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The random neural network (RNN) is a recurrent neural network model inspired by the spiking
behaviour of biological neuronal networks. Contrary to most artificial neural network models,
neurons in the RNN interact by probabilistically exchanging excitatory and inhibitory spiking signals.
The model is described by analytical equations, has a low complexity supervised learning algorithm
and is a universal approximator for bounded continuous functions. The RNN has been applied
in a variety of areas including pattern recognition, classification, image processing, combinatorial
optimization and communication systems. It has also inspired research activity in modelling
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presents a review of the theory, extension models, learning algorithms and applications of the RNN.
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1. INTRODUCTION

The random neural network (RNN) is a neural network model
inspired by the spiking behaviour of biophysical neurons [1].
When a biophysical neuron is excited, it transmits a train of
signals, called action potentials or spikes, along its axon to either
excite or inhibit the receiving neurons. The combined effect
of excitatory and inhibitory inputs changes the potential level
of the receiving neuron and determine whether it will become
excited. In RNN, these signals are represented as excitatory
and inhibitory spikes of amplitude +1 and −1, respectively,
that are transmitted either from other neurons or from the
outside world. Each neuron can fire only when its potential is
strictly positive. The potential is equal to the number of positive
spikes received that have not yet been fired or cancelled by
inhibitory spikes.

The RNN has attracted a lot of attention in the scientific
community. Various aspects of it have been explored, while
several extension models and learning algorithms have been
developed. In addition, the RNN has found widespread
application in diverse areas of engineering and physical
sciences. The success of the model can be attributed to its unique
features which include the following [2].

• Although it is a recurrent neural network, its steady-
state probability distribution is described by an analytical
equation that can be easily and efficiently computed
without the use of Monte Carlo methods.

• Its standard learning algorithm has low complexity and
strong generalization capacity even for a relatively small
training data set.

• It represents in a closer manner the signals transmitted in
a biological neuronal network than other artificial neural
networks (ANNs).

• It can be easily implemented in both software and hardware
since its neurons can be represented by simple counters.

• There is a direct analogy between the RNN and the
connectionist ANN.

• The neuron potential is represented as an integer rather than
a binary variable resulting in a more detailed system-state
description.

• It is a universal approximator for bounded continuous
functions.

• The stochastic excitatory and inhibitory interactions in the
network make it an excellent modelling tool for various
interacting entities.

This paper attempts to briefly and comprehensively present
the large amount of research published on the RNN since
its introduction two decades ago. Our intention is to inform
the interested reader about the theory and the different tools
associated with the RNN that can be utilized for the solution of
practical problems.

The paper is organized as follows: The RNN model and
its steady-state properties are described in Section 2, while
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extension models are discussed in Section 3. Following is a pre-
sentation of the RNN learning algorithms as well as algorithms
proposed for its extensions. The applications of RNNs are sum-
marized in Section 5 and the paper is concluded in Section 6.

2. THE RNN MODEL

In this section, a mathematical description and the main results
of the standard RNN model are given. We also discuss the
stability of the network as well as its analogy to the connectionist
ANN.

2.1. Mathematical model

The RNN is a recurrent network of N fully connected neurons
which exchange positive and negative signals in the form of
unit amplitude spikes. At any time t , the state of neuron i is
described by its signal potential ki(t), which is a non-negative
integer associated with the accumulation of positive signals at
the neuron. We say that neuron i is excited when ki(t) > 0,
else if ki(t) = 0, then it is idle or quiescent. A closely related
parameter is qi(t) = Pr[ki(t) > 0] ≤ 1, which is the excitation
probability of the neuron.

When neuron i is excited, it can randomly fire according
to the exponential distribution with rate ri resulting in the
reduction of its potential by 1. The fired spike either reaches
neuron j as a positive signal with probability p+(i, j) or as a
negative signal with probability p−(i, j), or it departs from the
network with probability d(i). These probabilities must sum
up to one yielding

N∑
j=1

[
p+(i, j) + p−(i, j)

] + d(i) = 1 ∀i (1)

Hence, when neuron i is excited, it fires positive and negative
signals to neuron j with rates:

w+(i, j) = rip
+(i, j) ≥ 0, (2)

w−(i, j) = rip
−(i, j) ≥ 0. (3)

Combining Equations (1)–(3) an expression which associates
ri with w+(i, j) and w−(i, j) is derived:

ri = (1 − d(i))−1
N∑

j=1

[w+(i, j) + w−(i, j)]. (4)

Positive and negative signals can also arrive from the outside
world according to Poisson processes of rates �i and λi ,
respectively. Positive signals have an excitatory effect in the
sense that they increase the signal potential of neuron j by 1. In
contrast, negative signals have an inhibitory effect and cancel
a positive spike if kj (t) > 0, while if kj (t) = 0, the negative
signal has no effect.

The main symbols of the model are presented in Table 1, to
facilitate the reader with the understanding of the text.

TABLE 1. List of RNN symbols

Notation Definition

ki(t) Potential of neuron i at time t

qi Probability neuron i is excited at time t

�i External arrival rate of positive (negative)
[λi] signals to neuron i

λ+(i) Average arrival rate of positive (negative)
[λ−(i)] signals to neuron i

p+(i, j) Probability the neuron j receives a positive
[p−(i, j)] (negative) signal from firing neuron i

w+(i, j) Rate of positive (negative) signals to
[w−(i, j)] neuron j from firing neuron i

d(i) Probability that a signal from firing neuron i

departs from the network
ri Firing rate of neuron i

N Number of neurons in the network
K Number of input–output training pairs
xik ith input value of the kth training pair
yik ith output value of the kth training pair

2.2. Network behaviour in steady state

The state of the network is described by the vector of
signal potentials at time t , k(t) = [k1(t), . . . , kN(t)]. Due
to the stochastic nature of the network, we are interested in
determining the stationary probability distribution π(k) =
limt→∞ π(k, t) = limt→∞ Pr[k(t) = k], which can be
described by the steady-state Chapman–Kolmogorov equations
for continuous time Markov chain systems [1]:

π(k)

N∑
i=1

[
�i + (λi + ri)1{ki>0}

]

=
N∑

i=1

{
π

(
k+

i

)
rid(i) + π

(
k−

i

)
�i1{ki>0} + π

(
k+

i

)
λi

+
N∑

j=1

[
π

(
k+−

ij

)
rip

+(i, j)1{kj >0} + π
(

k++
ij

)
rip

−(i, j)

+π
(
k+

i

)
rip

−(i, j)1{kj =0}
]}

. (5)

The values of the stationary parameters of the network,
the stationary excitation probabilities qi = limt→∞ qi(t), i =
1, . . . , N , and the stationary probability distribution π(k) are
derived from Theorem 1.

Theorem 1 [1]. Let the total arrival rates of positive and
negative signals λ+(i) and λ−(i), i = 1, . . . N be given by the
following system of equations

λ+(i) = �i +
N∑

j=1

rj qjp
+(j, i), (6)
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λ−(i) = λi +
N∑

j=1

rj qjp
−(j, i), (7)

where

qi = min

{
1,

λ+(i)

ri + λ−(i)

}
. (8)

If a unique non-negative solution {λ−(i), λ+(i)} exists for the
non-linear system of Equations (6–8) such that qi < 1, ∀i, then:

π (k) =
N∏

i=1

πi(ki) =
N∏

i=1

(1 − qi) q
ki

i . (9)

The theorem states that whenever a solution to the signal
flow Equations (6–8) can be found such that qi < 1, ∀i,
then the stationary joint probability distribution of the network
has the simple product form (9) associated with the marginal
probabilities of each neuron, πi(ki). The condition qi < 1 can
be viewed as a ‘stability condition’ that guarantees that the
excitation level of each neuron remains finite with probability
one. Product form implies the independence of the neurons
despite the fact that the neurons are coupled through the
exchanged signals. A result of their independence is that we
can easily compute parameters that are associated with a single
neuron such as the average steady-state excitation level of
neuron i, which is equal to Ai = qi/(1 − qi).

In [1], the case where a number of neurons are saturated is also
discussed. Neuron i is saturated if λ+(i) ≥ ri +λ−(i) so that it
continuously fires in steady state and its excitation probability is
equal to one. It is shown that the product form solution given by
Equation (9) is still valid for the set of non-saturated neurons.

2.3. Network stability

The network is stable if the signal potential of each neuron
does not tend to increase without bounds. Due to the product
form stationary probability distribution of the system, stability
is guaranteed if a unique solution exists to the non-linear system
of Equations (6–8) and qi < 1, ∀i. In addition, it can be
easily shown that if a solution to Equations (6–8) exists with
qi < 1, ∀i then it is unique [3]. The result stems from the
fact that π(k) is unique when 0 < qi < 1, ∀i because the
process {k(t), t ≥ 0} is an irreducible continuous time Markov
chain and π(k) is positive with unit norm, which follows from
Theorem 1. Furthermore, for any i it is impossible to have
two different values qi and q ′

i satisfying the unique π(k) when
ki = 0; hence existence of the solution implies its uniqueness.

As a result, the key to proving stability is to show the
existence of the solution, a result that is non-trivial due to
the non-linearity of the signal-flow equations. Early studies have
examined the solution existence in special RNN architectures.
In [1], it has been proved that a solution always exists in the
feed-forward RNN architecture since the computation of qi

in one layer, depends only upon the values of neurons in the
preceding layer which have already been computed. In [3], the

existence of a solution is presented for balanced networks that
have identical qi, ∀i and damped networks that are governed by
the hyper-stability condition:

ri + λi > �i +
N∑

j=1

rjp
+(j, i). (10)

Although the hyper-stability condition appears to be strong, it
can be used to appropriately select parameters of the network
to guarantee stability [4].

The existence of a solution to the general case has been
established in [5]. The approach followed is general and has
also been used to examine the existence of a solution in
extensions of RNN. Next, the proof to the existence of a solution
{λ+(i), λ−(i)} to Equations (6) and (7) is outlined.

Initially, the qi terms are eliminated from Equations (6–7)
and the latter are combined to obtain:

λ− − λ = λ+FP− = �(I − FP+)−1FP−,

λ−, λ+, λ, � ∈ R
1×N and I, F, P± ∈ [0, 1]N×N, (11)

where λ±, � and λ are vectors representing the total and
exogenous arrival rates of excitatory–inhibitory signals, P+
and P− are square matrices, the elements of which are the
probabilities p±(i, j), I is the identity matrix and F is a diagonal
matrix with elements fii = ri/(ri + λ−(i)) ≤ 1.

Because P+ is sub-stochastic and all elements of F are
smaller than 1, the series

∑∞
m=0(FP+)m is geometrically

convergent and hence we can write:

(I − FP+)−1 =
∞∑

m=0

(FP+)m. (12)

Defining y = λ− − λ the system can be written in the fixed
point form:

y = g(y) =
∞∑

m=0

(FP+)mFP−, (13)

where the dependence of g on y comes from F, while g(y) is
continuous and always non-negative. According to Brouwer’s
fixed point theorem, Equation (13) has at least one fixed point
solution. In this case, exactly one fixed point y∗ must exist since
solution uniqueness has already been established. As a result, a
solution to Equations (6–8) always exists and it is unique.

2.4. Analogy with the formal neural networks

In [1], the analogy between formal neurons and RNN neurons is
discussed. In formal neural networks, the input to neuron i, vi , is
a combination of the weighted sum of other neuron outputs, yj ,
and a threshold value θi such that vi = ∑

jw
A
jiyj − θi . Whether

neuron i will be excited or not is determined by an activation
function according to yi = f (vi). The analogy of RNN with
this model is established for the unit-step activation function.
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Because the RNN weights are non-negative, each weight
wA

ij ∈ R is represented by a pair of weights such that:

w+(i, j) = max{0, wA
ij }, w−(i, j) = max{0, −wA

ij }
Moreover, non-output RNN neurons do not dissipate, d(i) = 0,
and their firing rate ri is given by Equation (4), while for output
neurons, d(i) = 1. Parameters θi and yi are associated with λi

and qi , respectively. When yi is binary, a threshold value, α, can
separate 0 and 1 according to:

[yi = 0] ⇐⇒ qi < 1 − α and [yi = 1] ⇐⇒ qi ≥ 1 − α ∀i.

Note that all RNN parameters are mapped to formal neurons’
parameters except from the firing rates of the output neurons,
the rate of external positive signal �i and α. These parameters
are set to appropriate values so that output neurons have the
desired behaviour.

3. RNN EXTENSION MODELS

Apart from the original RNN, models of RNN with additional
capabilities have been developed. Similar to the original
RNN, all models maintain a product-form solution which may
differ according to the model considered. In this section we
describe the bipolar RNN (BRNN), a model of RNN with
state-dependent firing (RNNSDF), the RNN with synchronized
interactions (RNNSI) and the multiple class RNN (MCRNN).

3.1. Bipolar RNN

The bipolar RNN has been introduced in [6] to represent bipolar
patterns and facilitate associative memory capabilities. Contrary
to the original RNN there are two different types of neurons:
(a) the positive neurons, which have behaviour same as the
neurons of the original RNN and (b) the negative neurons, which
have behaviour opposite to that of the positive ones. In other
words, negative neurons accumulate negative signals so that
the reception of positive signals has a suppressive role. Hence,
signals emitted from a negative neuron i arrive to neuron j

as positive (resp. negative) signals with probability p−(i, j)

(resp. p+(i, j)). The model is governed by similar signal-flow
equations to the original RNN, taking into consideration the
effect of both positive and negative neurons, while it retains a
geometric product-form stationary probability distribution for
the neuron potentials.

The BRNN has been applied in associative memory to
obtain better separation between bipolar patterns. Moreover,
the feed-forward BRNN has been utilized to prove the universal
approximation properties of RNN discussed in Section 5.4.

3.2. RNN with state-dependent firing

Although in the original RNN the firing rate of neurons is
constant, it is more biologically plausible to assume that the

firing rate of neurons depends on the signal potential. In [7],
a model with state-dependent firing has been proposed and its
properties have been investigated. The RNNSDF defers from
the original RNN in two aspects:

(i) The firing rate is exponentially distributed but it is
potential-dependent instead of constant. Dependence
is added as a multiplication factor so that the firing rate
is rifi(ki), where fi(ki) > 0 for ki > 0 and bounded
above by Bi .

(ii) When a negative signals arrives at an excited neuron j ,
it reduces the potential of the neuron by 1 with a state-
dependent probability fj (kj )/Bj , otherwise it has no
effect.

The authors proved that under certain conditions the model
has a simple product-form solution, which is dependent on
fi(ki), ∀i; this implies that the RNNSDF can exhibit a variety of
stationary probability distribution structures by altering fi(ki),
in contrast to the RNN whose distribution is geometric and
decreasing with respect to ki .

3.3. RNN with synchronized interactions

The RNN with synchronized interactions has been introduced
in [8,9] to capture the synchronous firing observed in nature
by a large ensemble of neurons, as well as second or higher-
order interactions of entities in different systems. In addition
to the ordinary excitatory and inhibitory interactions, a firing
neuron i may create a synchronous interaction at time t together
with neuron j to affect some third neuron m, with probability
Q(i, j, m). The result of the interaction is to reduce the potential
of neurons i and j and increase the potential of neuron m by
1. However if kj (t) = 0, then the only thing that will occur is
that ki(t

+) = ki(t) − 1, and the firing of i will have no other
effect.

Thus, synchronous interactions take the form of a joint
second-order excitation by cells i, j on m only if both
neurons i and j are excited. This effect can generalize to an
arbitrary number of neurons that fire synchronously. Indeed,
if we have a sequence of neurons j1, . . . , jn+1, jn+2 such that
Q(jl, jl+1, jl+2) = 1 for l = 1, . . . , n, then if neurons j1

and j2 are excited, eventually all the neurons j1, . . . , jn+1, jn+2

will fire.
As in the original RNN, the RNNSI is also governed by

the same product form stationary probability distribution given
by Equation (9) and the same stability condition, while the
signal-flow equations are modified to include synchronous
firing.

The RNNSI can be applied to problems where higher-
order interactions between entities are present. For example, in
gene regulatory networks apart from the interactions between
individual genes, more than one genes may act together to excite
another gene [10].
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3.4. Multiple class RNN

In the MCRNN [11], there are C different classes of positive
signals and a class of negative signals. As a result, the potential
of neuron i is described by a vector of signal potentials, each
associated with a different class of signals, ki = [ki1, . . . , kiC]
so that ki = ∑

c kic. Positive exogenous signals arrive to
neuron i according to a Poisson distribution of rate �ic and
increase the potential kic by 1. Negative exogenous signals also
arrive according to a Poisson distribution with rate λi . If at
time t a negative signal is received by neuron i, then if it is
excited, ki(t) > 0, the potential of class c signals will become
kic(t

+) = kic(t) − 1 with probability kic/ki . When a neuron is
excited it fires a class c signal with probability kic/ki at rate ric

and the potential kic is reduced by 1. If such an event occurs,
the following can happen: (a) with probability p+(i, c; j, ξ) it
goes to neuron j as a positive class ξ signal (b) with probability
p−(i, c; j) it goes to neuron j as a negative signal or (c) it leaves
the network with probability d(i, c). As the other models, the
MCRNN also obeys to a product-form solution for each neuron
and each class of signals.

The MCRNN can be used in applications associated with the
concurrent processing of different streams of information such
as colours in image processing or attributes in a data network.

4. LEARNING ALGORITHMS

One of the most important features of a neural network model
is its ability to learn from examples. In this section we describe
the standard gradient descent supervised learning algorithm for
the RNN [5] and other supervised learning algorithms proposed
for the model and its extensions. Initialization algorithms that
can be exploited by the supervised learning algorithms are also
discussed. The section is completed with a discussion on RNN
reinforcement learning (RL) algorithms.

4.1. Gradient descent supervised learning algorithm for
the RNN model

A gradient descent supervised learning algorithm for the
recurrent RNN has been developed by Gelenbe in [5]. In RNNs,
the kth input training pattern xk is represented by the vectors
�k = [�1k, . . . , �Nk] and λk = [λ1k, . . . , λNk]. Usually the
approach taken is to assign the input training values, xik to the
exogenous arrival rates such that:

• If xik > 0, then �ik > 0 and λik = 0;
• If xik ≤ 0, then �ik = 0 and λik > 0.

The values of the non-zero elements produced from the above
expression can be taken equal to |xik|, or some constant value
� and λ, respectively, to ensure network stability.

The desired values of the kth pattern, yk , are represented by
the steady-state excitation probabilities of the neurons qk =
[q1k, . . . , qNk] emanating from applying input training pattern

k to the network. The RNN weights updated during the learning
process are w+(i, j) and w−(i, j).

Without loss of generality we assume that the error function
to be minimized is a general quadratic function of the form:

E =
K∑

k=1

Ek = 1

2

K∑
k=1

N∑
i=1

ci(fi(qik) − yik)
2, (14)

where Ek is the error function of the kth input–output pair,
ci ∈ {0, 1} shows whether neuron i is an output neuron and
fi(qik) is a differentiable function of neuron i.

In the proposed approach by Gelenbe, the training examples
are sequentially processed and the weights of the network are
updated according to the gradient descent rule until a minimum
of the error function is reached. If we denote by the generic term
w(u, v) either w+(u, v) or w−(u, v), the rule for updating the
weights using the kth input–output pair at step (τ + 1) is

wτ+1(u, v) = wτ (u, v) − η

[
∂Ek

∂w(u, v)

]
τ

. (15)

The partial derivative of the error function with respect to
w(u, v) can be calculated based on Equation (14) and yields:

[
∂Ek

∂w(u, v)

]
τ

=
N∑

i=1

ci (fi(qik) − yik)×
[
∂fi(qi)

∂qi

∂qi

∂w(u, v)

]
τ

,

(16)
where the operator [·]τ denotes that all calculations are
performed using the weight values of step τ and the qik values
derived from solving Equations (6–8) when the current weights
(wτ (u, v)) are used. The challenging step in the evaluation of
Equations (15) and (16) is the derivation of a closed expression
for the term [∂qi/∂w(u, v)]τ , which depends on the non-linear
system of Equations (6–8). Gelenbe proved that the particular
term can be brought to the form:

∂q
∂w(u, v)

= γ(u, v) (I − W)−1 , (17)

where I is the identity matrix and γ(u, v) denotes either
γ+(u, v) or γ−(u, v), which are associated with ∂q/∂w+(u, v)

and ∂q/∂w−(u, v), respectively. The parameters γ+(u, v),
γ−(u, v) and W depend on the current values of w(u, v) and
qk [5].

The steps of the gradient descent RNN learning algorithm are
the following:

(1) Initialize the weights w+(u, v) and w−(u, v) ∀u, v and
appropriately choose the learning rate η.

(2) For each successive input–output pattern k do:

(a) Initialize �ik and λik according to xik;
(b) Solve the system of Equations (6–8) using the

current weight values;
(c) Based on the values attained, calculate W,

γ+(u, v) and γ−(u, v),∀u, v;
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(d) Calculate [∂q/∂w+(u, v)]τ and [∂q/∂w−(u, v)]τ
according to Equation (17);

(e) Update the weights from Equations (15) and (16).
To satisfy the weight non-negativity constraint
either the negative values can be set to zero or the
iteration can be repeated with a smaller value of η.

(3) Repeat the procedure of step (2) until convergence.

The complexity of the algorithm for updating one weight
w(u, v) is O(N3) because of the inversion operation in Equation
(17), which is the most demanding step of the algorithm [5].
Note that according to an iterative algorithm presented in [12],
the complexity of solving the system of Equations (6–8) is
O(N2) per iteration and the system converges at a rate better
than a geometric sequence; hence it is less costly than the
inversion operation.

The complexity of the algorithm can be further reduced if
(I − W)−1 is approximated by the linear term (I + W); the
approximation holds when ‖W‖ < 1 [13].

4.1.1. Weight initialization
Supervised learning can be considered as a non-linear and non-
convex optimization problem where our goal is to minimize
the error function subject to the satisfaction of the signal-
flow equations and the non-negativity constraints for our
decision vector, the weights w+(i, j) and w−(i, j), ∀i, j ; hence,
convergence to a global optimum cannot be guaranteed. For this
reason, developing efficient weight initialization algorithms can
help us obtain good solutions.

In the context of RNNs, the weight initialization methods
proposed include random initialization, the Hebbian rule and a
quadratic optimisation approach.

In random initialization small random values are used for the
weights which are drawn from the uniform distribution in the
range [0, wmax] . In practice, a good choice for wmax is 0.2.

A Hebbian rule has been introduced in connectionist ANNs.
According to this rule, a weight wH

ij is assigned a positive
value if the inputs to neurons i and j are either both high or
both low. Likewise, wH

ij is assigned a negative value if one
neuron has high input and the other low. In RNNs, the weights
are initialized according to the input values of the training
patterns xik . When xik ∈ [0, 1], the rule described above can
be quantified according to Equation (18) [14]:

wH
ij =

K∑
k=1

(2xik − 1)(2xjk − 1), xik ∈ [0, 1]. (18)

If wH
ij > 0, then we set w+(i, j) = wH

ij and w−(i, j) = 0, while
if wH

ij < 0, then the negative weight is assigned the non-zero
value |wH

ij |.
The quadratic optimization approach takes advantage of the

fact that when all neurons in the network have desired values, the
system of Equations (6–8) becomes linear, if qi < 1, ∀i. Hence,

the optimization problem is a linear non-negative least squares
(NNLS) problem which is a convex optimization problem
that can be solved to optimality. This approach was utilized
in [15], where a solution method was developed for a special
RNN architecture. This architecture is composed only of output
neurons and it is not fully recurrent since each neuron can
interact only with its local neighbours.

To confront the general case that the network is fully
recurrent, and comprised of not only output neurons there are
two main difficulties: (a) the formulated problem is of very
large dimensionality (NK equations and 2N2 unknowns) and
(b) we must deal efficiently with the non-output neurons. In
[16], a projected gradient algorithm for the NNLS problem
was developed which is suitable for large-scale problems.
Furthermore, an efficient weight initialization algorithm was
proposed that manages the case where the network is not
comprised only of output neurons [17]. Performance evaluation
in a combinatorial optimization problem indicated that this
approach is better than random initialization.

4.2. Alternative RNN supervised learning algorithms

Apart from the standard gradient descent algorithm described
in Section 4.1, other authors have also examined supervised
learning in the context of the RNN.

The author of [18] has modified the Resilient Propagation
(RPROP) algorithm and utilized it for RNN supervised learning.
In RPROP, the weights are updated based only on the temporal
behaviour of the sign of the error function derivative. It is
considered to be a resilient and transparent method because
it is not influenced by any unexpected behaviour of the value of
the error function derivative. Nevertheless, the RPROP–RNN
method has the same complexity with the standard learning
algorithm, while the two methods produce comparable results
in terms of recognition of noisy patterns.

In [19], the use of genetic algorithms (GA) in conjunction
with the gradient descent RNN learning algorithm is proposed
to address the problem of converging to a local solution. M

RNNs are trained in parallel according to an iterative two stage
process until convergence. The first stage involves training of
the networks with the RNN supervised learning algorithm. In
the second stage, new weights are generated for each RNN by
applying genetic operations, such as mutation and crossover,
to the network topologies. The genetic representation of each
network is achieved through an extended direct coding scheme
where both the presence of links and the values of the weights
are included accomplishing both parametric and structural
modifications. Apart from mutation and crossover operations,
local search and optimization are also performed. Although
this algorithm performs better than the gradient descent RNN
algorithm it is significantly slower.

In [20], a quasi-Newton algorithm is developed for RNN
supervised learning. Quasi-Newton algorithms are a well
established class of iterative non-linear optimization techniques
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which rely on second-order gradient information; however,
instead of computing the Hessian matrix, which holds the
second-order partial derivatives of the error function, an
approximation matrix Bτ with desirable properties is updated
in each iteration of the algorithm. The authors employ
the well-known Broyden-Fletcher-Goldfarb-Shanno (BFGS)
and Davidon-Fletcher-Powell (DFP) rules for updating Bτ .
Contrary to the standard RNN learning algorithm, their
approach is a batch learning algorithm where the weights
are updated after processing all the training examples. The
developed quasi-Newton algorithm is evaluated on the parity
problem and comparison with the gradient descent algorithm
demonstrates better performance and convergence to less than
half steps compared with the standard RNN learning algorithm.
Nonetheless, the algorithm cannot be used for online learning
because it operates in a batch mode.

4.3. Supervised learning algorithms for RNN extension
models

As discussed in Section 3, RNN extension models have more
capabilities than the original RNN and are preferable in certain
applications. As a result, it is important to develop efficient
supervised learning algorithms for these models as well. In
fact, gradient descent algorithms have been developed for the
MCRNN and the RNNSI models based on the original RNN
learning algorithm.

In the MCRNN learning algorithm [21], the gradient descent
rule is employed to update the weights w+(i, c; j, ξ) =
ricp

+(i, c; j, ξ) and w−(i, c; j) = ricp
−(i, c; j). This is

achieved by obtaining the partial derivatives of qic, ∀i, c with
respect to these weights; the equations obtained have the same
form with Equation (17). However, in the multiple class case,
the computational complexity of updating a weight is O((NC)3)

because although we have N neurons, they must accumulate C

different classes of positive signals.
The challenge in the RNNSI learning algorithm is to

develop an algorithm that takes advantage of the synchronized
interactions in an efficient manner. The authors of [8], in
addition to the weights of the original RNN, introduce the
new weight w(i, j, l) = riQ(i, j, l), which is associated with
the rate at which synchronized interactions take place between
neurons i, j and l. To simplify the computation they assume that
w(i, j, l) = w−(i, j)a(j, l), a(j, l) ≥ 0, which holds the non-
negativity property and also has similar effect on the neurons. By
performing gradient descent learning with respect to the weights
w+(u, v), w−(u, v) and a(u, v), the equations describing the
derivatives of qi with respect to these weights are obtained.
Although, RNNSI deals also with second-order interactions,
the model maintains the equation form of the original RNN and
hence the complexity of updating a weight remains O(N3). Note
that the RNNSI gradient descent algorithm has the capability to
learn better than the original RNN since the latter corresponds
to the special case of RNNSI that a(u, v) = 0, ∀u, v.

4.4. Reinforcement learning in RNN

RL methodologies have also been developed in the context
of RNNs. In RL a system takes a sequence of cascaded
decisions related to the perceived state of the environment
and accordingly receives external reinforcement either positive
(reward) or negative (punishment). The goal is to find an
optimal policy to obtain maximum reward for each perceived
state.

Halici proposed a RL scheme for a tree RNN-architecture for
single and cascaded decisions [22–24]. In the general case, the
system is composed of an input, a number of the intermediate
and an output layer of neurons. The input neurons perceive
the state of the environment, while the neurons of intermediate
layer m represent the possible states that can be reached after
the mth decision step. Each connection (im−1,jm) represents the
transition from state im−1 to state jm when decision aτ

m of the
τ th trial is taken.

In each trial a signal is propagated from the input neurons to
the output neurons, which dissipate and excite the environment
that returns the external reinforcement. Decisions in the network
are taken probabilistically. When neuron i is excited at trial τ ,
which means that it is an activated state, it fires a signal that
reaches neuron j with probability p+

τ (i, j) and activates it. The
sequence of activated neurons from the input to the output layer
is the decision cascade of trial τ , aτ .

RL in RNNs works by updating the weights of the
connections at the end of each trial. The update is related
to the attained environmental reinforcement so that ‘good’
decisions are rewarded. The reinforcement Rτ (i, aτ ) that neuron
i receives in this cascaded decision environment is a function of
several parameters such as the trial, the external reinforcement
associated with the output neuron and the cost of the activated
decision path.

Halici has proposed three different weight update rules for
single and cascaded decision rules: the reward rule (R-rule) [22],
the reward and punishment rule (L-rule) [23] and the update
rule with internal expectation of the reward (E-rule) [23,24].
Experimental analysis showed that the E-rule is superior to
the other rules both in terms of learning and adaptivity to
environmental changes.

The success of the E-rule relies on an adaptive internal
expectation of the reward. In this rule, the weights are updated
according to the difference between the actual reinforcement
and the internal expectation. For example, if the difference is
positive, the weights of all selected neurons in the decision
path are reinforced proportionally to the difference, while their
neighbour neurons are punished. In this way, the algorithm is
adaptive to changes in the environment and results in obtaining
time-varying reinforcement.

In the following Section we describe a variation of
the E-rule that is extensively used for routing pack-
ets in the cognitive packet network (CPN) discussed in
Section 5.6.
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4.4.1. RNN–RL in CPN
The RNN reinforcement learning (RNN–RL) algorithm used in
the CPN is a simple cascaded decision algorithm that employs
the idea of the internal expectation of the reward as the E-rule.
However, contrary to the tree-RNN architecture a recurrent
architecture is employed, while decisions are based on the
excitation probabilities of the neurons rather than the connection
probabilities.

In this algorithm the reinforcement value is a quality of
service (QoS) metric of the communication system such as
path delay or packet loss. The reinforcement R+

τ (i, aτ ) is also a
function of the network node. For instance if the reinforcement
is associated with the delay experienced in a source–destination
pair in the communication network, then the reward is the
inverse value of the delay from the particular node to the
destination.

For each destination and QoS class, a node maintains a
recurrent RNN, with non-dissipating neurons. Each neuron in
an RNN corresponds to a neighbour of the particular node. The
weights and the internal expectation of the reward, R+

τ,β , are
updated whenever a new reward R+

τ+1(i, aτ+1) reaches node i

according to the following rule for all i = j :

• If R+
τ,β ≤ R+

τ+1(i, aτ+1)

w+
τ+1(i, j) = w+

τ (i, j) + R+
τ+1(i, aτ+1),

w−
τ+1(i, k) = w−

τ (i, k) + R+
τ+1(i, aτ+1)

N − 2
, ∀k = j.

• Else

w+
τ+1(i, k) = w+

τ (i, k) + R+
τ+1(i, aτ+1)

N − 2
, ∀k = j,

w−
τ+1(i, j) = w−

τ (i, j) + R+
τ+1(i, aτ+1).

In the above equation, index j corresponds to the selected
neuron of the network that resulted in the particular reward
value. Numerical instability is avoided by re-normalizing the
weights after each update by performing two operations. First,
for each neuron i its new r∗

i is computed:

r∗
i =

n∑
m=1

[
w+

τ+1(i, m) + w−
τ+1(i, m)

]
.

Second, the weights are re-normalized such that:

w+
τ+1(i, j) ← w+

τ+1(i, j) ∗ ri

r∗
i

, (19)

w−
τ+1(i, j) ← w−

τ+1(i, j) ∗ ri

r∗
i

. (20)

Whenever an action is to be taken, the system of the signal flow
Equations (6–8) is solved for the most recent weights to obtain
values for the excitation probabilities of the neurons. The most
excited neuron corresponds to the action to be taken and in the
context of CPN represents the next node in the route of a packet.

5. RNN APPLICATIONS

In this section we report research on applications of RNN such as
modelling queueing and biological networks, image processing,
pattern recognition, classification, combinatorial optimization
and communication systems. The different problems addressed
in each application area are summarized in Table 2.

TABLE 2. Summary of RNN applications.

Application Area Investigated problems and related references

Modelling G-networks [25–33], genetic chromosome population [34], gene regulatory networks [10],
corticothalamic oscillatory behaviour [35]

Optimization Minimum vertex covering [4], assignment in emergency response [9], task assignment in
distributed systems [39], satisfiability problem [40], MST [41], dynamic multicast [42], access
network design [43], independent set [45], travelling salesman [46], optimal resource allocation
[47], graph partitioning [49]

Hardware Digital logic neuron [50], analog circuit neuron [51], simplified RNN–RL algorithm [52,53],
probabilistic CMOS [55]

Image processing Texture generation of gray [58,59] and colour [21,60] images, texture classification and retrieval
[61], biomedical image segmentation [62,63], image fusion [64], image enlargement [64,65],
image and video compression [66–69]

Communication systems Cognitive packet network [70–73,75–77], DoS attack detection [78], automatic quantification of
the PSQA metric for multimedia applications [79–83], call admission control in ATM networks
[84], multimedia server modelling [85]

Simulation pattern recogni-
tion and classification

LAs [86], injection of autonomous agents in augmented reality [87] associative memory
[6,14,18,88–90] target recognition [91], laser intensity vehicle classification system [92], wafer
surface reconstruction [93], mine detection [94,95]
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5.1. Modelling

The RNN is a prominent modelling tool that can capture the
behaviour of interacting entities in different frameworks such
as biological and queueing networks.

To begin with, due to the direct analogy between the RNN
and queueing networks [25], the notion of inhibitory signals
in RNNs inspired the use of negative customers in queueing
networks for work removal [26]. This model attracted a lot of
attention, resulting in a generalized class of networks called
G-networks [27].

In G-networks positive and negative customers (excitatory
and inhibitory signals) circulate in the network. When a positive
customer arrives at a server (neuron), it increases the size of
the queue (neuron potential) by 1, while the arrival of a negative
customer cancels a positive one, if at least one is present in
the queue. Service completion (neuron firing) decreases the
queue size by one and causes the movement of a customer that
will reach another node as a positive or negative customer or
depart from the network in a probabilistic manner.

Negative customers may be replaced by signals that have a
more general role. They can be used to trigger the instantaneous
movement of a customer from one queue to another [28], or reset
the queue to a new value when it is empty [29]. It is also possible
to have multiple classes of positive and negative customers
[30], as well as multiple classes of signals with a triggering
effect [31]. As in RNNs, the stationary probability distribution
of the queue lengths in G-networks have product form under
certain conditions. Furthermore, it has been derived that two
G-networks of the same size that have the same stationary
rates of positive customers and signals for all queues (flow
equivalence) are also governed by the same joint queue length
probability distribution (flow equivalence) [32]. An extended
survey of G-networks can be found in [33].

In [34], an analytical solution for a class of stochastic genetic
algorithms is derived according to the behaviour of a population
of different chromosome types. Different genetic operations are
modelled using first-and second-order probabilistic interactions
including the birth and death of a type i chromosome, the
mutation of a type i chromosome to a type j chromosome, as
well as the crossover operation where a type i chromosome
combines with a type j chromosome to produce a type
k chromosome.

In [10], the modelling of a gene regulatory network with
interacting genes or other biochemical substances is studied.
As in the genetic algorithms model, interactions between agents
include not only first-order interactions but also second-order
interactions, where more than two agents have a combined effect
on a third one. Logical dependencies among agents are also
modelled and an analytic steady-state solution of the overall
system is derived.

Moreover, the RNN has been used to model interactions
between different areas of the human brain to predict
the oscillatory behaviour of those areas with response to

somatosensory inputs [35]. In particular, a recurrent RNN is
constructed with three neurons, each representing a neuronal
layer associated with the thalamus, the cortex and the reticular
layer. The strength of excitatory and inhibitory interactions
betweens these areas, the measured firing rates and the delays in
the signal propagation from one area to the other are considered
in the model. The parameters of the constructed model are
estimated using experimental data and exploited to predict
the oscillatory behaviour of the system relating to different
interaction strengths and delays.

5.2. Optimization

Combinatorial optimization problems routinely arise in many
applications. However, they are usually NP-hard and cannot
be optimally solved in a timely manner. Hopfield and Tank
[36] proposed the use of ANNs, such as the discrete Hopfield
network, for the solution of such problems attracting a lot of
attention. Since their seminal work, different types of ANNs
have been employed for the solution of various combinatorial
optimization problems [37] and several neural techniques have
been developed [38]. In this section we investigate the use
of RNNs for the solution of discrete optimization problems.
Emphasis is given to explain different solution approaches
which include:

(i) The parameter association approach;
(ii) The dynamical RNN (DRNN) approach;

(iii) The energy function approach;
(iv) Supervised learning approach.

5.2.1. Parameter association approach
In the parameter association approach, different parameters of
the RNN are associated with parameters of the optimization
problem under consideration. Binary decision variables of the
problem are represented by the qi parameters of the RNN, while
input parameters are usually associated with positive external
arrivals �i . The positive and negative probabilities of the RNN,
p+(i, j) and p−(i, j) are employed to capture the interactions
between decision variables, the neurons, that stem from the
constraints of the problem. For example, if in a row of neurons
only one must be selected, then each of these neurons attempts to
inhibit the others from being selected. Excitation interactions
are also possible when two neurons benefit from the mutual
selection. Some parameters such as the firing rate ri can be
selected to guarantee hyper-stability of the network so that there
is a balance between excited and not excited neurons.

The procedure for the solution of problems using this
approach is very simple. After the RNN parameters have been
given appropriate values, the qi values are computed and the
most excited neuron is selected. Then the problem is reduced
and the procedure is repeated until the final solution is reached.

The approach has been applied for the solution of several
NP-hard optimization problems including the minimum vertex
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covering (MVC) problem [4], a task assignment problem with
communication and imbalance costs emerging in distributed
systems [39] and the satisfiability (SAT) problem [40].

In the above problems, the RNN approach has been used to
construct a solution from scratch. An alternative approach is to
consider a good heuristic for the examined problem to find an
initial solution and then apply the parameter association method
to indicate variables that could be included in the solution to
improve its quality. This method has been proposed in [41]
for the solution of the minimum steiner tree (MST) problem.
The authors use a known heuristic for the MST problem to
obtain a solution and then employ an RNN to select a vertex-
neuron that can be a good ‘candidate’ to be included in the
solution. A re-optimization algorithm is then adopted to find
a new solution based on the current MST and the selected
vertex. The new solution is definitely not worse than the
current one. By repeating this procedure until all vertices have
been considered, the final solution is at least as good as the
initial. Experimentation illustrated that the particular method
can improve the solution quality by 10–20% without increasing
the computational complexity.

The RNN approach for the solution of the MST problem has
also been exploited for the solution of the dynamic multicast
problem [42] and the access network design problem [43],
which are closely related to the MST problem.

In general, the parameter association approach provides
a trade-off between solution quality and computational
complexity. It has consistently outperformed greedy heuristics
for the different problems, but exhibited worse performance
than metaheuristic techniques such as simulated annealing and
genetic algorithms, which are very computationally demanding.
The performance of the parameter association approach has also
been compared with a Hopfield neural network algorithm in the
MVC problem [44]. It was shown that the RNN is substantially
better in solving the particular problem especially for large
instances. Despite its success in many optimization problems,
one of the limitations of this approach is that it cannot be
easily generalized. Hence, it cannot be directly adopted for new
problems but different parameter mappings must be tested to
discover a good association.

5.2.2. Dynamical RNN approach
The idea behind the use of the Hopfield recurrent neural network
for the solution of optimization problems relies on mapping
the parameters of the problem to the energy function of this
dynamic network. The energy function of the Hopfield network
is guaranteed to converge to an attractor of the energy landscape,
which is hopefully a good solution to the problem. Although the
RNN is a recurrent neural network as well, it cannot perform
dynamic behaviour in terms of its output parameters in the
form dq/dt = f (q), because of its unique equilibrium point.
Therefore, the DRNN has been developed to exhibit dynamic
evolution with regard to its input [45,46].

The DRNN uses only positive inputs and negative weights
with no signals leaving the network (d(i) = 0), whereas its
dynamical equation is similar to the Cohen–Grossberg equation
with time delayed feedbacks:

d�i

dt
= a(qi)

(
B(qi) − ∂F (q)

∂qi

)
∀i, (21)

where function a(qi) regulates the convergence rate while
B(qi) is appropriately selected to place the attractors of the
dynamical system in the best possible positions. F(q) is the
penalty function associated with the optimization problem we
are dealing with. Any constraints associated with the problem
can be incorporated into F(q) using the Lagrange multipliers
method.The negative weights are assigned appropriate values so
that a neuron inhibits the neurons that cannot be simultaneously
excited with it.

After assigning appropriate values to the parameters of
the DRNN model, the procedure progresses by iteratively
computing the qi values based on Equations (6–8) and updating
the �i values according to Equation (21) until the �i values
have stabilized.

The DRNN has been exploited for the solution of several
optimization problems including the independent set [45] and
travelling salesman problems [46], as well as a problem of
optimal resource allocation with minimum and maximum
activation levels for each resource and fixed costs [47].
Interestingly, the latter problem includes both binary and
continuous variables. For modelling each of the continuous
variables, the authors used n neurons. Neuron ir , 1 ≤ ir ≤ n is
associated with variable ar and represents a value 2−ir so that:

ar =
∑n

ir=1
qir 2

−ir .

Performance comparison in the various problems has
demonstrated the superiority of the DRNN over heuristic and
Hopfield neural network approaches. An advantage of the
DRNN compared with the parameter association approach is
that it incorporates into the formulation the penalty function
F(q); nevertheless, some parameters such as the B(qi) and
w−(i, j) are assigned values in an ad-hoc manner.

5.2.3. Energy function approach
In the DRNN the dynamic evolution of the input parameters
�i is used for the solution of optimization problems. Another
approach is to evolve �i according to the gradient of the cost
function F(q) [48]:

�τ+1
i = �τ

i − η

[
∂F (q)

∂�i

]
τ

= �τ
i − η

[
∂F (q)

∂qi

∂qi

∂�i

]
τ

, ∀i

(22)
In the above equation, the term ∂qi/∂�i can be computed
based on Equation (8) yielding a linear system of equations
as analysed in [49]. Furthermore, to simplify the computation
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of the term ∂F (q)/∂qi , the general quadratic energy function
E(q) has been proposed:

E(q) =
N∑

i=1

∑
j<i

aij qiqj +
N∑

i=1

aiiq
2
i +

N∑
i=1

biqi + c. (23)

A result of the above formulation is that if the optimization
problem at hand is of similar form, then by mapping the
parameters of the problem to the energy function, the term
∂E(q)/∂qi can be easily computed without any additional
effort. The other parameters of the RNN are initialized so that
the constraints associated with the problem are strengthened
through the neuron interactions, as discussed in previous
approaches.

The solution procedure is similar to that of the DRNN
approach, with the difference that the �i values are updated
not based on Equation (21), but based on Equation (22).
Additionally, both the RNN and the energy function parameters
must be assigned appropriate values.

The approach has been evaluated with respect to two
optimization problems: the graph partitioning problem and
the MVC problem [49]. The method exhibits better or
comparable performance compared with greedy heuristics and
two metaheuristic search techniques (simulated annealing and
genetic algorithms).

5.2.4. Supervised learning approach
In [9] supervised learning has been considered for the solution
of combinatorial optimization problems and particularly for
an NP-complete assignment problem arising in an emergency
response. The idea is to train an RNN architecture with instances
of the optimization problem under consideration. The inputs to
the network are the input parameters of one problem instance,
while the desired output is the optimal solution corresponding
to the particular instance.

Then, the trained network is used to obtain fast and close
to optimal solutions for other instances of the optimization
problem. The problem studied in [9] involves the optimal
allocation of emergency units to locations of incidents having
a different number of injured civilians with the objective of
collecting as many civilians as possible in minimum time. The
experimental results obtained for varying number of emergency
units and incidents demonstrate the efficiency of the approach.
In all cases examined, the obtained results diverged at most
10% from the optimal solution, while the number of civilians
collected was above 95% in almost all cases.

5.3. Hardware implementations

The processing capabilities of brain neuronal networks rely on
their massively parallel architecture. ANNs are parallel as well,
but software implementations result in sequential execution.
Therefore, it is important to implement neural networks in
hardware. In [50], an implementation of the RNN using discrete

logic integrated circuits is presented. The realization of the
network is achieved using four modules. An input module
is needed for the input signals, while a second module is
responsible for the aggregation of signals for each neuron. A
random number generator is required for the realization of the
exponential firing of neurons. The last component is the routing
module for the propagation of signals between neurons.

An analog implementation of the RNN that captures the
addition and multiplication operations performed in RNNs has
been proposed in [51]. Nonetheless, in both implementations,
once the circuit is realized the routing probabilities cannot be
altered restricting the functionality of the circuit.

Research has also been undertaken in developing hardware
implementations of the RNN–RL algorithm, which is used
in CPN. The authors of [52], introduced a simplified RNN–
RL algorithm with 2N instead of 2N2 weights for the
implementation of a CPN smart packet processor. This
simplification is based on the fact that all weights of the form
w(j, i), ∀j are always updated by equal increments so that
if their initial values are equal, they remain equal after any
update. As a result, for given i, the N weights w(j, i), ∀j

can be represented by the weight w(i). The weight number
reduction significantly enhances the performance in terms of
execution time, memory storage and realization simplicity.
The complexity of the RNN–RL CPN algorithm can be
further reduced if the qi values are directly updated from the
reinforcement [53]. This algorithm was implemented on an
FPGA and performance evaluation showed almost an order of
magnitude speed-up without deterioration of the results.

The stochastic nature of the RNN allows its efficient
realization on probabilistic CMOS (PCMOS). PCMOS harness
the probabilistic behaviour of the circuits exhibited in the
nanoscale regime, because of process variations and noise,
yielding significant improvements in energy and performance
[54]. The authors of [55], realized the RNN on a PCMOS
co-processor for the solution of the MVC problem. They
implemented the core probabilistic module of RNN associated
with the random firing of neurons on PCMOS, instead of a
pseudo-random number generator, and the rest of the network
on a conventional microprocessor. Experimental evaluation
showed that the PCMOS RNN co-processor exhibited less
energy consumption and execution speed-up by orders of
magnitude compared with an implementation on a conventional
microprocessor.

5.4. Function approximation

One important feature of a neural network model is its ability to
approximate functions with an arbitrary degree of accuracy. The
authors of [56] have proved that the feed-forward BRNN and
the clamped RNN (CRNN) have the universal approximation
ability for any continuous function on a bounded set [0,1],
i.e. functions of the form f : [0, 1]s → R

w. Such functions
can be separated into one-dimensional functions of the form
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fw : [0, 1]s → R; hence the important step is to prove universal
approximation of this case.

To prove the universal approximation property, the authors
first established the result for a 1-input 1-output function and
then generalized it to the s-input 1-output case. Their method
is based on constructing an RNN that reproduces a polynomial
that is an estimator of the bounded continuous function under
consideration. The polynomial consists of m terms of the form
cj (1/(1 + x))j or cj (x/(1 + x)j ), where cj ∈ R.

To prove the result for the BRNN model, sub-RNNs are built
to represent each of the terms (1/(1 + x))j . Then, the sub-
RNNs corresponding to positive (resp. negative) cj coefficients
are connected with appropriate weight values to a positive (resp.
negative) output neuron. The sum of the average potentials of
the two output neurons reproduces the polynomial that estimates
the desired function. The proof for the CRNN, which is the
original RNN with the addition of a constant c, is again by
construction but the approximating polynomial is the one with
terms cj (x/(1 + x)j ).

Note that in the above approach no restrictions are imposed
to the structure of the network besides being feed-forward.
In [57], the approximation capabilities of RNN were further
explored to limit the number of total layers required. The authors
proved that for both the BRNN and CRNN models, functions
of the form f : [0, 1] → R can be arbitrarily approximated
with an architecture of one input, one hidden and one
output layers. Extending the result for the approximation of
functions fw : [0, 1]s → R, it was derived that for both the
BRNN and CRNN models arbitrary approximation can be
accomplished by considering an architecture with s-hidden
layers.

5.5. Image processing

The recurrent nature of the RNN and its low complexity
supervised learning algorithm make it highly applicable in
image processing. Numerous image processing problems
have been explored with the RNN including the generation,
classification and retrieval of textures, the compression of still
and moving images as well as image enlargement and fusion.

In texture modelling and generation (synthesis) [58,59], each
pixel is associated with a neuron in a recurrent RNN architecture
with connections between immediate spatial neighbour
neurons. The gray level of each pixel is normalized and
associated with the excitation probability of the corresponding
neuron. Texture examples with desired characteristics such as
granularity, inclination, contrast and homogeneity are used to
train the RNN. The trained network can be regarded as the
texture model that is used to synthesize textures with similar
characteristics. Experimental evaluation confirmed the ability
of the RNN to generate textures with the same statistical
properties as the training ones, at low computational cost.
Texture synthesis has also been examined for colour images
[21,60]. In this case, the MCRNN model and its learning

algorithm are utilized so that each colour is represented by a
different RNN signal class.

Texture classification and retrieval using the RNN has been
investigated in [61]. Given an input image, the purpose in
texture classification is to categorize each pixel into a texture
class. For this purpose an RNN is constructed and trained with
sample images for each texture class. The pixels of a test image
are labelled one by one. Specifically, each pixel along with
its neighbour pixels are presented to the trained networks to
produce an output image window. The pixel under examination
is associated with the class whose RNN produced the smallest
Euclidean distance between the input and the output. Similarly,
texture retrieval is achieved by training one neural network
with respect to the desired texture class and then selecting
the neurons-pixels whose distance is less than a pre-specified
threshold.

Another image processing area which involves classification
is image segmentation, an area particularly useful in biomedical
image analysis. In image segmentation, the objective is to
separate the image into segments with specific characteristics.
The RNN has been applied to the segmentation of both
magnetic resonance [62] and ultrasound images [63]. The
general approach followed is very similar to the approach
followed in [61] for the classification of textures. A number
of recurrent RNNs, equal to the regions of interest, are trained
each for a different region. As a result, by presenting different
blocks of an image to the RNNs, each block is assigned to the
segment that resembles it most.

To apply the RNN in image enlargement, the authors of
[64,65] construct a feed-forward RNN composed of an input
layer with a number of neurons equal to the number of pixels of
the small image, a hidden layer and an output layer equal to the
number of pixels in the enlarged image. The input is the image
to be enlarged and the output is the difference image between
the zero-order interpolation and the desired output images. The
output image is then added to the interpolated image to obtain
the enlarged one. Training is performed using a set of large
images that are representative of the images of interest. In order
to facilitate learning and decrease the computational time, the
input images are divided into blocks that are learned separately.

A similar approach has been followed in image fusion where
the goal is to produce a good quality image from a number
of low quality sensor images [64]. The main difference is that
the inputs to the training network are the fused images and the
outputs are the respective real images.

The application of RNN in the compression of still and
moving images (video) has been investigated in [66–69].
Compression of still images can be achieved by training a
feed-forward RNN. The training procedure is similar to the
image enlargement approach, but in this case the number of
neurons in the hidden layer is chosen to achieve a particular
compression ratio. In addition, the objective function is related
to the minimization of the error between the original image
(input) and the compressed one (output).
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Video compression depends heavily on the compression of
still images but also involves efficient management of blocks
of different frames in the image sequence. The latter has been
accomplished using three different techniques. First, a motion
detector is used to conside only blocks of frames where motion
has been detected. This is achieved by comparing the mean gray
value of a block with its corresponding block in the previous
frame [67,68]. The second technique involves an adaptive
compression scheme for selecting a well-suited compression
ratio for each block according to a quality threshold [67,68].
Finally, subsampling is applied so that only a portion of the
frames is considered; the rest are generated by interpolation.
In this case the function approximation capability of the RNN
can be utilized [69]. Using the aforementioned techniques,
significant image and video compression ratios can be achieved,
which are comparable to other compression and interpolation
techniques, while decompression is done at a faster rate.

5.6. Communication systems

Both the learning and modelling capabilities of RNNs have been
extensively exploited in communication systems.

The most important exploitation of RNNs in communication
networks corresponds to the utilization of the RNN–
RL algorithm to control the routing of packets in the
Cognitive Packet Network developed in [70–73]. A CPN is
a connectionless, packet switching network with intelligent
capabilities added to the packets rather than the nodes, for
routing and flow control. This is achieved by sending into the
network special cognitive packets called smart packets which
discover new routes from a source to a destination according
to a QoS metric such as throughput, delay, jitter and packet
loss [74]. The smart packet routing decisions are taken either
randomly or based on the RNN–RL algorithm discussed in
Section 4.4.1. Random decisions contribute to the exploration
of the network while RL-based decisions contribute to the
attainment of the best available route for the desired QoS
metric. The information gathered by smart packets is sent back
to the source via acknowledgement packets so that the state
of the RNNs is updated accordingly. Another class of packets,
the dump packets, carry the payload through the best route
discovered so far.

A prominent characteristic of the CPN, is its ability to adapt
according to the user goals so that diverse data streams follow
different routes based on their QoS requirements. The flexibility
of the CPN for goal-oriented routing has also been extended to
ad-hoc networks where power utilisation and path availability
is of primary concern [75], as well as sensor networks where the
preservation of energy is essential [76]. A CPN can also play
an important role in future intelligent networks where users can
both dynamically request services according to their QoS needs
and provide services, especially in the search for services [77].

Apart from the RNN–RL, RNN supervised learning has also
been exploited in the CPN to detect denial of service (DoS)

attacks [78]. The objective is to collect information from traffic
parameters affected during a DoS attack and use it to train the
RNN to detect an attack. Performance of the network for six such
variables showed that DoS attacks can be correctly identified in
approximately 95% of the cases.

Moreover, supervised RNN learning has been applied for
automatic quantification of the quality of traffic associated with
real-time multimedia applications such as video, speech and
interactive voice [79–82]. In order to quantify traffic quality
the authors introduced a pseudo-subjective quality assessment
(PSQA) metric and identified quality-affecting parameters such
as delay, jitter and packet loss. Automatic quantification was
accomplished by training the RNN with appropriate input–
output pairs. The inputs corresponded to distorted samples of
the affecting parameters collected from the network, while
the outputs were the mean opinion score (MOS) for each
of the samples, subjectively quantified from a human expert.
RNN training was performed with a subset of these data and
validated with its complement. Experiments conducted with
ANNs and Bayesian Classifiers confirmed the superiority of
the RNN in terms of performance, generalization and real-time
computational complexity [83].

The RNN’s modelling capacity has also been helpful in
communication networks. The author of [84] used RNN
modelling and learning for call admission control in ATM
networks. Specifically, each server in the network is modelled
using three neurons. The first neuron corresponds to the
server’s buffer occupancy, the second to the utilization of the
server and the third is representative of the traffic variation.
It is assumed that each server exhibits the behaviour of an
M/G/1 queue and hence the M/G/1 formulas are employed
to map the parameters of the neurons to the parameters of
the traffic. The overall network is modelled by connecting
the sub-RNNs together according to the connections of the
actual communication system. Weight learning at each of the
sub-RNNs is performed to adapt to the dynamically changing
conditions of the traffic. The RNN utilization allowed the
prediction of the traffic characteristics so that call admission
control could be successfully performed.

Modelling the behaviour of a communication system using
an RNN has also been considered in [85]. The authors exploited
a variation of the G-network with batch removals to model
the behaviour of a multimedia server that is responsible for
satisfying the customer requests to view a video document. The
G-network usage resulted in an efficient service scheme that
maximizes the utilization of the server under limited resources.

5.7. Simulation

In traditional simulation approaches, the designer has full
control over the behaviour of the synthetic entities represented.
For each type of entity, rules must be specified for all possible
conditions so that the entities can take appropriate decisions, a
process that is both complex and time consuming. Furthermore,
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human decisions are not only based on current conditions but
are also influenced by attributes such as observation, learning
and emotions.

These problems can be overcome with the introduction
of learning agents (LAs) as proposed in [86]. LAs acquire
information from the environment and other agents to act
in favour of their pursued goals. The cognitive map of each
agent, associated with the gained experience of the agent,
is stored in RNNs and updated using RL. Different RNNs
are associated with different actions and goals. Similar to
RNN–RL in the CPN, an RNN is responsible for both storing
the internal representation of the agent and taking decisions.
The LA approach was tested in the context of a simulation
where agents represent vehicles with the goal of traversing a
dangerous grid area with minimum delay and damage. In each
intersection, agents can decide to change direction based on the
local conditions, as well as the delay and damage experienced
by other agents who passed from the particular intersection
and had the same final destination. Experimentation showed
that RNN–RL had comparable performance to an algorithm
that incorporated a priori information about the condition of
the environment. Supervised learning has also been tested but
experimental evaluation indicated that it is inferior to RL in the
particular context.

LAs have also been employed to generate autonomous
realistic behaviour for artificial entities that are injected
into realistic settings [87]. Augmenting reality with synthetic
conditions is important in generating realistic training exercises
offering the authenticity of a real exercise at much lower cost
and hazards. As in [86], the authors employed the RNN–RL
algorithm for agent navigation, but also introduced imitation and
grouping capabilities. Consequently, the agents demonstrated
realistic behaviour in a scenario that involved a group of agents
going from location A to location B in a hostile terrain without
being hit.

5.8. Pattern recognition and classification

It is well known that neural networks are highly successful in
pattern recognition and classification problems. This stems from
their ability for learning and generalization. The RNN has been
particularly successful in these problems.

Early applications of the RNN concentrated on its use as
an associative memory, which can recognize noisy patterns.
Recurrent RNN architectures are usually used with each neuron
representing one bit of information. The authors of [88,89]
investigated the use of the BRNN model for associative memory
operations. In [88], they proposed a technique to retrieve stored
symbolic images from incomplete or erroneous information.
Their technique was based on adapting the external arrival
rates and the sign of each neuron (positive or negative) so
that the neurons can closely represent the stored patterns. More
techniques concerning the storage and reconstruction of patterns
with the BRNN model were examined in [89]. It was shown

that the BRNN has the capacity to store up to N/2 patterns
outperforming other well-known associative neural network
models. Associative memory for the recall of noisy patterns
has also been studied in the context of the original RNN
[14,18]. Contrary to [88,89], RNN learning was performed by
adapting the weights of the network and fixing the external
arrival rates. Results attested the ability of the RNN to recognize
noisy patterns achieving recognition rates greater than 98%
with-distortion rates less than 25%. Finally, the MCRNN and
its learning algorithm have been exploited to learn how to
retrieve noisy colour patterns, by representing each colour with
a different signal class of the model [90].

Apart from the recognition of noisy patterns, the RNN has
been utilized in the automatic target recognition of objects based
on synthetic aperture radar images [91]. The approach followed
is to train feed-forward RNNs to learn different segments of
the target. In each RNN an output neuron shows whether the
particular segment of the target is present or not. Each RNN is
trained to detect its target segment. To detect a target in an image,
neighbouring blocks of the image are sequentially examined
by the RNN and their decisions are fused to make a common
decision for the location of the target. The detection probability
of the network for noise levels up to 20% was almost equal to 1.

In [92], a vehicle classification system was presented.
The system extracts features from intensity images produced
from laser sensors such as geometrical characteristics of the
vehicle, speed and edge points and uses them to train a feed-
forward RNN.The RNN achieves a misclassification percentage
less than 10% when classifying vehicles into five different
categories.

The authors of [93] addressed a problem in semiconductor
fabrication associated with the prediction of the profile of cross-
section wafer surface images from the intensity profile of top-
down images. This reconstruction process is important as it
allows failure analysis engineers to recognize whether a wafer
surface is defective. Three approaches were proposed using the
RNN supervised learning algorithm. The first relied on using
training data from real images of both normal and defective
surfaces to directly map intensity profiles to cross-section
profiles. The other two approaches relied on mathematical
and physical modelling in obtaining expressions that relate
the intensity profile function with the cross-section profile and
applying RNN supervised learning to acquire good values for
the unknown expression parameters. Experimental evaluation
indicated that the direct mapping method is more successful
for abnormal surfaces, whereas the physical modelling method
works better for normal surfaces.

In the search for mines, detection is sometimes not sufficient
because false alarms can increase the cost and time spent. In
[94,95], two robust non-parametric techniques based on the
RNN were developed for the identification of mines according
to data from a calibrated landmine field. The first approach is
based on training a feed-forward RNN to identify mines using
input values from two features extracted from the minefield
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[96]. The second is based on determining the presence of mines
with respect to the electromagnetic induction (EMI) energy
measured at different locations. Apart from the detection of
mines, the problem of autonomously and effectively exploring
a minefield has been considered in [97]. To address the fact
that different minefield regions have different probabilities for
having mines, the authors proposed stochastic modelling of the
minefield. Furthermore, to accomplish the goal of maximizing
the number of mines found per unit time, they developed a
gradient descent algorithm in association with their modelling,
which is similar to the RNN supervised learning algorithm.

6. CONCLUSIONS

In this paper we have surveyed the research work undertaken
on the RNN. The RNN is a biologically inspired, open,
recurrent neural network with closed form expression for the
probability steady-state and analytically solvable signal-flow
equations. The properties of the model, extensions and learning
algorithms have been described. Furthermore, numerous RNN
applications have been reviewed with the emphasis placed
on their underlying methodology. The plethora and diversity
of applications reflect the prominence of the RNN both as a
modelling and as a learning tool.
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