
Multi-camera Spatio-temporal Fusion and Biased
Sequence-data Learning for Security Surveillance

Gang Wu, Yi Wu, Long Jiao, Yuan-Fang Wang, Edward Y. Chang
Electrical & Computer Engineering and Computer Science

University of California, Santa Barbara, CA 93106

gwu@engineering.ucsb.edu,wuyi@ece.ucsb.edu,longjiao@cs.ucsb.edu
yfwang@cs.ucsb.edu,echang@ece.ucsb.edu

ABSTRACT
We present a framework for multi-camera video surveillance. The
framework consists of three phases: detection, representation, and
recognition. The detection phase fuses video streams from mul-
tiple cameras for efficiently and reliably extracting motion trajec-
tories from video. The representation phase summarizes raw tra-
jectory data to construct hierarchical, invariant, and content-rich
descriptions of the motion events. Finally, the recognition phase
deals with event classification and identification on the data de-
scriptors. Because of space limits, we describe only briefly how
we detect and represent events, but we provide in-depth treatment
on the third phase: event recognition. For effective recognition, we
devise a sequence-alignment kernel function to perform sequence
data learning for identifying suspicious events. We show that when
the positive training instances (i.e., suspicious events) are signif-
icantly outnumbered by the negative training instances (benign
events), then SVMs (or any other learning methods) can suffer
a high incidence of errors. To remedy this problem, we propose
the kernel boundary alignment (KBA) algorithm to work with the
sequence-alignment kernel. Through empirical study in a parking-
lot surveillance setting, we show that our spatio-temporal fusion
scheme and biased sequence-data learning method are highly ef-
fective in identifying suspicious events.

Categories and Subject Descriptors: I.2.6 [Artificial Intelligence]:
Learning—concept learning; I.4.7 [Image Processing and Com-
puter Vision]: Feature Measurement—feature representation

General Terms: algorithms, performance, theory

1. INTRODUCTION
United States policymakers, especially in security and intelli-

gence services, are increasingly turning toward video surveillance
as a means to combat terrorist threats and increase public security.
With the proliferation of inexpensive cameras and the availability
of high-speed, broad-band wired/wireless networks, it has become
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economically and technically feasible to deploy a large number of
cameras for security surveillance [33, 34]. However, several im-
portant research questions must be addressed before we can rely
upon video surveillance as an effective tool for crime prevention.

A surveillance task can be divided into three phases: event de-
tection, event representation, and event recognition [11]. The de-
tection phase handles multi-source spatio-temporal data fusion for
efficiently and reliably extracting motion trajectories from video.
The representation phase summarizes raw trajectory data to con-
struct hierarchical, invariant, and content-rich representations of
the motion events. Finally, the recognition phase deals with event
recognition and classification. The research challenges of the three
phases are summarized as follows:

• Event detection from multiple cameras. Objects observed
from multiple cameras should be integrated to build spatio-
temporal patterns that correspond to 3-dimensional viewing.
Such integration must handle spatial occlusion and temporal
shift (e.g., camera recording without timing synchronization
and videotaping with differing frame rates). In addition, a
motion pattern should not be affected by varying camera po-
sitions/poses and incidental environmental factors that can
alter object appearance.

• Hierarchical and invariant event description. Invariant de-
scriptions are those that are not affected by incidental change
of environment factors (e.g., lighting) and sensing configu-
ration (e.g., camera placement). The concept of invariancy
is applicable at multiple levels of event description. We
distinguish two types of invariancy: fine-grain and coarse-
grain. Fine-grain invariancy captures the characteristics of
an event at a detailed, numeric level. Fine-grain invari-
ant descriptors are therefore suitable for “intra-class” dis-
crimination of similar event patterns (e.g., locating a par-
ticular event among multiple events depicting the same cir-
cling behavior of vehicles in a parking lot). Coarse-grain
invariancy captures the motion traits at a concise, seman-
tic level. Coarse-grain invariant descriptions are thus suit-
able for “inter-class” discrimination, e.g., discriminating a
vehicle’s circling behavior from, say, its parking behavior.
These two types of descriptors can be used synergistically
to accomplish a recognition task.

• Event recognition. Event characterization deals with map-
ping motion patterns to semantics (e.g., benign and sus-
picious events). Traditional machine learning algorithms
such as SVMs and decision trees cannot be directly applied



to such infinite-dimensional data, which may also exhibit
temporal ordering. Furthermore, positive events (i.e., the
sought-for hazardous events) are always significantly out-
numbered by negative events in the training data. In such
an imbalanced set of training data, the class boundary tends
to skew towards the minority class and becomes very sen-
sitive to noise. (An example is presented in Section 4.2 to
illustrate this problem.)

Due to space limitations, we provide in-depth treatment in this
paper only on event recognition, briefly describing how we per-
form event detection and representation to prepare for event recog-
nition. For event detection and representation, we configure two-
level Kalman filters to fuse multi-source video data; and we em-
ploy a variant of dynamic programming to construct event de-
scriptors. For effective event recognition, we first discretize a
continuous spatio-temporal sequence. We propose a sequence-
alignment kernel, which we show to be a legitimate kernel func-
tion, to discriminate events. For tackling the imbalanced training-
data problem, we propose the kernel boundary alignment (KBA)
algorithm, which adaptively modifies the kernel matrix accord-
ing to the training-data distribution. One particular application
scenario we utilize to evaluate our algorithms is detecting suspi-
cious activities in a parking lot. Our empirical study shows that
our spatio-temporal fusion scheme can efficiently and reliably re-
construct scene activities even when individual cameras may have
spatial or temporal lapses, and that our sequence-alignment kernel
and KBA algorithm are highly effective in identifying suspicious
events.

The rest of the paper is organized as follows. In Section 2
we discuss related work. Section 3 briefly discusses our sensor
data fusion scheme and sequence-data representation. Section 4
presents event characterization and recognition methods. Section 5
presents empirical results. Finally, in Section 6 we offer conclud-
ing remarks.

2. RELATED WORK
We divide our discussion of related work into two parts. The

first part surveys related work in fusing data from multi-cameras.
The second part discusses related research in sequence-data learn-
ing.

2.1 Sensor Data Analysis and Fusion
Sensor-data fusion from multiple cameras is an important prob-

lem with many potential applications. The work in multi-source
fusion can be divided into two categories based on camera config-
urations: spatially non-overlapping and spatially overlapping. The
study of [25] attempts to fuse data from several non-overlapping
cameras using a Bayesian reasoning approach. Since there might
be significant gaps between the fields of view of the cameras, the
precision in prediction may suffer. Most fusion algorithms assume
an overlapping camera configuration, and they concentrate on fus-
ing local coordinate frames of multiple cameras into one global
coordinate system. For example, [26] assumes that only the intrin-
sic camera parameters are known, and the cameras are registered
into a common frame of reference by aligning moving objects ob-
served in multiple cameras spatially and temporally [24]. The DE-
TER project [32] also uses an overlapping camera configuration.
The homography between images from two cameras is computed,
the images are mosaiced together to perform seamless tracking,
and all data processing is then performed in the synthesized image
plane. In this paper, we use a two-level hierarchy of Kalman filters
for trajectory tracking and data fusion from multiple cameras. The

advantage of our formulation is that it enables both bottom-up fu-
sion and top-down guidance, and hence is robust even with partial
occlusion.

The Kalman filter is an important theoretical development for
data smoothing and prediction. The traditional Kalman filter is a
linear algorithm that operates under a prediction-correction paradigm.
The quantities of a system to be estimated are summarized in an
internal state vector, which is constrained by the observation of
the system’s external behavior. The prediction mechanism is used
for propagating the system’s internal state over time and the cor-
rection mechanism is for fine tuning the state propagation with
external observations [39].

The Kalman filter and its variants are powerful tools for track-
ing inertial systems. Generally speaking, the standard Kalman fil-
ter performs satisfactorily for tracking the position of a moving
object. However, for tracking the orientation of an object, where
the governing equations in state propagation and observation may
be nonlinear, the extended Kalman filter (e.g., non-linear variants
of the Kalman filter) must be used [29, 30]. For example, [2] uses
a standard Kalman filter to predict the head position, and an ex-
tension of it to estimate the head orientation of a user in a virtual
reality system. In this paper, we are interested in summarizing
the trajectory of a vehicle, and hence, only the position, not the
orientation, of a vehicle is needed. We have thus employed the
traditional Kalman filter for the efficient tracking purpose.

In addition to the Kalman filter, the Hidden Markov Model (HMM)
has been used for object tracking [4]. Both the Kalman filter and
HMM can be used to estimate the internal states of a system. How-
ever, HMM is not an attractive online tracking method due to its
high computational intensive with respect to the number of states.
For tracking objects(s), where the number of possible locations
(number of states) of the tracked object(s) is theoretically infinite,
the Kalman filter is the popular choice [4]. In general, HMM is
more suitable for recognition tasks [5, 36], where the number of
states is relatively small.

2.2 Sequence-data Modeling and Learning
Generative and discriminative models have been proposed to

classify sequence data. The Hidden Markov Model (HMM) is the
most widely used generative model [3] for describing sequence
data. The HMM requires building a model for each pattern family.
When an unknown pattern is to be classified, the Bayes rule re-
turns the most likely model to depict it. For surveillance, however,
building an HMM for each motion pattern, benign or suspicious,
may not be realistic because of the scarcity of positive training
data. (Learning an HMM, even with a moderate number of states,
requires a large number of training instances [8].)

SVMs [37] are the most popular discriminative models, which
directly estimate a discriminant function for each class. SVMs
have been proven superior to generative models in classification
problems for both effectiveness and efficiency. SVMs are applied
to training data that reside in a vector space. The basic form of
an SVM kernel function which classifies an input vector x is ex-
pressed as

f(x) =
N�

i=1

αiyiφ(xi) · φ(x) + b =
N�

i=1

αiyiK(xi,x) + b (1)

where φ is a non-linear mapping function which maps input vec-
tors into the feature space, operator ‘·’ denotes the inner product
operator, and xi is the ith training sample. Parameters yi and αi

are class label and Lagrange multiplier of xi, respectively. K is a
kernel function, and b is the bias.



For sequence data, in particular variable-length sequences, the
basis function φ does not exist, nor does the feature space. Several
attempts (e.g., [27, 28]) have been made to convert sequence data
to fixed-length segments and represent them in vector spaces, but
these forced mappings of variable-length to fixed-length segments
often result in loss of information. Furthermore, these models can-
not capture the temporal relationship between spatial instances,
nor do they consider secondary variables (e.g., velocity can be a
secondary variable when traveling direction is the one).

Another vector-space approach is the SVM-Fisher kernel. The
SVM-Fisher kernel [20, 21] computes features from probabilis-
tic models p(x|θ), in which θ is learned from the HMM train-
ing. It then uses the tangent vector of the log marginal likelihood
log p(x|θ) as the feature vectors. The SVM-Fisher kernel consid-
ers only positive training instances, and it does not take advantage
of negative training instances in learning.

Fortunately, kernel methods (SVMs are a member of the ker-
nel method family) require only a positive definite kernel matrix
K(xi,xj), which consists of a similarity measure between all
pairs of training instances, without explicitly representing individ-
ual instances in a vector space [22]. More specifically, we can treat
each sequence instance xi as a random variable zi. All we need
is a kernel function that generates pair-wise similarity between all
pairs of zi and zj , and that can ensure that the generated similar-
ity matrix is positive definite. To put this another way, as long as
we have a similarity function that can produce a positive definite
kernel matrix, we can use the kernel method to conduct sequence-
data learning. Hence, our design task is reduced to formulating
a function that can characterize the similarity between sequences,
provided that the pair-wise similarity matrix is positive definite.
In this paper, we borrow an idea from sequence-data (DNA, RNA,
and protein) analysis in biological science to measure sequence
similarity based on alignment. We show in Section 4.1 the flex-
ibility and effectiveness of this similarity function. Furthermore,
we propose the sequence-alignment kernel, which fuses symbolic
summarizations (in a non-vector space) with numeric descriptions
(in a vector space). Because its ability to fuse primary structures
with secondary structures that do or do not have a vector-space
representation, our proposed kernel features great modeling flexi-
bility.

Finally, to tackle the imbalanced-data learning problem, we pro-
pose the kernel boundary alignment (KBA) scheme. For related
work of imbalanced-data learning, please refer to [40].

3. EVENT DETECTION AND REPRESEN-
TATION

This section presents the methods we employ for event detection
(Section 3.1) and event representation (Section 3.2).

3.1 Event Detection
We use the Kalman filter [6, 31] as the tool for fusing infor-

mation spatially and temporally from multiple cameras for mo-
tion event detection. The Kalman filter is an optimal linear data-
smoothing and prediction algorithm. It has been applied exten-
sively in control, signal processing, and navigation applications
since its introduction in 1960. Our contribution is in using two-
level Kalman filters to fuse data from multiple sources.

The Kalman filter has been widely used to estimate the internal
state of a system based on the observation of the system’s exter-
nal behavior [6, 31]. Furthermore, a system’s state estimate can
be computed and then updated by incorporating external measure-
ments iteratively—without recomputing the estimate from scratch

Figure 1: Two-level hierarchical Kalman filter configuration

each time a new measurement becomes available. Such an itera-
tive process is optimal in the sense that the Kalman filter incorpo-
rates all available information from past measurements, weighted
by their precision. Optimal information fusion is achieved by com-
bining three factors: (1) knowledge of the system and measure-
ment device dynamics, (2) the statistical description of the system
noises, measurement errors, and uncertainty in the system model,
and (3) relevant initial state description [31]. While the Kalman
filter is optimal only among linear estimators, and when certain
assumptions about the noise processes are valid, it is easy to im-
plement and is efficient at run time. Work has also been done on
relaxing some of the assumptions, such as the Gaussian noise as-
sumption and the linearity assumption [23].

Suppose that a vehicle is moving in the parking lot. Its trajectory
is described in the global reference system by

P(t) = [X(t), Y (t), Z(t)]T .

The trajectory may be observed in camera i, as

pi(t) = [xi(t), yi(t)]
T ,

where i = 1, · · · , m (m is the number of cameras used).1 The
question is then how to best estimate P(t) given pi(t), i = 1, · · · , m.

We formulate the solution as a two-level hierarchy of the Kalman
filters. Referring to Fig. 1, at the bottom level of the hierarchy, we
employ for each camera a Kalman filter to estimate, independently,
the position pi(t), velocity ṗi(t), and acceleration p̈i(t) of the ve-
hicle, based on the tracked image trajectory of the vehicle in the
local camera reference frame. Or in the Kalman filter jargon, the
position, velocity, and acceleration vectors establish the “state” of
the system while the image trajectory serves as the “observation”
of the system state. At the top level of the hierarchy, we use a sin-

1There might be multiple moving vehicles in a busy parking lot,
and it may be difficult to synchronize the activities observed with
multiple cameras. The question is then how we disambiguate the
correspondence of multiple trajectories both spatially and tempo-
rally. Spatial and temporal trajectory correspondence can be estab-
lished through the camera registration and stereopsis correspon-
dence processes [9, 12, 15, 18, 19, 35, 41, 42], which are well es-
tablished techniques in photogrammetry and computer vision. For
our discussion, we will assume that these problems can be solved
and we can achieve spatial and temporal registration of vehicle
trajectories.



gle Kalman filter to estimate the vehicle’s position P(t), velocity
Ṗ(t), and acceleration P̈(t) in the global world reference frame—
this time, using the estimated positions, velocities, and accelera-
tions from multiple cameras (pi(t), ṗi(t), p̈i(t)) as observations
(the solid feed-upward lines in Fig. 1). This is possible because
camera calibration and registration [9, 15, 19, 41, 42] are used
for deriving the transform matrix Timagei←world. This matrix al-
lows pi, measured in the reference frame of an individual camera,
to be related to P in the global world system. We also allow dis-
semination of fused information to individual cameras (the dashed
feed-downward lines in Fig. 1) to help to guide image processing.

3.2 Hierarchical, Invariant Representation
Raw trajectory data derived above are in terms of either local or

global Cartesian coordinates. Such a representation suffers from
at least two problems: (1) the same motion trajectory observed
by different cameras will have different representations, and (2)
the representation is difficult for a human operator to understand.
Our solution is to summarize such raw trajectory data using syn-
tactic and semantic descriptors that are not affected by incidental
changes in environmental factors and camera poses. We briefly
describe our semantic descriptors here.

We first segment a raw trajectory fused from multiple cameras
into fragments. Using a constrained optimization approach un-
der the EM (expectation-maximization) framework, we then la-
bel these fragments semantically (e.g., a fragment representing a
left turn action). We approximate the acceleration trajectory of
a vehicle as a piecewise constant (zeroth-order) or linear (first-
order) function in terms of its direction and its magnitude. When
the magnitude of acceleration is first order (r(t) = ro + tr1 in
Eq. 5), it gives rise to a motion trajectory that is a concatenation
of piecewise polynomials that can be as high as third order (cu-
bic). This is often considered sufficient to describe a multitude
of motion curves in the real world (e.g., in computer-aided design
[14] and computer graphics [16], piecewise third-order Hermite,
Beźier, and B-spline curves are universally used for design and
manufacturing). We chop the whole acceleration trajectory P̈(t),
from t = tmin to tmax (where [tmin, tmax] is the time inter-
val that a vehicle is observed by one or more of the surveillance
cameras) into, say, k pieces such that to ≤ t1 ≤ · · · ≤ tk and
to = tmin, tk = tmax

P̈(t) = r(t)eiθ(t), where

�
r(t) = r

(i)
o or r

(i)
o + tr

(i)
1

θ(t) = θ
(i)
o or θ

(i)
o + tθ

(i)
1

ti ≤ t < ti+1, i = 0, · · · , k−1.

(5)

We employ an iterative expectation and maximization (EM) al-
gorithm [13] to segment trajectories. The EM algorithm consists
of two stages: (1) The E-stage hypothesizes the number of seg-
ments with their start and stop locations, and (2) the M-stage op-
timizes the fitting parameters based on the start and stop locations
and the number of segments derived from the E-stage. These two
steps iterate until the solution converges. Table 1 sketches the
pseudo-code of the algorithm (using fitting θ(t) as an illustration).

We label each segmented fragment based on its acceleration and
velocity statistics. More specifically, we denote the initial vehicle
velocity when each segment starts as Vo, which can be either zero
or nonzero. The acceleration (Eq. 5) can be either of a constant
or linearly-varying magnitude and/or of a constant or a linearly-
varying direction. For example, if |r| ≈ 0, the motion pattern is

either “constant speed” or “stop.” Segmentation based on θ is
meaningful and necessary only when |r| > 0. If |r| > 0, possi-
ble motion patterns include “speed up,” “slow down,” “left turn,”
and “right turn.” “Speed up” and “slow down” can be determined
by the sign of P̈·Ṗ. “Left turn” and “right turn” are determined by
the sign of (P̈×Ṗ)z . If (P̈×Ṗ)z > 0 it is a right turn; otherwise,
it is a left turn.

4. EVENT RECOGNITION
Recap our discussion in Section 3. Our descriptors summa-

rize a motion trajectory as an ordered sequence of labels, and
each label corresponds to a motion segment with a humanly un-
derstandable action. Recognizing and identifying events on such
descriptors must handle the ordered nature of the descriptors. Fur-
thermore, in a surveillance setting, positive (suspicious) events
are always significantly outnumbered by negative events. As we
will explain shortly through an example, this imbalanced training-
data situation can skew the decision boundary toward the minority
class, and hence cause high rates of false negatives (i.e., failure
to identify suspicious events). In this section, we first design a
sequence-alignment kernel function to work with SVMs for corre-
lating events. We then propose using kernel boundary alignment
(KBA) to deal with the imbalanced training-data problem.

4.1 Sequence Alignment Learning
In the previous section, we have labeled each segmented frag-

ment of a trajectory with a semantic label and its detailed attributes
including velocity and acceleration statistics. For convenience,
we use a symbol to denote the semantic label. We use ‘C’ for
“Constant speed,” ‘D’ for “slow Down,” ‘L’ for “Left turn,” ‘R’
for “Right turn,” and ‘U’ for “speed Up.” We label each segment
with a two-level descriptor: a primary segment symbol and a set of
secondary variables (e.g., velocity and acceleration). We use s to
denote a sequence, which comprises the concatenation of segment
symbols si ∈ A, where A is the legal symbol set. We use vi to
denote the vector of the ith secondary variable.

The following example depicts a sequence with this two-level
descriptor. Sequence s denotes the segmented trajectory with v1

representing the velocity and v2 the acceleration. For velocity and
acceleration, we use their average values taken place in a segment.

s : C D U C L R R L
v1 : 0.7 0.5 0.8 0.8 0.7 0.8 0.6 0.5
v2 : 0.0 −0.2 0.3 0.0 −0.1 0.1 −0.2 −0.1

Now, the trajectory learning problem is converted to the prob-
lem of sequence-data learning with secondary variables. For this
purpose, we construct a new sequence-alignment kernel that can
be applied to measure pair-wise similarity between sequences with
secondary variables.

4.1.1 Tensor Product Kernel
The sequence-alignment kernel will take into consideration both

the degree of conformity of the symbolic summarizations and the
similarity between the secondary numerical descriptions (i.e., ve-
locity and acceleration) of the two sequences. Two separate ker-
nels are used for these two criteria and are then combined into a
single sequence-alignment kernel through tensor product. These
are explained below.

Let x ∈ X be a composite structure and x1, ..., xN be its “parts,”
where xn ∈ Xn, X = X1×· · ·×XN , and N is a positive integer.
For our sequence data, x is a sequence with both primary segment



Table 1: The motion event segmentation process
1) Initialization. Compute a linear fit to the θ(t) curve between the specified end points, denoted as [tmin, tmax). Using the notation
θmax = θ(tmax) and θmin = θ(tmin), we have

(θmax − θmin)t + (tmin − tmax)θ + (θmin − θmax)tmin + (tmax − tmin)θmin = 0 (2)

2) Refinement. Compute location tmaxdev in between tmin and tmax as the largest deviation of the true acceleration curve from the
fitting,

tmaxdev = argmaxt|(θmax − θmin)t + (tmin − tmax)θ(t) + (θmin − θmax)tmin + (tmax − tmin)θmin|/∆ (3)
maxdev = |(θmax − θmin)tmaxdev + (tmin − tmax)θ(tmaxdev) + (θmin − θmax)tmin + (tmax − tmin)θmin|/∆ (4)

where ∆ = � (θmax − θmin)2 + (tmax − tmin)2

3) Iteration. If maxdev is above a preset threshold, break the curve into two sections [tmin, tmaxdev) and [tmaxdev, tmax) and repeat
the first two steps using these two new intervals.

symbols and secondary variables. Let x1 denote its primary sym-
bol sequence, and each other xi be its (i− 1)th secondary vector.
Assume thatX ,X1,...,XN are nonempty sets. We define the tensor
product kernel as follows:

Definition 1. Tensor Product Kernel. Given x = (x1, ..., xN ) ∈
X and x′ = (x′1, ..., x

′
N) ∈ X . If K1,...,KN are (positive definite)

kernels defined on X1 × X1,..., XN ×XN respectively, then their
tensor product, K1 ⊗ · · · ⊗KN , defined on X × X is

K1 ⊗ · · · ⊗KN (x,x′) = K1(x1, x
′
1) · · ·KN (xN , x′N).2

Since kernels are closed under product [38], it is easy to see that
the tensor product kernel is positive definite if each individual ker-
nel is positive definite.

4.1.2 Sequence-alignment Kernel
To measure the similarity between two sequences, our idea is to

first compare their similarity at the symbol level. After the similar-
ity is computed at the primary level, we consider the similarity at
the secondary variable level. We then use the tensor product kernel
to combine the similarity at the primary and secondary level.

At the primary (segment-symbol) level, we use kernel Ks(s, s
′)

to measure symbol-sequence similarity. We define Ks(s, s
′) as

a joint probability distribution (p.d.) that assigns a higher prob-
ability to more similar sequence pairs. We employ pairs-HMM
(PHMM) [38], a generative probability model, to model the joint
p.d. of two symbol sequences. (Notice that PHMM is different
from HMM, which aims to model the evolution of individual se-
quence data. PHMM is one of many dynamic-programming based
methods that one can employ to perform string alignment.)

A realization of PHMM is a sequence of states, starting with
START and finishing with END; and in between there are three
possible states: states AB, A, and B. State AB emits two symbols,
state A emits one symbol for sequence a only, and state B emits
one symbol for sequence b only. State AB has an emission proba-
bility distribution paibj

for emitting an aligned ai : bj , and states
A and B have distributions qai

and qbj
, respectively, for emitting

a symbol against a gap, such as ai : ‘−′ and ‘−′ : bj . Parameter
δ denotes the transition probability from AB to an insert gap state
A or B, ε the probability of staying in an insert state, and τ the
probability of a transition into the END state. Any particular pair
of sequences a and b may be generated by exponentially many
different realizations. The dynamic programming algorithms can
sum over all possible realizations to calculate the joint probability
of any two sequences. The overall computational complexity is
O(mn), in which m and n are the lengths of the two sequences
respectively.

To compute the similarity at the secondary level, we can con-
catenate all variables into one vector, and employ a traditional
vector-space kernel such as an RBF function. Let Kv(v,v′) de-
note such a kernel measuring the distance between v and v′. (No-
tice that vectors v and v′ may differ in length since s and s′ may
have different length. We will discuss shortly how we align two
vectors into the same length via an example.) Finally, we define
the tensor product on (S × S)× (V × V) as

(Ks ⊗ Kv)((s,v), (s′,v′)) = Ks(s, s
′)Kv(v,v′). (6)

In the following we present an example to show the steps of
computing similarity between two sequences using our sequence-
alignment kernel.

Example 1. Suppose we have two sequences (s,v) and (s′,v′) as
depicted next. The similarity between the sequences is computed
in the following three steps:

s : C D U C L R R L
v : 0.7 0.5 0.8 0.8 0.7 0.8 0.6 0.5
s′ : C U C L R L C
v′ : 0.5 0.4 0.4 0.5 0.6 0.6 0.6

Step 1. Primary symbol-level similarity computation: Ks(s, s
′).

By using PHMM, we can obtain the joint p.d. Ks(s, s
′) between

symbol sequences s and s′. As a part of the PHMM computation,
two sequences are aligned as follows:

C D U C L R R L −
C − U C L R − L C

Step 2. Secondary variable-level similarity computation: Kv(v,v′).
The unaligned positions in v and v′ are padded by zero. We
obtain two equal-length vectors, and can compute their similarity
by using a traditional SVM kernel, e.g., an RBF function.

0.7 0.5 0.8 0.8 0.7 0.8 0.6 0.5 0.0
0.5 0.0 0.4 0.4 0.5 0.6 0.0 0.6 0.6

Step 3. Tensor fusion: (Ks ⊗Kv)((s,v), (s′,v′)). 2

There are three advantages of the above sequence-alignment
kernel. First, it can use any sequence-alignment algorithms to
obtain a pair-wise probability distribution for measuring variable-
length sequence similarity. (Again, we employ PHMM to perform
the measurement.) Second, the kernel considers not only the align-
ment of symbol strings but also secondary variables, making the
similarity measurement between two sequences more informative.



Third, compared with the SVM-Fisher kernel (discussed in Sec-
tion 2), our sequence-alignment kernel adds the ability to learn
from negative training instances, as well from positive training in-
stances.

4.2 Imbalanced Learning via Kernel Bound-
ary Alignment

Skewed class boundary is a subtle but severe problem that arises
in using an SVM classifier—in fact in using any classifier—for
real world problems with imbalanced training data. To understand
the nature of the problem, let us consider it in a binary (positive
vs. negative) classification setting. Recall that the Bayesian frame-
work estimates the posterior probability using the class conditional
and the prior [17]. When the training data are highly imbalanced,
it can be inferred that the state of the nature favors the majority
class much more than the other. Hence, when ambiguity arises in
classifying a particular sample because of similar class conditional
densities for the two classes, the Bayesian framework will rely on
the large prior in favor of the majority class to break the tie. Con-
sequently, the decision boundary will skew toward the minority
class.

To illustrate this skew problem graphically, we use a 2D checker-
board example. The checkerboard divides a 200×200 square into
four quadrants. The top-left and bottom-right quadrants contain
negative (majority) instances while the top-right and bottom-left
quadrants are occupied by positive (minority) instances. The lines
between the classes are the “ideal” boundary that separates the two
classes. In the rest of the paper, we will use positive when refer-
ring to minority instances, and negative when referring to majority
instances.

Figure 2 exhibits the boundary distortion between the two left
quadrants in the checkerboard under two different negative/positive
training-data ratios, where a black dot with a circle represents a
support vector, and its radius represents the weight value αi of the
support vector. The bigger the circle, the larger the αi. Figure 2(a)
shows the SVM class boundary when the ratio of the number of
negative instances (in the quadrant above) to the number of posi-
tive instances (in the quadrant below) is 10 : 1. Figure 2(b) shows
the boundary when the ratio increases to 10, 000 : 1. The bound-
ary in Figure 2(b) is much more skewed towards the positive quad-
rant than the boundary in Figure 2(a), and hence causes a higher
incidence of false negatives.

While the Bayesian framework gives the optimal results (in terms
of the smallest average error rate) in a theoretical sense, one has to
be careful in applying it to real-world applications. In a real-world
application such as security surveillance, the risk (or consequence)
of mispredicting a positive event (a false negative) far outweighs
that of mispredicting a negative event (a false positive). It is well
known that in a binary classification problem, Bayesian risks are
defined as:

R(αp|x) = λppP (ωp|x) + λpnP (ωn|x)
R(αn|x) = λnpP (ωp|x) + λnnP (ωn|x)

(7)

where p and n refer to the positive and negative events, respec-
tively, λnp refers to the risk of a false negative, and λpn the risk
of a false positive. Which action (αp or αn) to take—or which ac-
tion has a smaller risk—is affected not just by the event likelihood
(which directly influences the misclassification error), but also by
the risk of mispredictions (λnp and λpn).

For security surveillance, positive (suspicious) events often oc-
cur much less frequently than negative (benign) events. This fact
causes imbalanced training data, and thereby results in higher inci-
dence of false negatives. To remedy this boundary-skew problem,

we propose an adaptive conformal transformation algorithm. In
the remainder of this section, we first outline how our prior work
[40] deals with the problem in a vector space (Section 4.2.1).
We then present our solution to sequence-data learning where a
discretized variable-length sequence may not have a vector-space
representation (Section 4.2.2).

4.2.1 Conformally Transforming K

In [40], we proposed feature-space adaptive conformal transfor-
mation (ACT) for imbalanced-data learning. We showed that con-
ducting conformal transformation adaptively to data distribution,
and adjusting the degree of magnification based on feature-space
distance (rather than on input-space distance as proposed by [1])
can remedy the imbalanced-data learning problem.

A conformal transformation, also called a conformal mapping,
is a transformation T which takes the elements X ∈ D to elements
Y ∈ T (D) while preserving the local angles between the elements
after mapping, where D is a domain in which the elements X
reside [10].

Kernel-based methods, such as SVMs, introduce a mapping func-
tion Φ which embeds the input space I into a high-dimensional
feature space F as a curved Riemannian manifold S where the
mapped data reside [1, 7]. A Riemannian metric gij(x) is then de-
fined for S, which is associated with the kernel function K(x,x′)
by

gij(x) =

�
∂2K(x,x′)

∂xi∂x′j � x′=x

. (8)

The metric gij shows how a local area around x in I is magnified
in F under the mapping of Φ. The idea of conformal transforma-
tion in SVMs is to enlarge the margin by increasing the magnifi-
cation factor gij(x) around the boundary (represented by support
vectors) and to decrease it around the other points. This could
be implemented by a conformal transformation of the related ker-
nel K(x,x′) according to Eq. 8, so that the spatial relationship
between the data would not be affected too much [1]. Such a con-
formal transformation can be depicted as

K̃(x,x′) = D(x)D(x′)K(x,x′). (9)

In the above equation, D(x) is a properly defined positive con-
formal function. D(x) should be chosen in a way such that the
new Riemannian metric g̃ij(x), associated with the new kernel
function K̃(x,x′), has larger values near the decision boundary.
Furthermore, to deal with the skew of the class boundary caused
by imbalanced classes, we magnify g̃ij(x) more in the boundary
area close to the minority class. In [40], we demonstrate that an
RBF distance function such as

D(x) = �
k∈SV

exp(−
|x − xk|

τ2
k

) (10)

is a good choice for D(x).
In Eq. 10, we can see that if τ2

k ’s are fixed for all support vectors
xk’s, D(x) would be very dependent on the density of support
vectors in the neighborhood of Φ(x). To alleviate this problem, we
adaptively tune τ2

k according to the spatial distribution of support
vectors in F [40]. This goal can be achieved by the following
equations:

τ2
k = AVGi∈{‖Φ(xi)−Φ(xk)‖2<M, yi 6=yk} � ‖Φ(xi) − Φ(xk)‖2 � .

(11)
In this equation, the average on the right-hand side comprises all
support vectors in Φ(xk)’s neighborhood within the radius of M
but having a different class label. Here, M is the average distance
of the nearest and the farthest support vectors from Φ(xk). Setting
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Figure 2: Boundaries of Different Ratios.

τ 2
k in this way takes into consideration the spatial distribution of

the support vectors in F . Although the mapping Φ is unknown,
we can play the kernel trick to calculate the distance in F :

‖Φ(xi)−Φ(xk)‖2 = K(xi,xi)+K(xk ,xk)−2∗K(xi ,xk). (12)

Substituting Eq. 12 into Eq. 11, we can then calculate the τ2
k for

each support vector, which can adaptively reflect the spatial distri-
bution of the support vector in F , not in I .

When the training dataset is very imbalanced, the class bound-
ary would be skewed towards the minority class in the input space
I . We hope that the new metric g̃ij(x) would further magnify
the area far away from a minority support vector xi so that the
boundary imbalance could be alleviated. Our algorithm thus as-
signs a multiplier for the τ2

k in Eq. 11 to reflect the boundary skew
in D(x). We tune τ̃ 2

k as ηpτ 2
k if xk is a minority support vector;

otherwise, we tune it as ηnτ 2
k . Examining Eq. 10, we can see that

D(x) is a monotonously increasing function of τ2
k . To increase

the metric g̃ij(x) in an area which is not very close to the sup-
port vector xk, it would be better to choose a larger ηp for the
τ 2

k of a minority support vector. For a majority support vector,
we can choose a smaller ηn, so as to minimize influence on the
class-boundary. We empirically demonstrate that ηp and ηn are

proportional to the skew of support vectors, or ηp as O( |SV
−|

|SV+|
),

and ηn as O( |SV
+|

|SV−|
), where |SV+| and |SV−| denote the num-

ber of minority and majority support vectors, respectively. (Please
see [40] for the details of ACT.)

4.2.2 Modifying K

For data that do not have a vector-space representation (e.g., se-
quence data), ACT may not be applicable. In this work we thus
propose KBA, which modifies kernel matrix K based on training-
data distribution. Kernel matrix K contains the pairwise similar-
ity information between all pairs of instances in a training dataset.
Hence, in kernel-based methods, all we need is a kernel matrix to
learn the classifier, even the data do not reside in a vector space.
Notice that KBA is certainly applicable to data that do have a
vector-space representation since K = (kxx′) = K(x,x′).

Now, since a training instance x might not be a vector, in this
paper we introduce a term, support instance, to denote x if its
embedded point via K is a support vector2. In this situation, we
2In KBA algorithm, if x is a support instance, we call both x and
its embedded support vector via K in F support instance.
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Figure 3: D(x) with Different τ 2
k .

cannot choose D(x) as in Eq. 10. (It is impossible to calculate the
Euclidean distance |x−xi| for non-vector data.) In Section 4.2.1,
we show that D(x) should be chosen in such a way that the spatial
resolution of the manifold S would be magnified around the sup-
port instances. In other words, if x is close to a support instance
xk in F (or in its neighborhood), we hope that D(x) would be
larger so as to achieve a greater magnification. In KBA, we use
the pairwise-similarity kxxk

to measure the distance of x from xk

in F . Therefore, we choose D(x) as

D(x) = �
k∈SI

exp �� − 1
kxxk

− 1

τ2
k

��
, (13)

where SI denotes the support-instance set, and τ2
k controls the

magnitude of D(x).
Figure 3 illustrates a D(x) for a given support instance xk,

where we can see that D(x) (y-axis) becomes larger when an in-
stance x is more similar to xk (a larger kxxk

in the x-axis), so
that there would be more magnification on the spatial resolution
around the support vector embedded by xk in F . Notice in the
figure that D(x) can be shaped very differently with different τ2

k .
We thus need to adaptively choose τ2

k as

τ2
k = AVGi∈{Dist2(xi,xk)<M, yi 6=yk} � Dist2(xi,xk) � , (14)



Input:
Xtrain, Xtest, K;
θ; /* stopping threshold */
T ; /* maximum running iterations */
Output:
C; /* output classifier */
Variables:
SI; /* support-instance set */
M ; /* neighborhood range */
s; /* a support instance */
s.τ ; /* parameter of s */
s.y; /* class label of s */
Function Calls:
SVMTrain(Xtrain, K); /* train classifier C */
SVMClassify(Xtest, C); /* classify Xtest by C */
ExtractSI(C); /* obtain SI from C */
ComputeM(s,SI); /* compute M */
Begin
1) C ← SVMTrain(Xtrain, K);
2) εold ←∞;
3) εnew ← SVMClassify(Xtest, C);
4) t← 0;
5) while ((εold − εnew > θ)&&(t < T )) {
6) SI←ExtractSI(C);

7) ηp ← O( |SI
−|

|SI+|
), ηn ← O( |SI

+|

|SI−|
);

8) for each s ∈ SI{
9) M ←ComputeM(s, SI);

10) s.τ ← � AVGi∈{Dist2(si,s)<M, si.y 6=s.y} (Dist2(si, s));

11) if s ∈ SI+ then /* a minority */
12) s.τ ←√ηp × s.τ ;
13) else /* a majority */
14) s.τ ←√ηn × s.τ ;}

15) D(x) = �
s∈SI

exp � − 1
kxs
−1

s.τ2 �
16) for each kij in K{
17) kij ← D(xi) × D(xj) × kij ;}
18) C ← SVMTrain(Xtrain,K);
19) εold ← εnew;
20) εnew ← SVMClassify(Xtest, C);
21) t← t + 1;}
22) return C;
End

Figure 4: The KBA Algorithm.

where the distance Dist2(xi,xk) between two support instances
xi and xk is calculated via the kernel trick as

Dist2(xi,xk) = kxixi
+ kxkxk

− 2 ∗ kxixk
. (15)

The neighborhood range M in Eq. 14 is chosen as the average of
the minimal distance Dist2min and the maximal distance Dist2max

from xk. In addition, τ2
k is scaled in the same way as we did in

Section 4.2.1 for dealing with the imbalanced training-data prob-
lem.

Figure 4 summarizes the KBA algorithm. We apply KBA on the
training dataset Xtrain until the testing accuracy on Xtest cannot
be further improved. In each iteration, KBA adaptively calculates
τ 2

k for each support instance (step 10), based on the distribution of
support instances in feature space F . KBA scales the τ2

k according
to the negative-to-positive support-instance ratio (steps 11 to 14).
Finally, KBA updates the kernel matrix and performs retraining on
Xtrain (steps 15 to 18).

5. EXPERIMENTAL RESULTS
We have conducted experiments on detecting suspicious events

in a parking-lot setting to validate the effectiveness of our pro-
posed methods. We recorded one hour and a half’s video at park-
ing lot-20 on UCSB campus using two cameras. We collected tra-
jectories depicting five motion patterns: circling, zigzag-pattern or
M-pattern, go-straight, back-and-forth and parking. We classified
these events into benign and suspicious categories. The benign-
event category consists of patterns go-straight and parking, and
the suspicious-event category consists of the other three patterns.
We are most interested in detecting suspicious events accurately.
Specifically, we would like to answer the following three ques-
tions:

1. Can the use of the two-level Kalman filter successfully re-
construct motion patterns?

2. Can our sequence-data characterization and learning meth-
ods (in particular, the tensor product kernel) work effec-
tively to fuse the degree of conformity of the symbolic sum-
marizations and the similarity between the secondary de-
scriptions?

3. Can KBA reduce the incidence of false negatives while main-
taining low incidence of false positives?

We use specificity and sensitivity as the evaluation criteria. We de-
fine the sensitivity of a learning algorithm as the ratio of the num-
ber of true positive (TP) predictions over the number of positive
instances (TP+FN) in the test set, or Sensitivity = TP/(TP+FN).
The specificity is defined as the ratio of the number of true nega-
tive (TN) predictions over the number of negative instances (TN
+ FP) in the test set. For surveillance applications, we care more
about the sensitivity and at the same time, hopefully the specificity
will not suffer too much from the other side.

Table 2 depicts the two datasets, a balanced and a skewed dataset,
which we used to conduct the experiments. The balanced dataset
was produced from the recorded video. We then added synthetic
trajectories to produce the skewed dataset. For each experiment,
we chose 60% of the data as the training set, and the remaining
40% as our testing data. We used PHMM for sequence alignment
and selected an RBF function for Kv(v,v′) that works the best on
the dataset. (The kernel and the parameter selection processes are
rather routine, so we do not report them here.) We employed the
best parameter settings obtained through running a five-fold cross
validation, and report average class-prediction accuracy.

Balanced Data Set Skewed Data Set
Motion Pattern # of Instances # of Instances

Circling 22 30
M − pattern 19 22

Back − and− forth 38 40
Benign event 41 3, 361

Table 2: Datasets.

Experiment #1: Kalman filter evaluation.
For this experiment, two cameras were used to record the activ-
ities in the parking lot. Sample images for a circling pattern are
shown in Fig. 5(a) and (b).3 We employed a simple mechanism

3To conserve space and to better illustrate the motion trajectories,
we superimposed multiple video frames into a single picture for
display.



for figure-background separation. Since in our current experi-
ment the camera positions were fixed, we detected the presence
of moving objects by performing a simple difference operation
between adjacent video frames. We then extracted the moving
objects by another difference operation with an adjacent video
frame that showed no motion. The Kalman filter was used to
track the moving vehicles. It helped in smoothing the trajecto-
ries, fusing the trajectories from the two cameras, and provid-
ing velocity and acceleration estimates from the raw trajectories.
Fig. 5(c) shows the fused raw vehicle trajectories from the two
cameras. Sample raw and filtered vehicle trajectories are shown
in Fig. 5(d) where the black (dark) curve is the raw vehicle tra-
jectory and the red (light) curve is the Kalman filtered and fused
trajectory. The agreement of the two curves demonstrates the
effectiveness of our fusion and trajectory reconstruction method.

(a) (b)

(c) (d)

(e)

Figure 5: A Circling Pattern. (a) and (b) condensed video
footages from the left camera, (c) condensed video footage
from the right camera, (d) raw (black or dark) and the Kalman
filtered (red or light) trajectories with segment boundaries and
labels, and (e) acceleration curves used in segmentation.

(a)

(b)

(c)

Figure 6: An M-pattern. (a) condensed video footages, (b) raw
(black or dark) and the Kalman filtered (red or light) trajecto-
ries with segment boundaries and labels, and (c) acceleration
curves used in segmentation.

For trajectory segmentation, we imposed the piecewise linearity
constraint on both |r| and θ of the acceleration curve after the tra-
jectory was segmented into two types: where |r| > 0, and where
|r| ≈ 0. In our experiment, the threshold for |r| to be considered
roughly zero was 0.9. (This level is indicated as the horizontal
dashed line in Figs. 5(e) and 6(c).)
In Fig. 5 (d) and (e), we show the sample results of segment-
ing a circling pattern. Fig. 5(e) depicts the |r|, θ, and (P̈× Ṗ)z

curves used in segmentation. The θ and |r| trajectories estimated
from the Kalman filter are shown in black while the piecewise
linear approximations of these curves using the EM algorithm
described before are shown in red. Vertical lines show the begin-
ning and end of each segment. For illustration, the boundaries
between adjacent segments and the segment labels are shown in
Fig. 5(d) as well.



Fig. 6 shows another result of segmenting an M-pattern. Fig. 6(a)
depicts the raw, condensed footage from the left camera only.
Fig. 6(b) depicts the raw (in black) and the Kalman filtered (in
red) trajectories, and (c) the |r|, θ, and (P̈ × Ṗ)z curves used
in segmentation. The segment boundaries and labels are super-
imposed on Fig. 6(b). As can be seen from Figs. 5 and 6, the
Kalman filter was able to smooth the noisy raw trajectories and
arrived at reasonable velocity and acceleration estimates. And
our EM segmentation algorithm was able to segment the trajec-
tories into pieces that conformed to the intuitive notion of a hu-
man observer. These results demonstrate that our tracking and
segmentation algorithms work correctly.
Experiment #2: Sequence-alignment kernel evaluation.
We used the balanced dataset to conduct this experiment. We
compared the classification accuracy between when we use the
primary segment symbols and when we also consider secondary
description velocity. Figures 7(a) and 7(b) show that when the
secondary structure was considered, both sensitivity and speci-
ficity were improved. The improvement is marked (about 6%)
in sensitivity. In the rest of the experiments, we thus considered
both the primary and secondary information.
Experiment #3: KBA evaluation.
In this experiment, we examined the effectiveness of KBA on
two datasets of different benign/suspicious ratios. The balanced
dataset (the second column in Table 2) has a benign/suspicious
ratio of about 50%. Figures 7(c) and 7(d) show that the employ-
ment of KBA improves sensitivity significantly by 39%, whereas
it degrades specificity by just 4%. Next, we repeated the KBA

test on the skewed dataset (the third column in Table 2), where
the benign/suspicious ratio is less than 3%. Figures 7(e) and 7(f)
show that the average sensitivity suffers from a drop from 68%
to 35%. After applying KBA, the average sensitivity improved
to 70% by giving away just 3% in specificity.

6. CONCLUSIONS
In this paper, we have presented methods for 1) fusing multi-

camera surveillance data, 2) characterizing motion patterns and
their secondary structure, 3) and conducting statistical learning
in an imbalanced training-data setting for detecting rare events.
For fusing multi-source data from cameras with overlapping spa-
tial and temporal coverage, we proposed using a two-level hierar-
chy of Kalman filters. For efficiently summarizing motion events,
we studied hierarchical and invariant descriptors. For characteriz-
ing motion patterns, we proposed our sequence-alignment kernel,
which uses tensor product to fuse a motion sequence’s symbolic
summarizations (e.g., left-turn and right-turn, which cannot be
represented in a vector space) and its secondary numeric character-
istics (e.g., velocity, which can be represented in a vector space).
When the positive training instances (i.e., suspicious events) are
significantly outnumbered by the negative training instances, we
showed that kernel methods can suffer from high event-detection
errors. To remedy this problem, we proposed an adaptive confor-
mal transformation algorithm to work with our sequence-alignment
kernel. Through extensive empirical study in a parking-lot surveil-
lance setting, we showed that our system is highly effective in
identifying suspicious events.

We are currently building a surveillance system with low-resolution
Web cams and high-resolution zoom/tilt/pan cameras. We are par-
ticularly interested in testing the scalability of our multi-camera
fusion scheme (the hierarchical Kalman-filter scheme) with re-
spect to both the number of cameras and the number of objects that
are simultaneously tracked. We also plan to investigate more ro-

bust parameter-tuning methods for enhancing our kernel-boundary
alignment (KBA) algorithm.
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