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Abstract— Robot Localization is an emerging area in recent 
research and applications. The determination of location or 
localization is the basic requirement for robots to move in 
their office environment. This proposed work aims to build a 
map from a sparse set of noisy observations, taken from 
known locations by multiple sensors and is validated 
experimentally in indoor office environment. A set of training 
data is collected from each environment and processed offline 
to produce a GP Model (Gaussian Process Model). The robot 
uses this model to localize while traversing each environment. 
The sensors are used to extract information about the robot’s 
environment. Because a mobile robot moves around, it will 
frequently encounter unforeseen environmental 
characteristics. The sensors have only a limited range, and so 
it must physically explore its environment to build a map. So, 
the robot must not only create a map but also it must do so 
while moving and localizing to explore the environment. In the 
robotics terminology, this is called the simultaneous 
localization and mapping (SLAM), and then changing the 
robot’s trajectory as informed by its sensors during robot 
motion is called the Obstacle avoidance. The proposed system 
is used for avoiding real time obstacle in smooth surface by 
using feature extraction. 

 
 
Index Terms— Gaussian Process Model, Mapping, Sensors, 
obstacle avoidance. SLAM 
 

I. INTRODUCTION 

n autonomous mobile robot must be able to determine its 
relationship to the environment by making measurements 
with its sensors and then using those measured signals. 

Sensor measurements may have error and, therefore, 
uncertainty associated with them. Therefore, sensor inputs 
must be used in a way that enables the robot to interact with 
its environment successfully in spite of measurement 
uncertainty. 
 
There are two strategies for using uncertain sensor input to 
guide the robot’s behavior. One strategy is to use each sensor 
measurement as a raw and individual value. Such raw sensor 
values could, for example, be tied directly to robot behavior, 
whereby the robot’s actions are a  
 
function of its sensor inputs. Alternatively, the raw sensor 
values could be used to update an intermediate model, with 
the robot’s actions being triggered as a function of this model 

rather than the individual sensor measurements. The second 
strategy is to extract information from one or more sensor 
readings first, generating a higher-level percept that can then 
be used to inform the robot’s model and the robot’s actions 
directly. Robots will interpret sensors to varying degrees, 
depending on each specific functionality. For example, in 
order to guarantee emergency stops in the face of immediate 
obstacles, the robot may make direct use of raw forward 
facing range readings to stop its drive motors. For local 
obstacle avoidance, raw ranging sensor strikes may be 
combined in an occupancy grid model, enabling smooth 
avoidance of obstacles meters away. For map-building and 
precise navigation, the range sensor values and even vision 
sensor measurements may pass through the complete 
perceptual pipeline, being subjected to feature extraction 
followed by scene interpretation to minimize the impact of 
individual sensor uncertainty on the robustness of the robot’s 
mapmaking and navigation skills. The pattern that thus 
emerges is that, as one move into more sophisticated, long-
term perceptual tasks, the feature extraction and scene 
interpretation aspects of the perceptual pipeline become 
essential. 
 
1.1 Feature definition 
 
Features are recognizable structures of elements in the 
environment. They usually can be extracted from 
measurements and mathematically described. Good features 
are always perceivable and easily detectable from the 
environment. Low-level features (geometric primitives) such 
as lines, circles, or polygons are distinguished between high-
level features (objects) like edges, doors, tables, or a trash can. 
At one extreme, raw sensor data provide a large volume of 
data, but with low distinctiveness of each individual quantum 
of data. Making use of raw data has the potential advantage 
that every bit of information is fully used, and thus there is a 
high conservation of information. Low-level features are 
abstractions of raw data, and as such provide a lower volume 
of data while increasing the distinctiveness of each feature. 
Low-level features are filtering out poor or useless data, but of 
course it is also likely that some valid information will be lost 
as a result of the feature extraction process. High-level 
features provide maximum abstraction from the raw data, 
thereby reducing the volume of data as much as possible while 
providing highly distinctive resulting features. Once again, the 
abstraction process has the risk of filtering away important 
information, potentially lowering data utilization. Although 
features must have some spatial locality, their geometric 
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extent can range widely. For example, a corner feature 
inhabits a specific coordinate location in the geometric world. 
In contrast, a visual fingerprint identifying a specific room in 
an office building applies to the entire room, but has a location 
that is spatially limited to the one particular room. In mobile 
robotics, features play an especially important role in the 
creation of environmental models. They enable more compact 
and robust descriptions of the environment, helping a mobile 
robot during both map-building and localization. When 
designing a mobile robot, a critical decision revolves around 
choosing the appropriate features for the robot to use. A 
number of factors are essential to this decision: 
 
1.2 Target environment 

 
 For geometric features to be useful, the target geometries 
must be readily detected in the actual environment. For 
example, line features are extremely useful in office building 
environments due to the abundance of straight wall segments, 
while the same features are virtually useless when navigating 
Mars. 
 
1.3 Available sensors 
 
 The specific sensors and sensor uncertainty of the robot 
impacts the appropriateness of various features. Armed with a 
laser rangefinder, a robot is well qualified to use geometrically 
detailed features such as corner features owing to the high-
quality angular and depth resolution of the laser scanner. In 
contrast, a sonar-equipped robot may not have the appropriate 
tools for corner feature extraction. 
 
1.4 Computational power 
 
 Vision-based feature extraction can affect a significant 
computational cost, particularly in robots where the vision 
sensor processing is performed by one of the robot’s main 
processors. 
1.5 Environment representation 
 
 Feature extraction is an important step toward scene 
interpretation, and by this token the features extracted must 
provide information that is consonant with the representation 
used for the environmental model. For example, non 
geometric vision-based features are of little value in purely 
geometric environmental models but can be of great value in 
topological models of the environment. 
 
1.6 Feature extraction based on range data (laser, 
ultrasonic, vision-based ranging) 
 
Most of today’s features extracted from ranging sensors are 
geometric primitives such as line segments or circles. The 
main reason for this is that for most other geometric primitives 
the parametric description of the features becomes too 

complex and no closed-form solution exists. Here, line 
extraction is described in detail, demonstrating how the 
uncertainty models presented above can be applied to the 
problem of combining multiple sensor measurements. Another 
successful feature of indoor mobile robots is the corner feature 
and these features can be combined in a single representation 
is also demonstrated. 
 
1.6.1 Line extraction 
 
Geometric feature extraction is usually the process of 
comparing and matching measured sensor data against a 
predefined description, or template, of the expect feature. 
Usually, the system is over determined in that the number of 
sensor measurements exceeds the number of feature 
parameters to be estimated.  
 
1.6.2 Probabilistic line extraction from uncertain range 
sensor data 

 

 
 

Figure 1.3 
 

Estimating a line in the least-squares sense. The model 
parameters y (length of the perpendicular) and α (its angle to 
the abscissa) uniquely describe a line. The main aim is to 
extract a line feature based on a set of sensor measurements as 
shown in figure 1.3. There is uncertainty associated with each 
of the noisy range sensor measurements, and so there is no 
single line that passes through the set. Instead, the best 
possible match is related, given some optimization criterion. 
Given some measurement point, it can calculate the 
corresponding Euclidean coordinates as and x = cos  y =  
sin. If there were no error, we would want to find a line for 
which all measurements lie on that line is found. 
 
 cos cos +  sin sin - r =     cos ( - ) – r = 0 
   
Consider that the ranging measurement points in polar 
coordinates are produced by the robot’s sensors. There is 
uncertainty associated with each measurement, so it can model 
each measurement using two random variables. In this 
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analysis, it is assumed that uncertainties with respect to the 
actual value are independent. 
 
1.7 Obstacle avoidance 
 
The obstacle avoidance focuses on changing the robot’s 
trajectory as informed by its sensors during robot motion. The 
resulting robot motion is both a function of the robot’s current 
or recent sensor readings and its goal position and relative 
location to the goal position. The obstacle avoidance 
algorithms depend to varying degrees on the existence of a 
global map and on the robot’s precise knowledge of its 
location relative to the map.  
 

2. SYSTEM MODEL 
 

2.1 Gaussian Process Model 
 
 A GP is the generalization of Gaussian distribution from 
random variables to functions. GP model is used to estimate 
spatially varying distribution over sensor readings. The steps 
required are: 
 

a) Obtain a training set of geo-referred sensor    
measurement. 

b) Extract low dimensional features from sensor data. 
c) Fit a model to training set using Bayesian regression. 
d) Use the model to produce a sensor likelihood 

function for Monte Carlo localization. 
 2.2 Gaussian distribution 
 
The Gaussian distribution, also called the normal distribution, 
is used across engineering disciplines when a well-behaved 
error model is required for a random variable for which no 
error model of greater felicity has been discovered. The 
Gaussian has many characteristics that make it mathematically 
advantageous to other ad hoc probability density functions. It 
is symmetric around the mean. There is no particular bias for 
being larger than or smaller than, and this makes sense when 
there is no information to the contrary. The Gaussian 
distribution is also unimodal, with a single peak that reaches a 
maximum at (necessary for any symmetric, unimodal 
distribution). This distribution also has tails (the value of f(x) 
as x approaches - and ) that only approach zero 
asymptotically. This means that all amounts of error are 
possible, although very large errors may be highly 
improbable. In this sense, the Gaussian is conservative. 
Finally, as seen in the formula for the Gaussian probability 
density function, the distribution depends only on two 
parameters: 
 
 f(x) = 1/(σ√2∏)exp –  (x-)2/2 σ2 

 
The Gaussian’s basic shape is determined by the structure of 
this formula, and so the only two parameters required to fully 

specify a particular Gaussian are its mean  , and its standard 
deviation   . 
 Suppose that a random variable X is modeled as a 
Gaussian, it identifies the chance that the value of X is within 
one standard deviation of  requires integration of f(x), the 
Gaussian function to compute the area under a portion of the 
curve: 

Area = ׬σ‐ σ f(x) dx 
Unfortunately, there is no closed-form solution for the integral 
in above equation, and so the common technique is to use a 
Gaussian cumulative probability table. Using such a table, one 
can compute the probability for various value ranges of X. For 
example, 95% of the values for X fall within two standard 
deviations of its mean. This applies to any Gaussian 
distribution. It is clear from the above progression, under the 
Gaussian assumption, once bounds are relaxed 3 to, the 
overwhelming proportion of values (and, therefore, 
probability) is subsumed. The data is to be normalized into 
zero mean and unit standard deviation and then PCA is 
applied to reduce dimensionality. 
 
 
2.3 PCA compression 
 
 The mathematical concepts PCA (Principle Compound 
Analysis), covers standard deviation, covariance, eigenvectors 
and eigenvalues. Standard deviation operates on one 
dimension, so that it could only calculate the Gaussian 
distribution for each dimension of the data set independently 
of the other dimensions. However, it is useful to have a 
similar measure to find out how much the dimensions vary 
from the mean with respect to each other. 
 

3. SYSTEM DESIGN 
 
 The total system is represented through two designs. The 
first one is SLAM building. Second one is working 
environment with obstacle avoidance. 
 
3.1 SLAM building 
 
A robot that localizes successfully has the right sensors for 
detecting the environment, so the robot ought to build its own 
map. A mobile robot’s sensors have only a limited range, and 
so it must physically explore its environment to build such a 
map. So, the robot must not only create a map but also it must 
do so while moving and localizing to explore the environment. 
In the robotics terminology, this is often called the 
simultaneous localization and mapping (SLAM). If a mobile 
robot updates its position based on an observation of an 
imprecisely known feature, the resulting position estimate 
becomes correlated with the feature location estimate.  
 
3.2 Working Environment with Obstacle Avoidance 
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The obstacle avoidance focuses on changing the robot’s 
trajectory as informed by its sensors during robot motion. The 
resulting robot motion is both a function of the robot’s current 
or recent sensor readings and its goal position and relative 
location to the goal position. The obstacle avoidance 
algorithms depend to varying degrees on the existence of a 
global map and on the robot’s precise knowledge of its 
location relative to the map. Consider the Figure 3.1, the 
Robot has come across an obstacle and would turn to move in 
either of two possible directions. The obstacle avoidance 
behavior algorithm finds direction 2 desirable to achieve goal 
position, so it will turn to direction 2. 
 
               Direction 2 

 
               Direction 1 
 

Figure 3.1  
Working Environment 

 
  
3.3 Bug 2 algorithm 
 
Figure 3.2 shows the working of a Bug algorithm, i.e. Robot 
begins to follow the object’s contour, and then departs from 
the point with the shortest distance toward the goal. 

 
 

Figure 3.2  
Planning and Navigation of Bug Algorithm  

with H1, H2, outer boundary hit  points and L1, L2, leave 
points 

 
 

4. EXPERIMENTATION AND RESULTS 
 

4.1 SLAM Building 
 
 The SLAM building is start with the reference point 
according to the algorithm that is, initialize the starting from 
an arbitrary initial point, a mobile robot should be able to 
autonomously explore the environment with its on-board 
sensors. Knowledge about it is gained. The scene is 
interpreted.  Build an appropriate map is build. The output of 
setting reference point is shown in Figure 4.1. 
 

 
 

Figure 4.1  
Setting Reference Point 

 
  A robot that localizes successfully has the 
right sensors for detecting the environment, and so the robot 
ought to build its own map. The Figure 4.2 shows the SLAM 
building in an office environment. A sample output for SLAM 
is formed. 
 

 
 

Figure 4.2  
SLAM building in an office environment 

 
 

Robot 

Goal 

Obstacle 
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4.2 OBSTACLE AVOIDANCE IN AN OFFICE ENVIRONMENT 
 
 The obstacle avoidance focuses on changing the robot’s 
trajectory as informed by its sensors during robot motion. The 
resulting robot motion is both a function of the robot’s current 
or recent sensor readings and its goal position and relative 
location to the goal position. Figure 4.3 represent an office 
environment with five obstacles. 
 

 
 

Figure 4.3 
An Office Environment with Obstacles 

 
Consider the Figure 4.4, the Robot has come across an 
obstacle and would turn to move in either of two possible 
directions. The obstacle avoidance means modulating the 
trajectory of the robot in order to avoid collisions. 
 

 
 

Figure 4.4 
Find an Obstacle  

 
Obstacle avoidance is one of the basic tasks required of most 
mobile robots. Range-based sensors provide effective means 
for identifying most types of obstacles facing a mobile robot. 
The Robot has come across an obstacle and would turn to 
move in either of two possible directions. Figure 4.5 

represents an obstacle avoidance of a Robot in an office 
environment. 
 

 
 

Figure 4.5 
Obstacle Avoidance and achieve Goal direction 

5. CONCLUSION 

 
The indoor experiments were performed in an office 

environment. A training set is obtained by manually operating 
the Robot through the environment. A test dataset is generated 
through this operation. Localizing in this manner provides an 
accurate representation of the office environment by SLAM 
building.  
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