press, Baltimore and London.

Gondzio, J. (1992) Splitting Dense Columns of Constraint Matrix in Interior Point Methods for
Large Scale Linear Programming, Optimization 24, 285-297.

Gondzio, J. (1994) Presolve Analysis of Linear Programs Prior to Applying the Interior Point
Method, Technical Report 1994.3, Department of Management Studies, University of Geneva,
Switzerland.

Gonzaga, C. C. (1992) Path-Following Methods for Linear Programming, STAM Review 34, 167-224.

Greenberg, H. J. (1993) The Use of the Optimal Partition in a Linear Programming Solution for
Postoptimal Analysis, Technical Report, Mathematics Department, University of Colorado, to ap-
pear in Operations Research Letters.

Giiler, O., den Hertog, D., Roos, C., Terlaky, T. and Tsuchiya, T. (1993) Degeneracy in Interior
Point Methods for Linear Programming: a Survey, Annals of Operations Research 46, 107-138.

Giiler, O. and Ye, Y. (1993) Convergence Behavior of Some Interior—Point Algorithms, Mathematical
Programming 60, 215-228.

Hafsteinsson, H., Levkovitz, R. and Mitra, G. (1993) Solving Large Scale Linear Programming
Problems Using an Interior Point Method on a Massively Parallel SIMD Computer, in Applied
Parallel Computing, D.J. Evans, ed., Gordon and Breach Publishers, to appear in Vol.4, No. 3 & 4.

Iri, M. and Imai, H. (1986) A Multiplicative Barrier Function Method for Linear Programming.
Algorithmica 1, 455-482.

Jansen, B., Roos, C. and Terlaky, T. (1992) An Interior Point Approach to Postoptimal and Para-
metric Analysis in Linear Programming, Technical Report 92-21, Faculty of Technical Mathematics
and Informatics, Technical University Delft, Delft, The Netherlands.

Jansen, B., Roos, C. and Terlaky, T. (1992) The Theory of Linear Programming: Skew—Symmetric
Self-Dual Problems and the Central Path, Technical Report 93-15, Faculty of Technical Mathematics
and Informatics, Technical University Delft, Delft, The Netherlands, to appear in Optimization.

33

[39]

Jansen, B., Roos, C., Terlaky, T. and Vial, J.-P. (1993), Primal-Dual Target Following Algorithm for
Linear Programming, Technical Report 93-107, Faculty of Technical Mathematics and Informatics,
Technical University Delft, Delft, The Netherlands.

Jong, J. J. de, Jansen, B., Roos, C. and Terlaky, T. (1994) Sensitivity Analysis in Linear Program-
ming: Just be Careful!, Technical Report AMER.93.022, KSLA, Amsterdam, The Netherlands.

Karmarkar, N. K. (1984) A New Polynomial-Time Algorithm for Linear Programming, Combina-
torica 4, 373-395.

Karmarkar, N. K., Lagarias, J. C., Slutsman, L. and Wang, P. (1989) Power Series Variants of
Karmarkar—Type Algorithms, ATET Technical Journal, 68, 20-36.

Kojima, M., Mizuno, S. and Yoshise, A. (1989) A Primal-Dual Interior Point Algorithm for Linear
Programming, in N. Megiddo, ed., Progress in Mathematical Programming: Interior Point and
Related Methods, Springer—Verlag, New York, 29-48.

Kojima, M., Megiddo, N. and Mizuno, S. (1993) A Primal-Dual Infeasible Interior Point Algorithm
for Linear Programming, Mathematical Programming, 61, 263-280.

Kojima, M., Megiddo, N. and Mizuno, S. (1993) Theoretical Convergence of Large-Step—Primal-
Dual Interior Point Algorithms for Linear Programming, Mathematical Programming, 59, 1-21.

Kranich, E. (1991) Interior Point Methods for Mathematical Programming: A Bibliography, Discus-
sion Paper 171, Institute of Economy and Operations Research, Fern Universitat Hagen, P.O.Box

940, D-5800 Hagen 1, Germany.

Levkovitz, R., Mitra, G. and Tamiz, M. (1994) Experimental Investigations in Combining Primal
Dual Interior Point Method and Simplex Based LP Solvers, under revision for Annals of Operations
Research.

Lustig, I.J., Marsten, R.E. and Shanno, D.F. (1991) Computational Experience with a Primal-Dual
Interior Point Method for Linear Programming, Linear Algebra and its Applications 152, 191-222.

Lustig I.J., Marsten, R.E. and Shanno, D.F. (1992) On Implementing Mehrotra’s Predictor—
Corrector Interior Point Method for Linear Programming, STAM Journal on Optimization 2, 435-449.

Lustig, I. J., Marsten, R. E. and Shanno, D. .F. (1994) Interior Point Methods for Linear Program-
ming: Computational State of the Art, ORSA Journal on Computing 6, 1-14.

Markowitz, H.M. (1957) The Elimination form of the Inverse and Tts Application to Linear Pro-
gramming, Management Science 3, 255-269.

McShane, K.A., Monma, C.L. and Shanno, D.F. (1989) An Implementation of a Primal-Dual Interior
Point Method for Linear Programming, ORSA Journal on Computing 1, 70-89.

Megiddo, N. (1991), On Finding Primal- and Dual-Optimal Bases, ORSA Journal on Computing
3, 63-65.

Megiddo, N. (1989) Pathways to the Optimal Set in Linear Programming, in N. Megiddo, ed.,
Progress in Mathematical Programmang: Interior Point and Related Methods, Springer—Verlag, New
York, 131-158.

Mehrotra, S. (1992) On the Implementation of a Primal-Dual Interior Point Method, STAM Journal
on Optimization 2, 575-601.

Mehrotra, S. (1991) Higher Order Methods and their Performance, Technical Report 90-16R1, De-
partment of Industrial Engineering and Management Sciences, Northwestern University, Evanston,

USA.

34

[57]

[58]

Mehrotra, S. and Monteiro, R. D. C. (1992) Parametric and Range Analysis for Interior Point
Methods, Technical Report, April 1992, Dept. of Systems and Industrial Engineering, University of
Arizona, Tucson, AZ 85721, USA.

Mizuno, S. (1992) Polynomiality of Kojima—Megiddo-Mizuno Infeasible Interior Point Algorithm
for Linear Programming, Technical Report 1006, School of Operations Research and Industrial
Engineering, Cornell University, Ithaca NY.

Mizuno, S., Todd, M. J. and Ye, Y. (1992) On Adaptive—Step Primal-Dual Interior Point Algorithms
for Linear Programming, Mathematics of Operations Research 18, 964-981.

Monma, C. L. and Morton, A. J. (1987) Computational Experience With a Dual Affine Variant of
Karmarkar’s Method for Linear Programming, Operations Research Letters 6, 261-267.

Polyak, R. (1992) Modified Barrier Functions (Theory and Methods), Mathematical Programming
54, 177-222.

Portugal, L., Bastos, F., Judice, J., Paix0, J. and Terlaky, T. (1993) An Investigation of Interior Point
Algorithms for the Linear Transportation Problems, Report No. 93-100, Faculteit der Technische
Wiskunde en Informatica, Technische Universiteit Delft, Nederlands.

Potra, F. A. (1992) An Infeasible Interior—Point Predictor—Corrector Algorithm for Linear Program-
ming, Technical Report 26, Department of Mathematics, University of lowa, lowa City TA, USA.

Reid J.K. (1982) A Sparsity—exploiting Variant of the Bartels-Golub Decomposition for Linear
Programming Bases, Mathematical Programming 24, 55-69.

Resende, M.G.C. and Veiga, G. (1992) An Efficient Implementation of a Network Interior Point
Method, Technical Report February 1992, AT&T Bell Laboratories, Murray Hill, NJ, USA.

Roos, C. and Vial, J.-Ph. (1994) Interior Point Methods, in: Advances in Linear and Integer Pro-
gramming, Beasley, J.E. (ed.), Chapter 3, Oxford University Press, Oxford, England.

Saunders, M.A. (1994) Major Cholesky Would Feel Proud, ORSA Journal on Computing 6, 23-27.

Shanno, D. F., Bagchi, A. (1990) A Unified View of Interior Point Methods for Linear Programming,
Annals of Operations Research 22, 55-70.

Sonnevend, G. (1986) An “Analytic Center” for Polyhedrons and New Classes of Global Algorithms
for Linear (Smooth, Convex) Programming, in: System Modelling and Optimization: Proceedings
of the 12th IFIP-Conference, Prékopa, A., Szelezsdn, J. and Strazicky, B. (eds.), Lecture Notes in
Control and Information Sciences, Vol. 84, pp. 866-876, Springer Verlag, Berlin, Germany.

Stewart, G. W. (1989) On Scaled Projections and Pseudoinverses., Linear Algebra and Its Applica-
tions 112, 189-193.

Tinney, W.F., Walker, J.W. (1967) Direct Solution of Sparse Network Equations by Optimally
Ordered Triangular Factorization, Proceedings of IEEFFE 55, 1801-1809.

Turner K. (1991) Computing Projections for the Karmarkar Algorithm, Linear Algebra and its
Applications 152, 141-154.

Vanderbei, R.J. (1991) Splitting Dense Columns in Sparse Linear Systems, Linear Algebra and its
Applications 152, 107-117.

Vanderbei R. and Carpenter T.J. (1991) Symmetric Indefinite Systems for Interior Point Methods,
Technical Report SOR 91-7, Department of Civil Engineering and Operations Research, Princeton
University, Princeton, New Jersey, 1991.

Ward, J. E.;, Wendell, R. E. (1990) Approaches to Sensitivity Analysis in Linear Programming.
Annals of Operations Research 27, 3-38.

35

[76]

[77]

[78]

[79]

[80]

Wu, F., Wu, S. and Ye, Y. (1992) On Quadratic Convergence of the O(y/nL)-Tteration Homoge-
neous and Self~Dual Linear Programming Algorithm, Technical Report, Department of Management
Studies, The University of lowa, lowa City A, USA.

Xu, X., Hung, P.-F. and Ye, Y. (1993) A Simplified Homogeneous and Self-Dual Linear Programming
Algorithm and its Implementation, Technical Report, Department of Management Sciences, The
University of Towa, USA.

Yannakakis, M. (1981) Computing the minimum fill-in is NP—complete, STAM Journal on Algebraic
Discrete Methods 2, T7T-T79.

Ye, Y., Todd, M. J. and Mizuno, S. (1994) An O(y/nL)-Iteration Homogeneous and Self~Dual Linear
Programming Algorithm, Mathematics of Operations Research 19, 53-67.

Zhang, Y. (1992) On the Convergence of an Infeasible Interior—Point Algorithm for Linear Program-
ming and Other Problems, Research Report, 92-07, Dept. of Mathematics and Statistics, University
of Maryland, Baltimore County, Baltimore, MD 21228, USA.

36

