
Click the Search Button and Be Happy:
Evaluating Direct and Immediate Information Access

Tetsuya Sakai
Microsoft Research Asia,

China
tetsuyasakai@acm.org

Makoto P. Kato
Kyoto University, Japan
kato@dl.kuis.kyoto-

u.ac.jp

Young-In Song
Microsoft Research Asia,

Beijing, P.R.C.
yosong@microsoft.com

ABSTRACT
We define Direct Information Access as a type of information ac-
cess where there is no user operation such as clicking or scrolling
between the user’s click on the search button and the user’s infor-
mation acquisition; we define Immediate Information Access as a
type of information access where the user can locate the relevant
information within the system output very quickly. Hence, a Di-
rect and Immediate Information Access (DIIA) system is expected
to satisfy the user’s information need very quickly with its very
first response. We propose a nugget-based evaluation framework
for DIIA, which takes nugget positions into account in order to
evaluate the ability of a system to present important nuggets first
and to minimise the amount of text the user has to read. To demon-
strate the integrity, usefulness and limitations of our framework, we
built a Japanese DIIA test collection with 60 queries and over 2,800
nuggets as well as an offset-based nugget match evaluation inter-
face, and conducted experiments with manual and automatic runs.
The results suggest our proposal is a useful complement to tradi-
tional ranked retrieval evaluation based on document relevance.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval

General Terms
Experimentation

Keywords
evaluation, information access, nugget, test collection

1. INTRODUCTION
Information Retrieval (IR) evaluation methods need to evolve to-

gether with users’ needs and with IR systems. Classical IR evalu-
ated set retrieval by means of recall and precision; but when the ex-
ponential growth of searchable information made ranked retrieval
a necessity, IR evaluation turned to metrics such as Average Pre-
cision and normalised Discounted Cumulative Gain (nDCG) [10].
Furthermore, as Web search studies have revealed that user’s queries
are often ambiguous and/or underspecified, new evaluation metrics

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’11, October 24–28, 2011, Glasgow, Scotland, UK.
Copyright 2011 ACM 978-1-4503-0717-8/11/10 ...$10.00.

suitable for selectively diversifying search results have begun to re-
ceive attention (e.g., [6, 20]). However, all of these evaluation ef-
forts still focus on ranked retrieval: a list of documents is presented
to the user, and the user is expected to choose from the list and then
read the entire Web pages that have been chosen.

In modern Web search engines used in desktop and mobile envi-
ronments, providing a simple ranked list of documents to the user is
becoming increasingly insufficient. A Search Engine Result Page
(SERP) typically consists of several components besides a list of
URLs with snippets, depending on query type. Some of these com-
ponents aim to satisfy the user needs directly: for example, weather,
flight status, stock prices, currency conversion, machine translation
and other types of “answers” can be embedded in the SERP [5].

We define Direct Information Access (DIA) as a type of infor-
mation access where there is no user operation such as clicking
or scrolling between the user’s click on the search button and the
user’s information acquisition. Chilton and Teeven’s “answers” [5]
are examples that enable DIA; Li, Huffman and Tokuda [12] have
referred to successful DIA cases as “good abandonements.” More-
over, we define Immediate Information Access (IIA) as a type of
information access where the user can locate the relevant infor-
mation within the system output very quickly. For example, if a
system can show a query-biased summary (a search engine snippet
would be a trivial example) of a retrieved Web page to the user, this
system may be more effective for IIA compared to one that shows
the entire contents of that page. Hence, a Direct and Immediate
Information Access (DIIA) system is expected to satisfy the user’s
information need very quickly with its very first response.

Suppose that a Japanese user needs to visit a particular Japanese
hospital, and he enters the name of the hospital in the query box of a
DIIA system. Figure 1 shows a possible DIIA system output (This
is from our manual run which we shall discuss in Section 5.1) that
the present study considers. As the English translation shows, our
“imaginary” DIIA system outputs the contact details and opening
hours of the hospital. The Japanese text is about 140 characters and
may fit a mobile phone screen size. If the DIIA system is used on a
PC, then the DIIA system may be able to return more information,
such as the nearest train station, car park availability and so on.

This paper proposes and validates a new methodology for evalu-
ating textual DIIA systems that respond to a given query as shown
in Figure 1. Our framework is closely related to multi-document
summarisation and Question Answering (QA) evaluations, but dif-
fers in the following aspects. First, while the summarisation task
treats the set of documents to be summarised as a given input to the
system, our DIIA framework considers both the phases of knowl-
edge source selection (i.e., finding relevant documents by means of
a Web search API etc.) and knowledge compilation (i.e., extracting
relevant pieces of information or nuggets [7, 15] from documents

Figure 1: An example Japanese DIIA output and its translation
(query: “Shonan Atsugi Hostpital”).

and organising them for effective presentation for a given output
screen size). Second, while traditional summarisation and QA eval-
uations are based on similarities with gold standards or nugget re-
call and precision (See Section 2.2), the DIIA task we define require
the following features of a system:

• Present important nuggets first;

• Minimise the amount of text that the user has to read.

This is a Direct IA task because the system has to return a text that
contain pieces of relevant information in response to a given query
(instead of returning a list of URLs); it is an Immediate IA task
because the above two requirements enable the user to obtain the
desired information quickly.

To evaluate the aforementioned requirements of DIIA systems,
we introduce a simple evaluation metric called S-measure which
is an extension of weighted nugget recall but takes the positions
of nuggets within the system output into account. To demonstrate
the integrity, usefulness and limitations of our DIIA framework,
we built a Japanese DIIA test collection with 60 queries and over
2,800 nuggets as well as an offset-based nugget match evaluation
interface, and conducted some experiments.

Clearly, DIIA is not just about textual responses: effective DIIA
systems should output visual “answers” such as maps, images and
so on. These are beyond the scope of our study. Moreover, even
when we restrict ourselves to textual responses, aesthetic features
such as highlighting and font sizes are important in practice. Our
current framework can only handle plain text. Nevertheless, we
claim that our evaluation framework is a useful departure from and
complement to traditional ranked list evaluation.

Section 2 describes previous work related to the present study.
Section 3 proposes our new evaluation framework for the DIIA
task. Section 4 describes the DIIA evaluation environment we con-
structed, and Section 5 reports on a set of experiments using this
environment. Finally, Section 6 concludes this paper.

2. RELATED WORK

2.1 Evaluating Search
In modern IR (particularly Web search) evaluation, nDCG [10]

has become a popular evaluation metric. While essentially the same
idea for evaluating ranked retrieval based on graded relevance ex-
isted back in the 1960s (i.e., Pollack’s sliding ratio [11]), the simple
ideas behind nDCG are appealing: a system is rewarded with a gain
value for retrieving a relevant document, and the gain values vary
according to the relevance levels; each gain is discounted according
to the rank of the retrieved relevant document; and an ideal ranked
list is used to normalise the overall system score.

Our proposed metric for evaluating DIIA was inspired by nDCG.
However, while nDCG evaluates a ranked list of items, we evaluate
a textual output, which is much more problematic. It should also

be noted that, while the original nDCG incorporated the notion of
user’s patience as a parameter (i.e., the logarithm base), the de facto
standard version of nDCG [4] lacks this parameter. In contrast, our
proposed metric retains a similar parameter that represents the max-
imum amount of text the user is expected to read, or equivalently,
the maximum amount of time the user is expected to spend. In this
respect, Dunlop’s work [8] that explored IR evaluation by expected
search duration is also related to our work.

Recently, methods for evaluating search result diversification have
been proposed (e.g., [6, 20]). Among them, α-nDCG and Novelty-
and Rank-Biased Precision (NRBP) [6] are somewhat related to
our study, as they view both information needs and documents as
sets of nuggets. However, these metrics are for evaluating ranked
lists, not text.

INEX (INitiative for the Evaluation of XML retrieval) 2011 has
launched the Snippet Retrieval Track1, which is also somewhat rel-
evant to this study as the task involves generation of a textual snip-
pet for each retrieved document. However, the INEX task is still
based on document relevance, and the snippets are regarded as a
means to judge the relevance of the original documents within the
traditional ranked list evaluation framework [21].

Bailey et al. [3] proposed a frawework for evaluating the whole
page relevance of a SERP, which typically consists of multiple
components, not all of which are textual. While their approach and
our DIIA framework both attempt to go beyond ranked list evalua-
tion, the former does not aim at producing a reusable test collection.
In contrast, while our DIIA framework focusses on a single textual
response, we aim to provide a nugget-based test collection that is
reusable to some extent.

2.2 Evaluating Textual Output
As our DIIA task is similar to summarisation and QA evaluations

in that the systems return textual responses, prior art in these areas
needs to be discussed.

ROUGE is a family of evaluation metrics for evaluating sum-
maries automatically [13]. While several versions of ROUGE ex-
ist, the key idea is to compare a system output with a set of gold-
standard summaries in terms of recall (or alternatively F-measure),
where recall is defined based on automatically-extracted textual
fragments such as N-grams and longest common subsequences.
POURPRE, an automatic evaluation metric for complex QA, is es-
sentially F-measure computed based on unigram matches between
the system output and gold-standard nuggets [14]. Also, new auto-
matic summarisation metrics are being explored at the recent AE-
SOP (Automatically Evaluating Summaries of Peers) task at TAC
(Text Analysis Conference)2.

The above automatic methods assume that automatic string match-
ing between the system output and the gold standard works well.
While these methods reduce the evaluation cost dramatically and
work for extractive approaches (i.e., summaries or answers are parts
of source documents), they are probably insufficient for evaluat-
ing intelligent systems that can handle consolidation of information
across multiple sources, paraphrasing, textual entailment and infer-
ence. Hovy, Lin and Zhou [9] discuss some challenges in automatic
matching in the context of evaluating summaries using Basic Ele-
ments. Indeed, we believe that, in order to quickly satisfy the user’s
information need with a small piece of text, systems will ultimately
have to employ abstractive techniques. While a few approaches
to incorporating paraphrase matching into automatic evaluation ex-
ist [16, 25], the premise in our study is that a system output and
1https://inex.mmci.uni-saarland.de/tracks/
snippet/
2http://www.nist.gov/tac/2011/Summarization/

a list of gold-standard nuggets need to be compared manually, at
least until we fully understand exactly what kinds of abstractive
techniques are useful and reliable for the DIIA task.

The pyramid method [17], a recently-proposed method for man-
ually evaluating summaries, is similar to our new proposal. The
pyramid method requires multiple gold-standard summaries, from
which semantic content units (SCUs) are extracted. Each SCU
is weighted according to the number of gold-standard summaries
it matches with. An assessor manually identifies SCUs within a
system’s summary, and the pyramid method essentially computes
SCU-based weighted precision or weighted recall.

A similar method has been used for evaluating complex QA at
TREC (and “squishy-list” QA at TAC) [7]. As was mentioned
earlier, the TREC QA systems were required to output a set of
documentID-answer pairs rather than a single text. In this evalu-
ation methodology, gold-standard nuggets are created by a single
assessor, but nugget importance is determined based on multiple
assessors, who assign either vital or okay to each nugget. Nugget-
based precision, weighted recall and F-measure were used for eval-
uation. However, the computation of precision is problematic here,
because the number of “incorrect nuggets” present in a system
output is difficult to define [7, 14]. Hence, an allowance of 100
characters per nugget match was introduced: if there are k nugget
matches and if the system output length l is smaller than 100 ∗ k,
then precision was defined as 1; otherwise precision was defined
as 100 ∗ k/l. This evaluation method was also used for QA tasks
with Asian languages at NTCIR3, with different allowance values
for different question types [15].

Unlike the pyramid methods for summarisation and QA, we aim
to evaluate the system’s ability to present important nuggets first
and to minimise the amount of text the user has to read. Hence we
take into account the position of each nugget match within a sys-
tem output. Moreover, while the pyramid QA evaluation relies on
an arbitrarily-set, fixed-length allowance for computing precision,
our methodology allows nugget constructors to define vital strings
which are used for approximating a length lowerbound for each
gold-standard nugget (See Section 3). Note also that the pyramid
methods discussed above are content selection evaluation metrics:
the assumption is that linguistic quality evaluation is done sepa-
rately [17]. Our evaluation framework is similar: S-measure is a
content ranking evaluation metric, and does not directly consider
readability aspects such as coherence and cohesiveness. The chal-
lenging problem of evaluating the readability of summaries is being
tackled at the aforementioned TAC AESOP task.

2.3 DARPA GALE Distillation Evaluation
Another relevant line of research that lies more or less in be-

tween the aforementioned document retrieval paradigm and the tex-
tual output paradigm is the nugget-based evaluation effort for the
DARPA GALE distillation program which was completed in 2010.
Babko-Malaya [2] describes a systematic way to define nuggets in a
bottom-up manner from a pool of system output texts. This is done
prior to determining whether each nugget is relevant or not: thus,
even nonrelevant parts of text need to be “nuggetised.” In contrast,
our nuggets are created in a top-down manner by means of man-
ual web search. However, Babko-Malaya’s approach to defining
the nugget granularity and handling world knowledge may also be
useful for our task: we leave this to future work.

White, Hunter and Goldsten [22] defined several nugget-based
metrics for the distillation task, but they are set retrieval metrics.
Allan, Carterette and Lewis proposed a character-based version of

3http://research.nii.ac.jp/ntcir/

bpref (binary preference) to evaluate a ranked list of passages [1]4.
Yang et al. [24] and Yang and Lad [23] have also discussed nugget-
based evaluation metrics that are similar in spirit to the aforemen-
tined α-nDCG, but their distillation tasks are quite different from,
and more complex than, our DIIA task: they consider multiple
queries issued over a period of time, and multiple ranked lists of
retrieved passages. On the other hand, their proposal to explicitly
incorporate the user cost (of reading nonrelevant text at the end
of system output) deserves attention and may be considered in our
DIIA framework in the future.

3. PROPOSED FRAMEWORK

3.1 Task Definition
We first define the DIIA task as follows. Given a query input by

the user, return a textual response whose length is no more than X
characters (or words, or bytes), excluding white spaces and punctu-
ation marks. We assume that some pieces of information are more
important than others, and that important ones should be presented
first to the user. Moreover, we expect a DIIA system to try to min-
imise the amount of text that the user has to read in order to satisfy
his information need. Thus, a piece of relevant information near the
beginning of the output text (which we call the X-string) will be
rewarded more than the same piece of information near the end of
the text. As the output length is limited, redundancy (i.e., repetition
of the same information within the text) is penalised.

In this paper, we consider a Japanese DIIA task as an example,
and consider X = 140 or 500 in Japanese characters. The for-
mer is designed to represent a mobile phone screen size; the latter
roughly corresponds to top five snippets in a typical SERP, which
are usually visible without scrolling in a desktop environment;

3.2 User Model and Nugget Discounting
We propose a simple evaluation framework for DIIA. First, let us

assume that the human reading speed is constant. For example, it is
known that the average reading speed of a Japanese person is 400-
600 characters per minute. For convenience, we assume that the
speed is 500 characters per minute. Our arguments can be extended
to other languages, for example, by replacing the constant with 250
words per minute for English, and so on.

As we have discussed earlier, DIIA aims to present important
nuggets first and to minimise the amount of text the user has to
read in order to obtain the desired information. To evaluate this, we
propose to conduct nugget-based evaluation following the practices
of QA and summarisation communities, and to evaluate each sys-
tem output by taking into account the positions of nugget matches
found in it. This is in contrast to traditional QA and summarisa-
tion evaluation, where it is only the presence of nugget matches
that matters. More specifically, we use a discount factor with each
nugget match based on its offset (i.e., distance from the beginning
of text), so that a nugget match near the beginning of text receives
more credit than one near the end. This is analogous to how nor-
malised discounted cumulative gain (nDCG) [10] discounts rele-
vant documents based on document ranks. However, while the log-
based discounting function of nDCG is understood as a model of
the user scanning a ranked list of retrieved items from top to bottom
while his patience gradually runs out, we are to model a user read-
ing a piece of text from beginning to end. Assuming that the read-
ing speed is constant, applying a linear discount to nugget matches
based on the offset values is probably one sensible approach.
4It is known that there are more elegant and reliable ranked retrieval
metrics than bpref, the simplest being the average precision defined
over a condensed list [18].

140 500
(1 minute)

L=1000
(2 minutes)

1

0.86

0.50

N
ug

ge
t v

al
ue

Nugget
offset

Figure 2: Discounting nugget values.

Offset0 500

Nugget
match m1

Nugget
match m3

offset (m1) Nugget
match m2

offset (m2)

offset (m3)

Figure 3: Nugget matches and offsets.

Let us therefore assume that the value of a nugget match decays
linearly with respect to the offset. Moreover, let us assume that
the value of a nugget wears out completely after (say) two min-
utes. This corresponds to a situation where the user cannot afford
to spend more than two minutes (after pressing the search button)
to gather information. For our average Japanese user, this translates
to L = 2 ∗ 500 = 1, 000 characters.

Figure 2 shows how nugget values can be discounted in the above
setting. For a DESKTOP run (where X = 500), the value of
a nugget found at the very beginning of the text is 1, but that of
one found at the very end is only 0.5. For a MOBILE run (where
X = 140), the value of a nugget found at the very end is 1 −
140/1000=0.86. Ideally, the parameter L should be determined
based on a practical requirement.

How to define the offset of a nugget match deserves a discussion.
We assume that an assessor uses an interface dedicated to evaluat-
ing an X-string by comparing it with a list of nuggets. Moreover,
unlike traditional nugget-based evaluation, we assume that when
the assessor identifies a nugget match, he records which part of
the X-string corresponds to a nugget. As we shall describe in Sec-
tion 4.3, the nugget match area can easily be recorded by means of
a mouse drag. We thus assume that for every nugget match, we can
obtain the start and end positions of the nugget match area.

Figure 3 depicts how we define the offset of a nugget match in
this study. As the figure shows, we propose to use the end position
of a nugget match area as the offset value, because the user prob-
ably has to read through the nugget match area in order to obtain
the information conveyed in that nugget. Note also that, in Fig-
ure 3, there are three nugget matches, and one nugget match area
subsumes another. In general, nugget match areas can overlap with
one another, and also multiple nugget matches may share the same
offset value, which is analogous to tied documents in IR.

Following previous work in QA and summarization, we define
a nugget loosely as an atomic piece of information whose pres-
ence/absence in a text can be judged by an assessor. Moreover,
we assume that we have a weight (i.e., importance) assigned to
each nugget, just like graded relevance assessments are available
in modern IR test collections. In practice, we let multiple asses-
sors assign a grade to each nugget, and then take the sum of the
grades to define nugget weights. An alternative approach would be
to define “vital” and “okay” nuggets [7].

…v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

Offset0

offset*(v1) offset*(v9)

Vital strings with w=3

Vital strings with w=2

Vital strings with w=1

Figure 4: A pseudo minimal output composed of vital strings.

3.3 S-measure
We now formally define S-measure. Let N be a set of gold-

standard nuggets constructed for a particular query, and let M(⊆
N) denote the set of matched nuggets, i.e., those manually identi-
fied in the X-string. For each m ∈ M , let w(m) denote its nugget
weight, and let offset(m) denote its offset value. Then, by apply-
ing the aforementioned linear discounting scheme, we could eval-
uate an output for a DIIA task by computing:

∑

m∈M

w(m)max(0, 1− offset(m)/L) . (1)

As shown in Figure 2, L is the amount of text read that corre-
sponds to the point where all information becomes useless to the
user (set to 1000 in this paper). The max operator just means “ig-
nore nuggets whose offsets are greater than L.”

For evaluation with a set of queries, we should normalise the
above metric so that it lies within the 0-1 range. In the case of IR
evaluation based on nDCG, this is easily done by defining an ideal
ranked list that exhaustively lists up all relevant documents in de-
scending order of relevance levels. In our case, however, defining
an ideal output is problematic, because our evaluation is based on
offset-based discounting rather than rank-based one. Our proposed
solution is to prepare a vital string v(n) for each nugget n in or-
der to approximate the minimal text length required to convey the
meaning of a nugget within a textual output. For example, suppose
that for query “Waseda university,” we have two nuggets n1 and n2

representing the phone and fax numbers of this university, amongst
other nuggets. That is, n1 represents the fact: “Waseda univer-
sity’s phone number is YY-YYYY-YYYY” while n2 represents the
fact: “Waseda university’s fax number is ZZ-ZZZZ-ZZZZ” (where
X and Y represent any digit). Then we may define v(n1) and v(n2)
as “YY-YYYY-YYYY” and “ZZ-ZZZZ-ZZZZ.” Note that if an X-
string contains “ZZ-ZZZZ-ZZZZ” but does not mention that this is
a fax number, the user may not find it useful. Thus, a vital string
represents a small piece of text that probably needs to be included
in the output: it does not necessarily contain sufficient information.
The idea is to provide a (possibly unreachable) length lowerbound
for each nugget.

For normalising our evaluation metric, we define a Pseudo Min-
imal Output (PMO) by sorting all vital strings that correspond to
all nuggets n ∈ N for a query. The first sort key is the nugget
weight w(n) (larger the better), and the second sort key is the vital
string length |v(n)| (smaller the better). Figure 4 shows an exam-
ple of PMO. Here, we assume that we have three different nugget
weights w = 3, 2, 1, and the vital strings are sorted accordingly.
Morever, within each set of nuggets with the same weight, the vital
strings are sorted by length. For example, v1 is the first vital string
in this PMO because its nugget has the highest weight (namely 3)
and v1 is shorter than the other two vital strings with the same
weight. Note that a PMO is a mere concatenation of vital strings
and may completely lack cohesiveness and coherence.

For any vital string v, let offset∗(v) denote its offset position
within a PMO. As Figure 4 shows, we use the end position of each
vital string. Then, we define S-measure as5:

S-measure =

∑
m∈M w(m)max(0, 1− offset(m)/L)∑

n∈N w(n)max(0, 1− offset∗(v(n))/L)

=

∑
m∈M w(m)max(0, L− offset(m))∑

n∈N w(n)max(0, L− offset∗(v(n)))
. (2)

It is clear that as L approaches infinity and the effect of offset-
based discounting is reduced, S-measure approaches the traditional
weighted nugget recall. The novel features of S-measure when
compared to existing QA and summarisation metrics for the pur-
pose of DIIA evaluation are: (1) It takes into account the position
of nugget matches; and (2) It approximates the minimal length re-
quired for each nugget, while traditional nugget-based precision
assumes that this length is a constant (i.e., the allowance). On the
other hand, the above definition implies that S-measure is not the-
oretically bounded above by 1: there are two reasons for this.

The first reason is that the PMO as defined above does not nece-
sarily maximise S-measure’s numerator. Suppose that we have
two nuggets n1 and n2, such that w(n1) = 2, |v(n1)| = l1 and
w(n2) = 1, |v(n2)| = l2. Then it is easy to show that an X-
string “v(n2)v(n1)” (i.e., one that presents the vital string of the
less important nugget first) may receive an S-measure greater than
one if l1 > 2l2. For example, if l1 = 3 and l2 = 1 (i.e. the
important nugget requires a much larger space than the other one),
the numerator for the above X-string would be 1 ∗ (1000 − 1) +
2 ∗ (1000 − (1 + 3)) = 2991. (We repeat, however, that a sim-
ple concatenation of vital strings such as “v(n2)v(n1)” may be
unreadable as vital strings do not necessarily contain sufficient in-
formation.) On the other hand, the denominator, which represents
the PMO “v(n1)v(n2)”, would be 2 ∗ (1000 − 3) + 1 ∗ (1000 −
(3 + 1)) = 2990(< 2991). Despite this shortcoming, we use the
nugget weight as the first sort key and the vital string length as
the second sort key for defining the PMO because (a) we consider
presenting important nuggets first more important than presenting
short nuggets first; and (b) the above simple definition of PMO
makes S-measure computationally cheap.

The second reason that S-measure can exceed one arises from
the basic assumption behind all nugget-based evaluation methods,
namely, that nuggets are independent of one another. For example,
consider the aforementiond example with a phone number and a
fax number of a university. Suppose that these two numbers happen
to be identical, and that we have defined the vital strings as “YY-
YYYY-YYYY” (10 characters, excluding “-”s) for both nuggets.
Then, a PMO will require at least 20 characters in total for these two
nuggets. However, an intelligent DIIA system might express these
pieces of information as “phone&fax:YY-YYYY-YYYY” (19 char-
acters, excluding “-”s and “:”), which is in fact more concise than
the PMO.

We later demonstrate that this lack of a theoretical upperbound
for S-measure is not a serious problem in practice. One method for
preventing S-measure from exceeding one is to define very short
vital strings. We will provide real examples in Section 4.2. Never-
theless, we can also formerly define a version of S-measure that is
guaranteed to range between 0 and 1 as follows:

S�-measure = min(1, S-measure) . (3)

We call this “S flat measure” because it “flattens” S-measure when-
ever it exceeds one.
5S stands for “the user Scanning a String at a constant Speed.”

4. CONSTRUCTING AN EVALUATION EN-
VIRONMENT

To demonstrate the feasibility of our new evaluation framework,
we constructed a Japanese DIIA test collection containing 60 queries
and over 2,800 nuggets6. As DIIA systems are expected to per-
form both knowledge source selection and knowledge compilation
(See Section 1), we allow DIIA systems to utilise any existing Web
pages as their knowledge sources instead of requiring them to draw
information from a closed document collection. We call this the
open knowledge source evaluation.

Each of our nuggets is associated with a URL: this is the support-
ing document based on which the nugget was constructed. Thus,
instead of making DIIA systems perform both knowledge source
selection and knowledge compilation, we may optionally let the
DIIA systems utilise the supporting URLs directly, thus isolating
and evaluating the knowledge compilation component. We call this
the oracle knowledge source evaluation.

In order to make our test collection as reusable as possible and to
ensure successful matches between our gold-standard nuggets and
system responses, we contructed queries that seek established facts
rather than time-sensitive, controversial or subjective information.
However, as we shall discuss in Section 4.2, even “established”
facts may change over time, and some truth maintenance effort in
the future may help prolong the life of our DIIA test collection.

4.1 Creating Queries
As we wanted our DIIA test collection to handle both DESK-

TOP and MOBILE situations (See Section 3.1), we referred to the
work by Li, Huffman and Tokuda [12] that analysed mobile and
desktop query logs from the United States, Japan and China, and
identified frequent query types for potential “good abandonment”
queries. They found that the query distributions over query types
are quite different across the three countries: for Japan (which they
considered to be a mature market in mobile search), the LOCAL,
QA7, CELEBRITY and DEFINITION query types were very pop-
ular in both mobile and desktop environments. We therefore de-
cided to collect queries for these four query types. The original
definitions of these query types by Li, Huffman and Tokuda were
as follows:

CELEBRITY User seeks news or images of a celebrity.

LOCAL User seeks a local listing (address and/or phone number).

DEFINITION User seeks the definition of a term.

QA User seeks a short answer to a question.

While we basically followed the original definitions for the DEF-
INITION and QA query types, we interpreted CELEBRITY and
LOCAL query types differently, as shown below:

CELEBRITY User wants to gather various facts about a celebrity:
date/place of birth, real name, blood type, height, hobbies,
profession, personal history, awards, publications, discogra-
phy, films, TV series, favourite baseball team, favourite food
etc.

LOCAL User wants to contact or visit a facility (school, shop,
office, amusement park, hotel, train station etc.). Hence (s)he
wants facts such as postal and email addresses, phone and
fax numbers, opening hours, how to access the facility by
train/bus/car, nearest stations, time required for the travel,
whether the facility has a car park and its opening hours etc.

6We will make the test collection available through NTCIR.
7Li, Huffman and Tokuda [12] called it the “answers” category.

1st field: queryID
2nd field: query type
CE: CELEBRITY
LO: LOCAL
DE: DEFINITION
QA: Question Answering
(15 queries each)

3rd field: number of intents
4th field: query string

Apart from Ueno Zoo,
where in Japan can I see

a panda?Mao Asada

Osamu Tezuka

Sanbonmatsu station

Kalashnikov

Which is taller, Tsutenkaku or
Utsunomiya Tower?

Kaori Manabe

The three duties
of a Japanese

citizen

Kanazawa University

What are the
storage capacity
units larger than
MB, GB and TB?

Figure 5: 60 DIIA queries.
Table 1: Number of nuggets per query type.

query type #queries mean range
CELEBRITY 15 126.5 [38, 368]
LOCAL 15 30.9 [10, 125]
DEFINITION 15 26.3 [2, 174]
QA 15 5.6 [2, 26]
all 60 47.3 [2, 368]

Note that we had to replace the original definition of CELEBRITY
completely to make the test collection as reusable as possible. These
detailed specifications were formulated through repeated revisions
during the nugget creation process.

After deciding on the four query types, we collected 15 queries
for each type, thereby obtaining 60 queries in total. As we wanted
to handle information needs that are as realistic as possible, we
used two sets of real query data. For obtaining CELEBRITY and
LOCAL queries, we used a proprietary Japanese mobile query log
which covered two weeks in October 2009. It contained approx-
imately 39,000 unique queries ranked by query frequency. From
this data set, we manually selected celebrity names and local fa-
cility names while conducting trial Web searches and ensuring that
good information sources exist on the Web. For obtaining DEF-
INITION and QA queries, we examined the Yahoo! Chiebukuro
(Japanese Yahoo! Answers) data [19]. Natural language questions
were manually selected from categories such as education, local
and health categories, which we thought were more appropriate
for factual information seeking than other categories such as love.
For the DEFINITION query type, we used the look-up term as the
query, while for QA, we formulated a short natural language sen-
tence from each original question in the Yahoo! data.

Figure 5 shows the entire query set thus constructed, with some
rough English translations8. For example, Query 0010 (“Mao Asada,”
8Query 0036 is misspelt, but we did not correct it. Current Web
Search APIs can actually correct the spelling automatically.

Figure 6: Some nuggets from 0031 “Osamu Tezuka”
(CELEBRITY).

a figure skater) is a CELEBRITY query. We classfied 0023 “Kalash-
nikov” as a DEFINITION query, as the original question in the Ya-
hoo! data set was “What is Kalashnikov?”. As the second field for
this query shows, it has five different interpretations in our data: a
gun inventor’s name, his son’s name, the gun’s name, and brands
called “Kalashnikov vodka” and “Kalashnikov watch.” Similarly,
the LOCAL query 0037 has two interpretations, as there are two
train stations named “Sanbonmatsu” in Japan. We intentionally in-
cluded these ambiguous queries in the set, as we believe that han-
dling such queries in DIIA evaluation will be important just as in
traditional diversified ranked list evaluation [6, 20]. However, how
to explictly encourage diversification in DIIA evaluation is beyond
the scope of the present study.

4.2 Creating Nuggets
Through searching and browsing Web pages (mostly official pages

or Wikipedia), the first author of this paper, who is a native Japanese
speaker, created a total of 2,839 nuggets across the 60 queries.
Statistics on the number of nuggets are shown in Table 1. The
query with the highest number of nuggets (368) is 0031 “Osamu
Tezuka” (See Figure 5), an extremely prolific cartoonist who died
in 1989: about 300 nuggets correspond to comics and films that
he created. A small portion of the nuggets for 0031 is shown in
Figure 6: the first field is the nugget ID; the second field is the
nugget grade (1, 2, or 3) assigned by the nugget creator (i.e., the
first author); the third field is the nugget semantics in natural lan-
guage, which represents an atomic piece of factual information and
is used as a criterion for manually determining if a system output
contains this nugget or not; the fourth field is the aforementioned
vital string used for normalising S-measure; and the fifth field is
the URL from which the nugget was extracted. Nuggets N001 and
N003 say that Osamu Tezuka was born on November 3, 1928 and
died on February 9, 1989, respectively; N002 says that he was born
in Osaka; N004 says that he was a cartoonist; N009 and N013 say
that he graduated from Osaka University in 1951 and that he got
married in 1959; N014 says that his wife’s name is Etsuko; and
N015 says that he received a medical doctoral degree in 1961. The
English translations of the corresponding vital strings would be:
“Nov 3, 1928,” “Osaka,” “Feb 9, 1989,” “cartoonist,” “graduated,”
“married,” “Etsuko” and “medical doctor.”

The nugget grades assigned by the first author are subjective. For
example, for 0031, all the comic book titles by Osamu Tezuka were
given the grade of 1, as the first author judged that it is more impor-
tant to include in the system output some basic facts about Osamu
Tezuka (personal history etc.) than some of his comic titles selected
from his lifetime’s work. Note also that in Figure 6, the fact that he
got married in 1959 (N013) is considered less important than the
fact that he graduated from Osaka university in 1951 (N009). To
remedy this subjectivity issue, the second author of this paper (also
a native Japanese speaker) assigned his nugget grades (1, 2 or 3) in-
dependently, and the sum of these two grades were used as the final
nugget weights in our experiments. The inter-assessor agreement
was reasonable: 0.689 in terms of quadratic-weighted kappa. Note
that, as in summarisation and QA evaluation, the nugget creation is
still done by a single person.

Even though nugget creation depends on the view of a single
person in our study, we devised a nugget creation policy document
that can be shared by future nugget creators. An excerpt from the
document is shown below:

(a) A nugget is a short factual statement such that an assessor
can judge whether a given text shows or clearly implies that
statement to be true.

(b) Information available on official Web pages is considered
factual. Information available from other Web sources is
considered factual provided that it does not contradict with
the official information.

(c) Nuggets are built based on established facts as of December
31, 2010. Events that occur after this date will be ignored.

Item (b) was included based on the observation that information in
official pages and that in Wikipedia are occasionally contradictory.
For example, for the CELEBRITY query 0022, the official date of
birth is different from the one in Wikipedia (as of December 31,
2010). In such a case, we assume that the official information is
correct. Item (c) tries to free us from the burden of updating our
nuggets indefinitely in response to future events. However, nuggets
do become obsolete, sometimes unexpectedly quickly: on Octo-
ber 28, 2010, we finished constructing our preliminary nugget sets
which contained a nugget representing a famous Japanese blog for
the aforementioned query 0022 “Kaori Manabe” (who was once
known as “Queen of Blogs”). However, to our surprise, the blog
was shut down permanently on October 31, 2010! On the other
hand, for the figure skater query 0010, we later had to add nuggets
representing figure skating competitions that took place in Novem-
ber and December 2010. We thus re-examined all of the prelimi-
nary nugget sets and made revisions where necessary, to ensure that
the final nugget sets represent facts as of December 31, 2010.

How efficient was the nugget creation process? The difficult
part was devising the nugget creation policy document: deciding
on what kinds of information to expect from DIIA systems in gen-
eral as well as for each query type. Once this was done, the actual
process of searching, browsing and collecting nuggets was not dif-
ficult. Although we did not measure the total time required for
constructing the entire test collection (as the nugget creation pol-
icy writing and most of the actual nugget creation were done in
parallel), we recorded the time spent for nugget creation for some
typical cases. For example, it took about 68 minutes to construct
148 nuggets for a CELEBRITY query (0.46 minutes per nugget),
and about 40 minutes to construct 31 nuggets for a LOCAL query
(1.29 minutes per nugget). This includes the time to form nugget
semantics and vital strings, to record URLs, and to decide on the
first set of nugget grades as shown in Figure 6. In general, queries
with many nuggets were created relatively efficiently, because they
usually contained large lists (CDs released, books published, etc.)
that are simple to handle. For DEFINITION and QA queries which
generally have a very small number of nuggets, the time spent was
typically 2-20 minutes per query. Our overall experience suggests
that nugget creation for the DIIA task is just as feasible as that for
QA and summarization or relevance assessments for traditional IR,
provided that a clear nugget policy document and training material
are given to the nugget creator. Note, however, that DIIA evaluation
also requires a manual nugget match evaluation for each system, as
will be described in the next section.

4.3 Nugget Match Evaluation Interface
To evaluate a system for the DIIA task, an X-string and the list of

nuggets are compared manually. Figure 7 shows screenshots of the

interface we have developed for this purpose. The left panel shows
the X-string for a particular query. (This is an X-string from the
manual DESKTOP run which will be described later). The nugget
match evaluation interface can truncate each X-string into 500 (or
140) characters before evaluation. The right panel shows the list
of nuggets for this query, in the PMO order (i.e., sorted first by the
nugget weight and then by the vital string length). The assessor
examines each nugget in turn, and decides whether it is covered
by the X-string or not. If it is covered, he selects and records a
nugget match area within the X-string by means of a mouse drag,
as shown Figure 7 (a). In response to this user action, a Save button
pops up, and the user can click on it. As a result, as shown in
Figure 7 (b), the nugget match area is stored together with its start
and end positions. The end position (44) is used as the offset for
this nugget for computing S-measure later. The output from this
interface is a list of nuggetID-offset pairs.

As was mentioned earlier, a nugget match area may overlap with
or subsume another. We believe that this flexible feature is nec-
essary for evaluating intelligent systems that go beyond extracting
texts from source documents “as is”. While the interface techni-
cally allows the assessor to record multiple matches per nugget, we
use only the nugget match with the smallest offset (i.e., first nugget
occurrence within the X-string) so that repetition is penalised when
computing S-measure.

Given the output from the interface (i.e., a list of nuggetID-offset
pairs), S-measure can easily be computed by automatically com-
paring it with the gold-standard that consists of nuggetIDs, nugget
weights and the lengths of vital strings (See Eq. 2)9. In practice,
it is probably useful to hire multiple assessors to evaluate each X-
string, and to average the S-measure values across the assessors,
which should serve two purposes: (a) trivial human errors (i.e.,
missing an existing nugget or locating a nonexistent nugget) can be
detected by automatically comparing the assessment results; and
(b) since recognition of nugget matches and selection of nugget
match areas may vary across assessors, we can obtain more re-
liable results by averaging. In this study, however, only the first
author performed nugget match evaluation. As the purpose of our
DIIA experiments is to demonstrate the integrity, usefulness and
limitations of our general approach, we argue that this is sufficient.

5. EXPERIMENTS
This section reports on a set of experiments using our DIIA test

collection and S-measure. In addition to evaluating a pilot auto-
matic run, we evaluated a manual run composed of X-strings con-
structed by hand for each query in order to estimate a practical up-
perbound for each query. This is because the maximum achievable
S-measure value is often below one by design, as the denomina-
tor (i.e., normalisation factor) of S-measure is often unreachable
by its numerator in Eq. 2. This normalisation issue arises from the
fact that the Pseudo Minimal Output (PMO) is constructed using
vital strings, which are probably necessary to be included in the
system output, but probably not sufficient to convey the meaning
of the nugget to the user. In addition, we compare the behaviour
of S-measure with the traditional weighted nugget recall, which is
equivalent to S-measure without offset-based discounting.

5.1 Manual Run
We devised a manual run in order to approximate S-measure val-

ues that are actually achievable if we have ideal information re-

9A software for computing S-measure is publicly avail-
able at http://research.nii.ac.jp/ntcir/tools/
ntcireval-en.html .

Save button
pressed

Save button pops up
every time a nugget

match area is selected

Current nugget: “Automatic rifle AK 47
developed by Mikhail Kalashnikov”

Nugget match area saved with offsets: “Doctor
Mikhail Kalashnikov. Also refers to the
automatic rifle AK-47 he developed. ”

Next
nugget

(a)

(b)

Figure 7: Nugget Match Evaluation Interface.

trieval and natural language processing techniques. Each output of
the manual run is perfectly readable, in contrast to a PMO which
may lack a lot of necessary information and may be defective as a
natural language text.

Each X-string of our manual run was prepared as follows: the
first author looked at the complete list of nuggets in the PMO or-
der. Starting with an empty output text file, he added, for each
nugget, a natural language text that concisely expresses the nugget
semantics. (The text is often similar to the nugget semantics itself.)
While he basically respected the original nugget order, he reordered
some nuggets so that similar kinds of information are output close
to each other. For example, even if a phone number is ranked at
1 and a fax number is ranked at number 5 in the PMO, he put the
phone number and the fax number together in the output file (by
basically respecting the rank of the first nugget). Similarly, for ex-
ample, a list of book titles were output as one block even if they
were spread across within the PMO, as the latter situation is not
natural to the human eye. He also consolidated multiple nuggets
where appropriate: recall the phone/fax number example discussed
in Section 3.3. In short, he used common sense to re-arrange and
merge the pieces of information conveyed in the PMO from the
viewpoint of readability and conciseness. As the manual run was
created by relying on the “right answers,” it should be regarded as
an oracle knowledge source run (See Section 4).

Figure 7 includes the first part of the X-string from our manual
run for 0023 “Kalashnikov” (DEFINITION). The first sentence in
this X-string means “Dr. Mikhail Kalashnikov, the Russian gun de-
signer” and this sentence covers the second nugget “Kalashnikov is
the name of a Russian gun designer” and the fifth nugget “Mikhail
Kalashnikov has a Ph.D.” The second sentence in the X-string
means “Also refers to AK-47, the automatic rifle he designed” and
this sentence covers the first nugget, “Kalashnikov means AK-47,
an automatic rifle designed by Mikhail Kalashnikov.”

The original manual run was created so that each X-string is
around 700 characters long. Then, the nugget match evaluation
interface truncated each X-string to 500 and 140 characters to pro-
duce DESKTOP and MOBILE runs, respectvely.

5.2 Automatic Run
We also generated an automatic run by assuming that the correct

query types are known to the DIIA system10. Using the query type
information and the Bing API, our automatic run adopted the sim-
ple heuristics shown in Figure 8 for each query q. Hence this is
an open knowledge source run (See Section 4). Just like the man-
ual runs, the automatic DESKTOP and MOBILE runs were created
from the same 700-character run by truncation. Note that these
runs are just examples for demonstrating the integrity of our DIIA
evaluation framework.

CELEBRITY
1. Submit query “q”, and obtain the snippet of the first retrieved URL that

matches the pattern “*ja.wikipedia.org*”;
2. Submit queries “q [official]” and “q [name encyclopaedia]”,

obtain the top-ranked snippets, and concatenate to the above.
LOCAL

Submit queries “q [address]”, “q [location]”, “q [phone]”,
“q [access]”, “q [hour]”, obtain the top-ranked snippets and
concatenate.

DEFINITION
1. Submit query “q [what is q]” and obtain the top-ranked snippet;
2. Submit query “q”, and obtain the snippet of the first retrieved URL that

matches the pattern “*ja.wikipedia.org*”. Concatenate to the above.
QA

Submit query “q”, obtain the snippets of retrieved URLs that match the
patterns “*chiebukuro.yahoo.co.jp*”, “*oshiete.goo.ne.jp*”,
“*q.hatena.ne.jp*” and “*questionbox.jp.msn.com*”, and concatenate.

Figure 8: The automatic run heuristics. (The URL pattern
“ja.wikipedia.org” represents Japanese Wikipedia pages and
the four URL patterns for the QA queries represent Japanese
community QA sites.)

5.3 Results and Discussions
Table 2 shows the mean S-measure (in bold) and weighted nugget

recall (in italics) values for our four runs (Manual/Automatic ×
DESKTOP/MOBILE). It can be observed that S-measure behaves
similarly to weighted recall on average: the DESKTOP runs (500

10Another approach would be to provide the DIIA system with some
training queries (which we lacked at this point), and make it deter-
mine the query type of each given query using an automatic classi-
fication technique.

Osamu
Tezuka

Kanazawa
University

Apart from Ueno Zoo, where in
Japan can I see a panda?

CELEBRITY LOCAL DEFINITION QA

0

0.2

0.4

0.6

0.8

1

9 10 12 13 18 20 22 25 30 31 38 50 51 53 57 1 3 5 6 8 17 24 29 33 36 37 39 41 46 52 11 14 19 23 26 27 42 44 47 48 49 54 55 56 58 2 4 7 15 16 21 28 32 34 35 40 43 45 59 60

Figure 9: Per-query DESKTOP run performances: manual run S-measure / weighted recall (red solid / orange dotted lines); auto-
matic run S-measure / weighted recall (blue solid / light blue dotted lines). The x-axis shows the query IDs.

Table 2: Manual and automatic run mean performances: S-
measure (in bold) / weighted recall (in italics). D:DESKTOP;
M:MOBILE.

Manual-D Auto-D Manual-M Auto-M
CELEBRITY .601/.530 .113/.099 .322/.244 .038/.032
LOCAL .859/.861 .130/.150 .491/.460 .044/.043
DEFINITION .865/.907 .388/.423 .702/.715 .294/.304
QA .985/1.000 .182/.218 .954/.963 .079/.085
all .828/.824 .203/.222 .617/.596 .114/.116

characters) naturally outperform the corresponding MOBILE runs
(140 characters); the automatic runs do better with DEFINITION
queries than with others; and the manual runs substantially outper-
form the automatic runs, but are far from “perfect.”

There two reasons why the mean S-measure across all queries
does not reach one even for the manual DESKTOP run (.828). The
first is simply because of the output widow size of 500: for some
queries, it is simply impossible to list up all nuggets within this
window, and this is exactly why the mean weighted recall is also
below one (.824). The second reason is that the maximum possible
S-measure value is often smaller than one.

Figure 9 visualises S-measure and weighted nugget recall for the
manual and automatic DESKTOP runs per query. The performance
of any DIIA DESKTOP run is expected to lie below the manual
DESKTOP curves as the latter represents practical upperbounds. It
can be observed, for example, that the practical upperbounds are
actually 1 for the QA queries as they have few nuggets per query,
while those for some CELEBRITY queries are indeed quite low,
for exactly the reasons discussed above.

At the other extreme, there was exactly one query for which the
S-measure only slightly exceeded 1, though this is not visible in
Figure 9. The QA query 0004 “Apart from Ueno Zoo, where in
Japan can I see a panda?” has the following four nuggets:

N001 Adventure World has pandas (vital string length = 11 for
“Adventure World” in Japanese); weight = 6;

N002 Adventure World is in Wakayama prefecture (vital string
length = 3 for “Wakayama” in Japanese); weight = 4;

N003 Oji Zoo has pandas (vital string length = 5 for “Oji Zoo” in
Japanese); weight = 6;

N004 Oji Zoo is in Kobe city (vital string length = 2 for “Kobe”
in Japanese); weight = 4.

Therefore, its PMO ranks the nuggets as<N003 N001 N004 N002>
by using the weights as the first sort key and the lengths as the sec-
ond sort key. Whereas, the manually composed X-string was “Oji

Zoo (Kobe), Adventure World (Wakayama)” [English translation].
This covers all four nuggets, and is of the form <N003 N004 N001
N002> after removing punctuation marks etc., and it happens to
outperform the PMO very slightly. As a result, the S-measure for
this query was 1.001. Note that this is exactly one of the potential
problems we discussed in Section 3.3. However, as was discussed
earlier, this problem can be avoided by using the S�-measure (Eq. 3)
instead.

Let us now compare S-measure with weighted recall using Fig-
ure 9. It can be observed that, while S-measure generally resem-
bles weighted recall, there are many cases where it is less than one
even though weighted recall is one. This means that S-measure
is more demanding for these queries. For example, see the man-
ual DESKTOP performances for the LOCAL and DEFINITION
queries. Also, for the aforementioned “panda” query 0004, our au-
tomatic DESKTOP run achieved a weighted recall of one but an
S-measure of around 0.9: the first part of the X-string is shown
in Figure 10. As the English translation shows, the red block in
this figure covers all of the aforementioned four nuggets. However,
because this X-string was automatically generated from search en-
gine snippets, the part preceding the red block is completely irrel-
evant. That is, while this output achieves perfect nugget recall, it
is still not satisfactory in terms of Immediate Information Access:
the automatic run fails to minimise the amount of text that the user
has to read in order to obtain the desired information. There were
other similar cases in our experiments, which suggest that evalua-
tion with S-measure will help us design our system output strategy
carefully for DIIA.

“There are only three places in Japan where
you can see pandas : Ueno Zoo, Oji Zoo in

Kobe, and Adventure World in Wakayama.”

Figure 10: Part of the X-string from the automatic run for
Query 0004.

Finally, let us discuss a few cases where S-measure is greater
than weighted recall. In Figure 9, the S-measure of the manual
DESKTOP run is higher than the weighted recall for 0031 “Os-
amu Tezuka” (CELEBRITY). Recall that this is the query with the
largest number of nuggets (368). The manual DESKTOP run re-
turned only 35 nugget matches for this query (unweighted recall=
35/368 = .095). However, as the X-string basically showed
the nuggets in order of importance (as this was the strategy used
for creating the manual runs), the S-measure was .351, while the
weighted recall was .142. Similarly, for 0039 “Kanazawa Univer-
sity” (LOCAL) which had 125 nuggets, the manual DESKTOP run

returned 31 nugget matches, and the S-measure was .602 while the
weighted recall was .348. These examples show that S-measure
can reward systems that present important nuggets first, even when
their nugget recall values are low.

6. CONCLUSIONS
We defined the Direct and Immediate Information Access (DIIA)

task, where the system is expected to satisfy the user’s need very
quickly with its very first textual output, and proposed an evalu-
ation framework for it. We proposed a simple evaluation metric
called S-measure that takes the positions of nugget matches into
account, and built a real DIIA test collection and an offset-based
nugget match evaluation interface. Our experiments have demon-
strated the integrity and usefulness of our framework. In particular,
we have verified that S-measure rewards systems that reflect nugget
importance, and those that return nuggets near the beginning of the
output string. We also demonstrated that S-measure usually lies
within the 0-1 range, and showed a simple variant of S-measure
called S�-measure which is strictly bounded above by 1.

Clearly, there are limitations to the present approach. The first
is that S-measure is purely a content ranking measure, and that it
does not consider linguistic quality. As we discussed in Section 2.2,
this is a problem inherent in all nugget-based approaches. One
possible problem with S-measure in particular is that there may
be cases where presenting important information first may actu-
ally hurt readability. We thus recommend that readability evalua-
tion be done separately for evaluating DIIA. Also, note that while
S-measure penalises presentation of nonrelevant information be-
fore relevant information as in Figure 10, it does not explicitly pe-
nalise presentation of nonrelevant information after relevant infor-
mation [23, 24]. This is similar to IR evaluation that treats a list of
nonrelevant documents and an empty list as equally useless.

The second limitation is that we can only evaluate plain text out-
puts, even though real DIIA systems will probably use highlighting,
different font sizes, and even non-textual presentations.

The third limitation is that, as we have observed in Section 4.2,
our nuggets may become obsolete relatively quickly even though
we are already restricting ourselves to retrieval of “established”
facts. To address this problem, building a semi-automated truth
maintenance system for nuggets may be useful. Such a system
could periodically monitor the URLs that the current nuggets rely
on (See Figure 6), and notify the test collection builder if the con-
tents of the URLs have been revised. Note, however, that while
some queries may require frequent updating, others do not: for ex-
ample, many DEFINITION and QA queries do not require frequent
updating, and the same goes even for some CELEBRITY queries,
particularly for people who have passed away.

Despite the above limitations, we believe that our framework is
a useful departure from and complement to traditional ranked re-
trieval evaluation. Since we explictly encourage concise presenta-
tions of important information, the DIIA task may foster research
in abstractive text presentation methods as opposed to simple ex-
tractive ones (e.g. sentence selection). As future work, we plan to
extend our DIIA experiments to other languages such as English.
Our framework may also be useful to other related applications,
such as search engine snippets and Bing’s hover previews.

7. REFERENCES
[1] J. Allan, B. Carterette, and J. Lewis. When will information retrieval

be “good enough”? In Proceedings of ACM SIGIR 2005, pages
433–440, 2005.

[2] O. Babko-Malaya. Annotation of nuggets and relevance in gale

distillation evaluation. In Proceedings of LREC 2008, pages
3578–3584, 2008.

[3] P. Bailey, N. Craswell, R. W. White, L. Chen, A. Satyanarayana, and
S. M. M. Tahaghoghi. Evaluating search systems using result page
context. In Proceedings of IIiX 2010, 2010.

[4] C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds,
N. Hamilton, and G. Hullender. Learning to rank using gradient
descent. In Proceedings of ICML 2005, 2005.

[5] L. B. Chilton and J. Teevan. Addressing people’s information needs
directly in a web search result page. In Proceedings of ACM WWW
2011, 2011.

[6] C. L. Clarke, N. Craswell, I. Soboroff, and A. Ashkan. A
comparative analysis of cascade measures for novelty and diversity.
In Proceedings of ACM WSDM 2011, 2011.

[7] H. T. Dang and J. Lin. Different structures for evaluating answers to
complex questions: Pyramids won’t topple, and neither will human
assessors. In Proceedings of ACL 2007, pages 768–775, 2007.

[8] M. D. Dunlop. Time, relevance and interaction modelling for
information retrieval. In Proceedings of ACM SIGIR ’97, 1997.

[9] E. Hovy, C.-Y. Lin, and L. Zhou. Evaluating DUC 2005 using basic
elements. In Proceedings of DUC 2005, 2005.

[10] K. Järvelin and J. Kekäläinen. Cumulated gain-based evaluation of
IR techniques. ACM Transactions on Information Systems,
20(4):422–446, 2002.

[11] R. R. Korfhage. Retrieval Effectiveness Measures, chapter 8, pages
191–218. Wiley Computer Publishing, 1997.

[12] J. Li, S. Huffman, and A. Tokuda. Good abandonment in mobile and
PC internet search. In Proceedings of ACM SIGIR 2009, pages
43–50, 2009.

[13] C.-Y. Lin. ROUGE: A package for automatic evaluation of
summaries. In Proceedings of the ACL 2004 Workshop on Text
Summarization Branches Out, 2004.

[14] J. Lin and D. Demner-Fushman. Methods for automatically
evaluating answers to complex questions. Information Retrieval,
9(5):565–587, 2006.

[15] T. Mitamura, H. Shima, T. Sakai, N. Kando, T. Mori, K. Takeda,
C.-Y. Lin, R. Song, C.-J. Lin, and C.-W. Lee. Overview of the
NTCIR-8 ACLIA tasks: Advanced cross-lingual information access.
In Proceedings of NTCIR-8, pages 15–24, 2010.

[16] H. Nanba, K. Hirahara, and T. Takezawa. Hiroshima city university
at evaluation subtask in the NTCIR-8 patent translation task. In
Proceedings of NTCIR-8, pages 415–419, 2010.

[17] A. Nenkova, R. Passonneau, and K. McKeown. The pyramid method:
Incorporating human content selection variation in summarization
evaluation. ACM Transactions on Speech and Language Processing,
4(2):Article 4, 2007.

[18] T. Sakai. Alternatives to bpref. In Proceedings of ACM SIGIR 2007,
pages 71–78, 2007.

[19] T. Sakai, D. Ishikawa, N. Kando, Y. Seki, K. Kuriyama, and C.-Y.
Lin. Using graded-relevance metrics for evaluating community QA
answer selection. In Proceedings of ACM WSDM 2011, pages
187–196, 2011.

[20] T. Sakai and R. Song. Evaluating diversified search results using
per-intent graded relevance. In Proceedings of ACM SIGIR 2011,
pages 1043–1052, 2011.

[21] A. Turpin, F. Scholer, K. Järvelin, M. Wu, and J. S. Culpepper.
Including summaries in system evaluation. In Proceedings of ACM
SIGIR 2009, pages 508–515, 2009.

[22] J. V. White, D. Hunter, and J. D. Goldstein. Statistical evaluation of
information distillation systems. In Proceedings of LREC 2008,
pages 3598–3604, 2008.

[23] Y. Yang and A. Lad. Modeling expected utility of multi-session
information distillation. In Proceedings of ICTIR 2009, pages
164–175, 2009.

[24] Y. Yang, A. Lad, N. Lao, A. Harpale, B. Kisiel, M. Rogati, J. Zhang,
J. Carbonell, P. Brusilovsky, and D. He. Utility-based information
distillation over temporally sequenced documents. In Proceedings of
ACM SIGIR 2007, pages 31–38, 2007.

[25] L. Zhou, C.-Y. Lin, D. S. Munteanu, and E. Hovy. ParaEval: Using
paraphrases to evaluate summaries automatically. In Proceedings of
HLT-NAACL 2006, 2006.

