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AbstractMany issues that are crucial for an e�cient implementation of an interior point algorithm are addressedin this paper. To start with, a prototype primal{dual algorithm is presented. Next, many tricks thatmake it so e�cient in practice are discussed in detail. Those include: the preprocessing techniques, theinitialization approaches, the methods of computing search directions (and lying behind them linear algebratechniques), centering strategies and methods of stepsize selection.Several reasons for the manifestations of numerical di�culties like e.g.: the primal degeneracy of optimalsolutions or the lack of feasible solutions are explained in a comprehensive way.A motivation for obtaining an optimal basis is given and a practicable algorithm to perform this task ispresented. Advantages of di�erent methods to perform postoptimal analysis (applicable to interior pointoptimal solutions) are discussed.Important questions that still remain open in the implementations of interior point methods are alsoaddressed, e.g.: performing correct postoptimal analysis, detecting infeasibility or resolving di�cultiesarising in a presence of unbounded optimal faces. Challenging practical problem of warm start is recalledand two potentially attractive approaches to it are suggested.To facilitate the understanding of di�erent implementation strategies, some illustrative numerical resultson a subset of problems from the Netlib collection are presented.Key Words: Linear programming, interior point methods, primal-dual algorithm, implementation,numerical linear algebra.
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1 IntroductionKarmarkar's publication of 1984 of the new polynomial-time algorithm for linear programming (LP) [41]drew an enormous attention of the mathematical programming community and led to its great activityduring the past ten years resulting in a 
ood of papers (see, e.g., a bibliography [46]).The idea of crossing the interior of the feasible region in search for an optimum of the linear program waspresent at least since the sixties. These were for example: an a�ne{scaling method of Dikin [17] and alogarithmic barrier method SUMT of Fiacco and McCormick [21]. For at least two reasons, however, thesemethods could not at the time be shown competitive to the Simplex. First, due to the storage limitations,the size of the problems solved in the late sixties did never exceed a couple of hundred rows and columnsand for such sizes the simplex method is practically unbeatable. Secondly, there were no sparse symmetricsolvers available at that time (they appeared at the beginning of seventies) so the orthogonal projectionsmust have killed the e�ciency of interior point methods (IPMs). IPMs need signi�cantly more memorythan the simplex method which was an unacceptable requirement that time.Clearly, the situation was quite di�erent in 1984, which encouraged Karmarkar to claim about the excel-lent e�ciency of his new approach. In fact, these claims still had to wait a couple of years to be con�rmedby the computational results [60] and [1, 2].Soon after Karmarkar's publication, Gill, Murray, Saunders, Tomlin and Wright [26] built the bridgebetween this new interior point method and the logarithmic barrier approach. Barrier methods weredeveloped for the primal and for the dual LP formulation (see, e.g., the surveys [31, 68]). Early im-plementations that were based on pure primal or dual methods gave already competitive results withsimplex implementations. Nowadays all the state of the art IPM implementations are those of primal{dual methods, hence in this paper we concentrate only on primal{dual methods.First Megiddo [54] proposed applying a logarithmic barrier method to the primal and the dual problemsat the same time. Independently, Kojima, Mizuno and Yoshise [43] developed the theoretical backgroundof this method and gave complexity results. Its early implementations [52, 15] showed very much promiseand encouraged further research in this �eld. For extensions that represent current state-of-the-artprimal{dual implementations see Lustig, Marsten and Shanno [48, 49, 50] and Mehrotra [55, 56].A primal{dual algorithm is a feasible IPM if all the iterates are primal and dual feasible, respectively.If the iterates are positive but infeasible then the primal{dual algorithm is called an infeasible IPM.This algorithm attains feasibility at the same time as optimality is reached. It had been successfullyimplemented that way [48] and had shown very good practical convergence long before a theoreticaljusti�cation for such a behavior was found by Kojima, Megiddo and Mizuno [44]. The method hasproven polynomial complexity: O(n2L) in [80] and O(nL) in [58, 63].Although the complexity of the infeasible primal{dual algorithm is worse than the best known complexityO(pnL) of most feasible IPMs (see, e.g., the surveys [31, 66]), it is now widely accepted that primal{dualinfeasible IPMs are more e�cient in implementations. Since infeasible IPMs are the methods of choice todate for \state of the art" implementations, throughout the whole paper we mean a primal{dual infeasibleIPM as we speak about a primal{dual algorithm. To facilitate this, in Section 2 we shall then introducea prototype primal{dual infeasible IPM algorithm.A common feature of almost all IPMs is that they can be interpreted in terms of following the pathof centers [69] that leads to the optimal solution (see, e.g., [31] and [66] for the up to date references).With some abuse of mathematics, a basic iteration of a path{following algorithm consists of moving fromone point in a neighborhood of the central path to another one called target that preserves the propertyof lying in a neighborhood of central path and reduces the distance to optimality measured with someestimation of the duality gap. Such a movement can in principle involve more than one step towardsthe target. Depending on how signi�cant is the update of the target (and, consequently, whether justone or more Newton steps are needed to reach the vicinity of the new target) one distinguishes between2



short and long step methods. Due to the considerable cost of every Newton step, usually, (at least inimplementations) one Newton step is allowed before a new target is de�ned.Every Newton step requires computing at least one orthogonal projection onto the null space of a scaledlinear operator AD, where A is the LP constraint matrix and D is a positive diagonal scaling matrixthat changes in subsequent iterations. Primal, dual and primal{dual variants of IPMs di�er on theway matrix D is de�ned but the e�ort to compute Karmarkar's projection is always the same. Everyorthogonal projection involves inversion of the matrix AD2AT { the most time{consuming linear algebraoperation that takes about 60{90% of the computation time of a single interior point iteration. Unless thelinear program is specially structured and this structure can be exploited to determine an easily invertiblepreconditioner for an iterative method, as e.g., conjugate gradients algorithm (implemented successfullyfor network problems [65, 62]), direct methods [18] that compute sparse symmetric factorization (Choleskydecomposition of the positive de�nite system AD2AT or Bunch{Parlett [13, 7] decomposition of theinde�nite augmented system 24 D�2 ATA 0 35) are the methods of choice. Computing projections ontoa�ne spaces seems crucial for the e�ciency of any interior point algorithm. We shall thus discuss itin detail in Section 3 that addresses also other issues of implementation of the IPM as e.g.: the roleof presolve analysis, the choice of the starting point, the choice of the stepsizes in the primal and inthe dual spaces, the role of centering, higher order methods, the termination conditions and, �nally, thecomparison of theoretical and practical complexity.In Section 4 we shall add some remarks on the manifestations of the degeneracy and the ill{conditioningin the computations of projections.After about forty years of the application of the simplex method (starting from its discovery in 1947[16] till Karmarkar's breakthrough [41]), when it was beyond any competition, the operations researchpractitioners got used to seeing linear programming from the simplex perspective. This, in particular,applies to the use of postoptimality analysis available from the optimal basis solution. In fact, such apostoptimality analysis is almost always incomplete (frequently incorrect), see e.g., [32, 37, 40]. Never-theless, there exist many applications in which optimal basis is necessary, e.g., reoptimization in integerprogramming. In such a case a need arises of identifying optimal basis from the interior point optimalsolution. Fortunately, this can be done in a strongly polynomial time [53]. We shall address the problemof optimal basis identi�cation in Section 5.Section 6 will be devoted to some crucial questions that still remain open. Sensitivity analysis based oninterior point optimal solution is generally more expensive but produces correct information. We discusshow to handle problems with unbounded level sets, how to detect infeasibility and how to implemente�cient warm start in interior point algorithms.Most relevant issues of interior point method implementations will be illustrated by solving a subset of theNetlib LP problem test collection using version 2.0 of the HOPDM (Higher Order Primal Dual Method)code [4, 30]. All of our computations are made on a SUN SPARC{10 workstation.Later on in the paper we will frequently speak about stability, robustness and e�ciency of di�erentmethods. On stability, the usual numerical stability is meant. Talking about robustness, one thinksabout that the algorithm gives reliable answer on a wide range (optimally all) of problem instances.Finally, e�ciency relates to the speed of the algorithm, the speed of the implementation.2 A prototype primal{dual algorithmLet us consider a primal linear programming problemminimize cTx;3



subject to Ax = b; (1)x+ s = u;x; s � 0;where c; x; s; u 2 Rn; b 2 Rm; A 2 Rm�n and its dualmaximize bT y � uT t;subject to ATy � t + z = c; (2)z; t � 0;where y 2 Rm and z; t 2 Rn.To derive the primal-dual algorithm let us replace nonnegativity of constraints in the primal formulationwith the logarithmic barrier penalty terms in the objective function, which gives the following logarithmicbarrier function L(x; s; �) = cTx� � nXj=1 lnxj � � nXj=1 ln sj : (3)The �rst order optimality conditions for (3) are Ax = b;x+ s = u;AT y + �X�1e � t = c; (4)�S�1e � t = 0:Substituting z = �X�1e;the �rst order optimality conditions (4) give Ax = b;x+ s = u;AT y + z � t = c; (5)XZe = �e;STe = �e;where X;S; Z and T are diagonal matrices with the elements xj; sj; zj and tj , respectively, e is then-vector of all ones and � is a barrier parameter.The set of solutions of (5) (x(�); s(�)) and (y(�); z(�); t(�)) de�nes the central path of the primal anddual problem, respectively. Having any primal and dual feasible solutions (x; s) and (y; z; t) the qualityof centrality is measured by�2(x; s; y; z; t; �) = nXj=1�rxjzj� �r �xjzj �2 + nXj=1�rsjtj� �r �sjtj �2 (6)Note that (x; s) and (y; z; t) are on the central path i� �(x; s; y; z; t; �) = 0. The smaller � is the betterthe points are centered.Let us observe that the �rst three of the above equations are linear and force primal and dual feasibility ofthe solution. The last two equations are nonlinear and become the complementarity conditions for � = 0,4



which together with the feasibility constraints provides optimality of the solutions. If some solution witha certain � is available, then for the complementarity gap one hasxT z + sT t = 2�eT e = 2n�:In any IPM, this quantity measures the error in complementarity. Observe that in feasible IPMs thecomplementarity gap reduces to the usual duality gap. It, clearly, vanishes at an optimal solution.A single iteration of the basic primal{dual algorithm makes one step of Newton's method applied tothe �rst order optimality conditions (5) with a given � and then � is updated (usually decreased). Thealgorithm terminates when infeasibility and the complementarity gap is reduced below a predeterminedtolerance.Having an x; s; z; t 2 Rn+; y 2 Rm, Newton's direction is obtained by solving the following system oflinear equations 26666666664 A 0 0 0 0I 0 I 0 00 AT 0 I �IZ 0 0 X 00 0 T 0 S 3777777777526666666664 �x�y�s�z�t 37777777775 = 26666666664 �b�u�c�e �XZe�e� STe 37777777775 ; (7)where �b = b� Ax;�u = u� x� s;and �c = c� AT y � z + t;denote the violations of the primal and the dual constraints, respectively. Primal{dual infeasible IPMsdo not require the feasibility of the solutions (�b; �u and �c might be nonzero) during the optimizationprocess. Feasibility is attained during the process as optimality is reached. It is easy to verify that if astep of length one is made in the Newton's direction (7), then feasibility is reached at once. This is seldomthe case as a smaller stepsize has usually to be chosen (a damped Newton iteration is taken) to preservenonnegativity of x; s; z and t. If this is the case and a stepsize � < 1 is applied, then infeasibilities �b; �uand �c are reduced 1� � times.Let us now look closer to the system of linear equations (7). After elimination�z = X�1(�e �XZe � Z�x);�s = �u ��x; (8)�t = S�1(�e � STe � T�s) = S�1(�e � STe � T�u + T�x);it reduces to 24 �D�2 ATA 0 3524 �x�y 35 = 24 rh 35 ; (9)where D2 = (X�1Z + S�1T )�1;r = �c �X�1(�e �XZe) + S�1(�e � STe) � S�1T�u; (10)h = �b:The matrix in the augmented system (9) is sparse, symmetric but inde�nite. This system of linearequations can be solved directly by the Bunch{Parlett factorization [13, 7] or, after multiplying the5



�rst equation by AD2 and substituting from the second equation,the system can be reduced to sparse,symmetric and positive de�nite normal equations system(AD2AT )�y = AD2r + h: (11)Advantages of both approaches will be discussed in the next section. Here, we only conclude that once�y is found from (11), it uniquely determines�x = D2AT�y �D2r;and �s;�z and �t by (8).Computing (�x;�y) from (9) or �y from (11) is usually (when a direct approach [18] is applied) dividedinto two phases: factorization of the matrix to some easily invertible form and the following solve thatexploits this factorization. Usually, the second step is at least an order of magnitude cheaper than the�rst one. This observation led [42, 56] to introducing higher order terms when computing direction.Computing di�erent corrector terms resolves to multiple solution of the same linear system for severalright hand sides (it thus reuses the same factorization and is relatively inexpensive). The most successfultechnique that incorporates higher order information into the primal{dual algorithm comes fromMehrotra[55, 56]. We shall address this technique in more detail in the next section.For the sake of brief presentation of the method, we assume that some direction (�x;�y;�s;�z;�t) iscomputed, the maximum stepsizes in it for primal, �P and dual, �D spaces that maintain nonnegativityof variables are found and, after being slightly reduced with a factor �0, a new iterate is computedxk+1 = xk + �0�P�x;sk+1 = sk + �0�P�s;yk+1 = yk + �0�D�y;zk+1 = zk + �0�D�z;tk+1 = tk + �0�D�t: (12)After making the step, the barrier parameter � is reduced and the process is repeated. Formally, thealgorithm can be summarized as follows.Prototype AlgorithmInput(x0; s0) and (y0; z0; t0): the initial pair of primal and dual solutions,respectively;Parameters" is the accuracy parameter;�0 is the step size;beginx := x(0); s := s(0); y := y(0); z := z(0); t := t(0);while stopping criteria is not satis�ed docalculate the search directions by (8,9,10);calculate the new iterates by (12);endend. 6



3 Some tricks that make it workIn this section we shall concentrate on several issues that seem to be crucial for an e�cient implementationof interior point algorithms.3.1 PresolveLinear programs solved nowadays have often very large sizes and are usually generated automaticallyby some modelling support tools. They are thus often formulated in a way that is not necessarily themost suitable for a direct application of an LP solver. Hence it is advantageous to analyse and, ifpossible, simplify their formulation before passing them to a solver. The important role of presolving inlinear programming was recognized [12] long time ago. It is worth to mention that presolve is stronglyrecommended for any solver independently on the method used.The importance of presolve is even more pronounced when an interior point based solver is applied [2, 30]due to more involved linear algebra operations and the need of full rank of the matrix A. Preprocessingaims at three main goals, namely: problem size reduction, problem density reduction and ensuring fullrank of the constraint matrix A.Problem size reductionA general purpose presolve of [30] repeats the logical analysis of the LP problem formulation until nofurther reduction is obtained (every single reduction creates possibility for further model simpli�cations).The following simple operations are applied.1. Empty rows and columns are removed.2. Singleton inequality constraints are replaced by bounds on the variables (variable with an entry ina singleton equality row is �xed and removed).3. Lower and upper limits for every constraint i are determinedbi = Xfj:aij<0gaijuj; and bi = Xfj:aij>0gaijuj ; (13)that clearly satisfy bi �Xj aijxj � bi: (14)Observe that due to the nonnegativity of x, the limits bi and bi are nonpositive and nonnegative,respectively. If the inequalities (14) are at least as tight as the original (inequality type) LPconstraint, then the constraint i is redundant. If one of them contradicts the LP constraint, thenthe problem is infeasible. Finally, in some special cases (e.g.: \less than or equal to" row withbi = bi, \greater than or equal to" row with bi = bi, or equality type row for which bi equals to oneof the limits bi or bi), the LP constraint becomes a forcing one. This means that the only way tosatisfy the constraint is to �x all variables that appear in it on their appropriate bounds.4. Constraint limits (13) are used to generate implied variable bounds. (Note, that LP variables weretransformed to the standard form 0 � x � u, before). This technique makes use of the originalform of an LP constraint (i.e., its form before a slack variable has been added to it to transform it7



to the "standard" equality row of (1)). Assume, for example, that a nonredundant "less than orequal to" (LE) type constraint is given, i.e.,bi <Xj aijxj � bi:Then 8k : aik > 0 bi + aikxk �Xj aijxj � bi;and 8k : aik < 0 bi + aik(xk � uk) �Xj aijxj � bi;and a new implied bounds are given for all variables involved by row ixk � u0k = (bi � bi)=aik for all k : aik > 0;xk � l0k = uk + (bi � bi)=aik for all k : aik < 0:If they are tighter than the original ones, then variable bounds are improved. Note, that a tech-nique similar to that is decribed above is particularly useful when it imposes �nite bounds on freevariables. Free variables do not, in such a case, have to be split and represented as the di�erenceof two nonnegative variables.5. For every singleton column, a row with an entry in it is used to generate implied bounds on avariable referring to it. If these bounds are at least as tight as the original ones, then the variablebecomes an implied free. Consequently, both the row (implied free constraint) and the singletonfree column is eliminated.6. Nonnegative unbounded variables (0 � x � +1) refering to singleton columns are used to generatebounds on dual variables y. Namely, if the variable j refers to a singleton column with an entryaij and uj = +1 (i.e., tj = 0), then dual constraint (2) becomes an inequalityaijyi � cj:This inequality can be solved and, depending on the sign of aij, produces a lower or upper boundon yi.7. Once all dual variables have explicit (possibly in�nite) boundspi � yi � qi; i = 1; 2; � � �;m; (15)lower and upper limits for every dual constraint j are generatedcj = Xfi:aij<0g aijqi + Xfi:aij>0gaijpi; and cj = Xfi:aij<0g aijpi + Xfi:aij>0g aijqi: (16)These limits are compared with the cost coe�cient cj and applied to identify variables for whichthe sign of the reduced cost zj � tj can be restricted (dominated variables). Dual constraint jbecomes redundant if the above holds, so the dominated variable is �xed on its appropriate boundand eliminated from the problem. If the reduced cost zj � tj has a weak sign restriction (it isnonnegative or nonpositive), then the variable is a weakly dominated one. Surprisingly, if this isthe case, then (under some additional conditions [30]), the variable can also be eliminated.8. Dual constraint limits (16) are used to generate implied bounds on dual variables. A techniquesimilar to that of point 4 is applied. Implied bounds tighter than the original ones replace those of(15). 8



All techniques mentioned by now are worth to be run before and LP solver is applied. They usually reducethe problem size considerably; sometimes they identify primal or dual infeasibility or unboundedness.Improving sparsity of the problemThe way in which the LP constraint matrix is involved in interior point iterations justi�es further presolvee�ort that aims at decreasing the cost of calculating the solution of the equations (7) and improving theaccuracy of solutions. Both (never mind which form of equation is used to compute the search directions(9) or (11)), are strongly in
uenced by the sparsity structure of A. The later depends very much on theconditioning of matrix A and requires at least that it has full row rank.Sparsity of A can usually be improved. In general, one can look for a nonsingular matrixM 2 Rm�m suchthat the matrix MA is the sparsest possible. Primal feasibility constraints can in such case be replacedwith an equivalent formulation MAx = Mb; (17)much more suitable for direct application of interior point solver. Exact solution of this Sparsity Problem[14] is an NP{complete problem but e�cient heuristics [2, 14, 30] usually produce satisfactory nonzeroreductions in A. The algorithm of [30], for example, looks for such a row of A that has a sparsity patternbeing the subset of the sparsity pattern of other rows and uses it to pivot out nonzero elements fromother rows.Even very sparse A can sometimes produce relatively dense factors in (9) or (11). The later, additionally,�lls dramatically if dense columns are present in A. If the number of dense columns is not excessive, thenthe technique of splitting them into shorter pieces [29, 73] might be a remedy. Note that the augmentedsystem approach (9) su�ers less from the presence of dense columns (see e.g., Section 3.3).Full rank of matrix ATheoretically, detecting rank de�ciency of A is not a problem. One can continue the Gaussian Eliminationon A until zero submatrix is obtained. To make this process reliable, complete pivoting should be used[28], which is prohibitively expensive due to the destruction of the sparsity structure. A practicable,generalized Markowitz pivoting [64] can be used to eliminate most linear dependencies with a reasonablecost. However, not all the codes o�er such an option. On the other hand, a lot of linear dependenciescan be identi�ed with a search for duplicate rows and with the heuristics to make A sparser.Let us observe that, due to primal degeneracy, that is practically always present, the normal equationsmatrix (11) becomes rank de�cient when optimum is approached even in a case when original A has fullrow rank (for more details see section 4.1). All codes are thus equipped with safeguards against suchproblems and usually recover from small rank de�ciency of A.Some numerical experimentsTables 1 and 2 illustrate advantages of presolve e�ort. They report problem sizes, normal equationsstatistics (the number of o�-diagonal nonzeros in the adjacency structure AAT , the number of o�-diagonalnonzeros in Cholesky factor L and the number of 
ops required to compute L), and the iterations andCPU time to solve some Netlib tests to 8{digits accuracy in two cases: without presolve analysis andafter it, respectively. Additionally, Table 2 reports CPU time of presolve analysis.Those and all the following computational results reported in this paper have been obtained with theHOPDM code [4, 30]. The code is written in FORTRAN. It has been compiled with the F77 compilerwith default optimization option (-O) and has been run on a (one processor) SUN SPARC 10 workstation.9



Table 1. Original problem sizes and solution statistics.Problem Original problem size Normal equations Solutionm n nonz nz(AAT ) nz(L) 
ops iters time25fv47 820 1571 10400 11074 33217 2.42e6 26 21.4180bau3b 2235 9301 20413 9972 40038 2.25e6 48 78.23bnl2 2280 3489 13999 13457 84184 1.32e7 36 103.33cycle 1886 2857 20720 27714 87322 8.59e6 27 66.88d2q06c 2171 5167 32417 26991 163407 3.46e7 31 237.77ganges 1309 1681 6912 7656 30563 1.67e6 19 15.19pilot 1440 3449 41092 59540 204512 5.25e7 44 513.15pilot87 2029 4663 70682 115951 489267 2.33e8 44 1935.24pilotnov 951 1968 12186 10857 48992 5.18e6 19 27.81sctap3 1480 2480 8874 7386 17973 6.61e5 11 5.47ship12s 1042 2763 8178 5345 6457 8.08e4 13 3.48sierra 1222 2016 7252 4896 11635 2.73e5 18 6.53stocfor2 2157 2031 8343 12738 26282 4.57e5 18 9.00woodw 1098 8405 37474 20421 48988 3.44e6 28 44.50The analysis of results collected in Tables 1 and 2 shows that presolve analysis is a valuable techniquethat often leads to considerable savings of the solution time. These savings, however, are very muchproblem dependent (they are signi�cant for GANGES but only marginal for PILOT).3.2 Starting pointThe choice of a good starting point for an interior point algorithm is still not solved with full satisfaction.Surprisingly, points that are relatively close to the optimal solution (but are not well centered) lead oftento bad performance and/or numerical di�culties.IPMs (also infeasible IPMs) are quite sensitive to the choice of an initial point. Fortunate guess of(x0; s0; y0; z0; w0) (possible for some well understood linear programs) can reduce the computationale�ort considerably. On the other hand, bad choice may be disastrous for the e�ciency as many iterationswill have to be done before the iterates get reasonably centered and the algorithm allows large steps.The starting points in most implementations of primal{dual infeasible IPMs [4, 48, 55] are some variationof the approximate solution of the following auxiliary QP problemminimize cTx+ %2 (xTx+ sT s);subject to Ax = b; (18)x+ s = u;where % is a predetermined weight parameter. A solution of (18) can be given by an explicit formula andcan be computed at the cost comparable to a single interior point iteration. It is supposed to minimizethe norm of the primal solution (x; s) and promotes points that are better in the sense of the LP objective.10



Table 2. Advantages of presolve analysis.Problem Size after presolve Normal equations Solution Presolvem n nonz nz(AAT ) nz(L) 
ops iters time time25fv47 769 1535 9959 10456 33377 2.55e6 28 24.05 1.3280bau3b 1965 8736 19048 9176 37320 2.13e6 43 65.55 2.99bnl2 1848 3007 12458 12242 79538 1.22e7 30 78.49 2.44cycle 1400 2403 14111 18376 53182 3.54e6 41 57.81 2.57d2q06c 2012 4964 30263 24860 139274 2.54e7 41 254.37 5.06ganges 840 1172 5487 6627 11765 2.43e5 20 6.90 1.17pilot 1350 3329 40506 58265 199640 5.18e7 44 501.63 7.98pilot87 1968 4595 70361 115290 469878 2.18e8 43 1696.19 9.54pilotnov 830 1861 11466 9175 38896 3.64e6 19 23.89 2.63sctap3 1346 2356 8229 6694 14767 3.89e5 13 6.54 1.03ship12s 340 1919 4273 2139 2191 1.71e4 14 2.96 0.49sierra 1129 2008 6956 4418 10147 2.07e5 18 7.05 1.27stocfor2 1968 1854 7064 9806 21180 3.30e5 19 8.70 0.71woodw 703 5347 19727 12611 31237 1.90e6 33 38.28 3.02As the solution of (18) may have negative components in x and s, those negative components are pushedtowards positive values su�ciently bounded away from zero (all elements smaller than � are replaced by�, say, � = 1). Independently, an initial dual solution (y; z; t) is chosen similarly to satisfy y = 0 and thedual constraint (2). Again, all elements of z and t smaller than � are replaced by �.It is worth to note that the code of [77] shows consistent good e�ciency for a simple starting point(x0; s0; y0; z0; w0) = (e; e; 0; e; e), a phenomena not known for a primal{dual method (for more details seeSections 6.2 and 6.3).3.3 The linear algebraEvery iteration of an interior point method for linear programming requires computing at least oneNewton's direction for the �rst order optimality conditions. This, in turn, is equivalent to computingthe projection of some vector of Rn onto the null space of the linear operator AD. The diagonal scalingmatrix D depends on the variant of the algorithm but the computational e�ort remains practically thesame for all interior point algorithms. This explains why a comparison of the e�ciency of di�erentalgorithms is often limited to the comparison of iteration numbers to reach the desired accuracy.As was shown in Section 2, the large, sparse system of Newton's equations reduces to the so{calledaugmented system (9). After scaling the primal component of the search direction �~x = �D�1�x andsubstituting g = Dr, this system becomes24 I ~AT~A 0 3524 �~x�y 35 = 24 g�h 35 ; (19)11



where ~A = AD. Usually this system is referred to as the augmented system. Observe that equations (19)de�ne the unique orthogonal decomposition of g into �~x 2 Ker( ~A) and ~AT�y 2 Im( ~AT ) when h = 0.The system (19) has much better stability properties [6, 7] than its reduced form obtained after eliminating�~x ( ~A ~AT )�y = ~Ag + h; (20)which is called the normal equation. Direct solution of (19) needs Bunch-Parlett [13] factorization of thelarge, sparse, symmetric but not positive de�nite matrixL̂�L̂T = 24 I ~AT~A 0 35 ; (21)where L̂ is a unit lower triangular matrix and � is a block diagonal matrix with diagonal blocks of sizeone or two. As the matrix is inde�nite, there is no guarantee that nonzero diagonal elements can be foundin all intermediate steps of (symmetric) Gaussian Elimination. Cholesky decomposition thus cannot, ingeneral, be found and the possible way to overcome the di�culties is to allow inde�nite 2x2 block pivotsin �. The augmented system approach has several advantages:1. Good accuracy properties.2. Easily generalizable to exploit the sparsity of KKT systems arising in nonseparable quadraticprogramming and linear complementarity problems.3. Naturally handles free variables. If xj 2 (�1;+1), then D�2j in (9) is replaced by zero.4. Dense columns of A do not degrade its e�ciency, do not lead to signi�cant �ll in.It has two important disadvantages. It is more complicated to implement and it remains, in the average,less e�cient (about 40%) than its counterpart applying Cholesky decomposition to the normal equationsmatrix (20) LLT = ~A ~AT : (22)The reason of the e�ciency of the Cholesky decomposition comes from the fact that matrix ~A ~AT is alwayspositive de�nite therefore the sparsity preserving sequence of pivots (ordering) in which the symmetricGaussian Elimination is performed can be de�ned in advance, i.e., before the numerical operations start.Thus the Analyse phase is completely separated from the Factorise phase [18]. Even more important, thesparsity pattern of ~A ~AT is the same in all interior point iterations so the Analyse phase has to be doneonly once, before optimization.If we choose to solve the augmented system (19) by Gaussian Elimination with 1x1 pivots from the upperleft diagonal block, we end up with the normal equations. Due to stability and �ll{in reasons, other pivotsequences, possibly including 2x2 pivots, are preferable. These sequences are in
uenced by the numericalvalues in (19). They cannot be determined in advance on the sole basis of the sparsity structure analysis.To choose stable pivots (to get an improvement over normal equations) one has to inspect actual numericalvalues at the same time. Hence the analyse and factorize phases cannot be separated: the factorizationis more expensive than in the normal equations approach. Additionally, due to changes of the diagonalscaling matrix D in subsequent IPM's iterations, the pivot sequence should be rede�ned. In practice, itsu�ces to update it once every couple of iterations (only if numerical stability detoriates) and, as theexperience of [22] shows, rarely more than one such update is needed. An advantage of the augmentedsystem approach is that more freedom in the pivot choice opens the possibility of getting sparser factorsthan in the normal equations approach (e.g., degrading in
uence of dense columns can be avoided).Before we pass to a brief description of the Cholesky decomposition let us comment again on the accuracyof the two competitive approaches. System (19) is de�nitely more stable than (20) [7]. To further improve12



Table 3. Augmented system vs normal equations.Problem Augmented system Normal equationsnz(L) 
ops nz(AAT ) 
ops(AAT ) nz(L) 
ops(L) total 
ops25fv47 48183 3.41e6 10456 8.56e4 33377 2.55e6 2.64e680bau3b 60965 2.36e6 9176 5.76e4 37320 2.13e6 2.19e6bnl2 93113 1.24e7 12242 5.87e4 79538 1.22e7 1.23e7cycle 65687 2.72e6 18376 1.33e5 53182 3.54e6 3.68e6d2q06c 177415 2.41e7 24860 3.77e5 139274 2.54e7 2.58e7ganges 22005 4.97e5 6627 4.71e4 11765 2.43e5 2.90e5pilot 221610 4.20e7 58265 1.09e6 199640 5.18e7 5.29e7pilot87 - - 115290 2.55e6 469878 2.18e8 2.21e8pilotnov 57614 5.35e6 9175 1.31e5 38896 3.64e6 3.77e6sctap3 24405 5.69e5 6694 3.58e4 14767 3.89e5 4.25e5ship12s 10656 8.44e4 2139 9.94e3 2191 1.71e4 2.70e4sierra 20886 3.12e5 4418 2.52e4 10147 2.07e5 2.32e5stocfor2 28119 4.11e5 9806 3.90e4 21180 3.30e5 3.69e5woodw 56641 2.30e6 12611 1.06e5 31237 1.90e6 2.01e6stability both approaches can be equipped with easy to implement techniques that improve their accuracy,like e.g., iterative re�nement or the use of a regularizing term added to ~A ~AT (that results in boundingall pivots away from zero). Computational experience proves that the normal equations approach alsoproduces su�ciently accurate directions to reach the desired 8{digits correct solutions for practical linearprograms [30, 23, 50].Although this is the case, several researchers [19, 22, 72, 74] have decided to incorporate the augmentedsystem approach [7] in their IPM implementations. We thus �nd it interesting to give a bit of insight inthe computational e�ort of the two competitive approaches. Table 3 reports results of running them onseveral Netlib problems. It reports the number of nonzeros in triangular factors and the e�ort (
ops) tocompute them. In case of normal equations, we distinguish the e�ort to form AAT and to factorize itand we report the total e�ort being the sum of the former two. The results for normal equations comefrom HOPDM code while the results for the augmented system approach have been reproduced fromTable A.3 of [22]. Note that the problem PILOT87 was not solved in [22].It would undoubtedly be advantageous to be able to pick up the preferable approach after the prelimi-nary analysis of the sparsity structure of the LP constraint matrix A. This needs both methods to beincorporated to the implementation, which is quite unusual yet.Theoretically the most di�cult in an e�cient implementation of the Cholesky decomposition is theAnalyse phase, i.e., reordering for sparsity. The goal of it is to �nd a permutation matrix P such that theCholesky factor of P ~A ~ATPT is the sparsest possible. This is, unfortunately, an NP{complete problem[78]. In practice, a suboptimal solution is usually found by applying some reordering heuristics. Theseheuristics work very well in practice. In a marginal time spectacular density reduction of the factors isreached. The most popular of them are the minimum degree and the minimum �ll{in orderings that weshall now brie
y describe. 13



Minimum degree orderingMarkowitz [51] observed that in the kth step of an (unsymmetrical) sparse Gaussian Elimination locallythe best pivot candidate aij is the one that minimizesfij = (ri � 1)(cj � 1);where ri and cj are the numbers of nonzero entries of row i and column j in the kth Schur complement.The value fij gives the number of 
ops required by the kth step of Gaussian Elimination and, at thesame time, estimates the potential �ll-in caused by this step. The pivot sequence found that way shouldthus well prevent excessive �ll-ins and ensure a low cost of the factorization. Tinney and Walker [71]applied this strategy to symmetric matrices. When symmetric positive de�nite systems are considered,pivot selection is restricted to diagonal elements, hence the Markowitz merit function simpli�es tofj = (cj � 1)2; (23)and leads to a simple rule that the best candidate for the pivot column is the one with the minimumnumber of nonzero entries. Interpreting this process in terms of the elimination graph [25], one sees thatthis is equivalent to the choice of the node that has the minimum degree, which gave the name to thisheuristic.The key point of an e�cient implementation of the minimum degree ordering is the representation of�ll{ins as the elimination proceeds [18, 25]. The algorithm keeps trace of the elimination process storingonly pivotal cliques. A clique denotes here a set of row numbers of all, say, p rows that are active in agiven pivotal step. The storage of a clique needs remembering only p row numbers, while the symmetricmatrix represented by it has p(p+1)=2 elements. The sparsity pattern of the Schur complement at the kthstep of Gaussian Elimination (needed to determine the next minimumdegree column) is thus representedimplicitly by the sparsity pattern of the decomposed matrix and the pivotal cliques from previous stepsof the elimination.Modern implementations of the minimumdegree ordering use several enhancements of the basic algorithm[25] and are extremely powerful. Their detailed discussion is beyond the scope of this paper. However, wewould like to focus on one of them that plays a particularly important role. It is a technique that takesadvantage of the presence of indistinguishable nodes called also supernodes in the elimination graph (a setof columns with identical sparsity patterns). Instead of storing several identical cliques, this techniquehandles the whole supernode with only one clique, which leads to obvious savings in a time{consumingdegree update step of the reordering algorithm. Note that the form of the normal equations matrixAAT = nXj=1 ajaTj ;where aj denotes the jth column of matrix A, explains the natural tendency to creating many supernodesas every column aj of A creates (subject to a symmetric row and column permutation) a dense windowin AAT and larger windows produced by denser columns often cover smaller ones.Minimum �ll{in orderingLet us observe that, in general, the function (23) considerably overestimates the expected number of �ll{ins in a given iteration of the Gaussian Elimination because it does not take into account the fact thatin many positions of the predicted �ll{in, nonzero entries already exist. It is possible that another node,although more expensive in terms of (23), would produce less �ll{in as the elimination step would mainlyupdate already existing nonzero entries of the Schur complement. An analysis that exactly predicts�ll{in and chooses the pivot producing the minimum number of it (minimum �ll{in ordering) is much14



more involved than the minimum degree ordering. To count predicted �ll{in one has to simulate theelimination step, which is quite an expensive operation. Surprisingly, in general, this technique does noto�er su�cient advantage over the minimum degree ordering to justify its use.Our discussion concentrated by now on the Analysis phase of the decomposition. However, the dominatingterm in the computational e�ort of the interior point algorithm is the (repeated several times) numericalfactorization. From the mathematical point of view, once the pivot order has been found, the e�ort ofthe numerical factorization is uniquely determinedFLOPS = mXi=1 l2i ; (24)where li denotes the number of nonzero elements in column i of L. However, in practice, its e�ciencystill depends very much on how the computations are organized and how well do they exploit the speci�ccomputer architecture like parallelism, vectorization, cache memory, the use of Basic Linear AlgebraSystem (BLAS) routines, etc. Lower level BLAS routines o�er, for example, loop unrolling techniquethat vectorizes very well. Higher level BLAS routines contain block versions of decomposition algorithmsthat take advantage of the more e�cient organization of the matrix-vector and matrix-matrix products.The gain that results from the use of BLAS may vary signi�cantly on di�erent computers.Detailed discussion of these issues is beyond the scope of this paper. Undoubtedly, specializations of theinterior point implementations to di�erent computer architectures will draw much attention of the LPcommunity in the near future. The interested reader may consult preliminary results of [10, 35] and thereferences therein. A variant of the Cholesky decomposition that suits particularly well parallelizationcomes from [20].Instead, we shall present a technique that gives considerable time savings on all computer architectures.The savings vary signi�cantly for di�erent computers. This technique consists in a switch to densecode near the end of decomposition [18]. It exploits the fact that triangular factors become practicallycompletely dense in the last steps of Gaussian Elimination. Loops over nonzero entries of the pivotcolumn can then avoid indirect addressing (needed to handle sparse columns).Table 4 compares the e�ciency of our implementation in the case when a switch to dense mode is done(default) with the case when it is disabled. It, additionally, reports the number of decomposition 
opsrequired to compute Cholesky factorization of AAT , that part of this e�ort which is done in dense modeand the size of the dense window. Even on a SUN SPARC 10 computer (without any vectorizationfacilities) considerable savings are obtained if a dense window is large. Obviously, the savings would beremarkably larger on other computer architectures that take advantage of the speci�c processor features(e.g., on IBM's RISC 6000 workstation).Our discussion in this section has naturally concentrated on direct approaches to solving reduced KKTsystems that for general large scale LPs are de�nitely the methods of choice. Saunders' remark [67]:"Major Cholesky would feel proud" seems thus well summarize current state of the art of IPMs imple-mentations.To complete the discussion of di�erent methods of computing projections, let us mention also iterativeapproaches. A classical method from this family, i.e., conjugate gradients algorithm has been appliedto solving reduced KKT systems by several researchers but, up to our knowledge, it has never provedcompetitive when applied to general large scale linear programs. The reason of this is an always presentill{conditioning of KKT systems. The only way to overcome extremely slow convergence of an iterativemethod is the use of a good preconditioner but, for general linear programs there is no way, to date,to �nd such a preconditioner at an acceptable computational e�ort. Instead, for specially structuredproblems good preconditioner derived from the problem interpretation can sometimes be found [65, 62].15



Table 4. Advantages of switch to dense mode.Problem No window With dense windowiters time iters time Total 
ops Dense 
ops window25fv47 28 26.78 28 24.05 2.55e6 1.25e6 15580bau3b 43 69.43 43 65.55 2.13e6 7.41e5 130bnl2 30 93.79 30 78.49 1.22e7 7.92e6 287cycle 41 60.39 41 57.81 3.54e6 9.05e5 139d2q06c 41 300.06 41 254.37 2.54e7 1.49e7 354ganges 20 7.02 20 6.90 2.43e5 5.10e4 53pilot 44 575.02 44 501.63 5.18e7 2.27e7 408pilot87 43 2172.71 43 1696.19 2.18e8 1.51e8 768pilotnov 19 25.75 19 23.89 3.64e6 1.25e6 155sctap3 13 6.82 13 6.54 3.89e5 1.12e5 69ship12s 14 2.96 14 2.96 1.71e4 - -sierra 18 7.39 18 7.05 2.07e5 8.53e4 63stocfor2 19 9.07 19 8.70 3.30e5 1.62e4 36woodw 33 40.11 33 38.28 1.90e6 4.62e5 1113.4 StepsizeMost of interior point methods require that all iterates belong to a neighborhood of the central path [31].One way to keep this condition satis�ed is to allow only small reduction of the barrier parameter with afactor � = 11 + 
=pn; (25)where 
 2 (0; 0:1) that, in consequence, leads to very short steps (short step methods). Although, suchan approach allows proving nice theoretical properties of the algorithm (all iterates are very close to thecentral path), it leads to hopelessly slow convergence as the worst case behavior becomes the practice.In medium step methods (when 
 = 
(1)) and long step methods (when 
 = 
(pn)), a more optimistictarget is chosen and, consequently, the iterates are allowed to move in a much larger neighborhood of thecentral path but more damped Newton steps are required to get close to the new target. The complexityof the long step methods becomes O(n), which is worse than that of the the short step methods. Inpractice, these methods o�er very fast convergence, signi�cantly faster than is given by the worst casecomplexity analysis.In current implementations we do not bother about getting really close to the target. The target isupdated after each Newton step. Even worse, di�erent stepsizes are used in primal and dual spaces andthe only concern is preserving the nonnegativity of the variables. More precisely, maximum possiblestepsizes are determined by the formulae�P := max � > 0 : (x; s) + �(�x;�s) � 0;and �D := max � > 0 : (z; t) + �(�z;�t) � 0; (26)16



Table 5. Di�erent stepsizes in di�erent spaces.Problem �P = �D �P 6= �P25fv47 31 2880bau3b 44 43bnl2 33 30cycle 49 41d2q06c 45 41ganges 21 20pilot 47 44pilot87 45 43pilotnov 19 19sctap3 13 13ship12s 15 14sierra 20 18stocfor2 21 19woodw 35 33whole Netlib 1996 1778and these stepsizes are slightly reduced with a factor �0 = 0:99995 to prevent hitting the boundary. Theuse of such a stepsize rule saves about 40% of the iterations number compared with the case when thetheory of the long step methods is strictly followed.The use of di�erent stepsizes in di�erent spaces is due to Kojima et al. [45]. However, to preserve thepolynomial complexity, some additional safeguards were needed.In another paper Kojima, Megiddo and Mizuno [44] prove the global convergence of the infeasible primal{dual method. In their stepsize selection, only nonnegativity of variables is concerned like in (26) butadditional conditions are imposed that ensure more uniform progress in reducing both primal and dualfeasibility and approaching optimality.The results collected in Table 5 illustrate the e�ciency of our primal{dual implementation measured withthe number of iterations to reach optimality in two cases: 1) always identical stepsizes are chosen in bothspaces and 2) di�erent stepsizes are allowed (default). These results clearly show that restricting primaland dual stepsizes to be the same causes remarkable loss of the e�ciency (218 iterations on 90 problems).3.5 Centering and higher order methodsAlmost all interior point algorithms compose the direction step (�x;�s;�y;�z;�t) (denoted with �for short) from two parts � = �a +�c: (27)17



i.e., combine a�ne{scaling, �a and centering, �c components. The term �a is obtained by solving (7)for � = 0 and �c is the solution of equation like (7) for the right hand side(0; 0; 0; �e�XZe; �e � STe)T ;where � > 0 is some centering parameter (� = xT z+sT t2n , for example, refers to centering that does notchange the current complementarity gap). The term �a is responsible for "optimization" while �c keepsthe current iterate away from the boundary.All path{followingmethods can bene�t from the use of the predictor{corrector technique. This techniquetakes into account higher order terms in the Newton's direction and estimates targets that are more likelyto be achieved. Undoubtedly, one of the reasons why it proved so successful in the primal{dual method isthe very good Mehrotra's heuristics de�ning the new target (28) that takes advantage of the knowledgeof a current and predicted complementarity gap. We shall now address this technique in more detail.Introducing higher order terms is combined in it with the adaptive choice of the barrier parameter � basedon the analysis of the reduction of the complementarity gap achievable when moving in a (predictor, � = 0)primal-dual a�ne scaling direction.The a�ne scaling (predictor) direction �a solves the linear system (7) for the right hand side equal tothe current violation of the �rst order optimality conditions for (1){(2), i.e., with � = 0. This directionis usually "too optimistic" | if a full step of length one could be made in it, the LP problem wouldbe solved in one step. Predictor{corrector makes a hypothetical step in this direction. The maximumstepsizes in the primal, �Pa and in the dual, �Da spaces preserving nonnegativity of (x; s) and (z; t),respectively are determined and the predicted complementarity gapga = (x + �Pa�x)T (z + �Da�z) + (s + �Pa�s)T (t+ �Da�t)is computed. It is then used to determine the barrier parameter� = �gag �2 gan ; (28)where g = xT z + sT t denotes current complementarity gap. The term ga=g measures the achievableprogress in the a�ne scaling direction. If only a small step in the a�ne scaling direction can be made,then ga=g is close to one and � = g=n, which means that we only want to improve centrality. If thea�ne scaling direction o�ers considerable progress in the reduction of the complementarity gap, thenmore optimistic target (closer to the optimum) is chosen.For such a �, the corrector direction �c is computed26666666664 A 0 0 0 0I 0 I 0 00 AT 0 I �IZ 0 0 X 00 0 T 0 S 3777777777526666666664 �xc�yc�sc�zc�tc 37777777775 = 26666666664 000�e ��Xa�Zae�e��Sa�Tae 37777777775 ; (29)and, �nally, the direction � of (27) is determined.A single iteration of the (second order) predictor-corrector primal-dual method needs thus two solves ofthe same large, sparse linear system for two di�erent right hand sides: �rst to solve (7) with � = 0 andthen to solve (29).We should note here that the above presentation of the predictor{corrector technique follows the compu-tational practice. It abuses mathematics in the sense that stepsizes �P and �D are not taken into account18



Table 6. E�ciency of higher order methods.Problem Order 1 Order 2 Order 3 Order 4iters time iters time iters time iters time25fv47 44 33.26 28 24.05 25 24.98 23 24.4480bau3b 65 74.00 43 65.55 35 66.19 40 82.75bnl2 58 125.54 30 78.49 25 73.20 27 80.42cycle 63 74.15 41 57.81 33 51.88 33 55.10d2q06c 65 364.35 41 254.37 36 243.84 33 236.53ganges 32 7.50 20 6.90 19 8.31 19 8.45pilot 56 617.06 44 501.63 34 405.90 32 389.20pilot87 63 2419.63 43 1696.19 35 1431.03 33 1384.22pilotnov 33 33.24 19 23.89 17 24.39 15 23.68sctap3 24 8.64 13 6.54 12 7.94 11 8.69ship12s 26 3.63 14 2.96 14 4.46 13 4.75sierra 30 8.87 18 7.05 16 8.65 16 9.88stocfor2 31 12.90 19 8.70 17 10.48 17 11.80woodw 54 49.07 33 38.28 27 41.31 26 43.36in it (one would expect this when using higher order Taylor approximations). The reader interested tosee a detailed rigorous presentation of this approach is encouraged to consult [56].Let us observe that the predictor{corrector mechanism can be applied repeatedly leading thus to higher(than two) order method. Direction � of (27) can be used as a predictor, and a new corrector term �0ccan later be computed and added to it. A method of order k would compute k � 1 corrector terms andwould require solving the same linear system for k di�erent right hand sides.Although the use of higher order terms usually results in the reduction of the number of iterations toreach optimality, it does not necessarily produce time savings due to the increased e�ort in a singleiteration. To date, second order methods seem, in the average, to be the most e�cient. (They are usedin most implementations [23, 30, 50, 55].) No one knows yet how to bene�t practically from higher orderinformation. A possible way to take advantage of it is to promote higher order terms if the Choleskyfactorization is very expensive compared with a single solve (see, e.g., [4] for details).We end this section with a demonstration of the use of higher order techniques. Table 6 reports thenumber of iterations to reach 8{digits precision in the duality gap and the CPU time for several Netlibproblems for di�erent order methods. The method of order 1 is a pure primal{dual one in which thedirection comes from the solution of (7). The method of order 2 is a classical predictor{corrector one inwhich one corrector term has been computed. The method of order k computes k � 1 corrector terms.The analysis of results collected in Table 6 shows that the use of higher order information may reduce thenumber of iterations to reach optimality. However, this translates into computation time savings only ina case when Cholesky factorizations are very expensive (compare to the data of Table 4).19



3.6 Stopping criteriaInterior point algorithms terminate when the relative primal and dual feasibility and the relative dualitygap are reduced to a predetermined tolerance. In case of the primal{dualmethod, the following conditionsare checked to state p{digits accurate solutionsjjAx� bjj1 + jjxjj1 � 10�p and jjx+ s � ujj1 + jjxjj1+ jjsjj1 � 10�p; (30)jjATy + z � w � cjj1 + jjzjj1+ jjwjj1 � 10�p; (31)jcTx� (bTy � uTw)j1 + jbTy � uTwj � 10�p: (32)It is worth to note that scaling may change the left hand sides of equations (30-32) and, consequently,the measures of the quality of solutions, signi�cantly. The denominators of these left hand sides usuallydecrease after scaling the problem.An 8{digits exact solution (p = 8) is typically required in the literature.In practice, it is extremely rare that condition (32) is satis�ed and at the same time one of the conditions(30) or (31) does not hold. The explanation of this phenomena comes from the analysis of the �rst orderoptimality conditions (5). Observe that the �rst three equations, that impose primal and dual feasibility,are linear. They are thus "easier" to be satis�ed for the Newton's method than the last two equationsthat are nonlinear and, additionally, change in subsequent interior point iterations. Consequently, themost important and perhaps the only condition that really has to be checked is (32).Results collected in Table 7 report the numbers of primal{dual iterations at which the primal and thedual relative feasibilities and the relative optimality gap were reduced to 10�8 for the subset of Netlibproblems. Its last three columns give the relative infeasibilities and the relative optimality gap for the8-digits optimal solution.Note, that for infeasible problems or for problems with unbounded level sets the scaling of infeasibilitiesis not appropriate. In these cases the iterates diverge, hence the denominator goes to in�nity which mightlead to false results. The proper normalization factor, in these cases, would be 1 + jjbjj1 and 1 + jjcjj1,respectively.3.7 Theoretical vs practical worst{case complexityTheoretical worst case complexity of the simplex method is not known to be polynomial but this nevercaused problems in practice. In fact, modern simplex codes rarely do more than m+n iterations to reachoptimality.Although the worst case complexity of interior point methods is polynomial, the situation is somehowsimilar. Theoretical bound of O(pn log 1� ) iterations to obtain an �{exact solution to LP is still toopessimistic. In practice, the number of iterations is something like O(logn). It is very rare for examplethat the predictor{corrector primal{dual infeasible IPM makes more that 50 iterations to reach 10�8{optimality. This is never the case when the HOPDM code [30] is applied to solving 90 LPs from theNetlib suite (only 7 problems need more than 40 iterations to be solved).20



Table 7. Attaining feasibilities and optimality.Problem Iterations to reach Accuracy of solutionPr. Feas. Dl. Feas. Opt. Pr. Inf. Dl. Inf. Opt. Gap25fv47 25 13 28 3.3e-12 5.8e-9 1.9e-980bau3b 23 20 43 1.2e-12 9.7e-9 4.3e-9bnl2 10 22 30 1.1e-11 4.4e-10 6.9e-9cycle 25 41 41 1.3e-14 7.0e-9 2.7e-9d2q06c 20 13 41 7.1e-15 5.7e-12 2.5e-10ganges 15 14 20 3.2e-11 4.1e-9 8.3e-11pilot 44 11 44 4.6e-9 1.6e-13 6.6e-9pilot87 39 43 43 2.4e-11 8.8e-9 3.2e-9pilotnov 15 7 19 1.0e-12 1.8e-10 2.0e-10sctap3 13 13 13 2.9e-12 2.4e-12 1.0e-9ship12s 12 13 14 2.6e-10 1.1e-12 6.9e-11sierra 10 16 18 7.9e-13 1.8e-9 4.8e-9stocfor2 13 18 19 3.4e-12 2.3e-13 1.6e-10woodw 32 10 33 1.8e-12 1.2e-10 3.9e-104 Remarks on numerical di�culties4.1 Degeneracy and IPMsThe main computational step in all IPMs is solving the system of normal equationsAD2ATp = q; (33)for some q, where D is a diagonal matrix (11). G�uler and Ye [34] showed that in all central path followingmethods, any limit point (x�; z�) of the iterates (xk; zk) is in the relative interior of the optimal faces. Infact, they prove that there exists a constant 
, where 0 < 
 < 1, such that the relations
 � xkj � 1=
 for j 2 Px; (34)
 � zkj � 1=
 for j 2 Pz; (35)are satis�ed for all k � 0. Here (Px; Pz) is again the optimal partition of the LP problem.Note that xkPz ! 0 and zkPx ! 0 in any convergent IPM. Therefore, the limitingbehavior ofAPx (DkPx )2ATPxdetermines the asymptotic behavior of the linear systems (33). For primal{dual path-following methodswe can obtain more information about the matrices DkPx as we shall now explain.For this class of methods (Dk)2 = Xk(Zk)�1, so for any i,xizi = x2ixTz � xT zxizi : (36)21



If i 2 Px, it follows from relations (34), (35), and (36) that
2xT z � xizi � 1�
2(xT z) ; (37)where � is an appropriate constant depending on the speci�c IPM. This shows that the condition numbersof the matricesDkPx are uniformly bounded and bounded away from zero. Thus, when matrixAPx has fullrank, then matrices APx (DkPx )2ATPx also have full rank, and the condition numbers of the later matricesare uniformly bounded. The rank of APx depends on the degeneracy of the problem, which we discussbelow in more detail.1. If (P ) and (D) are both non{degenerate on their respective optimal faces, then both programshave unique solutions and the matrices APx and APx (DkPx )2ATPx are all non{singular. The linearsystems (33) are well conditioned, at least when � and 
 are not too small.2. If (P ) is degenerate and (D) is non{degenerate, matrix APx has less than m columns and so therank of APx is less than m and APx (DkPx )2ATPx is singular. This means that the linear system (33)is ill{conditioned. Numerical problems caused by these ill{conditioningmay arise and, in fact, theywere early recognized [26]. However, as we shall discuss in Section 4.2 the method itself has anembedded safeguard against them.3. If (P ) is non{degenerate and (D) is degenerate, then the rank of APx is equal to m, henceAPx(DkPx )2ATPx is non{singular. This implies that the linear system (33) is well{conditioned, againas long as � and 
 are not too small. Observe, that if (P ) is non{degenerate, the degeneracy statusof (D) matters little from the numerical point of view.4. If both (P ) and (D) are degenerate, then not much can be said about the partition (APx ; APz ) andthe rank of APx . Consequently, we can also say nothing about rank of A(Dk)2AT matrices.4.2 Ill{conditioned normal equations matrixIt became a folklore that every iteration of an IPM needs inversion of the matrix that, as the optimumapproaches, becomes extremely ill{conditioned. Although this is generally true, its impact on the accuracyof solutions is no as dramatic as one would expect. Ill{conditioning of the coe�cient matrix is not theonly factor that determines the di�culty of solving the system of linear equations and the accuracy ofsolutions. An equally important factor is the relation between the matrix and the right hand side. Thefollowing important result [70] theoretically justi�es the common experience that numerical problems arerare even if the normal equations matrix is ill{conditioned.Let us have a closer look at the right hand side of the normal equations system (11). Since it has theform q = AD2r + h, we may split (11) into two systems of equationsAD2ATpr = AD2r; (38)and AD2ATph = h; (39)Stewart [70] proved, that with given A and r, for any positive diagonal matrixD, the solution of equation(38) belongs to a bounded compact set. In other words, even if the normal matrix become ill{conditioned,this bad property has limited in
uence on the solution vector pr.Unfortunately, in the infeasible primal{dual method, h in (39) is nonzero and has no clear dependenceon A and D. Furthermore r changes (see (10)). If the LP is both primal and dual feasible, then all22



infeasibilities �b; �u and �c go rapidly to zero. Consequently, h (and ph) vanishes while r converges to a�xed point so Stewart's result ensures the stability of pr.If the LP is dual infeasible, then the dual iterates diverge, �c does not converge to zero and r diverges.The above stability result does not apply and, in practice, serious numerical di�culties are observed.If the LP is primal infeasible, then the primal iterates diverge, primal infeasibilities (�b; �u) do not convergeto zero and r diverges. Similarly to the dual infeasible case, the stability result does not apply to (38)and, eventually, as h = �b might not converge to zero, the solution of (39) may cause additional numericalproblems.5 Optimal basis identi�cation>From now on in the rest of the paper we consider the LP problem and its dual in the standard form, e.g.the primal variables are nonnegative and have no upper bounds. Such a form simpli�es the notationsand makes it easier to explain and understand the underlying ideas. Hence the primal problem that weconsider is minimize cTx;subject to Ax = b; (40)x � 0;and the dual problem is maximize bTy;subject to AT y + z = c; (41)z � 0;where the vectors, matrices have the same dimensions as before.It is known that a pair of primal and dual feasible solutions x� and (y�; z�) are optimal if X�z� = 0.The optimal pair is strictly complementary if x� + z� > 0. In this case we have Px = fi j x�i > 0g andPz = fi j z�i > 0g. Due to the complementarity property Px \ Pz = ;, hence the strict complementarityproperty is equivalent to Px [ Pz = f1; : : : ; ng. The partition (Px; Pz) is uniquely determined by theproblem data and is called the optimal partition of the LP problem.5.1 Do we need an optimal basis?It is well known that if the LP problem is solved by the simplex method, then �nally an optimal basis(solution) is produced as the solution of the problem. Of course if the problem is degenerate and multipleoptimal solutions are present, then one of the possible optimal basis solutions is generated. In this caseIPMs (except Iri{Imai's [36] method), contrary to the simplex algorithm, does not produce an optimalbasis solution but a primal{dual optimal pair where the primal optimal solution is a solution from therelative interior of the primal optimal face and the dual optimal solution is a solution from the relativeinterior of the dual optimal face. Hence IPMs provide an optimal solution with a maximal number ofnonzero coordinates in both the primal and dual problems (see e.g., G�uler and Ye [34]). It is also provedthat these solutions are strictly complementary and they de�ne the optimal partition of the LP problem.The existence of strictly complementary primal{dual optimal solutions has been proved �rst by Goldmanand Tucker [27]. Balinski and Tucker [9] propose a pivot algorithm to generate such a strictly comple-mentary pair. In contrast, as we will see later on, an optimal basis can be obtained from any primal{dualoptimal solution pair in strongly polynomial time. 23



To have an optimal basis might be important for several reasons. For example, basic solutions have aminimal number of non{zero coordinates, which is advantageous when a solution with a small number ofpositive coordinates is required for some practical applications. Of course, there are situations when astrictly complementary optimal solution and the knowledge of the optimal partition is needed (see e.g.,Greenberg [32]).Currently, sensitivity and postoptimal analysis are based on the knowledge of an optimal bases in allcommercial packages. People are used to this approach, although several papers recognized the poten-tial mathematical errors and negative economical consequences of this approach [75, 37, 32]. Correctpostoptimal analysis is possible based on solutions found by IPMs or, on a di�erent cost, by the simplexmethod. The decision of which approach is preferable depends on the problem instance and is discussedin Subsection 6.1.To our best knowledge, a basic solution is necessary for cutting plane methods in mixed integer program-ming. In branch and bound methods the problem has to be reoptimized after some small modi�cation.To date simplex based solvers are more e�cient than IPMs if an \almost optimal" solution is available.For numerical reasons or if we are facing a large mixed integer problem, sometimes a crossover from theIPMs to the simplex method is needed. The e�cient techniques for the crossover are similar to the basisidenti�cation techniques.These advantages provide su�cient motivation to examine how one can generate an optimal basic solutionfrom an optimal or near optimal solution obtained by an IPM. It is evident that this question occurs onlyin the case of degeneracy, since otherwise the primal and dual optimal solutions are unique and are alsobasic solutions.5.2 How to get an optimal basis?Several attempts were made to create e�cient methods that produce an optimal basis if a (strictlycomplementary) optimal solution is available. The best theoretical algorithm, which also turned out tobe very e�cient in practice (see e.g., [11]) is due to Megiddo [53]. It �nds an optimal basis in stronglypolynomial time, provided that optimal solutions are available to both (40) and (41). Due to its theoreticaland practical importance we discuss it in more detail.Principally, IPM ends up with a strictly complementary pair of optimal solutions but the scheme isapplicable to a slightly more general case. Suppose that x, primal and y; z, dual optimal solutions areavailable. Let A = [A1; A2; A3], x = (x1; x2; x3); z = (z1; z2; z3); c = (c1; c2; c3) where index 1 refers tothe positive coordinates of x, index 2 refers to the zero coordinates of both x and z, and index 3 refers tothe positive coordinates of z. Then, we have A1x1 = b, x1 > 0, x2 = 0, x3 = 0, and AT1 y = c1; AT2 y = c2,AT3 y < c3.Starting from such a solution and partition we are looking for an optimal basis, i.e., a disjoint partition(B;N ) of the indices such that submatrix of A built of columns from B is nonsingular, xB � 0, zB = 0,xN = 0, and zN � 0.The process will subsequently build B up and, if necessary, modify x and z to satisfy the above signrequirements. Naturally, all columns whose indices enter B must be linearly independent to meet thenonsingularity requirement. As the process starts from optimal solution, it will not alter the objectivevalues.The algorithm is split into three phases. In the �rst one, a maximal linearly independent subset of thecolumns of A1 is built up. At the same time some coordinates of x1 are puri�ed and so moved to A2. Thiscontinues until the resulted A1 contains only linearly independent columns. The indices of A1 form then24



initial B. If B is already a basis, we are done. Otherwise, in the second phase it is extended to a maximalindependent subset of [A1; A2]. If B still is not a basis, then we proceed with third phase. Every stepof it puri�es some indices of z3, i.e., drives the corresponding coordinates to zero. All the correspondingcolumns are independent on the current B and moved to A2. They are immediately examined if thecurrent B can be extended by them (at least one of them has to be egligible). These steps are repeateduntil B extends to a basis. The complete algorithm is presented below.Optimal Basis Identi�cation AlgorithmInitializationSuppose that x primal and y; z dual optimal solutions are available and that x and zare initially partitioned as explained above.Reduce the positive part of x:While the columns of A1 are dependent dobeginFind (e.g., by pivoting) a vector t such that A1t = 0 (this implies cT1 t = 0).Using t, eliminate a positive coordinate (say j) from x1, while preservingthe non{negativity of x1 (ratio test). Remove column aj from A1 and addit to A2.endLet B = A1. (Note that the columns of B are independent at this stage.)Extend B to a basis:Extend B using A2:While rank(B) < rank[A1; A2] dobeginIf rank[A1; A2] > rank(B) and column aj of [A1; A2] is independent fromB, add aj to B.endExtend B using A3:While rank(B) < m dobeginFind (e.g., by pivoting) a vector u such that BTu = 0 (this impliesAT1 u = 0; AT2 u = 0) and AT3 u 6= 0. Note that u satis�es bTu = 0 (sinceuTAT1 x1 = bTu). Using u, eliminate a positive coordinate (say j) from z3,while preserving the dual feasibility of z (ratio test). Remove aj from A3,and add it to A2 and B.end(We now have an optimal complementary pair (x; z), where rank(B) = m. Using theformulae BxB = b and BT y = cB , we see that basis B is optimal.)Note that only Gaussian Elimination steps (pivoting) are necessary to perform this algorithm. Theamount of work involved depends on the degree of degeneracy of the LP problem. In the worst case, notmore than n pivots (the dimension of the space) are necessary to identify an optimal basis. The algorithm25



uses both primal and dual information and generates optimal basic solutions both to the primal and thedual problems.Megiddo also proves the surprising result that the complexity of identifying an optimal bases if just aprimal optimal solution or just a dual optimal solution is available is equivalent to solving an LP problem.This result also demonstrates that the primal{dual approach has an important advantage compared topure primal or dual methods.Although the above algorithm is clear and elegant, there are several problems to be solved in its practicalimplementation. One has, for example, only approximate optimal and approximate complementarysolutions, hence tolerances and some safeguards are needed in implementations. Another problem consistsin �nding the partition Px, Pz. That is why applying Megiddo's algorithm initialized from an IPMoptimal pair, the (x2; z2) part usually refers to those variables for which no clear decision can be made ifthe variable index belongs to Px or Pz. Special care must also be taken to select a stable basis. Megiddo'salgorithm has been e�ciently implemented [11, 47, 5]. In the last reference it is theoretically clari�edwhen a guaranteed crossover can take place.6 Problems to be solvedAlthough great progress is made concerned with the e�ciency of IPM implementations, some relevantquestions still remain open. We shall concentrate on only three of them which seem the most important,namely:� Implementing postoptimal analysis in a correct way.� Handling problems which have unbounded optimal faces.Detecting primal/dual infeasibility.� Warm start.6.1 Correct postoptimal analysisIn implementing algorithms for LP one has to consider methods to produce shadow prices and ranges.Currently, implementations of sensitivity and postoptimal analysis in all commercial codes are based onthe knowledge of an optimal basis. People are used to this approach, although several papers recognizedthe potential mathematical errors and negative economical consequences of it ([75, 37, 32]). The rangesand shadow prices obtained from analyzing an optimal bases are usually incorrect as one would like toknow the linearity intervals of the optimal value function and its left/right derivatives which are thecorrect shadow prices. This correct information is obtainable at a di�erent cost. It is proved [3, 37] thatthere is a one to one correspondence between the optimal partitions and the linearity intervals, breakpoints of the value function. These values can be obtained in the cost of the solution of some smallerLPs. To de�ne these LPs one needs a description of the optimal face. Once a strictly complementarysolution is found, the optimal partiton (Px; Pz) is also known. The primal optimal face is then given byP� = fx j Ax = b; x � 0; xPz = 0g;while the dual optimal face isD� = f(y; z) j ATy + z = c; z � 0; zPx = 0g:26



Alternatively, if the optimal partition is not known just a primal optimal solution x� and a dual optimalsolution (y�; z�) is available then the optimal faces are characterizable as follows.P� = fx j Ax = b; cTx = cTx�; x � 0g;D� = f(y; z) j ATy + z = c; bTy = bTy�; z � 0g:As mentioned above, to get the linearity intervals and correct shadow prices, the solution of some auxiliaryLPs is needed. As illustration, �rst, we de�ne the two LPs to �nd the left and right end of the actuallinearity interval [�left; �right] when a single objective coe�cient cj changes. If the optimal partition(Px; Pz) is known, one need to solve the following two linear programs:�left = minf� j ATy + z = c+ �ej ; z � 0; zPx = 0g;�right = maxf� j AT y + z = c+ �ej; z � 0; zPx = 0g:If the optimal partition is not available, just optimal solutions are known, the solution of the two LPs�left = minf� j ATy + z = c+ �ej; bTy = cTx� + �x�j ; z � 0g;and �right = maxf� j AT y + z = c+ �ej; bT y = cTx� + �x�j ; z � 0gis necessary. Note, that the validity of the resulting ranges follows from the concavity or convexity,respectively of the optimal value functions.Similarly, the correct left and right shadow prices can be obtained by solving some auxiliary LP problems.It is obvious that if we are in the interior of a linearity interval of the value function as cj varies, thenthe left and right shadow prices are equal and both equals to xj. If cj is a breakpoint of the optimalvalue function, then the left and right shadow prices (xj�left; xj�right) can be computed by solving thetwo LP problems xj�left = maxfxj j Ax = b; x � 0; xPz = 0g;xj�right = minfxj j Ax = b; x � 0; xPz = 0gin the optimal partition approach. If the optimal partition is not available the following two LPs are tobe solved: xj�left = maxfxj j Ax = b; cTx = cTx�; x � 0g;xj�right = minfxj j Ax = b; cTx = cTx�; x � 0g:If bi varies then the corresponding values can be obtained similarly on the cost of the solution of someanalogous LPs. We do not go into further details here. For a complete analysis based on the optimalpartition see [3, 37, 40]; the alternative approaches when the optimal partition is not available arediscussed in [75, 57, 40].To close this section we point out that to get the correct ranges and shadow prices for all the primaland dual variables needs substantially more time than the incomplete (incorrect) optimal basis approach.Hence it is advisable to select a smaller set of \important" variables and to perform the necessarycalculations just for this set. 27



6.2 Unbounded optimal faces, infeasible problemsAs it is discussed in Section 2 the current implementations are based on infeasible IPMs. One of the the-oretical disadvantages of the implemented infeasible IPMs is that their theoretical complexity is O(nL)instead of O(pnL), the best complexity to date. If the optimal face(s) are unbounded, then the dualitygap converges to zero while the sequence(s) of solutions (primal, dual or both according to the unbound-edness of the optimal faces, respectively) diverges, hence it is di�cult to identify optimal solution(s).Similar di�culties occur if the primal or dual or both problems are infeasible. This case always manifestswith the divergence of the iteration sequence in infeasible IPMs, which, in practice, might not be easy toidentify. Resolving these di�culties is one of the most interesting problems nowadays.The so{called skew-symmetric self{dual embedding (SSSD) might be a remedy. The SSSD was �rstintroduced by Ye, Todd and Mizuno [79] using the standard form problems (40) and (41). They discussedmost of the advantages of this embedding and showed that Mizuno, Todd and Ye's [59] predictor{corrector algorithms solve the LP problem in O(pnL) iterations, yielding the �rst infeasible IPM withthis complexity. Somewhat later Jansen, Roos and Terlaky [38] presented the SSSD problem for thesymmetric form primal{dual LP pair in a concise introduction to the theory of LP based on IPMs.Before presenting the SSSD embedding, the surprisingly nice properties of it are summarized.1. Self{duality, the dual problem is identical to the primal one. One can solve it as an LP or as anLCP.2. SSSD is always feasible. Furthermore, the interior of the feasible sets is also non-empty, hence theoptimal faces are bounded. IPMs applied to SSSD always converge to an optimal solution.3. Optimality of the original problem is detected by convergence, independently from the bounded-ness/unboundedness of the optimal faces of the original problem.4. Infeasibility of the original problem is detected by convergence. Primal, dual or primal and dualrays for the original problems are identi�ed to prove dual, primal or dual and primal infeasibility.5. A perfectly centered initial pair can always be constructed for SSSD.6. Polynomial convergence with the best known complexity and local quadratic convergence [79, 76]are guaranteed.Self-dual embeddingTo exploit fully the symmetry of the SSSD embedding �rst the problems (40) and (41) are transformedto the symmetric form. This can be done without increasing the number of variables or the number ofconstraints. We may assume that in problem (40) rank(A) = m, otherwise the redundant constraints canbe eliminated. Let B be any basis of A. Let A = [B;N ], cT = [cTB; cTN ] and xT = [xTB; xTN ]. Then Ax =b; x � 0 can be written as xB +B�1NxN = B�1b; x � 0 or equivalently �B�1NxN � �B�1b; xN � 0.Likewise cTx = cTBxB + cTNxN = cTBB�1b+ (cTN � cTBB�1N )xN , hence (P ) can be written equivalently inthe symmetric form as min�(cTN � cTBB�1N )xN j � B�1NxN � �B�1b; xN � 0	 :Note that these transformations need a modi�ed preprocessing of the problem that chooses sparse B and,hopefully, produces sparse B�1N .It is not obvious how such a basis can be constructed and, to the best of our knowledge, this has neverbeen implemented yet. The problem of �nding a basis that is optimal in the sense that B�1N is thesparsest possible, imposes some additional requirements to the sparsity problem (see equation (17)).28



Hence it seems practically more di�cult to �nd e�cient heuristics to solve it. Those heuristics shouldnaturally generalize the techniques used to solve the sparsity problem.Having done the above transformations, we rede�ne the objective vector, the coe�cient matrix and theright hand side vector and denote them again by c; A and b, respectively. This produces the LP problemin the symmetric form (P ) min�cTx j Ax � b; x � 0	 ;where A is an m � n matrix, c; x 2 IRn, and b 2 IRm. The linear program (P) has associated with it thedual program (D) max�bT y j ATy � c; y � 0	 ;As usual, a pair (x�; y�) will be called strictly complementary if Ax� � b; x� � 0, ATy� � c; y� � 0,(Ax� � b)Ty� = (c� ATy�)Tx� = 0 and, moreover, y� + (Ax� � b) > 0 and x� + (c�AT y�) > 0.To formulate the SSSD embedding we need some further vectors. Let x0; z0; �c 2 IRn, y0; r0;�b 2 IRm,#0; �0; �0; �0 2 IR and �; � 2 IR be given as follows:x0 > 0; r0 > 0; y0 > 0; z0 > 0; #0 > 0; �0 > 0; �0 > 0; �0 > 0;�b = 1#0 (b�0 �Ax0 + r0); �c = 1#0 (c�0 � AT y0 � z0);� = 1#0 (cTx0 � bT y0 + �0);� = ��0 + �bTy0 � �cTx0 + �0 = 1#0 [(y0)T r0 + (x0)T z0 + �0�0] + �0 > 0:It is worthwhile to note that if x0 is feasible for (P ), �0 = 1 and r0 = Ax0 � b, then �b = 0. Also if y0 isfeasible for (D), �0 = 1 and z0 = c� AT y, then �c = 0. With some abuse of mathematics, the vectors �band �c measure the amount of scaled infeasibility of the given vectors x0; r0; y0 and z0.Now consider the following skew symmetric self{dual LP problem(SSSD) min �#s:t: Ax +�b# �b� � 0�AT y ��c# +c� � 0��bT y +�cTx ��� � ��bT y �cTx +�# � 0y � 0 x � 0; # � 0; � � 0:Due to the selection of the parameters the positive solution x = x0; y = y0; # = #0; � = �0 is interiorfeasible for the SSSD problem. Let us denote the slack variables for the problem SSSD by r; z; � and �respectively. Also note that if one chooses x = x0 = e; r = r0 = e; y = y0 = e; z = z0 = e; � = �0 =1; � = �0 = 1; # = #0 = 1; � = �0 = 1, then this solution is a perfectly centered initial solution for theSSSD problem. The following theorem holds (see [79, 38]).Theorem 1 For the given problems (P ) and (D) the SSSD embedding is made. Then one has:(i) The SSSD problem is feasible, hence both primal and dual feasible and has an optimal solution.(ii) For any optimal solution of SSSD #� = 0.(iii) SSSD always has a strictly complementary optimal solution (x�; y�; #�; ��).29



(iv) If �� > 0, then x��� and y��� are strictly complementary optimal solutions of (P ) and (D), respectively.(v) If �� = 0, then either (P ) or (D) or both are infeasible.The skew{symmetric self{dual embedding has been implemented [77]. Impressive numerical results arereported that show this approach to be only slightly less e�cient than the primal{dual method onfeasible problems. Additionally, as the experience of the above mentioned paper shows, this methoddetects problem's infeasibility really by a convergence (not by a divergence). Although it needs slightlydi�erent preprocessing and it has to deal with two dense rows and columns bordered to the matrix ofthe augmented system (that require special care when solving (11)), the SSSD approach may become acomputationally attractive alternative to the infeasible primal-dual method.6.3 Warm startMany practical problems need the solution of a sequence of similar linear programs where small pertur-bations are made to b and/or c. As long as these perturbations are small, we naturally expect that theoptimal solutions are not far from each other and restarting the optimization from the solution of the oldproblem (warm start) should be very e�cient. This is the case in practice when the simplex method isused. In contrast, we still do not have e�cient implementation of warm start in IPMs, that exploits theinformation contained in the old optimal solution.Several attempts have been made to solve this problem like using shifted barriers to allow infeasibility ofthe original variables [24]; applying modi�ed barrier functions [61]; perturbing the problem to throw itaway from the boundary of the positive orthant [50]. However, we may say that, in such a general context,IPM warm start is still far from working satisfactorily. On the other hand, computational experienceof [8] shows that applying (feasible) projective algorithm [66] to restart from a well centered, almostoptimal solution that is su�ciently far away from the boundary, works well even if problems that haveto subsequently be solved di�er considerably.The di�culty of the IPM warm start comes from the fact that the old optimal solution is very close tothe boundary and well centered. This point in the perturbed problem still remains close to the boundarybut is very badly centered. Consequently, IPM makes long sequence of short steps due to the fact thatthe iterates cannot get rid of the boundary (boundary behavior). Therefore one needs well centered pointclose to the old optimal one or an e�cient centering method (leaving the boundary) to overcome thesedi�culties. These two possibilities are discussed below.Independently on the approach chosen it would be wise to save a well centered almost optimal solution(say, with 10�2 relative duality gap) that is still su�ciently far away from the boundary.� E�cient centering. The so called target following method o�ers much 
exibility in choosingachievable targets. Path followingmethods de�ne targets on the central path that, due to boundarybehavior, are too optimistic in the case of warm start. Using a sequence of traceable targetsthat improves centrality allows larger steps, therefore speeds up the centering and, �nally, theoptimization process. Practical methods of de�ning such a sequence of targets are not well studiedyet although the theory is well established (see, e.g., Jansen, Roos, Terlaky and Vial [39] and Roosand Vial [66] in this volume).� Centered solutions for warm start in SSSD embedding. Among the spectacular propertiesof the SSSD embedding listed in the previous section, the ability to always construct perfectlycentered initial point was mentioned. The old well centered optimal or almost optimal solutionx�; r�; y�; z�; #�; ��; ��; ��, can be used as x0; r0; y0; z0; #0; �0; �0; �0, the initial point toembed the perturbed problem. As we have seen in Section 6.2, �b; �c; � and � can always be rede�ned30



so that the above solution stays well centered. The construction allows simultaneous perturbationsof b and c. Additionally, it extends to handling new constraints or variables added to the problem(e.g., in build{up or cutting plane schemes). In these cases, we can keep the solution unchangedfor the old coordinates (let � be the actual barrier parameter) and de�ne the initial value of thenew complementary variables to p� as � was the barrier parameter of the old centered solution.This results in a perfectly centered initial solution.
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