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Abstract 

 
Most research in text classification has used the “bag of words” representation of text. This paper 
examines some alternative ways to represent text based on syntactic and semantic relationships 
between words (phrases, synonyms and hypernyms). We describe the new representations and try 
to justify our suspicions that they could have improved the performance of a rule-based learner. 
The representations are evaluated using the RIPPER rule-based learner on the Reuters-21578 and 
DigiTrad test corpora, but on their own the new representations are not found to produce a 
significant performance improvement. Finally, we try combining classifiers based on different 
representations using a majority voting technique. This step does produce some performance 
improvement on both test collections. In general, our work supports the emerging consensus in the 
information retrieval community that more sophisticated Natural Language Processing techniques 
need to be developed before better text representations can be produced. We conclude that for 
now, research into new learning algorithms and methods for combining existing learners holds the 
most promise. 
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Introduction 
Text classification is the task of automatically placing pre-defined index labels on 

previously unseen documents. Used in document indexing, e-mail filtering, web browsing, and 
personal information agents, text classification is an active and important area of research where 
machine learning and information retrieval research intersect. New feature selection techniques 
[Yang and Pederson, 1997; Ng et al., 1997] and learning algorithms [Joachims, 1998; Lam and 
Ho, 1998; McCallum et al., 1998] have produced good results on a number of standard test 
collections, but the vast majority of this research uses the “bag of words” representation of text, 
where each feature corresponds to a single word or stem. The aim of this paper is to examine as 
exhaustively as possible some alternative ways to represent text. We look at new representations 
based on syntactic and semantic relationships between words, and evaluate these new 
representations on two major document collections.  

First, we discuss phrase-based representations. Although previous work failed to find 
performance improvements using phrases with statistical learning algorithms (see [Lewis, 1992b] 
for a review), we thought there was still reason to believe that phrases could improve the 
performance of a symbolic, rule-based learning algorithm. The recent development of RIPPER 
[Cohen, 1995a], a fast rule-based learner that performs well on bag of words representations, 
opens up the possibility of using phrase based representations for symbolic learning. Next, we 
look at new representations based on synonyms and hypernyms. Previous work using semantic 
relationships in text classification had not looked at a radical change of representation in the way 
that we had in mind, and usually used manual intervention to sort out semantic ambiguities (see 
[Rodríguez et al., 1997] for example.) In contrast, our work explores a fully-automatic change of 
representation for incorporating semantic relations. 

In the sections that follow, we describe experiments on 8 automatically-generated 
representations based on words, and phrases, synonym and hypernym relationships. In no case do 
we find that the representations on their own produce a significant performance improvement, 
although combining classifiers based on different representations does produce some benefit. In 
general, this work supports the emerging consensus in the information retrieval community that 
more sophisticated Natural Language Processing techniques need to be developed before better 
text representations can be produced. In the short term, research into new algorithms based on 
combining classifiers probably holds the most promise. 
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1. A Quick Look at RIPPER 
Before moving on to discuss the new text representations, we need to quickly introduce 

the learning algorithm we used. RIPPER was developed by William Cohen [1995a] based on 
repeated application of Furnkranz and Widmer’s [1994] IREP algorithm. Like other rule-based 
learners, RIPPER grows rules in a greedy fashion guided by an information gain heuristic. 
RIPPER is comparable in accuracy to similar algorithms such as c4.5, but is significantly more 
efficient [Cohen 1995a]. This efficiency combined with RIPPER’s implementation of set-valued 
features [Cohen, 1996b] allows learning in significantly larger feature spaces than would have 
been possible with c4.5.  

RIPPER has already been applied to a number of standard problems in text classification 
with quite promising results [Cohen, 1996a; Cohen and Singer, 1996]. It is important to emphasize 
that RIPPER is a rule-based machine learning system that has made its mark in a field dominated 
by purely statistical algorithms such as Naive Bayes, Widrow-Hoff, or k-Nearest Neighbor. The 
high-dimensionality of most representations of text has in the past lead researchers away from 
rule- or tree-based learning systems. This makes RIPPER interesting since most conclusions about 
the effectiveness of various representations have been drawn in a context that may not apply to a 
rule-based learner.  

 

2. The Bag of Words 
The representation that dominates the text classification literature is known as the “bag of 

words”. For most bag of words representations, each feature corresponds to a single word found in 
the training corpus, usually with case information and punctuation removed. Often infrequent and 
frequent words are removed are removed from the original text. Sometimes a list of stop words 
(functional or connective words that are assumed to have no information content) is also removed. 

Sometimes this word set is used with no further processing but more typically, there is 
some attempt to make the features more statistically independent. The most common way achieve 
independence is to remove suffixes from words using a stemming algorithm such as the one 
developed by Lovins [1968]. Stemming has the effect of mapping several morphological forms of 
words to a common feature. For example the words learner, learning, and learned would all map 
to the common root learn, and this latter string would be placed in the feature set rather than the 
former three. 

Stemming and stop-word removal are so widely regarded as useful that they are almost 
universally used in text classification experiments. However, there is reason to doubt the 
universality of their effectiveness for retrieval [Riloff, 1995]. The chief advantage of infrequent 
word removal is reduction of feature set size, but since the number of word features did not pose a 
problem for RIPPER, we did not use this technique. The chief historical advantage of stop-word 
and frequent word removal is reduction of data set size, but since this was not a concern, we chose 
not to use this technique either. As for stemming, the advantages and disadvantages are less clear, 
so both stemmed and unstemmed representations were explored.  

 

3. Phrase-based Representations 
A very basic observation about bag of words representations is that a great deal of the 

information from the original document is discarded. Paragraph, sentence and word order is 
disrupted, and syntactic structures are broken. The end result is that the text is rendered incoherent 
to humans in order to make it coherent to a machine learning algorithm. The goal of using phrases 
as features is to attempt to preserve some of the information left out of the bag of words.  
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The observation that words alone do not always represent true atomic units of meaning is 
not new. David Lewis undertook a major study of the use of noun phrases for statistical 
classification as part of his Ph.D. thesis [Lewis, 1992b]. He reviewed the existing information 
retrieval literature on the use of syntactic phrases and found that most studies had not been able to 
demonstrate much improvement over word-based indexing. To try to explain these results, Lewis 
suggested that previous work fared poorly because phrase-based representations: a) contain a high 
number of terms, b) have an uneven distribution of feature values, c) contain many redundant 
features, and d) contain a lot of noise. All these characteristics pose theoretical problems for 
Bayesian classification. Lewis attempted to correct these problems by using a clustering algorithm 
to group phrase features into meta-features, but the new representation did not produce any 
improvement either [Lewis, 1992a; 1992b]. 

Despite the negative results obtained by this research, there was still reason to believe 
that in some cases phrase-based representations might improve the performance of rule-based 
learners. For example, the phrase “machine learning” has a highly specific meaning that is 
separate and distinct from the words “machine” and “learning”. In a situation where the classes to 
be learned include Artificial Intelligence, Machine Tools, and Education, it is conceivable that the 
phrase “machine learning” will yield a high information gain for Artificial Intelligence, even 
though the individual words yield a low gain. In this case, a potentially powerful rule such as 
“machine & learning → Artificial Intelligence” might never be learned by RIPPER – the greedy 
search heuristic would prevent the addition of either individual word to the empty rule. But if the 
feature set included two-word phrases, then the rule: “‘machine learning’ → Artificial 
Intelligence” could be learned more easily. Statistical algorithms like naïve Bayes are immune to 
this sort of worry, as they always work with all available features. 

The main problem in converting to a bag of phrases is the huge potential increase in the 
number of features (if there are n words, there are potentially nk sequences of length k.) In order to 
keep the task tractable, some solution to this problem must be found. Cohen [1995b; 1995c] 
attempted to solve the problem using FLIPPER, a first-order version of RIPPER, to learn in a 
feature space that included phrase-defining predicates. This technique did not produce an 
improvement, but the result is not as strong as it could be because the argument about the greedy 
search heuristic employed by RIPPER also applies to FLIPPER. Only a representation that 
includes phrases as atomic features can overcome this problem. 

The only way to avoid the ballooning feature space while still retaining phrases as atomic 
features is to employ a selection strategy. Luckily, not all sequences of words are equally 
meaningful. For example the sentence “The quick brown fox jumps over the lazy dogs,” contains a 
number of potentially useful phrases such as “brown fox”, “quick brown fox”, and “lazy dogs” in 
addition to a larger number of word sequences that are probably not useful for classification: “The 
quick”, “fox jumps”, “over the”, and so on. So the new phrase-based representation should be 
amenable to an aggressive selection strategy aimed at weeding out the word sequences that are 
least likely to be useful. We now consider two methods for performing this task. 

 

4.1 Noun Phrases 
Motivated by the observation that phrases indicating the objects and subjects of a text are 

likely to be the most useful, the first method selects only those word sequences that are recognized 
as noun phrases. For instance, if the system encounters our example sentence, it should recognize 
that “quick brown fox” is a noun phrase while “the quick” and “over the” are not. Importantly, it 
should also recognize that “brown fox” and “fox” are valid noun phrases as well – there is no a 
priori way to determine which of these phrases will yield the highest information gain. There is an 
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important difference here from [Lewis, 1992a; 1992b] where a bracketing technique was used that 
was biased towards the longest phrases, and specifically excluded single word phrases – “quick 
brown fox” would be extracted but not “brown fox” or “fox”. 

Extracting noun phrases from a document requires two separate algorithms. The first is a 
tagging algorithm to assign part of speech tags (noun, verb, preposition, etc.) to the individual 
words, and the second is an algorithm to group the tagged words into noun phrases. Eric Brill’s 
rule-based part of speech tagger [Brill, 1992; 1994] was used in its default configuration to assign 
the part of speech tags, and grouping was done with a simple regular expression. The two 
algorithms together are referred to as the Noun Phrase Extractor (NoPE).1 For our purposes a noun 
phrase was defined to be a sequence of nouns or adjectives terminating in a noun. In regular 
expression form this is represented as “Noun Phrase = {Adjective, Noun}* Noun.” This definition 
is applied at every possible point in a text to look for matching phrases. Complex noun phrases 
such as “the quick brown fox that got away” will be missed, but NoPE does accomplish its stated 
task: the number of features is reduced by selecting many of those that represent the objects or 
subjects of discussion.  

 

4.2 Key Phrases 
NoPE uses syntactic information to select a useful subset of the all the available phrases 

in the text. This section describes a statistical method of achieving the same goal. The Extractor 
system developed by Peter Turney [1999] uses a statistical algorithm to try to extract the most 
meaningful phrases from a document. The algorithm used by Extractor is itself the result of 
learning phase, during which it was trained to assign keyphrases to a document so as to mimic the 
choices a human would make. Assuming the task is performed well, Extractor’s keyphrases should 
be highly meaningful, unambiguous, and indicative of the content of the document – the very 
properties desired in the choice of phrase features for classification. 

Turney compared the performance of Extractor to other keyphrase extraction algorithms 
and found that Extractor’s choices matched human choices better than the other algorithms on a 
number of test corpora [Turney, 1999]. Of course, all that can be inferred from this is that 
Extractor was good at its stated task – matching the keyphrases chosen by humans. It does not 
necessarily mean that Extractor will choose good phrases for classification. Nevertheless, given 
the intuition that author-chosen keyphrases will be highly meaningful and unambiguous, and given 
that the Extractor is faster than the Brill tagger, it was worth exploring its use in addition to NoPE.  

 

4.3 Constructing the Representations 
Both NoPE and Extractor are used in the same way to generate a phrase-based 

representation. First phrases are extracted from every document in the corpus and assembled into a 
global list. Part of speech tags are removed from the words if necessary, and stemming and further 
feature selection can be performed on this list. (In the case of stemming, each word of the phrase 
would be replaced by its stem.) The result is used as the set of features for classification. A final 
pass is then required to assemble feature vectors based on this set. 
 

4. Hypernym-based Representations 
The bag of words representation also ignores semantic relationships between words. In 

particular, information about synonymy is not directly used, nor is the deeper semantic 
relationship of hypernymy (a linguistic term for the “is a” relationship – a knife is a weapon, 
                                                           
1 Links to all the tools and data referred to in this work can be found on the National Research 
Council of Canada web site - http://ai.iit.nrc.ca/II_public/Classification/resources.html. 
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therefore “weapon” is a hypernym of “knife”.) A rule-based learner could be aided by a feature 
engineering method that mapped words with low information gain to common hypernyms that 
might yield a higher information gain. We used this observation previously to build a new text 
representation that produced significant increases in accuracy on some small data sets [Scott and 
Matwin, 1998]. The current research builds on the preliminary work by applying a similar 
technique to much larger data sets. 

 

4.1 WordNet 
The feature engineering methods described here rely on the use of WordNet, a large on-

line thesaurus that captures both synonym and hypernym relationships between words [Miller, 
1990; Fellbaum, 1998]. Figure 1 shows an idealized piece of the WordNet hierarchy. The nodes in 
WordNet are referred to as “synsets”. Each synset represents a particular semantic meaning shared 
by a group of words and phrases. Each word or phrase in the synset is a synonym of the others 
with respect to this particular meaning, and a word or phrase with more than one meaning will 
appear in more than one synset. The hypernym relation is modeled as arcs between the nodes.  

We know of only one previously published attempt to make use of WordNet for text 
classification. Rodríguez et al. [1997] used WordNet with linear discriminant learning algorithms 
to produce better classification performance on the Reuters-22173data set.2 They were able to take 
advantage of the fact that Reuters topic headings often correspond to words that appear in the text 
of the documents. They compiled a list of all the topic headings and looked up these words in 
WordNet to find synonyms. This list of synonyms was then used to bias the learning algorithm for 
each topic by increasing the initial weights of the features corresponding to the synonyms of that 
topic. This entire process was done by hand and took advantage of the researchers’ a priori 
knowledge of the Reuters domain. No change of representation was involved, and the use of 
WordNet was limited to the synonymy relation only. 

Some researches have also applied WordNet to information retrieval tasks. Sharon Flank 
[1998] reported good results using many of the WordNet semantic relations, including 
hypernymy, to expand short descriptions of pictures for retrieval. Ellen Voorhees looked at the 
possibility of using WordNet for document indexing [Voorhees, 1993] and query expansion 
[Voorhees, 1994]. The latter work found that when the queries were expanded or converted to 
synsets manually some retrieval tasks were improved significantly, but automatic expansion posed 
problems due the difficulty of choosing the correct sense for the word in a given context (word 
sense disambiguation). 

WordNet’s organization of synsets into parts of speech allows for some partial 
disambiguation, but each part of speech can still contain many different senses for each word. The 
problem of automatic disambiguation has been tackled by a number of researchers (see [Ide and 
Véronis, 1998] for a summary of recent work), but its difficulty has hampered past attempts to use 
WordNet in the information retrieval community. Often, the problem is solved by manually 
selecting the correct word sense – a method that was not practically possible in the current work. 
The changes of representation discussed in this section proceed on the idea that in the presence of 
a large amount of training data, the problem of disambiguation can be partially sidestepped.  

 

4.2 Constructing the Representations 
If every word could be correctly disambiguated, a function similar to stemming could be 

performed in which synonymous words are mapped to the same meta-feature. The difference is 

                                                           
2 Reuters-22173 is the previously released version of Reuters-21578. 
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that the mapping would be semantically rather than morphologically based. To extend this idea, 
the hypernym links could also be followed through the semantic network to generalize by 
mapping to the hypernym senses of each word. For instance, in the preliminary work [Scott and 
Matwin, 1998] a class of documents was learned using both a word-based and a hypernym-based 
representation. The hypernym weapon often appeared in the rules learned using the hypernym-
based representation, but the words mapping to the weapon synset never appeared in the rules 
learned using the word-based representation. It seems the individual words that were instances of 
the concept weapon did not yield enough information gain on their own to be selected, but when 
they were all mapped via WordNet to an appropriate meta-feature, RIPPER was able to make use 
of them, and the resulting hypotheses were significantly more accurate. This benefit was obtained 
without any automatic word sense disambiguation. Including all synsets without disambiguation 
produced a noisy feature space containing some highly informative features, and RIPPER was still 
able to find them among all the noise. So even though “knife” had hypernyms other than weapon, 
the weapon hypernym was still be included and available for classification.  

Following on these observations, no disambiguation was attempted in the current work 
either. Instead all senses returned by WordNet were judged equally likely to be correct, and all of 
them were included in the feature set. Synsets were identified for the feature set by tagging the 
documents, then looking up all noun and verb hypernyms in WordNet and assembling a list of all 
synsets occurring in the output. A second pass converted documents to feature vectors based on 
this new representation. This process was influenced by the value of a parameter h that controls 
the height of generalization. This parameter was used to limit the number of steps upward through 
the hypernym hierarchy for each word. At height h=0 only the synsets that contained the words in 
the corpus were counted (i.e. synonyms). At height h>0 the same synsets were counted as well as 
all the hypernym synsets that appeared up to h steps above them in the hypernym hierarchy. The 
best value of h for a given text classification task depends on characteristics of the text such as use 
of terminology, similarity of topics, and breadth of topics. It also depends on the characteristics of 
WordNet itself.  

 

5. Methodology 
 

5.1 Test Collections 
The two data sets used for this study were the Reuters-21578 corpus of newswire stories, 

and a corpus of folk song lyrics called The Digital Tradition (DigiTrad). Reuters is well 
established and has been used as the basis of much recent text classification work [Joachims, 
1998; Lam and Ho, 1998]. Like other researchers, we used the “ModApte” testing/training split 
for these experiments, which results in 9603 training documents and 3299 testing documents, each 
assigned to 0 or more of the 90 topic labels. DigiTrad was first introduced for text classification 
research in [Scott and Matwin, 1998]. Each folk song in the DigiTrad collection has been assigned 
one or more keywords from a fixed list, thus defining a classification task. We used the “DT100” 
testing/training split [Scott, 1998] which results in 4333 training and 2166 testing documents, each 
assigned 0 or more of the 33 keyword labels. (Only those keywords represented by 100 or more 
examples in the entire collection were used.) Some statistics for the two data sets are shown in 
table 1. 

Not all types of text are equally difficult to classify, and the collections chosen for this 
research represent two opposite extremes. Reuters consists of articles written purely as a source of 
factual information. The writing style tends to be direct and to the point, and uses a restricted 
vocabulary to aid quick comprehension. It has been observed that the topic headings in Reuters 
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tend to consist of words that appear frequently in the text, and this observation has been exploited 
to help improve classification accuracy [Rodríguez et al., 97]. DigiTrad, where the texts make 
heavy use of metaphoric, rhyming, unusual and archaic language, is a good example of the 
opposite pole. The texts are far less succinct and to the point, and the vocabulary is much less 
restricted (this latter difference shows up in the comparatively large number of unique words in 
the collection reported in table 1.) Consequently, the DigiTrad classes should be harder to 
automatically classify than Reuters. 

 

6.2 Evaluation Methods 
In order to compare the current work with that of other recent studies, we computed the 

micro-averaged breakeven point of precision and recall instead of the more traditional statistic of 
average cross-validated accuracy. The breakeven point is uncommon in the machine learning 
literature, but is the measurement of choice in the information retrieval community. For the benefit 
of readers unfamiliar with this literature, we briefly describe the technique here. Parallel 
discussions can be found in a number of places, such as [Lewis, 1992b].  

Text classification tasks are unlike normal machine learning problems in two respects: 
examples can be given multiple class labels (meaning separate binary classifiers must be trained 
for each), and the positive examples of each class are usually in a very small minority (see table 
1). These two characteristics combined mean that a plain accuracy statistic is not adequate to 
evaluate performance. To deal with the unbalanced nature of the classes, precision and recall are 
used instead of accuracy. Precision is the proportion of examples labeled positive by the system 
that were truly positive, and recall is the proportion of truly positive examples that were labeled 
positive by the system (see figure 2). 

A process called micro-averaging is used to deal with the multiple classifiers in a given 
task. The confusion matrices for each class are added component-wise to yield an aggregate 
matrix for the entire task, and then the precision and recall statistics are computed from this 
matrix. This component-wise addition is made possible by treating each matrix as representing a 
binary classification into either a positive or negative class. The 2×2 matrix resulting from this 
addition represents the overall picture for all classes.  

Most learning algorithms contain parameters that can be varied, often with the effect of 
trading off precision against recall. (In RIPPER the loss ratio parameter adjusts the relative weight 
of false positive and false negative classifications in a binary task.) To obtain a single number 
representing the performance of the system, the learning task is repeated for various values of 
these parameters. Each run yields micro-averaged precision and recall statistics that are 
interpolated (or extrapolated if necessary) to yield the hypothetical point at which precision and 
recall are equal. This is the micro-averaged breakeven point.  

 

6.3 Experimental Design 
Experiments were performed on each test collection using 8 different representations. 

Table 2 summarizes these representations and shows the number of features in each. (Note the 
acronyms for each representation that will be used from here on.) We used stemmed and 
unstemmed versions of each of the bag of words, noun phrase and keyphrase representations, and 
tried two versions of the hypernym representation corresponding to h=0 and h=1. Stemming was 
performed using the Lovins stemmer [Lovins, 1968]. Feature selection was used only for the noun 
phrase representations (NP and NPS), because the number of features originally identified by 
NoPE was too high (well over 100 000 in both cases). In this case all phrases appearing fewer than 
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4 times in the corpus were discarded. Feature values were binary in all cases in order take 
advantage of the speed of RIPPER’s set-valued features.  

In the preliminary hypernym work where the test collections were much smaller, we used 
values for h ranging from 0 to 9 [Scott and Matwin, 1998]. Unfortunately, we were restricted to 
low h values for the current work because at higher values, RIPPER was simply too slow to be 
practical. This was probably due to the fact that the representations became less sparse at higher 
values for h. Since much of RIPPER’s speed on text classification tasks derives from its sparse 
vector representation, this understandably caused a significant slowdown in performance.  

Default options were used for RIPPER with two exceptions. The first was the enabling of 
negative tests, allowing the algorithm to use both the “∈ ” and “∉ ” operation on set valued 
features. This option was found to marginally improve performance in initial trials. Secondly, the 
loss ratio parameter (L) was varied to try to bracket the micro-averaged breakeven points on each 
task. The values used were {0.5, 1, 2, 4} for Reuters-21578 and {0.25, 0.5, 1, 2} for DigiTrad. 
Only those classes with 10 or more example documents (60 of the 90 Reuters classes and all of the 
DigiTrad classes) were classified using RIPPER. The rest were submitted to a default classifier 
that always returned a negative answer. 

 

6. Results and Discussion 
Table 3 shows the micro-averaged breakeven points obtained using RIPPER on each 

representation. At a first glance, it is clear that the prediction about the relative difficulty of 
DigiTrad and Reuters was correct. DigiTrad results are consistently less than half as good as 
Reuters. The results for Reuters can also be compared to recent work by Joachims [1998] to show 
that RIPPER outperforms Naïve Bayes, Rocchio, and c4.5 algorithms using bag of words, and 
does about as well as k-Nearest Neighbour. We also now know that new machine learning 
algorithms such as Combined Support Vector Machines [Joachims, 1998] and Generalized 
Instance Set [Lam and Ho, 1998] can improve this performance to a breakeven of approximately 
0.86 on Reuters. But the main point of comparison for the current study is between the 
representations based on words (BW and BWS) and the other representations. Unfortunately, none 
of the new representations performed significantly better than the bag of words. 

The performance of the phrase based representations (NP, NPS, KP, KPS) supports the 
conclusion of past research – that phrases do not add any classification power. It seems that even 
in a learning paradigm based on greedy search, grouping words into phrases simply does not make 
the domain any more learnable. Recalling our discussion of the example phrase “machine 
learning”, it seems that the situation in which a phrase is more informative than its component 
words simply does not arise very often. This being said, there were some small benefits from the 
use of the NP representation on Reuters. First, RIPPER obtained a slightly higher performance 
using less complex hypotheses than with BW – approximately 1 fewer rule for every second 
hypothesis, with the same number of clauses per rule (see [Scott, 1998] for more details). 
Secondly, the phrase representations reduced the number of features almost as much as stemming 
(see table 2) without the negative effects on performance (see table 3). 

The results from the hypernym representations were the most disappointing. Preliminary 
work had shown significant improvements on some classes in the DigiTrad domain, and the hope 
was that this would generalize to the entire corpus [Scott and Matwin, 1998]. But the 
representations used in this study were considerably poorer than in the preliminary work: for 
reasons of tractability a low height of generalization had to be used, and the features were binary 
rather than real-valued density measurements. The latter factor in particular may have removed too 
much information for RIPPER to pick the meaningful senses out of all the noise.  
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7. Further Experiments 
The final round of experiments evaluated combinations of classifiers based on the 

different representations. Dietterich [1997] pointed out that any set of high-quality classifiers that 
make at least partially uncorrelated errors can be expected to produce higher performance when 
combined with a simple majority vote. He also pointed out that due to the potential for the 
formation of differently shaped decision boundaries in the feature space, almost any pair of 
classifiers trained in slightly different conditions can be expected to make partially uncorrelated 
errors. We felt that the new text representations were probably producing enough variation in the 
feature space that the majority vote technique should improve RIPPER’s predictions when 
combining hypotheses formed using the different representations. Furthermore, the majority vote 
technique can easily be applied to text classification, since regardless of the number of classes 
involved, every decision made by the system is binary.  

We experimented with combinations of 3 and 5 classifiers in which a class label was 
assigned only if the majority of classifiers predicted that it should be. The best results for 3 and 5 
classifiers on each test collection are reported in table 4. Note that the Reuters result is comparable 
to, though still not quite as high as the best reported results of [Joachims, 1998] and [Lam and Ho, 
1998]. The fact that this technique improved the micro-averaged breakeven point validates the 
prediction that the various representations were making uncorrelated errors. 

 

8. Conclusions and Future Directions 
Lewis and Sparck Jones [1996] wrote that statistical techniques for classification and 

retrieval have “picked some of the low-hanging fruit off the tree.” They believe that significant 
advances must be made before Natural Language Processing techniques can be used to improve 
text classification. The results of our work strengthen their general conclusions by showing that 
alternative representations do not improve symbolic learners either. In particular we believe that 
one door is now closed: it is probably not worth pursuing simple phrase-based representations any 
further. But another door is still partly open: it may be worth the effort, in domains like DigiTrad, 
to try to find a way to make hypernym representations more tractable for RIPPER. This will 
probably involve integrating a partial word-sense disambiguation algorithm in the feature 
formation step to produce a sparser representation and allow higher values for the h parameter.  

We also found some evidence that alternative representations could serve as the basis for 
combining classifiers to produce better results. Indeed it is worth pointing out that the only 
published results that beat our own for Reuters ([Joachims, 1998] and [Lam and Ho, 1998]) are 
themselves based on combinations of classifiers. Future work in this area may be well worth the 
effort. 

Finally, we have some concerns over the use of micro-averaged breakeven point in the 
information retrieval literature. Research could be conducted to try to define a more nuanced 
evaluation technique. For instance, Provost and Fawcett’s [1997] ROC curves provide a slightly 
more sensitive measurement that can be adapted to show the convex hull of precision and recall, 
providing a more informative picture of performance than the breakeven point. The micro-
averaging step of the analysis should also be critically evaluated. A lot of the subtle details of 
performance get lost in such an aggressive statistical move. Future work will look into defining 
new performance measurements that do not suffer these shortcomings. 
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Reuters-21578 DigiTrad  
train test train test 

     

documents 9603 3299 4333 2166 
     

classes 90 90 33 33 
balance 1.1 1.3 4.1 4.2 
     

total words 1257993 399179 1161244 576156 
unique words 27940 16907 43301 29415 
Table 1: Some statistics for the two test collections. 
“Balance” shows the average percentage of positive 
classifications over all classes.  
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Features  

Name 
 
Description Reuter DigiTrad 

BW bag of words 27940 43301 
BWS stemmed words 18590 28996 
NP noun phrases 21427 14204 
NPS stemmed NP 20061 12457 
KP keyphrases 23110 15287 
KPS stemmed KP 22122 14264 
H0 hypernyms (h=0) 13385 18646 
H1 hypernyms (h=1) 15393 21044 
Table 2: Name, description, and number of 
features for each representation and each test 
collection. 

 
Reuters DigiTrad  

# reps. b.e. reps. b.e. 
1 NP .827 BWS .360 
3 BW, NP, 

NPS 

.845 BW, NP, 
KP 

.384 

5 BW, NP, 
NPS, KP, 
KPS 

.849   

Table 4: Best results for 1, 3, and 5 
classifiers combined with majority 
voting for each test collection 

micro-averaged breakeven represent-
ation Reuters DigiTrad 
BW .821 .359 
BWS .810 .360 
NP .827 .357 
NPS .819 .356 
KP .817 .288e 

KPS .816 .297e 

H0 .741e .283 
H1 .734e .281 
Table 3: Micro-averaged breakeven points 
for each representation on each test 
collection using RIPPER. A superscript 
“e” indicates an extrapolated rather than 
interpolated point. 

weapon, arm,
weapon system

knife
gun

firearm, piece,
small-arm

synset
(list of synonyms)

hypernym
("is a")

hyponym
("instance of")

 
Figure 1: A piece of the WordNet 
semantic hierarchy (idealized model). 

 

+ve -ve
+ve a b
-ve c d

Hypothesis

Correct
Class

Accuracy = a
a b c d+ + +

Precision = a
a c+

    Recall = a
a b+

 
Figure 2:Conversion of confusion matrix to precision and recall statistics. 
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