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Abstract

This paper surveys the developments in the finance literature with re-
spect to applying the Fourier transform for option pricing under affine jump-
diffusions. We provide a broad description of the issues and a detailed sum-
mary of the main points and features of the models proposed.

First, we consider a wide class of affine jump-diffusions proposed for the
asset price dynamics: jump-diffusions, diffusions with stochastic volatility,
jump-diffusions with stochastic volatility, and jump-diffusions with stochas-
tic volatility and jump intensity. Next we apply the Fourier transform for
solving the problem of European option pricing under these price processes.
We present two solution methods: the characteristic formula and the Black-
Scholes-style formula. Finally, we discuss numerical implementation of pricing
formulas and apply the considered processes for modeling the DAX options
volatility surface.

Key words: stochastic volatility, jump-diffusion processes, volatility smile, op-
tion pricing, characteristic function, Fourier transform, DAX volatility surface.
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1 Introduction

We will concern with calculating fair prices for financial contracts derived from
the underlying assets. Financial derivative securities are used by individuals and
companies who wish to buy or sell an asset or commodity in advance to insure
themselves against adverse market movements or to make speculative bets. By
arranging now to buy an asset in the future, an investor can ensure that the price
at which he can trade is fixed. This is a forward, the simplest example of a financial
derivative.

An option is a derivative which gives to its holder the right to buy or sell a
security in the future for a given price. A call gives the right to buy while a put
gives the right to sell. Standard options are European if they can only be exercised at
option maturity. American options can be exercised at any time up to the maturity.
In this paper, we consider the problem of pricing European put and call options,
which are usually called vanilla options.

Like all financial contracts, an option has its value and its market price. The
value is usually obtained by means of a mathematical model, which we usually call
the pricing model. This model makes an assumption about the distribution of the
underlying assets and proposes a hedging strategy to replicate the option payoff. A
good pricing model leads to a perfect replication of the option payoff at the expiry
date. The market price of an option is an amount of money which is needed to
acquire this option. A good pricing model implies the price of option which is very
close to the market price of this option. The primary goal of financial practitioners
is to develop such pricing models that satisfy both criteria.

The first methodology for pricing options was developed by Black and Scholes
in 1973. The Black-Scholes model assumes that under the martingale measure Q
the price of an underlying asset follows a geometric Brownian motion with constant
drift and diffusion parameters

dS(t) = (r − d)S(t)dt+ σS(t)dW (t) (1.1)

where S(t) is the asset (underlying) price, r is a risk-free (domestic) interest rate,
d is a dividend (foreign interest) rate, σ is volatility, W (t) is a standard Wiener
process.

Assuming that the option payoff can be replicated by risk-neutral delta-hedging
strategy, Black-Scholes (1973) showed that the value F (S, t) of European option
satisfies the following partial differential equation (PDE)

Ft +
1

2
σ2S2FSS + (r − d)SFS − rF = 0,

F (S, T ) = max{ϕ[S −K], 0}
(1.2)

where the contract parameters are strike K, maturity T and type ϕ, with ϕ = +1
for a call option and ϕ = −1 for a put option; subscripts denote partial derivatives.

The solution to PDE (1.2) is given by the celebrated Black-Scholes (1973) formula

F (S, t) = ϕ[Se−d(T−t)N(ϕd+)−Ke−r(T−t)N(ϕd−)] (1.3)
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where

d+,− =
ln(S/K) + (r − d± 1

2
σ2)(T − t)

σ
√
T − t

,

n(y) =
1√
2π
e−

1
2
y2 , N(x) =

∫ x

−∞
n(y)dy.

(1.4)

In the above formula, n(y) is the standard normal probability density function (PDF)
and N(x) is the corresponding cumulative distribution function (CDF).

One of the key concepts in option pricing is volatility, which is an indicator of
uncertainty associated with the asset price. Volatility has several meanings. On
one hand, it can be calculated empirically as the standard derivation of price values
over some time interval, on the other hand, volatility can be calculated from option
prices quoted in the market. By pricing options, we are mostly interested in the
last quantity which we call implied volatility σimp(K,T ) and which is the solution
to equation

FBS(S, t, σimp(K,T );K,T ) = Fmarket(S, t;K,T ) (1.5)

where FBS(σimp(K,T );K,T ) is the Black-Scholes price with σ = σimp and Fmarket(K,T )
is the market price (or the price obtained by using an alternative pricing model) of
a vanilla option with strike K and expiry K.

Equation (1.5) can quickly be solved via Newton-Raphson method. The implied
volatility is often referred to as the Black-Scholes implied volatility.

The next key concept is the volatility smile, which is a plot with market im-
plied volatilities versus strikes. The term structure of implied volatility is a plot
with market implied volatilities for at-the-money (for K ≈ S(t)e(r−d)(T−t)) options
versus maturities. Combined together, these two features produce the volatility
surface where market implied volatilities are plotted across all possible strikes and
maturities.

To understand relevance of the volatility smile, let us recall that in the Black-
Scholes model the diffusion parameter, which is called volatility, is constant. Ac-
cordingly, the volatility surface should be flat across all stikes and maturities. How-
ever, in practice all option markets exhibit the volatility smile phenomenon which
means that options with different maturities and strikes have different implied Black-
Scholes volatilities. The assumption of constant volatility is now out-dated. The
Black-Scholes model is now used as a reference. Almost all European-style calls
and puts, which are usually called vanilla options, are quoted in terms of the Black-
Scholes volatility.

The implied volatility surface of the DAX (The Deutscher Aktienindex) vanilla
options is shown in Figure 1 in Appendix D. This is a typical pattern for equity and
foreign exchange options. As opposed to the constant volatility in the Black-Scholes
framework, volatility depends on both strikes and maturities. As a result, accurate
pricing and hedging of options is hard to achieve within the standard Black-Scholes
model.

The problem of pricing vanilla options consistently with the volatility smile has
been attracting much attention in the finance literature. A number of approaches
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have been proposed to deal with the smile. Lipton (2001) provides a good review of
these approaches and their implications for option pricing and hedging. Generally,
we can distinguish two main approaches.

The first one was developed by Dupire (1994), and it assumes that the volatility
is a deterministic function of time and the asset price. This approach is often referred
to as as the local volatility approach. In short, this approach requires computing
partial derivatives from the discrete market prices, which makes it very sensitive to
the choice of interpolation method. In addition, Hagan et al (2002) stated that local
volatility models predict the wrong dynamics of volatility which results in inaccurate
hedges. They concluded that local volatility models perform even worse than the
naive Black-Scholes model.

The second approach consists in modifying the asset price dynamics by means
of introducing price-jumps, stochastic volatility, their combination. This approach
has been studied by a number of researches [Merton (1976), Heston (1993), Bates
(1996), Duffie-Pan-Singleton (2000), and others] resulting in a number of different
models. Let us note that there are no accepted models and every market has its own
favorites. One of the well-known models are affine jump-diffusions. These processes
have a few appealing features: a good consistency with empirical data, analytical
tractability, a rich variety of specifications. In subsequent section, we will consider
some of the best-known affine jump-diffusions.

2 Modeling the Asset Price Dynamics with Affine

Jump-Diffusions

Here we consider a series of increasingly complex affine jump-diffusion processes.

2.1 Jump-Diffusion Processes

To obtain more realistic models of stock prices, researches have added jumps and
crashes to the standard Black-Scholes diffusion of stock prices. This approach was
inspired by Merton (1976) and studied by a number of authors afterwards. Price
jumps are important because they do exist in the market (for example, those that
happened in October 1987 and 1997), so taking them into account makes the pric-
ing model more realistic. Jump-diffusion models can also explain the smile in a
stationary way. Jumps are rather important for explaining shorter maturity smiles.

A serious drawback of all jump-diffusion models is that they always produce
increasing at-the-money-forward (for K ≈ S(t)e(r−d)(T−t)) term structure. This is
because jump models always increase the overall level of volatility. As a result, jump-
diffusions cannot match a steeply decreasing term structure of the implied volatility.
Another disadvantage of jump-diffusions is that these models are incomplete from
the point of view of replication - we cannot hedge jumps with the stock alone or
with an additional option.
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Now we consider the market where the governing SDE for S(t) under the objec-
tive measure P is given by

dS(t) = µ(S, t)dt+ σ(S, t)dW (t) + γ(S, t)JdN(t) (2.1)

where N(t) is a Poisson processes with constant intensity λ. When jump occurs, its
magnitude J is a random variable with the PDF $(J).

The risk-neutral dynamics for S(t) are built in such a way that e−rtS(t) remains
a martingale. To calculate the expected value of the increment, dN(t), we use the
property of the Poisson process that the arrival of a jump is independent of the
arrival of previous jumps, and that the probability of two simultaneous jumps is
zero. Let us assume that j jumps have occurred. Then, over the next small time
interval, dt, one jump will arrive with probability λdt, and no jumps will arrive with
probability 1− λdt. Therefore

E[dN(t)] = 1 · λdt+ 0 · (1− λdt) = λdt.

We define the process dM(t) as

dM(t) = dN(t)− λdt.

The expectation of dM(t), E[dM(t)], is zero. Thus, the process M(t) is a mar-
tingale. The process M(t) is often referred to as the compensated counting process.

Jumps are usually specified for the logarithmic stock price. As a result, the
risk-neutral dynamics for the price of an underlying asset S under the martingale
measure Q is given by

dS(t) = (r − d− λm)S(t)dt+ σS(t)dW (t) + (eJ − 1)S(t)dN(t) (2.2)

where m is the average jump amplitude: m =
∫

[eJ − 1]$(J)dJ .
Next we will consider possible PDFs for the jump sizes.

2.1.1 Log-Normal Jump-Diffusions

Merton (1976) proposed jump-diffusions where the logarithm of jump size is nor-
mally distributed:

$(J) =
1√
2πδ2

e−
(J−ν)2

2δ2 .

As a result, variable eJ is log-normally distributed. Merton showed that for
this jump-diffusion it is possible to represent the price of a vanilla call ot put as a
weighted average of the standard Black-Scholes prices:

F (S, σ, λ, τ) =
∞∑
n=0

e−λ
′τ (λ′τ)n

n!
FBS(S, σn, rn, τ) (2.3)

where λ′ = λ(1 + m), σ2
n = σ2 + nδ2

τ
, rn = r − λm + n ln(1+m)

τ
, m = eν+1/2δ2 − 1,

τ = T − t.
Although the formula includes an infinite number of terms, we use a local stop-

ping criterion to cut-off the summation when a specified level of accuracy is achieved.
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2.1.2 Double-Exponential Jump-Diffusions

This jump-diffusion was studied by Kou (2002). The jump size has an asymmetric
double exponential distribution:

$(J) = p
1

ηu
e−

1
ηu
J1{J≥0} + q

1

ηd
e

1
ηd
J
1{J<0} (2.4)

where 1 > ηu > 0, ηd > 0 are means of positive and negative jumps, respectively;
p, q ≥ 0, p + q = 1. p and q represent the probabilities of positive and negative
jumps. Requirement that ηu < 1 is needed to ensure that E[eJ ] <∞ and E[S] <∞.

The double-exponential jump-diffusion has one more parameter than the log-
normal jump-diffusion, so it is capable of producing more flexible smile shapes.
Papapantoleon (2002) provided some details on this account.

2.1.3 Jump-Diffusion with a Mixture of Independent Jumps

The Fourier transform allows obtaining convenient pricing formulas for the jump-
diffusion with a mixture of independent price-jumps with jump size PDF defined
by

$(J) =
n∑
j=1

Ωj$j(J) (2.5)

where Ωj is a weighting function,
∑n

j=1 Ωj = 1, and $j(J) is a PDF corresponding
to an individual jump size.

2.2 Stochastic Volatility Models

These models assume that volatility itself is volatile and fluctuating towards a long-
term mean. These models were introduced to reflect empirical evidence that the
volatility of asset returns is not constant. A number of models were proposed for
the volatility dynamics [Hull-White (1987), Stein-Stein (1991), Schobel-Zhu (1999)],
but the most popular model, which is also known as the square root model, was
developed by Heston (1993):{

dS(t) = (r − d)S(t)dt+
√
V (t)S(t)dW s(t), S(0) = S;

dV (t) = κ(θ − V (t))dt+ ε
√
V (t)dW v(t), V (0) = V.

(2.6)

where κ is a mean-reverting rate, θ is a long-term variance, ε is a volatility of
volatility, W s(t) andW v(t) are correlated Wiener processes with constant correlation
ρ.

Stochastic volatility models have a few advantages: models are in good agree-
ment with implied volatility surfaces, especially with long-term parts of the surface.
Models’ implied smiles are quite stable and unchanging over time.

However, these models have a serious disadvantage: we have to hedge stochastic
volatility to replicate and price the option. Unlike a stock or a currency, volatility is
not a traded variable with an observable price. As a matter of fact, we must hedge
one option with another, which is harder both in theory and in practice.
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2.3 Jump-Diffusions with Stochastic Volatility

There is strong evidence that stochastic volatility models cannot handle short-term
smiles properly. The addition of jumps [Bates (1996)] makes these models more
realistic:{

dS(t) = (r − d− λm)S(t)dt+
√
V (t)S(t)dW s(t) + (eJ − 1)S(t)dN(t),

dV (t) = κ(θ − V (t))dt+ ε
√
V (t)dW v(t).

(2.7)

Jumps can be drawn from either normal or double-exponential distribution.
Perhaps these models propose the most realistic dynamics for the smile. Models

combine advantages and disadvantages of both jumps and stochastic volatility. They
are also supported by numerous empirical studies [for example, Bates (1996), Fang
(2000), Duffie-Pan-Singleton (2000)].

2.4 Jump-Diffusions with Stochastic Volatility and Jump
Intensity

Fang (2000) studied the Bates model with a stochastic jump intensity rate:
dS(t) = (r − d− λ(t)m)S(t)dt+

√
V S(t)dW s(t) + (eJ − 1)S(t)dN(t), S(0) = S;

dV (t) = κ(θ − V (t))dt+ ε
√
V (t)dW v(t), V (0) = V ;

dλ(t) = κλ(θλ − λ(t))dt+ ελ
√
λ(t)dW λ(t), λ(0) = λ.

(2.8)
where κλ is a mean-reverting rate, θλ is a long-term intensity, ελ is volatility of jump
intensity, a Wiener process W λ(t) is independent of W s(t) and W v(t).

This is a very ambitious model, and it should be avoided in practice. We applied
this model for modeling the DAX volatility surface and found that there is no reason
to assume that the jump intensity is stochastic. However, jump-diffusions with time-
dependent intensity perform slightly better that those with constant intensity.

2.5 Jump-Diffusions with Deterministic Volatility and Jump
Intensity

Jump-diffusions with stochastic volatility result in two-dimensional pricing problem
and quite complicated hedging strategy. We can avoid this by introducing time-
dependent volatility and jump intensity: dS(t) = (r − d− λ(t)m)S(t)dt+

√
V S(t)dW s(t) + (eJ − 1)S(t)dN(t), S(0) = S;

dV (t) = κ(θ − V (t))dt, V (0) = V ;
dλ(t) = κλ(θλ − λ(t))dt, λ(0) = λ.

(2.9)
Empirical results of calibrating this model to the DAX surface imply that the

model produces the fit which is comparable to those produced by jump-diffusion
with stochastic volatility. A similar model, but in a discrete GARCH specification,
was considered in the empirical study by Maheu&McCurdy (2003). They found

7



that the model provides a good fit to the data, and it is capable of producing a rich
variety of implied distributions.

2.6 Jump-Diffusion with Price and Volatility Jumps

Duffie-Pan-Singleton (2000) proposed a jump diffusion with both price and volatility
jumps (SVJ):{

dS(t) = (r − d− λm)S(t)dt+
√
V S(t)dW s(t) + (eJ

s − 1)S(t)dN s(t), S(0) = S;

dV (t) = κ(θ − V (t))dt+ ε
√
V (t)dW v(t) + JvdN v(t), V (0) = V.

(2.10)
The general SVJ model nests four types of jumps: 1)jumps in the asset price;

2) jumps in the variance with exponentially distributed jump size; 3) double jumps
model with jumps in the asset price and independent jumps in the variance with
exponentially distributed jump size; and 4) simultaneous jumps model (SVSJ) with
simultaneous correlated jumps in price and variance. The marginal distribution of
the jump size in variance is exponential with mean η. Conditional distribution on
a realization Jv of a jump size in variance, a jump in logarithmic asset price is
normally distributed with mean ν + ρJJ

v and variance δ2:

Jv ∼ exp(
1

η
), Js|Jv ∼ N(ν + ρJJ

v, δ2). (2.11)

This model is supported by a number of studies [for example, Duffie-Pan-Singleton
(2000), Eraker-Johannes-Polson (2003)], and it provides a remarkable fit to observed
volatility surfaces.

3 Solution of the Pricing Problem

Now we solve the problem of pricing European-style options on the considered price
processes.

3.1 Preliminaries

We consider the following process which is a generalization of processes considered
previously:

dS(t)/S(t) = (r − d− λ(t)m)dt+
√
V (t)dW s(t) + (eJ − 1)dN(t), S(0) = S;

dV (t) = κ(θ − V (t))dt+ ε
√
V (t)dW v(t) + JvdN v(t), V (0) = V ;

dλ(t) = κλ(θλ − λ(t))dt+ ελ
√
λ(t)dW λ(t), λ(0) = λ.

(3.1)
We will solve the pricing problem for European-style claims under general dy-

namics (3.1). Therefore, solutions for particular models can be obtained by simpli-
fications of a general solution.
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Using the martingale pricing, we can represent option value as an integral of a
discounted probability density times the payoff function and apply the Feynman-Kac
theorem to derive the PIDE satisfied by the value of an option. We make a change
of variable from S to x = lnS and from t to τ = T − t. Applying Feynman-Kac
theorem [for example, Duffie-Pan-Singleton (2000)] for the price dynamics (3.1), we
obtain that the value of a European-style claim denoted by f(x, V, λ, τ) satisfies the
following partial integro-differential equation (PIDE)

−fτ + (r − d− 1

2
V − λm)fx +

1

2
V fxx + κ(θ − V )fV +

1

2
ε2V fV V + ρεV fxV

+ κλ(θλ − λ)fλ +
1

2
ε2
λλfλλ + λ

∫ ∞

−∞
[f(x+ J)− f(x)]$(J)dJ

+ λv
∫ ∞

0

[f(V + Jv)− f(V )]ψ(Jv)dJv = rf,

f(x, V, λ, 0) = g(ex, K).

(3.2)

where g is the payoff function. We assume that the payoff function is independent
of the variance. The payoff for an European call or put option is given by

g(ex, K) = max{ϕ[ex −K], 0}. (3.3)

We will apply the Fourier transform to solve PIDE (3.2). The forward Fourier
transform of f(x), which is denoted by f̂(x), or F [f(x)], is defined by

f̂(z) = F [f(x)] = v.p.

∫ ∞

−∞
eizxf(x)dx (3.4)

and the inverse Fourier transform is defined by

f(x) = F−1[f̂(z)] =
1

2π
v.p.

∫ izi+∞

izi−∞
e−izxf̂(z)dz (3.5)

where i =
√
−1 and z ∈ C, z = zr + zii, zr = <z ∈ R, zi = =z ∈ R, is the transform

variable.
For typical option payoffs, integral 3.4 exists only if =z is restricted to a strip

α < =z < β, where = means the imaginary part of z. We will refer to this strip as
the strip of regularity.

To solve the pricing problem, we need 1) to find an explicit representation of
Fourier integral (3.5); and 2) to invert the transform with the z-plain integration
keeping =z in an appropriate strip of regularity. Integral (3.5) can be computed
using the standard methods of numerical integration.

The advantage of employing the Fourier transform is obvious. Because a typical
option payoff depends only on the underlying (so that we need to apply only one-
dimensional Fourier transform), we can solve a multi-dimensional PIDE correspond-
ing to some tractable market models by means of a one-dimensional integration!
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It makes sense to derive a general formula for pricing calls and puts. We consider
variable x(t) = lnS(t). Under the martingale measure Q, x(t) satisfies

EQ[x(T )] = x(t) + (r − d)(T − t). (3.6)

It is more convenient to consider the option with the bounded payoff function
g(x) = min{ex, K}. Let f(x, V, λ, t) denote the value function of this option.

Using martingale pricing, we can represent the value of a call or put F (x, t) as

F (x(t), t) = EQ[e−(T−t)r max{ϕ[ex(T ) −K], 0}]

= e−(T−t)r
[
1 + ϕ

2
EQ[ex(T )] +

1− ϕ

2
EQ[K]− EQ[min{ex(T ), K}]

]
=

1 + ϕ

2
ex(t)−(T−t)d +

1− ϕ

2
e−(T−t)rK − f(x, V, λ, t).

(3.7)

Feynman-Kac theorem implies that the option value function f(x, V, λ, τ), where
τ = T − t, satisfies PIDE (3.2) with the following initial condition

g(ex, K) = min{ex, K}. (3.8)

As a result, we need to solve PIDE (3.2) for the function f(x, V, λ, τ) and price
calls and puts using formula (3.7).

For our subsequent analysis, we need to find the transformed initial condition
g̃(z) = F [min{ex, K}]. A relatively simple calculation yields

g̃(z) =

∫ ∞

−∞
eizx min{ex, K}dx = lim

U→∞

∫ lnK

−U
eizxexdx+K lim

U→∞

∫ U

lnK

eizxdx

= lim
U→∞

e(iz+1)x

iz + 1

∣∣∣∣x=lnK

x=−U
+K lim

U→∞

eizx

iz

∣∣∣∣x=U
x=lnK

=
e(iz+1) lnK

iz + 1
− 0 +K

(
0− eiz lnK

iz

)
=
Kiz+1

iz + 1
− Kiz+1

iz
=

Kiz+1

z2 − iz
.

(3.9)

The lower limit exists only if =z < 1. The upper limit exists only if =z > 0. Thus,
the transform is defined for 0 < =z < 1. We will denote this strip of regularity as
the payoff strip Sf .

3.2 The Characteristic Formula

Now we consider a powerful approach for solving a general pricing problem. We
assume that the characteristic function corresponding to the price dynamics is given
in closed-form. The characteristic function of x(T ) = lnS(T ) is defined by

φT (z) = EQ[eizx] =

∫ ∞

−∞
eizx$T (x)dx (3.10)

where $T (x) is the risk-neutral density of the logarithmic price x(T ).
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Now we state a modified version of Theorem 3.2 in Lewis (2001), which is very
important for option pricing under general stochastic processes. Lewis proposed
this formula for option pricing under Lévy processes; we apply his result for general
stochastic processes.

Theorem 3.1 (The Characteristic Formula). We assume that x(T ) has the analytic
characteristic function φT (z) with the strip of regularity Sz = {z : α < =z < β}.
Next we assume that e−zixf(x) ∈ L1(R) where zi is located in the payoff strip Sf

with transform f̂(z), =z ∈ Sf .
Then, if SF = Sf ∩ Sz is not empty, the option value is given by

f(x(t)) =
e−r(T−t)

2π

∫ izi+∞

izi−∞
φT (−z)f̂(z)dz (3.11)

where zi = =z, z ∈ SF = Sf ∩ Sz .

Proof. Using risk-neutral pricing, we have

f(x(t)) = EQ [e−r(T−t)f(x(T ))
] (3.5)

= e−r(T−t)EQ
[

1

2π

∫ izi+∞

izi−∞
e−izx(T )f̂(z)dz

]
=
e−r(T−t)

2π

∫ izi+∞

izi−∞
EQ[e−izx(T )]f̂(z)dz

(3.10)
=

e−r(T−t)

2π

∫ izi+∞

izi−∞
φT (−z)f̂(z)dz.

This exchange of integration order is allowed by the Fubini theorem. By assumption
φT (−z) exists if z ∈ Sz and z is already restricted to z ∈ Sz . Accordingly, the whole
integrand exists if z ∈ SF = Sf ∩ Sz .

3.3 The Black-Scholes-style Formula

Now we present another pricing formula which we call the Black-Scholes-style for-
mula. This formula is a generalization of previous work by Heston (1993), Bates(1996)
and others. A similar result was first considered by Lewis (2001) for pricing under
Lévy processes. Here, we consider it in more details and apply for pricing under
general processes.

Theorem 3.2 (The Black-Scholes-style Formula). We assume that the character-
istic function φT (z) = EQ[eizx(T )] corresponding to the market model is analytic and
bounded in the strip 0 ≤ =z ≤ 1. Two characteristics, φj(k) (j = 1, 2), k ∈ R, are
given by φ1(k) = e− lnS(t)−(r−d)(T−t)φT (k− i) and φ2(k) = φT (k). The CDF-s, Πj, in
the variable y = lnK of the log-spot price x(T ) = lnS(T ) are given by

Πj =
1

2
+

1

π

∫ ∞

0

<
[
φj(k)e

−iky

ik

]
dk (3.12)

and variables Pj(ϕ) are defined by

Pj(ϕ) =
1− ϕ

2
+ ϕΠj. (3.13)
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Then the current value of a European-style contingent claim, F (S, t), that pays off
max{ϕ[ST −K], 0}, where the binary variable ϕ = +1 for a call and ϕ = −1 for a
put, at time of the expiration date T has the form

F (S, t) = ϕ
[
e−d(T−t)SP1(ϕ)− e−r(T−t)KP2(ϕ)

]
. (3.14)

To derive the Black-Scholes-style formula (3.14), we will employ characteristic
formula 3.11 and the Cauchy’s theorem. The proof is given in Appendix A.

3.4 Analysis of Pricing Formulas

Thus, the pricing problem for European calls and puts is reduced to the evaluation
of Fourier integrals, which has to be done numerically. This method is quite easy to
implement and it is sufficiently fast for calibration.

We consider the proposed formulas in more details. The Black-Scholes formula
(3.14) includes integrals which are already expressed in terms of the real-valued
transform parameter k.

Now, we consider the characteristic approach. Given an explicit expression for
the moment generating function (MGF) G(Φ, x, V, λ, τ), the complex-valued char-
acteristic function is given by φT (z) = G(iz) and, similarly, φT (−z) = G(−iz).

For an option with payoff function g(x) = min {ex, K}, the integral (3.11) can
be represented as

f(x, V, λ, τ) =
Ke−τr

2π

∫ izi+∞

izi−∞
eiz lnKG(−iz, x, V, λ, τ)

z2 − iz
dz. (3.15)

It is more convenient to evaluate integral (3.15) along a straight line v = 1/2 in
the complex z-plain parallel to the real axis. Substituting z = k + i/2, k ∈ R, into
(3.15), we obtain that

f(x, V, λ, τ) =
Ke−τr

2π

∫ ∞

−∞

e−(−ik+1/2) lnKG(−ik + 1
2
, x, V, λ, τ)

k2 + 1/4
dk. (3.16)

For brevity, we introduce

Q(k, x, V, λ, τ) = e−τr−(−ik+1/2) lnKG(−ik +
1

2
, x, V, λ, τ). (3.17)

It can be shown that integrand in (3.16) is a symmetric function, i.e. Q(−k) =
Q(k), so that for option pricing we need to evaluate the following integral

f(x, V, λ, τ) =
Ke−τr

π

∫ ∞

0

<
[
Q(k, x, V, λ, τ)

k2 + 1/4

]
dk. (3.18)

In Appendix C, we report explicit expressions of characteristic functions and
Q(k, x, V, λ, τ) for particular market dynamics.

Given the value of f(x, V, λ, τ), values of European calls and puts are calculated
using formula (3.7). Thus, the pricing problem is reduced to a one-dimensional
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integration along the real axis. It can be shown that integrals (3.16) and (3.18)
are uniformly convergent so that the partial derivatives of the option value can be
computed by differentiating the integrand and inverting the Fourier transform. The
same is true for the Black-Scholes-style formula.

As a result, we have obtained two distinct formulas (3.14) and (3.18) for solving
the pricing problem. We have extensively studied convergence properties of the
integrals arising from both approaches. We found that using the Black-Scholes-style
formula one can compute the option price about three times faster than using the
transform-based approach. This property does not depend on a specific market
model. The advantage of characteristic integrals is that they can be computed by
virtue of the Fast Fourier Transform (FFT), which can only be implemented for
non-singular integrands. The FFT allows for simultaneous calculation of option
values for a given level of strikes. This can be very useful for calibrating a model
to the implied volatility surface. Implementation of the FFT for option pricing is
presented by Carr and Madan (1999).

3.5 Solution to the Moment Generating Function

For implementing the pricing formulas, we need to find explicit expression for the
characteristic function. Here we illustrate our approach using the square root pro-
cesses given by the dynamics (3.1). Other stochastic processes can be analyzed in a
similar manner. Let us recall the following relationship between the characteristic
function φ(k) and MGF G(Φ): φ(k) = G(ik). We apply the standard considerations
employed by Heston (1993) and consider the MGF G(Φ, x, V, λ, τ) associated with
the log of the terminal asset price x(τ) = lnS(τ) under the measure Q:

G(Φ, x, V, λ, τ) = EQ[eΦx(τ)] = e−rτEQ[erτeΦx(τ)]. (3.19)

Accordingly, MGF G(Φ, x, V, λ, τ) can be interpreted as a contingent claim that pays
off erτ+Φx at time τ .

For the jump-diffusion with stochastic volatility and intensity rate specified by
SDE(3.1), Feynman-Kac theorem implies that G(Φ, x, V, λ, τ) solves

−Gτ + (r − d− 1

2
V − λm)Gx +

1

2
V Gxx + κ(θ − V )GV +

1

2
ε2V GV V

+ ρεV GxV + κλ(θλ − λ)Gλ +
1

2
ε2
λλGλλ + λ

∫ ∞

−∞
[G(x+ J)−G]$(J)dJ = 0,

G(Φ, x, V, λ, 0) = eΦx.

(3.20)

We can solve PIDE (3.20) in closed-form by the method of indetermined coef-
ficients using a guess G = eA(τ)+B(τ)V+C(τ)λ. Thus, the solution has an affine-form
and, accordingly, these models are called affine (jump-)diffusions. The full solution
is specified by
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Proposition 3.1. The solution to PIDE (3.20) is given by

G(Φ, x, V, λ, τ) = exΦ+(r−d)τΦ+A(Φ,τ)+B(Φ,τ)V+C(Φ,τ)+D(Φ,τ)λ (3.21)

where

A(Φ, τ) = −κθ
ε2

[
ψ+τ + 2 ln

(
ψ− + ψ+e

−ζτ

2ζ

)]
,

B(Φ, τ) = −(Φ− Φ2)
1− e−ζτ

ψ− + ψ+e−ζτ
,

Ad(Φ, τ) = −(κτ + e−κτ − 1)
θ(Φ− Φ2)

2κ
, Bd(Φ, τ) = −(1− e−κτ )

(Φ− Φ2)

2κ
,

C(Φ, τ) = −κλθλ
ε2
λ

[
χ+τ + 2 ln

(
χ− + χ+e

−ξτ

2ξ

)]
,

D(Φ, τ) = 2Λ(Φ)
1− e−ξτ

χ− + χ+e−ξτ
,

Cd(Φ, τ) = (κλτ + e−κλτ − 1)
θλΛ(Φ)

κλ
, Dd(Φ, τ) = (1− e−κλτ )

Λ(Φ)

κλ
,

ψ± = ∓(κ− ρεΦ) + ζ, ζ =
√

(κ− ρεΦ)2 + ε2(Φ− Φ2),

χ± = ∓κλ + ξ, ξ =
√
κ2
λ − 2ε2

λΛ(Φ),

Λ(Φ) =

∫ ∞

−∞
eJΦ$(J)dJ − 1−mΦ, m =

∫ ∞

−∞
eJ$(J)dJ − 1,

where A = Ad, B = Bd and C = Cd, D = Dd in case of deterministic volatility and
jump intensity, respectively.

Proof is given in Appendix B.
In the above formula, Λ(Φ) is the so-called jump transform. Simple calculations

yield that for log-normal price-jumps we have

Λ(Φ) = eνΦ+δ2Φ2/2 − 1− Φ(eν+δ
2/2 − 1), (3.22)

and for double-exponential jumps we have

Λ(Φ) =
p

1− Φηu
+

q

1 + Φηd
− 1− Φ(

p

1− ηu
+

q

1 + ηd
− 1). (3.23)

provided that −1/ηd < =z < 1/ηu.
For a mixture of independent jumps defined by (2.5), we obtain that

Λ(Φ) =
n∑
j=1

ΩjΛj(Φ) (3.24)

where Λj(Φ) is the transform of a corresponding jump size PDF.
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Once the explicit expression for MGF has been obtained, we can use it to im-
plement the pricing formulas. In Appendix C, we report explicit expressions for the
characteristic formula and the Black-Scholes-style formula.

The expression for the MGF corresponding to a SVSJ process is derived in a
similar manner. We omit details to obtain

Proposition 3.2. The MGF corresponding to the SVSJ process is given by

G(Φ, x, V, λ, τ) = eΦx+(r−d)τΦ+A(Φ,τ)+B(Φ,τ)V+∆(Φ,τ) (3.25)

where

∆(Φ, τ) = λ

(
−Φ

(
eν+

1
2
δ2

1− ρJη
− 1

)
− 1

)
τ + λeνΦ+ 1

2
δ2Φ2

(
ψ−

ψ−L+ ηU
τ

− 2ηU

(ζL)2 − (ML+ ηU)2
ln

[
1− ψ+L− ηU

2ζL
(1− e−ζτ )

])
,

(3.26)

U = Φ−Φ2, M = κ− ρεΦ, L = 1− ρJηΦ, and A(Φ, τ), B(Φ, τ), ψ±, ζ are defined
in (3.21).

An outline of the proof is given in Appendix B.

4 Computing Fourier Integral

The Fourier integral can be computed by means of standard procedures of numerical
integration. An extensive list of corresponding formulas can be found in Numerical
Recepies in C [Press et al (1992)]. We use the ten-point Gaussian quadrature routine.
To approximate the Fourier integral, we re-write it as

I(k) =

∫ ∞

0

f(k)dk = lim
N→∞

N∑
j=1

∫ j·h

(j−1)·h
f(k)dk. (4.1)

Sub-integrals in (4.1) are computed by means of Gaussian quadrature formula. N
is not fixed but determined by a local stopping criterion: if the contribution of the
last strip, f(kj), becomes smaller than 10e− 12 the integration is stopped.

By using formula (4.1) we also have to specify a suitable step size h. We have two
opportunities. The first one is to employ Runge method and let h be fixed locally
according to some convergence criterion. The second approach is to determine the
suitable step size h by trials or establish a function h(X) whereX = lnS/K+(r−d)τ .
We analyzed the second approach with different choices of h. We found that choice
h = 1 for the transform approach and choice h = 10 for the Black-Scholes-style
formula lead to very satisfactory results. For these choices of h, price differences
between two approaches do not exceed 10e-4 for most realistic values of model and
option parameters. This is the case for all models we have presented.
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It is very important to carefully handle the complex logarithm arising in our
formulas because complex logarithm ln(z) is a multivalued function. Therefore,
we should implement our formula carefully keeping track of the complex logarithm
along the integration path. This gives a smooth function and leads to correct values
of f(k).

We use the following algorithm adopted from Theorem 4.17 in Priestley (1990):
1) at k = 0 an integer b0 (branch) is initialized to 0 and the principal branch of the
logarithm is initialized to L0 = ln |z|+ i · arg(z);
2) given bk−1, the bk is determined as follows:
if =(Lk − Lk−1) < −π then bk := bk−1 + 1
if =(Lk − Lk−1) > π then bk := bk−1 − 1
otherwise, bk := bk−1.
Then the correct logarithm to use at the point k is Lk + i · 2π · bk.

We use the principal square root to evaluate
√
z in our pricing formulas.

5 Empirical Study

In this section, we report results of applying jump-diffusions presented here to the
DAX options data.

5.1 Model Calibration

In previous sections, we derived formulas to calculate prices of European-style op-
tions for given parameters characterizing jump and volatility components. For prac-
tical purposes, we have to specify these parameters. We have two possibilities: either
to use historical time series in order to estimate parameters of the stock process or
to use the market prices of liquid options in order to imply these parameters from
option prices. By pricing derivative securities, market makers are primarily con-
cerned with parameters implied by the market, because they need to model their
option portfolios consistently with the market. A hedge fund might be interested in
both historical and implied parameters in order to make some arbitrage bets.

Parameter estimation using historical time series has been treated in several
studies: Bates (1996), Duffie-Pan-Singleton (2000), Eraker-Johannes-Polson (2003).
In our study, we consider parameter estimation using the implied volatility matrix
which encapsulates information of liquid options across all possible strikes and ma-
turities. A typical volatility matrix is shown in Table 2, which contains the DAX
(The Deutscher Aktienindex) option implied volatilities of July 5, 2002. To be sure
that our choice of parameters is compatible with the given volatility matrix, we need
to solve the calibration problem. Because we are interested in the model’s fit into
the implied volatility surface, we use the following ”goodness of fit” measure

min
Θ

N∑
j=1

(
σmarketj (K,T )− σmodelj (K,T ; Θ)

)2
(5.1)
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where σmarketj (K,T ) is the market implied volatility for strike K and maturity T ,
and σmodelj (K,T ; Θ) is the Black-Scholes volatility implied from the model price of
a call option with strike K and maturity T .

To solve the optimization problem, we use Excel Solver 5.0, which is sufficiently
efficient to deal with such problems. Our formulas are implemented in C++, which
guarantees high computational speed.

5.2 Results

In the first part of Table 1, we report estimated parameters for jump-diffusions with
log-normal (LN) jumps. BS denotes the Black-Scholes model, which is used as a
benchmark. SV denotes stochastic volatility component (the Heston model), DV -
deterministic volatility component, SI - stochastic jump intensity component, DI -
deterministic jump intensity component, SVSJ - jump-diffusion with simultaneous
price and volatility jumps. In the second part of Table 1, we report estimated
parameters for jump-diffusion with log-double-exponential (LE) jumps.

The sum of squared differences between market and model implied volatility
(SSE) can be viewed as a measure of in-sample fit. We also report the ratio of SSE
produced by the model to that of the Black-Scholes model. We can assume that the
lower the ratio, the better the model is compatible with the vanilla market.

The implied volatility surface and differences between market and model implied
volatilities for representative models are shown in Appendix D.

5.3 Comments

Jump-diffusions reduce squared errors by about 72 percent. The jump-diffusions
hold an advantage in fitting shorter maturity smile.

Diffusion with stochastic volatility cuts errors by more than 96 percent and
thus explains a significant part of the smile. As expected, the stochastic volatility
model implies a strongly negative correlation, ρ, between the asset price and volatil-
ity, which is common for equity markets. Somehow unusual is the large volatility
of volatility ε and mean reversion κ. This effect may be caused by a large num-
ber of shorter maturity out-of-the-money and in-the-money options in our data. It
also indicates that we need to incorporate jumps into the Heston model in order to
account for short maturities.

Jump-diffusions with stochastic volatility. Combing stochastic volatility
and jump models does a better job than either alone. It is clear that the pure
stochastic volatility model cannot handle very short maturities properly. By intro-
ducing jumps it is possible to improve the overall quality of calibration. Jumps also
take off some pressure from volatility of volatility ε and mean reversion κ in the
Heston model.

Jump-diffusions with stochastic intensity rate. An interesting fact is that
spot variance becomes zero. Thus, the asset price follows a pure jump process and
the main source of uncertainty is the stochastic jump intensity, which has a quite
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BS LN LN-SI LN-SV LN-SV-DI LN-DV-DI SVSJ
V0 0.0942 0.0433 0.0013 0.1372 0.1170 0.1228 0.1254
κ 9.5110 3.8988 10.8850 9.6952
θ 0.0285 0.0701 0.0001 0.0113
ε 0.8010 1.1536 0.3846
ρ -0.5483 -0.5646 -1.0000
λ 1.1098 22.2782 0.3635 1.6872 1.0995 1.1587

κλ 15.1160 43.6666 10.2252
θλ 7.5368 0.0001 1.4383
ελ 15.0947
ν -0.1285 -0.0550 -0.2459 -0.1538 -0.1614 -0.0982
δ 0.1702 0.0772 0.2547 0.1856 0.1591 0.1801

ηJ 0.0696
ρJ -0.0584

SSE 5701.9 1588.1 381.7 36.6 28.4 60.9 19.7
Ratio 100.0% 27.85% 6.69% 0.64% 0.50% 1.07% 0.35%
Rank 12 9 5 3 7 2

SV LE LE-SI LE-SV LE-SV-DI LE-DV-DI
V0 0.1979 0.0340 0.0001 0.1287 0.1006 0.1209
κ 16.2144 9.2908 3.3114 11.0413
θ 0.0741 0.0204 0.0720 0.0002
ε 3.3904 0.6389 1.0130
ρ -0.5113 -0.7400 -0.6092
λ 4.4044 55.1657 2.2445 11.1592 2.0977

κλ 13.4850 23.7478 9.4700
θλ 19.1176 0.0001 2.5076
ελ 0.0768

νup 0.0428 0.0231 0.0441 0.0325 0.1234
νdown 0.1205 0.0643 0.2078 0.1387 0.1231

p 0.5957 0.6553 0.7365 0.8131 0.0193
SSE 177.2 1584.6 307.8 29.9 15.7 50.6

Ratio 3.11% 27.79% 5.40% 0.52% 0.28% 0.89%
Rank 10 11 8 4 1 6

Table 1: Estimated parameters and in-sample fit
V0 is spot variance; κ is mean-reversion speed; θ is long-term variance; ε is volatility of volatility;
ρ is correlation between price and variance;
λ, ν, δ are jump intensity, mean and volatility for the Merton jump-diffusion, respectively;
λ, ηup, ηdown, p are intensity, mean of positive jumps, mean of negative jumps, probability of
positive jumps for the double-exponential jump-diffusion, respectively;
κλ, θλ, ελ are mean-reversion speed, long-term rate, volatility of the jump intensity, respectively;
λJ and ηJ are volatility jump mean and correlation for SVSJ model, respectively;
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large initial value and long-term level.
Jump-diffusions with stochastic volatility and deterministic intensity.

The quality of fitting for jump-diffusions with stochastic volatility and intensity is
equivalent to that for jump-diffusions with deterministic intensity. This justifies our
motivation of analyzing jump diffusions with deterministic jump intensity. From the
in-sample fit results, we can conclude that the jump-diffusions with deterministic
jump intensity are superior to the jump-diffusions with constant intensity.

Jump-diffusions with deterministic volatility and intensity provide a
close fit to data, thus they are worth studying. Their fit is comparable to that
implied by jump-diffusions with stochastic volatility, but these models are more
simpler.

Jump-diffusion with price and volatility jumps fits the surface very well.
An interesting fact is that the correlation between the underlying and volatility ρ is
−1. As expected, the jump correlation ρJ is negative, which means that a jump in
volatility affects the asset jump size rather negatively.

A good observation is that all parameters are important, that is increasing the
number of model parameters improves the quality of calibration. The best in-sample
fit is given by the double-exponential jump-diffusion with stochastic volatility and
deterministic jump intensity. The SVSJ process is very close to it.

6 Conclusions

In this research, we examined a number of affine jump-diffusions for the asset price
dynamics. We considered pricing problem of European-style options and derived
pricing formulas for European call and put option values using two approaches:
the characteristic formula and the Black-Scholes-style formula. We found that the
Black-Scholes-style formula yields the option value considerably faster than the char-
acteristic formula. However, the characteristic formula can be computed using the
Fast Fourier Transform.

Our empirical results with DAX options data show that, to achieve a close fit to
the vanilla market, one needs to incorporate both components into pricing models
- the stochastic volatility and jumps. Another good alternative is a jump-diffusion
with deterministic volatility and jump intensity.
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A Proof of Black-Scholes-style Formula

We assume that φT (−z) has the strip of regularity 0 ≤ =z ≤ 1. First, we re-write
the transform-based integral (3.11) as

fmin(S,K)(S(t)) =
e−r(T−t)

2π

∫ izi+∞

izi−∞
φT (−z) K

1+iz

z2 − iz
dz

=
e−r(T−t)K

2π

(∫ izi+∞

izi−∞
φT (−z)iK

iz

z
dz −

∫ izi+∞

izi−∞
φT (−z) iK

iz

z − i
dz

)
=
e−r(T−t)K

2π
(<(I1) + <(I2)) .

(A.1)

As it is customary in complex analysis, to evaluate I1, we employ a contour
integral over the contour given by 6 parametric curves: Γ1 : z = k, k ∈ (q, R)
with q, R > 0; Γ2 : z = R + ib, b ∈ (0, zi); Γ3 : z = k + izi, k ∈ (R,−R);
Γ4 : z = −R+ ib, b ∈ (zi, 0); Γ5 : z = k, k ∈ (−R,−q); Γ6 : z = qeiθ, θ ∈ (0, π). As
the integrand is analytic on this contour, Cauchy’s theorem implies that

6∑
j=1

∫
Γj

F (zj)dzj = 0.

Evaluating the corresponding integrals, taking limits q → 0 and R → ∞, and
changing variable k → −k, we obtain that

<(I1) = −π −
∫ ∞

−∞
<
[
φT (k)

iK−ik

k

]
dk. (A.2)

Again, to evaluate I2 we employ a contour integral over the contour given by 6
parametric curves: Γ1 : z = k + i, k ∈ (q, R) with q, R > 0; Γ2 : z = R + ib, b ∈
(1, 1 + zi); Γ3 : z = k + i(1 + zi), k ∈ (R,−R); Γ4 : z = −R + ib, b ∈ (zi, 1); Γ5 :
z = k+ i, k ∈ (−R,−q); Γ6 : z = i+ qeiθ, θ ∈ (0, π). Evaluating the corresponding
integrals, taking limits q → 0 and R→∞, changing variable k → k− i, and noting
that φT (−i) = Se(r−d)(T−t) we obtain that

<(I2) =
Se(r−d)(T−t)

K

(
−π −

∫ ∞

−∞
<
[
φT (k − i)

iK−ik

k

]
dk

)
. (A.3)

Substituting (A.2) and (A.3) into (A.1), using relationship (3.7) and introducing
terms Πj, we obtain the Black-Scholes-style formula (3.14).
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B Solution to the Moment Generating Function

Here, we derive the solution to the MGF corresponding to the jump-diffusion (3.1).
We guess that the solution for G(Φ, x, V, λ, τ) in (3.20) has the form

G(Φ, x, V, λ, τ) = eΦx+(r−d)τΦ+O(Φ,τ)+B(Φ,τ)V+D(Φ,τ)λ

with initial conditions O(Φ, 0) = 0, B(Φ, 0) = 0 and D(Φ, 0) = 0.
Plugging these into (3.20), yields

Oτ +BτV +Dτλ =− 1/2(Φ− Φ2)V + κ(θ − V )B + 1/2ε2V B2+

ρεV ΦB + κλ(θλ − λ)D + 1/2ε2
λλD

2 + λΛ(Φ)

where Λ(Φ) =
∫∞
−∞ eJΦ$(J)dJ − 1−mΦ.

This leads to a system of three ODEs
Oτ = κθB + κλθλD
Bτ = −1

2
(Φ− Φ2)− (κ− ρεΦ)B + 1

2
ε2B2

Dτ = −κλD + 1
2
ε2
λD

2 + Λ(Φ).

This system can be solved explicitely. Finally, we can represent O(Φ, τ) as

O(Φ, τ) ≡ A(Φ, τ) + C(Φ, τ)

where Aτ (Φ, τ) = κθB and Cτ (Φ, τ) = κλθλD.
First, we solve the second ODE, which is the Riccati differential equation. Mak-

ing the substitution

B = − E ′(τ)
ε2

2
E(τ)

,

we obtain the second order differential equation

E ′′(τ) + (κ− Φρε)E ′(τ) +
1

4
ε2(Φ− Φ2)E(τ) = 0.

A general solution has the form

E(τ) = C1e
− 1

2
ψ−τ + C2e

1
2
ψ+τ

where
ψ± = ∓(κ− Φρε) + ζ, ζ =

√
(κ− Φρε)2 − ε2(Φ− Φ2).

We note that ψ+ + ψ− = 2ζ and ψ+ · ψ− = −ε2(Φ− Φ2).
The boundary conditions{

E(0) = C1 + C2

E ′(0) = −1
2
ψ−C1 + 1

2
ψ+C2 = 0

yield {
C1 = ψ+E(0)

2ζ

C2 = ψ−E(0)
2ζ

.
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Thus,

B(z, τ) = − E ′(τ)
ε2

2
E(τ)

= −
−1

2
ψ−

ψ+E(0)
2ζ

e−
1
2
ψ−τ + 1

2
ψ+

ψ−E(0)
2ζ

e
1
2
ψ+τ

ε2

2
(ψ+E(0)

2ζ
e−

1
2
ψ−τ + ψ−E(0)

2ζ
e

1
2
ψ+τ )

= −(Φ− Φ2)
−e− 1

2
ψ−τ + e−

1
2
ψ+τ

ψ+e
− 1

2
ψ−τ + ψ−e

1
2
ψ+τ

= −(Φ− Φ2)
1− e−ζτ

ψ− + ψ+e−ζτ
.

Finally, the expression for A(z, τ) is obtained by integrating the first ODE.

A(z, τ) = κθ

∫ τ

0

B(s)ds = −2κθ

ε2

∫ τ

0

E ′(s)

E(s)
ds = −2κθ

ε2
(lnE(s)|s=τs=0)

= −2κθ

ε2
ln

[
E(τ)

E(0)

]
= −2κθ

ε2
ln

[
ψ+

2ζ
e−

1
2
ψ−τ +

ψ−
2ζ
e

1
2
ψ+τ

]
= −2κθ

ε2
ln

[
ψ+e

− 1
2
ψ−τ + ψ−e

1
2
ψ+τ

2ζ

]
= −κθ

ε2

(
ψ+τ + 2 ln

[
ψ− + ψ+e

−ζτ

2ζ

])
.

The ODE for the stochastic jump intensity is solved by analogy. Jump-diffusions
with deterministic volatility and jump intensity are treated in a similar manner.

Finally, we consider jump-diffusion wit price and volatility jumps. By analogy,
Feynman-Kac theorem implies that in this case G(Φ, x, V, λ, τ) satisfies

−Gτ + (r − d− 1

2
V − λm)Gx +

1

2
V Gxx + κ(θ − V )GV +

1

2
ε2V GV V

+ ρεV GxV + λE [G(x+ Js, V + Jv)−G] = 0,

G(Φ, x, V, λ, 0) = eΦx

(B.1)

where Jv ∼ exp( 1
η
) and Js|Jv ∼ N(ν + ρJJ

v, δ2).

PIDE (B.1) can be solved by analogy with the PIDE (3.20). The solution is
given by formula (3.25).

C Summary of Pricing Formulas

Here, we report explicit expressions corresponding to jump-diffusion (3.1) for the
characteristic formula (3.16) and the Black-Scholes-style formula (3.14).

C.1 The Characteristic Formula

The complex-valued inverse Fourier transform corresponding to the market model
(3.1) for the payoff function f(x) = min{ex, K} is given by formula (3.16) where
the general form of Q(k, x, V, λ, τ) is determined using the expression for the MGF
given by (3.21).

A general form of Q(k, x, V, λ, τ) is given by

Q(k, x, V, λ, τ) = e(−ik+1/2)X+A(k,τ)+B(k,τ)V+C(k,τ)+D(k,τ)λ (C.1)

23



where X = ln(S/K) + (r − d)τ and other coefficients are specified with accordance
to

1) Volatility

- Constant
A(k, τ) ≡ 0, B(k, τ) = −(k2 + 1/4)τ/2.

- Deterministic
A(k, τ) = − θ

2κ
(κτ − 1 + e−κτ )(k2 + 1

4
), B(k, τ) = − 1

2κ
(1− e−κτ )(k2 + 1

4
).

- Stochastic

A(k, τ) = −κθ
ε2

[
ψ+τ + 2 ln

(
ψ− + ψ+e

−ζτ

2ζ

)]
, B(k, τ) = −(k2 + 1/4)

1− e−ζτ

ψ− + ψ+e−ζτ
.

ψ± = ∓(u+ ikρε) + ζ, ζ =
√

(k2ε2(1− ρ2) + 2ikρεu+ u2 + ε2/4, u = κ− ρε/2.

2) Jump Rate Intensity

- Constant
C(k, τ) ≡ 0, D(k, τ) = τΛ(k).

- Deterministic

C(k, τ) =
(
κλτ − 1 + e−κλτ

) θλΛ(k)

κλ
, D(k, τ) =

(
1− e−κλτ

) Λ(k)

κλ
.

- Stochastic

C(k, τ) = −κλθλ
ε2
λ

[
χ+τ + 2 ln

(
χ− + χ+e

−ξτ

2ξ

)]
, D(k, τ) = 2Λ(z)

1− e−ξτ

χ− + χ+e−ξτ

χ± = ∓κλ + ξ, ξ =
√
κ2
λ − 2ε2

λΛ(k).

3) Jump Size Distribution

- Log-Normal

Λ(k) = e−ik(ν+δ
2/2)−(k2−1/4)δ2/2+ν/2 − 1− (−ik + 1/2)(eν+δ

2/2 − 1).

- Double-Exponential

Λ(k) =
p

1− (−ik + 1/2)ηu
+

q

1 + (−ik + 1/2)ηd
−1−(−ik+1/2)(

p

1− ηu
+

q

1 + ηd
−1).
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C.2 The Black-Scholes-style Formula

Here, we report the expressions for characteristic functions for option pricing using
the Black-Scholes-style formula (3.14). The characteristics φj(k) (j = 1, 2) are
determined using the expression for the MGF given by (3.21). A general form of
φj(k) (j = 1, 2) is given by

φj(k) = eikX+A(k,τ)+B(k,τ)V+C(k,τ)+D(k,τ)λ. (C.2)

Variables u, I, b are defined as follows

if j = 1 : u = +1, I = 1, b = κ− ρε;

if j = 2 : u = −1, I = 0, b = κ.

The coefficients in (C.2) are specified with accordance to
1) Volatility

- Constant
A(k, τ) ≡ 0, B(k, τ) = −(k2 − uik)τ/2.

- Deterministic
A(k, τ) = − θ

2κ
(κτ − 1 + e−κτ )(k2 − uik), B(k, τ) = − 1

2κ
(1− e−κτ )(k2 − uik).

- Stochastic

A(k, τ) = −κθ
ε2

[
ψ+τ + 2 ln

(
ψ− + ψ+e

−ζτ

2ζ

)]
, B(k, τ) = −(k2 − uik)

1− e−ζτ

ψ− + ψ+e−ζτ
,

ψ± = ∓(b− ρεik) + ζ, ζ =
√

(κ− ρεik)2 + ε2(k2 − uik).

2) Jump Rate Intensity

- Constant
C(k, τ) ≡ 0, D(k, τ) = τΛ(k).

- Deterministic

C(k, τ) =
(
κλτ − 1 + e−κλτ

) θλΛ(k)

κλ
, D(k, τ) =

(
1− e−κλτ

) Λ(k)

κλ
.

- Stochastic

C(k, τ) = −κλθλ
ε2
λ

[
χ+τ + 2 ln

(
χ− + χ+e

−ξτ

2ξ

)]
, D(k, τ) = 2Λ(k)

1− e−ξτ

χ− + χ+e−ξτ
,

χ± = ∓κλ + ξ, ξ =
√
κ2
λ − 2ε2

λΛ(k).

3) Jump Size Distribution
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- Log-Normal

Λ(k) = e(ν+Iδ
2/2)ik−δ2k2/2+I(ν+δ2/2) − 1− (ik + I)(eν+δ

2/2 − 1).

- Double-Exponential

Λ(k) =
p

1− (ik + I)ηu
+

q

1 + (ik + I)ηd
− 1− (ik + I)(

p

1− ηu
+

q

1 + ηd
− 1).
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D Quality of Calibration for Selected Models

In Table 2, we report the implied volatility matrix of DAX (The Deutscher Aktienin-
dex) options of July 5, 2002 and discount rates, which we used in model calibration.
The spot price is S = 4468.17. DAX options are European type options and no div-
idend yield applies. Figures below illustrate DAX volatility surface and the quality
of calibration for selected models.

Expiry Jul-02 Aug-02 Sep-02 Dec-02 Mar-03 Jun-03 Dec-03 Jun-04
Time 2 weeks 1 month 3m 6m 9m 12m 18m 24m
Date 19-07-02 16-08-02 20-09-02 20-12-02 21-03-03 20-06-03 19-12-03 18-06-04

T 0.0389 0.1139 0.2083 0.4583 0.7111 0.9583 1.4556 1.9528
r 0.0357 0.0349 0.0341 0.0355 0.0359 0.0368 0.0386 0.0401

strike
3400 0.6625 0.4875 0.4204 0.3667 0.3431 0.3267 0.3121
3600 0.6007 0.4543 0.3967 0.3511 0.3279 0.3154 0.2984 0.2921
3800 0.5084 0.4221 0.3718 0.3327 0.3155 0.3027 0.2919 0.2880
4000 0.4541 0.3869 0.3492 0.3149 0.2963 0.2926 0.2819 0.2800
4200 0.4060 0.3607 0.3330 0.2999 0.2887 0.2811 0.2751 0.2775
4400 0.3726 0.3396 0.3108 0.2871 0.2788 0.2722 0.2661 0.2686
4500 0.3550 0.3277 0.3012 0.2781 0.2718 0.2661
4600 0.3428 0.3209 0.2958 0.2740 0.2688 0.2627 0.2580 0.2620
4800 0.3302 0.3062 0.2799 0.2631 0.2573 0.2533 0.2504 0.2544
5000 0.3343 0.2959 0.2705 0.2540 0.2504 0.2464 0.2448 0.2462
5200 0.3460 0.2845 0.2624 0.2463 0.2425 0.2385 0.2373 0.2422
5400 0.3857 0.2860 0.2578 0.2399 0.2357 0.2327 0.2312 0.2351
5600 0.3976 0.2860 0.2607 0.2356 0.2297 0.2268 0.2241 0.2320

Table 2: DAX implied volatility matrix of July 5, 2002.

Figure 1: DAX implied volatility surface of July 5, 2002.
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Jump-Diffusion with Stochastic Volatility

Figure 2: Model implied volatility.

Figure 3: Model differences in implied volatility.

The Heston model is capable of matching middle-term and longer-term maturities.
The model cannot fit shorter maturities in a proper fashion.
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Log-Normal Jump-Diffusion with Deterministic Volatility and Intensity

Figure 4: Model implied volatility.

Figure 5: Model differences in implied volatility.

The Merton jump-diffusion with deterministic volatility and intensity is capable of
fitting shorter-term as well as longer-term maturities.
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Log-Normal Jump-Diffusion with Stochastic Volatility

Figure 6: Model implied volatility.

Figure 7: Model differences in implied volatility.

The Bates model leads to a perfect fit to all maturities.
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