
Privacy Preserving Speaker Verification using Adapted GMMs

Manas A. Pathak and Bhiksha Raj

Carnegie Mellon University, Pittsburgh, PA, USA
{manasp,bhiksha}@cs.cmu.edu

Abstract
In this paper we present an adapted UBM-GMM based privacy
preserving speaker verification (PPSV) system, where the sys-
tem is not able to observe the speech data provided by the user
and the user does not observe the models trained by the sys-
tem. These privacy criteria are important in order to prevent
an adversary having unauthorized access to the user’s client de-
vice from impersonating a user and also from another adversary
who can break into the verification system can learn about the
user’s speech patterns to impersonate the user in another sys-
tem. We present protocols for speaker enrollment and verifi-
cation which preserve privacy according to these requirements
and report experiments with a prototype implementation on the
YOHO dataset.
Index Terms: speaker verification, secure biometrics

1. Introduction
Speaker verification systems attempt to authenticate a person’s
identity based on their voice. A person’s voice and manner of
speaking are biometric signatures, and an authentication based
on these factors is expected to be impervious to attacks that text-
based forms of authentication are susceptible to.

Speech based authentication is however, not entirely secure.
The most obvious way of tricking the authentication process
is by imitation. Imposters may attempt to imitate a subject’s
voice, or produce speech similar to the user’s voice using meth-
ods such as playing out recordings of the user’s voice, or mor-
phing their own voice into the user’s voice [1, 2]. This form
of attack on speaker verification systems has been an area of
significant research.

However, there are also other mechanisms by which a
speaker verification system can be misled, or may mislead a
user. For instance, the verification system may itself be phish-
ing, i.e., merely acting as a front to capture users’ voice patterns
when they register with the system. These voice patterns could
then be used to impersonate users in other voice authentication
services. Alternately, a malicious agent may break into a system
and gain access to stored voice patterns and use them to gener-
ate fake voice data that could be used to impersonate users.

In this paper we propose an algorithmic solution that ad-
dresses these problems. We propose a privacy preserving
speaker verification (PPSV) system that performs authentica-
tion without revealing the actual voice patterns to the system,
either during enrollment or during authentication phases.

Our solution is based on two main ideas. Firstly, through
the use of secure multiparty computation protocols [3] that en-
able the user and system to interact only on encrypted speech
data which the system cannot decrypt and observe in plaintext
at any point, we eliminate the possibility that the system could

This work was supported by the NSF grant 1017256.

phish for a user’s voice. Secondly, by storing only encrypted
models trained on users’ speech in the system, we also ensure
that an adversary who breaks into the system obtains no useful
information. We assume that one adversary does not gain ac-
cess to both the user’s client device and the system at the same
time.

We envision a client-server model, where a user executes
a client program on a computer, or a smartphone, or any sim-
ilar networked computation device coupled with a public key
cryptosystem. The user retains his private key while the public
key is shared with the system. As in all authentication systems,
the user enrolls with the system by providing speech samples,
which it uses to build a model for the user. For authentication,
the user later transmits a new speech sample which the system
evaluates against its model. In both cases, the speech transmit-
ted to the system by user is encrypted with the user’s private key
and cannot be decrypted by the system. The models retained by
the system are also encrypted similarly. Unlike the open frame-
work where the system has access to all speech data and models,
the PPSV framework requires the user to perform a part of the
computation.

It should be noted that we do not aim to design superior
algorithms for speaker verification towards achieving better ac-
curacy. We rather aim to create a mechanism to ensure the
privacy of user’s speech data and the models learned by the
system while implementing an existing verification technique.
Although we do build on prior work by ourselves and other
researchers, such work is currently limited. While there has
been a substantial body of work on general techniques for data
processing with privacy constraints, privacy preserving speech
processing is sill a nascent area of research. Smaragdis and
Shashanka [4] propose protocols for training and evaluating
Gaussian mixtures and hidden Markov models on speech data,
under privacy constraints. Pathak, et al. [5] develop and im-
plement an efficient protocol for privacy preserving HMM in-
ference applied to isolated word recognition. In this paper we
apply some of these techniques in our protocols for speaker en-
rollment and verification.

In the remainder of the paper we describe the proposed pro-
tocols for private enrollment and verification in the PPSV sys-
tem. We implement our protocols based on the commonly used
UBM-GMM based speaker verification algorithm described
in [6] which we outline in Section 2.1. We present a brief in-
troduction to homomorphic encryption, which forms the basic
building block of our PPSV system, in Section 2.2. We describe
the proposed protocols for privacy preserving speaker enroll-
ment and verification in Section 3.

The operations on encrypted speech data motivated by our
privacy requirements introduce a computational overhead as
compared to the non-private system. In Section 4, we report
the increase in execution time and the effect on accuracy in
experiments with a prototype PPSV system over the YOHO

dataset [7]. Finally, in Section 5 we discuss the import of this
work and future directions.

2. Preliminaries
2.1. Speaker Verification using GMMs

We use the text-independent speaker verification method based
on adapted Gaussian mixture models (GMM) as the underly-
ing technique. We outline the basic algorithm here; for further
details please refer to [6].

In this procedure, speaker verification is performed using a
likelihood ratio test. To authenticate a recording x given by a
speaker, the system computes the probability of x using a model
λs for the speaker and compares it to the probability computed
from a universal background model (UBM) λU representing
generic speech. Authentication uses the following rule:

P (x|λs)
P (x|λU)

{
≥ θ accept speaker,
< θ reject speaker.

(1)

Speech recordings are parameterized as sequences of Mel-
frequency cepstral coefficients augmented by differences and
double differences, i.e., a recording x actually consists of a se-
quence of feature vectors x1, . . . , xT . Both the speaker model
λs and the UBM λUBM are assumed to be Gaussian mixture
models that have the form:

P (xt|λC) =
∑
j

wCj N
(
xt;µ

C
j ,Σ

C
j

)
,

where C is either s or U . N (x;µ,Σ) is a Gaussian with mean
µ and covariance Σ computed at x. µCj and ΣCj are the mean
and covariance of the jth Gaussian.

The parameters of the UBM are learned from a collection
of speech recordings from a large number of speakers, to
represent the characteristics of a generic speaker. These
parameters are learned using the expectation-maximization
(EM) algorithm. The parameters of the model for a speaker are
obtained by adapting the UBM to the speaker.

Model Adaptation
The UBM parameters are adapted to individual speakers using
maximum a posteriori (MAP) estimation. It has been empiri-
cally established that speaker models obtained by MAP estima-
tion significantly outperform the models trained directly on the
enrollment data [6, 8].

The MAP estimation procedure comprises estimation of a
sample estimate of the speaker’s parameters, followed by inter-
polation with the UBM. Given set of enrollment speech sam-
ples x1, . . . , xT , we first compute the a posteriori probabilities
of the individual Gaussians in the UBM. For the ith mixture
component of the UBM,

P (i|xt) =
wUi N (xt;µ

U
i ,Σ

U
i)∑

j w
U
j N (xt;µUj ,Σ

U
j)
. (2)

Similar to the M-step of EM, the a posterior probabilities are
then used to compute the new weights, mean, and second mo-
ment parameters.

w′i =
1

T

∑
t

P (i|xt), µ′i =

∑
t P (i|xt)xt∑
t P (i|xt)

,

Σ′i =

∑
t P (i|xt)xtxTt∑

t P (i|xt)
. (3)

Finally, the parameters of the adapted model λs =

{ŵsi , µ̂si , Σ̂si} are given by the convex combination of these new
parameters and the UBM parameters as follows.

ŵsi = αiw
′
i + (1− αi)wUi , µ̂si = αiµ

′
i + (1− αi)µUi ,

Σ̂si = αiΣ
′
i + (1− αi)

[
ΣUi + µUi µ

UT
i

]
− µ̂si µ̂sTi . (4)

These adaptation coefficients αi control the amount of contri-
bution of the enrollment data relative to the UBM.

2.2. Homomorphic Encryption

Homomorphic encryption schemes allow for operations to be
performed directly on encrypted data without requiring knowl-
edge of their unencrypted values. If two data instances x and y
are encrypted to E[x] and E[y] using a homomorphic encryp-
tion scheme, we can obtain the encryption of the result of an
operation ⊗ performed on x and y by performing a different
operation ⊕ directly on the encrypted versions of x and y, i.e.
E[x ⊗ y] = E[x] ⊕ E[y]. This property is the foundation of
our privacy preserving mechanisms.

In this work, we use the asymmetric key Paillier cryptosys-
tem [9] satisfying additive homomorphism. Given two num-
bers x and y, the Paillier cryptosystem satisfies E[x] · E[y] =
E[x+ y] and as a corollary E[x]y = E[xy].

In our proposed protocols, the user retains the private and
public key of the encryption and can both encrypt and decrypt
data. The system, on the other hand, only receives the public
key and can only encrypt data.

3. Speaker Verification Protocols
We now describe our privacy preserving protocols for enrolling
and authenticating users. We use the following construction
from [4]. The multivariate Gaussian N (x;µ,Σ) computed on
any d-dimensional vector x can be represented in terms of of a
(d+ 1)× (d+ 1) matrix W .

W̃ =


− 1

2
Σ−1 Σ−1µ

0 w∗

 ,
where w∗ = −1

2
µTΣ−1µ− 1

2
log |Σ|. (5)

This implies logN (x;µ,Σ) = x̃T W̃ x̃, where x̃ is an extended
vector obtained by concatenating 1 to x. As suggested by [5],
we reduce this computation to a single inner product x̄TW ,
where the extended feature vector x̄ consists of all pairwise
product terms x̃ix̃j ∈ x̃ and W is obtained by unrolling W̃
into a vector. In this representation logN (x;µ,Σ)=x̄T W̄ .

3.1. Private Enrollment Protocol

We assume that the system already has access to the UBM, λU
trained on a collection of speech data. We require that the en-
rolling user should not gain access to the UBM as that would
compromise system security. We assume that the computation
of MFCC features from the speech is performed by the user’s
client program. In the discussion below and in the rest of the
paper, by speech we refer to MFCC features computed on the
user’s speech input.

We propose the following protocol to adapt the system’s
UBM to the user’s enrollment samples. We refer to individual
Gaussian components in a mixture as P (x|i) for conciseness.

Inputs:

(a) User has the MFCC feature vectors of the enrollment sam-
ples x1, . . . , xT and both encryption key E[·] and decryp-
tion key E−1[·].

(b) System has the UBM λU = WU
i for i = 1, . . . , N , mixing

weight α, and the encryption key E[·].
Output: System has the encrypted adapted model
E[λs] = {E[ŵsi], E[µ̂si], E[Σ̂si]}.

Computing the posterior probabilities:
For each t:

1. The user computes the extended vector x̄t from xt and sends
the encrypted vectors E[x̄t] to the system.

2. The system computes the encrypted log
probabilities for each mixture component
E
[
logwUi P (xt|i)

]
=
∑
j E[x̄t,j]

WU
i,j +E[logwUi].

3. The logsum protocol [4] enables a party holding E[log x]
andE[log y] to collaborate with another party who holds the
private encryption key to obtain E[log(x + y)] without re-
vealing x or y. The system participates with the user’s client
in the logsum protocol to obtain E

[
log
∑
i w

U
i P (xt|i)

]
.1

4. The system computes encrypted log posteriors: E[P (i|xt)]
= E

[
logwUi P (xt|i)

]
- E
[
log
∑
i w

U
i P (xt|i)

]
.

5. The private exponentiation protocol [10] enables a party
holding E[log x] to collaborate with the party who holds the
encryption key to obtain E[x] without revealing x. The sys-
tem then executes the private exponentiation protocol with
the user to obtain E [P (i|xt)].

Learning wsi .

1. The system computes the encrypted value of w′i, E[w′i] as
E
[∑

t P (i|xt)
]

=
∏
t E [P (i|xt)].

2. The system then computes the encrypted updated mixture
weights as

E[ŵsi] = E[w′i]
α/TE[wUi]1−α.

Learning µ̂si .

1. The system generates a random number r and homomor-
phically computes E[P (i|xt) − r]. The system sends this
quantity to the user.

2. The user decrypts this quantity and multiplies it by individ-
ual feature vectors xt to obtain the vector P (i|xt)xt − rxt.
The user encrypts this and sends E[P (i|xt)xt − rxt] to the
system along with encrypted feature vectors E[xt].

3. The system computes E[P (i|xt)xt] = E[P (i|xt)xt] =
E[xt]

r + E[P (i|xt)xt − rxt]. It then computes
E[
∑
t P (i|xt)xt] =

∏
tE[P (i|xt)xt].

4. The private division protocol [10] enables a party holding
E[x] and E[y] to collaborate with the party holding the en-
cryption key to obtain E[x/y] without revealing x or y.The
system engages the user in a private division protocol with
E[
∑
t P (i|xt)xt] and E[w′] as inputs to obtain E[µ′].

1An extended version of the paper with an Appendix containing
all the supplementary protocols can be downloaded from http://
mlsp.cs.cmu.edu/publications/pdfs/ppsv.pdf

5. The system then computes the encrypted adapted mean as.

E[µ̂si] = E[µ′i]
αE[µUi]1−α.

Learning Σ̂si .
This is similar to learning µ̂si and continues from Step 2 of

that protocol.

1. The user multiplies P (i|xt) − r by the product of the fea-
ture vectors xtxTt to obtain P (i|xt)xtxTt − rxtx

T
t .2 The

user encrypts this and sends E[P (i|xt)xtxTt − rxtx
T
t] to

the system along with encrypted feature vectors E[xtx
T
t].

2. The system computes E[rxtx
T
t] = E[xtx

T
t]r and multiplies

it to E[P (i|xt)xtxTt − rxtxTt] to obtain E[P (i|xt)xtxTt].
The system multiplies these terms for all values of t to obtain
E[
∑
t P (i|xt)xtxTt].

3. The system engages the user in the private division protocol
with this encrypted sum andE[w′] as inputs to obtainE[Σ′i].

4. The system and the user participate in a private vector prod-
uct protocol [10] with input E[µ̂si] to obtain E[µ̂si µ̂

sT
i]. The

system then computes the encrypted updated covariance as

E[Σ̂si] = E[Σ′i]
αE[ΣUi + µUi µ

UT
i]1−α − E[µ̂si µ̂

sT
i].

The encrypted model parameters obtained by the system
cannot be directly used in the verification protocol. We can
then compute the encrypted model matrix E[Ŵ s

i] from the en-
crypted model parameters. We describe this procedure in the
Appendix [10], for lack of space. At no point in the enrollment
protocol, the system observes feature vectors xt in plaintext and
the adapted models obtained by the system are also encrypted.

3.2. Private Verification Protocol

Inputs:

(a) User has feature vectors x1, . . . , xT for a test sample and
both encryption key E[·] and decryption key E−1[·].

(b) System has E[λs] = E[Ŵ s
i], for i = 1, . . . , N , and the

encryption key E[·].

Output: System obtains the score E[logP (x1, . . . , xT |λs)].

1. The user computes the extended vectors x̄t for all the
original feature vectors xt.

2. The system generates a random vector p and computes
E[Ŵ s

i] ·E[−p] to obtain E[Ŵ s
i − p]. The system sends

this quantity to the user.

3. The user decrypts it and obtains Ŵ s
i − p. The user com-

putes the inner product x̄Tt (Ŵ s
i − p) ∀t, and sends the

encryption E[x̄Tt (Ŵ s
i − p)] ∀t to the system along with

encrypted extended vector E[x̄t].

4. The system homomorphically computes the inner prod-
uct E[x̄Tt p] =

∏
k E[xt,k]pk ∀t. It then computes

E[x̄Tt Ŵ
s
i] = E[x̄Tt (Ŵ s

i − p)] · E[x̄Tt p] ∀i. The sys-
tem and the user then participate in the logsum protocol
to obtain E[logP (xt|λs)]. The system finally computes
E[logP (x1, . . . , xT |λs)] =

∏
t E[logP (xt|λs)].

2For efficiency purposes, only the diagonal terms of the product
xtxTt can be included without having a significant impact on accuracy.

As the system has access to the UBM in plaintext, the user
and the system can execute the private mixture of Gaussians
evaluation protocol (MOG) given by [4]. We however observe
paradoxically that the above protocol is substantially faster
than MOG using unencrypted models. This is because in the
above protocol, the user computes part of the inner products
x̄Tt Ŵ

s
i in plaintext. We therefore repeat the above protocol

with the encrypted UBM E[WU
i] to obtain the encrypted prob-

ability E[logP (x1, . . . , xT |λU)]. The system and the user fi-
nally execute the compare protocol [10], to privately compute
if logP (x1, . . . , xT |λU) > logP (x1, . . . , xT |λs) + θ and the
system uses this as the decision to authenticate the user.

Throughout this protocol, the system never observes xt in
plaintext. The various supplementary protocols require the sys-
tem to transmit encrypted partial results to the user [10]. While
doing so the system either adds or multiplies the values it sends
to the user by a random number. This also prevents the user
from learning anything about the partial results obtained by the
system. Even after satisfying these privacy constraints, the sys-
tem is able to make the decision on authenticating the user.

4. Experiments

We present the results of experiments on the privacy preserv-
ing speaker verification protocols described above. Since our
basic adaptation algorithm itself is the same as that in [6] and
can be expected to be more or less as accurate as it, the key as-
pect we need to evaluate is the computational overhead of the
proposed protocols. We created a prototype implementation of
the verification protocol in C++ and used the variable precision
arithmetic libraries provided by OpenSSL [11] to implement the
Paillier cryptosystem. We performed the experiments on a 2
GHz Intel Core 2 Duo machine with 3 GB RAM running 64-bit
Ubuntu.

We trained a UBM with 32 Gaussian mixture components
on the enrollment data in the YOHO dataset [7]. We adapted
the UBM to individual speakers and performed the verification
of a test speech sample containing 418 frames. We present the
execution times for the verification protocol in Table 1 for Pail-
lier encryption keys of sizes 256-bits and 1024-bits. In both the
cases, the protocol resulted in the same final probability scores
as the non-private verification algorithm up to 5 digits of preci-
sion. The non-private verification algorithm required 13.79 s on
the same input.

Table 1: Execution time for the verification protocol.
Steps Time (256-bit) Time (1024-bit)
Encrypting x̄t ∀t 576.81 s 35747.82 s
Evaluating Adapted 407.21 s 7597.57 s
Evaluating UBM same as adapted same as adapted
Comparison 0.3 s 16.88 s
Total =E[x̄t] + adapted 1391.53 s 50959.84 s
+ UBM + compare ∼ 23 min ∼ 14 hr, 9 min

Evaluation of the UBM using the MOG protocol [4] men-
tioned in Section 3.2 required 528.45 s and 8207.85 s using 256-
bit and 1024-bit encryption, respectively which is slower than
evaluation of the adapted model using the private verification
protocol. We therefore use the same protocol to evaluate the
UBM.

5. Discussion and Future Work
Both the enrollment and verification protocols can be shown to
be secure. The system observes only encrypted speech data and
hence cannot learn anything about the user’s speech. During
the exchanges required by the protocols, the user only observes
additively or multiplicatively transformed data, and also cannot
learn anything from it. Due to length restrictions of this paper,
we defer both the descriptions of the protocols and the expla-
nations relating to their security to the Appendix [10], which
we encourage the reader to read. The proposed protocols are
also found to give results which are same up to a high degree
of precision compared to a non-private GMM adaptation based
scheme.

Throughout this work, we assumed the user to be semi-
honest in performing his/her part of the computation. In a re-
alistic setting, an adversary impersonating a user can also send
fake inputs in the intermediate steps of the protocol in order
to trick the system into acceptance. Such a scenario needs to
be analyzed in the malicious model [12], where the security of
the protocol is ensured using zero-knowledge proofs. Privacy
preserving computation is eventually limited by the computa-
tion requirements, the semi-honest privacy model alone causes
a large computational overhead. Overlaying the protocols with
zero knowledge proofs and other mechanisms to protect against
malicious behavior further increase the overhead by many fac-
tors. One of the main directions of future work include reducing
the overhead using techniques such as hardware accelerated en-
cryption, which will result in a system that can be deployed and
used feasibly in practice.

6. References
[1] B.L. Pellom and J.H.L. Hansen, “An experimental study of

speaker verification sensitivity to computer voice-altered im-
posters,” in ICASSP, 1999.

[2] David Sundermann, Harald Hoge, Antonio Bonaforte, Hermann
Ney, Alan Black, and Shri Narayanan, “Text-independent voice
conversion based on unit selection,” in ICASSP, 2006.

[3] Andrew Yao, “Protocols for secure computations,” in FOCS,
1982.

[4] Paris Smaragdis and Madhusudana Shashanka, “A framework for
secure speech recognition,” IEEE Trans. on Audio, Speech & Lan-
guage Processing, vol. 15, no. 4, pp. 1404–1413, 2007.

[5] Manas Pathak, Shantanu Rane, Wei Sun, and Bhiksha Raj, “Pri-
vacy preserving probabilistic inference with hidden Markov mod-
els,” in ICASSP, 2011.

[6] Frederic Bimbot et. al., “A tutorial on text-independent speaker
verification,” EURASIP Journal on Applied Signal Processing,
vol. 4, pp. 430–451, 2004.

[7] Joseph P. Campbell, “Testing with the YOHO CD-ROM voice
verification corpus,” in ICASSP, 1995, pp. 341–344.

[8] Douglas A. Reynolds, “Comparison of background normaliza-
tion methods for text-independent speaker verification,” in Eu-
rospeech, 1997, vol. 2, pp. 963–966.

[9] Pascal Paillier, “Public-key cryptosystems based on composite
degree residuosity classes,” in EUROCRYPT, 1999.

[10] “Appendix,” http://mlsp.cs.cmu.edu/
publications/pdfs/ppsv.pdf.

[11] “Openssl,” http://www.openssl.org/docs/crypto/
bn.html.

[12] Murat Kantarcioglu and Onur Kardes, “Privacy-preserving data
mining in the malicious model,” J. Information and Computer
Security, vol. 2, no. 4, pp. 353–375, 2008.

7. Appendix: Supplementary Protocols
Model Construction Protocol.
Inputs:
(a) User has encryption key E[·] and decryption key E−1[·]
(b) System has encrypted adapted model parameters E[λs] =

{E[ŵi], E[µ̂i], E[Σ̂i]}, for i = 1, . . . , N , and the encryp-
tion key E[·].

Output: System has the encrypted adapted model matrices
E[Ŵi], for i = 1, . . . , N .

1. For each covariance matrix Σ̂i, the system generates
a random number q and homomorphically multiplies it
with E[Σ̂i] and sends the result E[qΣ̂i] to the user.

2. The user decrypts this quantity and obtains the ma-
trix qΣ̂i. The user then computes the reciprocal ma-
trix 1

q
Σ̂−1
i . The user encrypts this matrix and sends

E[1
q
Σ̂−1
i] to the system.

3. The system homomorphically multiplies the encrypted
matrix by − q

2
to get the encrypted matrix E[− 1

2
Σ̂−1
i].

4. The user also computes the log determinant of the ma-
trix 1

q
Σ̂−1
i to obtain− 1

q
log |Σ̂i|, which the user encrypts

and sends to the system.
5. The system homomorphically multiplies the encrypted

log determinant by q
2

to obtain E[− 1
2

log |Σ̂i|].
6. The system generates a random d × 1 matrix r and ho-

momorphically computes E[µ̂i − r] and sends it to the
user.

7. The user decrypts this vector to obtain µ̂i − r and
multiplies it with 1

q
Σ̂−1
i computed in Step 3 to obtain

1
q
Σ̂−1
i µ̂i − 1

q
Σ̂−1
i r. The user encrypts this and sends it

to the system.

8. Using the matrix r and E[1
q
Σ̂−1
i] which was ob-

tained in Step 4, the system homomorphically com-
putesE[1

q
Σ̂−1
i r] and adds it homomorphically to the en-

crypted vector obtained from the user to getE[1
q
Σ̂−1
i µ̂i].

The system then homomorphically multiplies this by q to
get E[Σ̂−1

i µ̂i].
9. The system executes the encrypted product proto-

col using E[Σ̂−1
i µ̂i] and E[µ̂i] as inputs to obtain

E[µ̂Ti Σ̂−1
i µ̂i] and multiplying it homomorphically with

− 1
2

to obtain E[− 1
2
µ̂Ti Σ̂−1

i µ̂i].
10. Finally, the system homomorphically adds the encrypted

scalars obtained above along with E[ŵi] to get E[w∗].
The system thus obtains all the components necessary to
construct E[Ŵi].

Logsum Protocol.
Inputs:
(a) Alice has both encryption key E[·] and decryption key

E−1[·].
(b) Bob has E [log zi] for i = 1, . . . , N , and the encryption

key E[·].
Output: Bob has E

[
log
∑
i zi
]

1. Bob generates a random number r and homomorphically
computes

E[log zi − r] = E[log zi]− E[r].

He sends this to Alice.

2. Alice decrypts this quantity and exponentiates it to ob-
tain zie−r .

3. Alice adds these quantities to compute e−r
∑
i zi and

then computes the log to obtain log
∑
i zi − r.

4. Alice encrypts E
[
log
∑
i zi − r

]
and sends it to Bob.

5. Bob homomorphically adds r to obtain the desired out-
put.

E

[
log
∑
i

zi

]
= E

[
log
∑
i

zi − r

]
+ E[r].

Private multiplication protocol.
Inputs:
(a) Alice has both encryption key E[·] and decryption key

E−1[·].
(b) Bob has two encrypted numbers E[a] and E[b] and the en-

cryption key E[·].
Output: Bob has the encrypted product E[ab].

1. Bob generates a random number r and homomorphically
computesE[a+r] which he sends to Alice. He similarly
generates a random vector q and homomorphically com-
putes E[qb] which he also sends to Alice.

2. Alice decrypts both of these vectors and obtains a + r
and qb. She computes the product

qb(a+ r) = qab+ qar.

She encrypts this product to get E[qab+ qar] and sends
it to Bob.

3. Using the encrypted number E[a], Bob homomorphi-
cally computes E[qar] as he already knows q and r.
He homomorphically subtracts this from the encrypted
product obtained from Alice to get E[qab].

4. Finally, Bob divides E[qab] homomorphically by 1
q

to
obtain the result E[ab].

Private Division protocol.
Inputs:
(a) Alice has both encryption key E[·] and decryption key

E−1[·].
(b) Bob has two encrypted numbers E[a] and E[b] and the en-

cryption key E[·].
Output: Bob has the encrypted quotient E[a

b
].

1. Bob generates a random number r and homomorphically
computesE[a+r] which he sends to Alice. He similarly
generates a random vector q and homomorphically com-
putes E[qb] which he also sends to Alice.

2. Alice decrypts both of these numbers and obtains a + r
and qb. She divides a+ r by qb to get

a+ r

qb
=

a

qb
+

r

qb
.

She encrypts this quantity and sends it to Bob.
She also computes the reciprocal 1

qb
, encrypts it and

sends it to Bob.

3. Using the number r, Bob homomorphically computes
E[r

qb
]. He homomorphically subtracts this from the first

encrypted quantity obtained from Alice to get E[a
qb

].

4. Finally, Bob multiplies E[a
qb

] homomorphically by q to
obtain the result E[a

b
].

Private Exponentiation protocol.
Inputs:
(a) Alice has both encryption key E[·] and decryption key

E−1[·].
(b) Bob has two encrypted numbers E[x] and the encryption

key E[·].
Output: Bob has the encrypted exponent E[ex].

1. Bob generates a random number r and homomorphically
computes E[x+ log r] which he sends to Alice.

2. Alice decrypts this number and obtains x+ log r, which
she exponentiates to get rex. She encrypts this quantity
and sends it to Bob.

3. Bob homomorphically divides E[rex] he obtains from
Alice to get E[ex].

Private Logarithm protocol.
Inputs:
(a) Alice has both encryption key E[·] and decryption key

E−1[·].
(b) Bob has two encrypted numbers E[x] and the encryption

key E[·].
Output: Bob has the encrypted log E[log x].

1. Bob generates a random number q and homomorphically
computes E[qx] which he sends to Alice.

2. Alice decrypts this number and obtains qx, which she
uses to compute log x+log q. She encrypts this quantity
and sends it to Bob.

3. Bob homomorphically subtracts log q from E[log x +
log q] to obtain E[log x].

Private vector product protocol.
Inputs:
(a) Alice has both encryption key E[·] and decryption key

E−1[·].
(b) Bob has two encrypted vectors E[x] and E[y] of the same

length and the encryption key E[·].
Output: Bob has the encrypted product E[xT y]

1. Bob generates a random vector q of the same length as
x and homomorphically computes E[x − q] which he
sends to Alice. He similarly generates a random vector r
and homomorphically computes E[y − r] which he also
sends to Alice.

2. Alice decrypts both of these vectors and obtains x − q
and y − r. She computes the product

(x− q)T (y − r) = xT y − xT r − qT y + qT r.

She encrypts this product and sends it to Bob.

3. Using the vectors E[x] and r, Bob homomorphically
computes E[xT r] and using the vectors E[y] and q, he
computesE[qT y]. He also computes−qT r and encrypts
it to obtain E[−qT r].

4. By adding these products homomorphically to the en-
crypted product he obtained from Alice, Bob obtains
E[xT y].

Compare protocol.
Inputs:
(a) Alice has the encryption keys EA[·], EB [·] and decryption

key E−1
A [·].

(b) Bob has EA[x] and EA[y] for and the encryption keys
EA[·], EB [·] and decryption key E−1

B [·].
Output: Bob knows if x > y.

1. Bob generates a random positive or negative number q
and homomorphically computesEA[q(x−y)]. He sends
this quantity to Alice.

2. Alice decrypts this quantity to obtain q(x − y). She
generates a positive random number r and computes
qr(x − y) and encrypts this using Bob’s key to obtain
EB [qr(x− y)].

3. Bob decrypts this quantity and divides it by q. Bob
checks for r(x − y) > 0 and uses that to conclude
whether x > y.

