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Abstract

Ischaemic heart disease is one of the world’s most impoanses of mortality, so
improvements and rationalization of diagnostic procesluveuld be very useful. The four
diagnostic levels consist of evaluation of signs and symgtof the disease and ECG (elec-
trocardiogram) at rest, sequential ECG testing during th&rolled exercise, myocardial
scintigraphy, and finally coronary angiography (which isigidered to be the reference
method).

Machine Learning methods may enable objective interpogtadf all available results
for the same patient and in this way may increase the diagnasturacy of each step.
We conducted many experiments with various learning aligars and achieved the perfor-
mance level comparable to that of clinicians. We also ex¢dritie algorithms to deal with
non-uniform misclassification costs in order to perform R&@falysis and control the trade-
off between sensitivity and specificity. The ROC analysisvahsignificant improvements
of sensitivity and specificity compared to the performant¢he clinicians. We further
compare the predictive power of standard tests with that atihthe Learning techniques
and show that it can be significantly improved in this way.



1 Introduction

Ischaemic heart disease (IHD) is the most important caussoofality in developed as well as
in developing countries. Therefore improvements and nafiaation of diagnostic procedures
and treatment of IHD are necessary.

The usual procedure in IHD diagnosis consists of four diatjndevels, which contain
evaluation of signs and symptoms of the disease and ECGtasegsiential ECG testing during
a controlled exercise, myocardial scintigraphy and conpaagiography as a final test. Because
suggestibility is possible, the results of each step asrpnéted individually and only the results
of the highest step are valid. The total amount of data aviailéor each patient is too large to
be efficiently and objectively evaluated by the clinicians.

The goal of a rational diagnostic algorithm is to establish ¢onclusive diagnosis of IHD
and to plan the most appropriate management of the disesgpardy the necessary diagnostic
steps. This can be achieved by taking into account and evwadell the information collected
by different diagnostic methods according to their impocgand diagnostic value.

The performance of a diagnostic method is usually descrdsedlassification accuracy,
sensitivity and specificity:

ACCUracy — #true positives+ #true negatives )
y = #all patients

sensitivity — #true positives @
¥ = #all patients with the disease
. #true negatives
ficity = . . . 3
spectiicity #all patients without the disease 3)

Thetrue positivesare all patients with the disease and positive test resukty@as thérue neg-
ativesare all patients without the disease and negative testtresul

The reported average values of these measures, taken fraep@#s containing several
thousands of patients are as follows [Gerson, 1987]. Seitgitor the exercise ECG (5796
patients) is 72%, specificity 79%, and accuracy 74%. For thieaardial scintigraphy (2413
patients) they are 84%, 88%, and 85%, respectively. In baskesthe coronary angiography is
a reference method.

The aim of this study is to improve the diagnostic perforneafsensitivity and specificity)
of non-invasive diagnostic methods (i.e. clinical exartioias of the patients, exercise ECG
testing, and myocardial scintigraphy in comparison wita doronary angiography as a defi-
nite proof of coronary artery stenosis) by evaluating alilable diagnostic information with
Machine Learning techniques. The ultimate goal was to redbhe number of patients that
must unnecessarily be submitted to further invasive perative examinations (these can be
potentially dangerous, unpleasant and very costly).

The paper is organized as follows. Section 2 describes thal usagnostic process and
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the data that were used in our experiments. Section 3 briegribes the applied Machine
Learning algorithms (classifiers). We have extended sélaahine Learning algorithms to
take into account the misclassification costs. Section dritess the extensions. In Section 5 we
compare the performance of the classifiers in terms of ptiedi@accuracy, information score,
sensitivity and specificity against the clinical resultsweell as the usefulness of cost-sensitive
learning for the ROC analysis. In Section 6 we show how theiptiee power of the tests can
be further improved by using the Machine Learning technsqui@ Section 7 we discuss the
results and suggest possibilities for further work.

2 The Diagnostic Problem and the Dataset

The function of the heart is to pump blood to all organs of theyo For this task an unin-

terrupted and continuous supply of oxygen to the heart muischeeded. This is achieved
by sufficient blood flow through the coronary arteries to tleaith muscle — myocardium. In

case of diminished blood flow through coronary arteries @usténosis or occlusion, IHD de-
velops, producing impaired function of the heart and fin#tky necrosis of the myocardium —
myocardial infarction.

During the exercise the volume of the blood pumped to the hmetyminute has to be
increased and therefore the delivery of the oxygen to thet Ineascle has to increase several
times by increasing the blood flow trough the coronary asterin a (low grade) IHD the blood
flow as perfusion of the myocardium is adequate at rest omduai moderate exercise, but
insufficient during a severe exercise. Therefore, signssymiptoms of the disease develop
only during the exercise.

There are four levels of diagnostics of IHD. Firstly, sigm&lasymptoms of the disease are
evaluated clinically and ECG is performed at rest. This Ibfeed by sequential ECG testing
during controlled exercises by gradually increasing thekwoad of the patient. Usually a
bicycle ergometer or treadmill is used to establish themtags of IHD by evaluating changes
of ECG during the exercise (Figure 1).

If this test is not conclusive, or if additional informatioagarding the perfusion of the
myocardium is needed, myocardial scintigraphy is perfatnfadioactive material is injected
into the patient during exercise. Its accumulation in tharhés proportional to the heart’s
perfusion and can be shown in appropriate images (scimtigra Scintigraphy is repeated at
rest and by comparing both sets of images, the presenceyahkziation, and the distribution
of the ischaemic tissue are determined (Figure 2).

If an invasive therapy of the disease is contemplated, ihe dilatation of the stenosed
coronary artery or coronary artery bypass surgery, therdiag has to be confirmed by imaging
of the coronary vessels. This is performed by injectingeagpaque (contrast) material into the
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Figure 1: Positive test result of the exercise ECG. The déwppéng of the so-called ST line
shows the presence of IHD.

coronary vessels and by imaging their anatomy with x-rapary angiography (Figures 3 and
4).

In our study we used a dataset of 327 patients (250 males,nidlés) with performed
clinical and laboratory examinations, exercise ECG, mydiehscintigraphy and coronary an-
giography because of suspected IHD. The features from th@ BT scintigraphy data were
extracted manually by the clinicians. In 229 cases the des@as angiographically confirmed
and in 98 cases it was excluded. 162 patients had sufferaedrigoent myocardial infarction.
The patients were selected from a population of approxiipa@00 patients who were ex-
amined at the Nuclear Medicine Department between 1991 88d.1We selected only the
patients with complete diagnostic procedures (all fouelgy[Kukar et al., 1997]. Our exper-
iments were conducted on four problems. They differ in th@amt of clinical and laboratory
data (attributes) available for learning, correspondmdifferent diagnostic levels (Table 1).

Clinical and laboratory Number of attributes
tests performed Nominal | Numeric | Total
Signs and symptoms 23 7 30
Signs, symptoms and exercise ECG 30 16 46
Signs, symptoms, exercise ECG and scintigraphy 52 25 77
Myocardial scintigraphy only 22 9 31
Entropy of the dataset 0.88 hit

Table 1: Datasets
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Figure 2: Positive test result — scintigraphic defect seetrass (upper series) fills at rest (lower
series).

Figure 3: Positive test result. Defect in accumulation dispaque materials in right coronary
artery caused by arteriosclerotic plaque, causing theosten

3 The algorithms used

In our experiments we used the following algorithms: thevedayesian classifier, backprop-
agation learning of neural networks, two algorithms foruntion of decision trees (Assistant-I



Figure 4: Widespread IHD. Coronary arteries are narrow anous.

and Assistant-R), ankinearest neighbours method.

3.1 Naive and semi-naive Bayesian classifier

The naive Bayesian classifiarses the naive Bayes formula (4) to calculate the probwglmfit
each class given the values of all the attributes and asgutinéconditional independence of
the attributes. The attributes are usually defined by a huf@specially in medical data), and
are therefore relatively independent, as humans tend & thiearly. This is the reason why
the naive Bayesian formula (4) often performs well on reaHd problems.

P(AIC) P(CIA)
P(C|A1..A 4) =P(C h = = 4
(ClA1..A 4)) = P( )AleﬂlQA where Qa PA) PC) (4)

A new instance is classified into the class with maximum dated probability. For estimations
of prior probabilitiesP(C) the Laplace’s law of succession was used:

N(C)+1

():m ©))

For estimations of conditional propabiliti®C|A) them-estimate [Cestnik, 1990] was used:

N(CA)+mxPy(C)  N(CA) mxPy(C)
N(A)+m ~ N(A)+m  N(A) +m

P(CIA) = (6)



The parametem balances between the contributions of the relative frequBiiCA) /N(A) and
the prior probabilityP;(C). Both Laplace’s law of succession anmdestimate are very useful,
especially when estimating probabilities from small datasin our experiments, the parameter
mwas set to 2. This setting is usually used as default and,reralby, gives satisfactory results
[Cestnik, 1990] although with tuning better results migatdxpected.

Thesemi-naive Bayesian classifielescribed in more detail in [Kononenko, 1991], attempts
to balance between the non-naivety and the reliability pfaximations of probabilities. When
calculating the probability of clags; in (4) the influence of attribute& andA, is defined by:

P(Ci|A) _ P(CjlA)

PC)  PC)) ()

If, instead of assuming the independence of valjjendA, the values are interdependent, the
corrected influence is given by:

P(Cj|AA)

P ©

To combine two values together, the following two condii@mould be satisfied:
1. the values of (7) and (8) should be sufficiently different
2. the approximation dP(C;j|AiA)) should be sufficiently reliable.

The semi-naive Bayesian classifier uses the Chebishev @imetar calculate the reliability of
probability estimates. The difference between (7) andg8Jsied as a parameter in this calcula-
tion [Kononenko, 1991].

3.2 Backpropagation learning of neural networks

A multilayered feedforward neural network [Rumelhart and®felland, 1986] is a hierarchical
network consisting of fully interconnectéalyersof processinginits(often callecheuron3. The
output of each unit is connected to every unit in the nextlapenetwork consists of at least
two layers — the input and the output. However, this kind dimoek is able to solve only a
very limited class of problems. For a more general netwoekrtimber and the size of hidden
layers between the input and output layers has to be chosenneCtions between units are
often referred to asynapsesgiving a loose analogy with the brain structure. Each cotioe
and unit has a real-valued weight or bias attached to it.

The backpropagation learning procedure minimizes theregluarror accumulated from all
training instances by implementing a gradient descent ertror surface. The learning proce-
dure basically feeds the input vector to the network, caliad the output vector of the network
and compares it to the desired output vector. Based on tfexetice, the backpropagation pro-
cedure performs a gradient descent in the weight space bifymggthe synaptic weights with
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the delta rule[Rumelhart and McClelland, 1986, Haykin, 1994]. It computleed’s (i.e., the
local gradients) and proceeds backward, layer by layetjsgawvith the output layer. The most
annoying problem of backpropagationogerfittingthe training data. The trained network may
become too specialized for describing training instanttesefore being unable to successfully
classify unseen instances. This phenomenon is usually seqaence of using an oversized
network with too many hidden units. This problem can be atlpartially solved by using the
methods for early termination of the training procedurg(eobserving the overfitting on the
validation subset) or bweight eliminatiofWeigand et al., 1990]. We experimented with both
approaches, however better results were obtained withrdtgthe validation subset).

3.3 Assistant-R and Assistant-I

Assistant-R [Kononenko et al., 1997] is a reimplementatibthe Assistant learning system
for top down induction of decision trees [Cestnik et al., ZP8he basic algorithm goes back
to CLS (Concept Learning System) developed by Hunt [Hunt.efi866] and reimplemented
by several authors (see [Quinlan, 1986] for an overview)e Tiain features of the original
Assistant are binarization of attributes (i.e. groupingikable attribute values in two subsets,
resulting in binary decision tree), decision tree pruniNg]ett and Bratko, 1986], incomplete
data handling and the use of the naive Bayesian classifien thieze are some attribute values
for which no training instances are available.

The main difference between Assistant and its reimplentiemtéssistant-R is that instead
of the information gain, Relief-F [Kononenko, 1994] is usedattribute selection. Relief-F is
an improved and extended version of Relief [Kira and RendéB2]. Its key idea is to estimate
attributes according to how well their values distinguigitveen the instances that are near to
each other.

Assistant-R also uses the theestimate [Cestnik, 1990] for reliable estimation of condi
tional probabilities during building and pruning of the deon tree. Them-estimate is also
used in the naive Bayes formula and for postpruning.

Assistant-l is a variant of Assistant-R that, instead ofi@&df, uses the information gain
[Quinlan, 1986] for the selection criterion, as does thgioal Assistant.

3.4 K nearest neighbours

The k-nearest neighbours algorithm originates in the field ofgratrecognition. For a given
new instance this algorithm searches for kheearest training instances and classifies the in-
stance into the most frequent class of thksestances. In our experiments, the distaddé
between instances was a combination of the the Manhattemdes (for nominal attributes) and
normalized Euclidean distance (for numerical attributes)



Originally, the algorithm predicts only the class of the nestance. However, it is often
useful to estimate the class probability distributions.athieve this goal, the influences of the
nearest neighbouryj() are suitably weighted, according to their difference ®iew instances
(%). We used a kernel-type smoother that is, a type of localamesmoother that, for each
target pointx; in attribute space, calculates a weighted average of tigett@ointsy; in its
neighbourhood.

The intuitive sense of the kernel estimate is clear: Valdesfbsuch thay; is close tax get
relatively heavy weights, while values diff such thay; is far fromx; get small or zero weight.
The kernel parametdar controls the size of the region arourdor whichyj receives relatively
large weights. Since bias increases and variance decredbascreasing kernekr, selection
of kr is a compromise between bias and variance in order to ackieadi mean squared error.
In practice this is usually done by trial and error.

A suitable kernel function is theormal kernel function

1 —diff2(m) /2kr2
" V2Ikr cIassém):ie ©
The class distribution is calculated by normalizing thegiés as follows:
Wy Wp Wh
SWSWTT YW
Heren is the number of classes. In all our experiments the paranketeumber of nearest
neighbours) was set to 5, akdwas set to 2.

P=( ) (10)

4 Cost-sensitive learning

In the field of Machine Learning, there has been some work domeerning cost-sensitive
learning, starting with Breiman et al. [Breiman et al., 1p84noll et al. [Knoll et al., 1994],
Pazzani et al. [Pazzani et al., 1994], Provost [Provost aantiydk, 1996, Provost and Fawcett,
1997] and Turney [Turney, 1995]. There are several artitlashich different techniques are
suggested [Turney, 1996].

The Machine Learning algorithms that are used for classifingclassifiers) are typically
designed to minimize the number of errors (incorrect cfasdions) made. When misclassifi-
cation costs vary between classes, this approach is naibéelitin this case the total misclas-
sification cost should be minimized. In our case, the sefitsitand the specificity were much
more important (especially specificity) than the classiftcaaccuracy. The misclassification
costs can be changed in order to bias the algorithms towagtisihsensitivity or specificity. So
we generalized all the described algorithms to take in agcthe misclassification costs.



4.1 Definitions

For dealing with misclassification costs we need to definddahewing terms: acost matrix a
cost vectoyanuniformcase, and a metric for evaluation of classifiers’ perforneandhe case
of non-uniform costs.

The cost of misclassifying an example is a function of thedjmted class and the actual
class. This functiongost actual classpredicted classis represented as a cost matrix. This
cost matrix is an additional input to the learning procedamnel is also used to evaluate the
ability of the classifier to reduce misclassification costs.

Thecost matrixis defined as follows:

e Costli, j] = cost of misclassifying an example from “cla$ss “class;j”
e Costi,i] = 0 (cost of correct classification).

When all costs are equal, we have ti@form cost matrix, where all diagonal elements equal
to 0, and all non-diagonal to 1:

Vi,j:Cos{i,j]:{ Lo17] (11)

0, i=]

The cost vectorepresents the expected cost of misclassifying an exarhptebelongs to the

i-th class:
CostVectofi| = 1—1P(i) Z_P(j)Cosl{i, il (12)
JF#I

whereP(i) is an estimate of the prior probability that an example bgtoto thei-th class. In
the equal-cost case we have theform cost vectar

Vi : CostVectoji| = 1 (13)

The performance criterion is no longer the error rate (ossification accuracy), but teverage
cost per example

N
Average cost % ZlCost[actual clas§),predicted clags)] (14)
i=

whereN is the number of testing examples. The error rate may be Wegea special case of
the average cost, when the uniform cost matrix is used.

Error_rate — # of incorrectly ’c\:llassmed examples

(15)
Accuracy = 1.0—Error_rate
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As a reference point to which all the results are comparednple algorithm that predicts the
least expected cost class is usually used [Pazzani et 84).1%he least expected cost class is
found by minimizing the average cost of guessing ctass the training set of sizir:

Nt

) 1 .
Least expected cost min —— ZCost[actuaI clasg), c| (16)
c € ClassNt &

Note that in the uniform case the least expected cost clagpiisalent to thelefaultclass (the
class that most frequently occurs in the training set).

4.2 Non-uniform Misclassification Costs in the Machine
Learning algorithms

One possible approach to incorporate the misclassificati@ts in Machine Learning meth-
ods is by altering prior probability estimations [Breimaraé, 1984], either by modifying the
probability estimations or by weighted sampling. The badea is as follows. Suppose we
have a two-class problem with equal probabilities and iMigé as expensive to misclassify a
“class 1” example than a “class 2” example. In this case wd aamlgorithm that misclassifies
fewer “class 1” examples. Another way to look at it is thatrgvexample in “class 1” counts
double when misclassified, so the situation is similar to iftthe prior probability of the “class
1” would be twice as large as that of the “class 2”. In methadsere probabilities are not
explicitly estimated, this approach can be simulated widighted samplingIn the spirit of
this approach we developed the modifications of the Machigaring algorithms. Another
important goal was, that in the uniform case the behaviouhefmodified algorithm should
remain identical to that of the original algorithm.

4.2.1 Naive and semi-naive Bayesian classifier

Naive and semi-naive Bayesian classifier estimate priorcamdiitional probabilities by using
the Laplace’s law of succession andestimate (6), respectively. Thus the corrected estima-
tions, described in Section 4.2.3 can be used (equationa(iil(23)).

The semi-naive Bayesian classifier also uses the correstedagions when it calculates the
reliability of probability estimates for joint attributealues.

4.2.2 Backpropagation learning of the neural networks

The misclassification costs can be taken into account bygthgihe error function that is being
minimized. Instead of minimizing the squared error, the ed backpropagation learning
procedure minimizes misclassification costs. The erroction is corrected by introducing the
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factorK{i, j], i = desired classj = actual class:
= 2 Y (- 0) Kiclassp). i) 7)
The factorK|i, j] should be defined in such a way that the behaviour of the bapkgation
algorithm in the uniform case remains the same. Dependinge@onorrect class two cases are
to be considered:
CostVectofi], i=] (expected misclassification cost
Kli, j] = (18)
Costi, j], i # ) (actual misclassification cast
If we look at the derivation of the backpropagation algarittwe can see that th€li, j| behaves
as a constant factor in the partial derivatives of the emocfion [Haykin, 1994]. So the delta
rule that takes in account the misclassification cost can fitéew as follows € is the desired
class of the current training example):
(Yyj—0j)-0j(1—0j)- K2[c,j], for output neurons
o) = (19)
0j(1—0j) 3k OWkj, for hidden neurons
To ensure the convergence of the modified backpropagatgworitdm, thed factor for output
neurons should be normalized with maKi, j]?:
5 o

— max jK[i, j]? (20)

4.2.3 Assistant-R and Assistant-|

Most authors [Knoll et al., 1994] utilize misclassificatioost information only when pruning
trees and ignore it when growing them. By the generalakered priorsapproach [Breiman
et al., 1984], that is, by changing estimates for prior anadttional probabilities, the misclas-
sification costs are taken into account when growing as vgellfaen pruning trees.

Assistant-l Prior probabilities, estimated either with relative fremay or with Laplace’s law
of succession, are altered as follows:
P(Cj)CostVecto|C;]

P'(C; 21
(i) = s N, P(Ci)CostVecto|Ci] D)
Conditional probabilities, estimated with theestimate [Cestnik, 1990]:
1ay_ N(Cj,A) +m-P(Cj)
are altered in the same manner:
N C -P(Cy) C -P/(C;
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Assistant-R  The key idea of the algorithm Relief-F is to estimate atti@staccording to how
well their values distinguish among the instances that aae to each other. Relief-F's estimate
WIA] of attribute’s quality is an approximation of the followinifference of probabilities:

WI[A] = P(different value of Anearest instance from different class

— P(different value of Anearest instance from same class

The values of good attributes should distinguish well betwmstances from different classes
and have similar values for instances from the same clasgnWtsclassification cost are not
uniform, good attributes should better distinguish betweigher cost instances. So, the nearest
instances are weighted as follows:

P'(clas§R))  CostVectofclasgR)]
P(clasgR))  ;P(Ci)CostVecto[Ci]

weight(R) = (24)
The calculation of the attribute’s quality is only slightthanged. In the uniform case the
weigh{R) = 1 and the attribute estimation is unchanged.

set all weights W[A] := 0.0;
fori ;= 1ton do
begin
randomly select an instance R;
find nearest hit H and nearest miss M;
for A ;= 1 to #all _attributes do
WIA] = WI[A] - weight(R) * (diff(A,R,H)/n + diff(A,R,M)/n);

AAAAAAAA

end;

4.2.4 K nearest neighbours

The classification procedure of tlkenearest neighbours algorithm basically consists of sum-
ming up the influences of the nearest neighbours. The infRiehan example is proportional
to its distance to the new instance. Since the correct cissawn for all nearest neighbours,
their influence can additionally be weighted with the expdcanisclassification cost.

1

W = CostVectofi] - g dif*(m)/2kr* (25)
' V2Nkr clas%’n)_i "

Finally, the probability that the new instance belongs tp @assC; is calculated as
P(C) = W / S W, (26)
]
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Clinicians
Accuracy | Inf. score| Specificity | Sensitivity
Exercise ECG only 0.65 0.10 0.76 0.61
Myocardial scintigraphy only]  0.83 0.51 0.85 0.83

Table 2: Results obtained by clinicians on our dataset.

5 Experimental results

The learning task for the Machine Learning algorithms wagdeid into four steps, differing by
the amount of clinical and laboratory data available forepatient (see Table 1):

1. Signs and symptoms;
2. Signs, symptoms, and exercise ECG;
3. Signs, symptoms, exercise ECG, and myocardial scimtigra

4. Myocardial scintigraphy only.

In the first two cases we compared our results with resultaioet by the clinicians from the
exercise ECG only. The third and fourth case were comparédtive clinicians’ results from
the myocardial scintigraphy only.

The experiments on each variation of our dataset were paddrwith 10-fold stratified
cross-validation and the results were averaged. Eachmysted the same training and testing
subsets in order to provide the same experimental condition

Besides the classification accuracy, sensitivity, andiSpigg, we measured also the average
information score [Kononenko and Bratko, 1991]. This measliminates the influence of
prior probabilities and appropriately deals with the proitiatic answers of the classifier. The
average information score is defined as:

#testing instance,
i1 ’ i

Inf = #testing instances 27)
where the information score of the classification-tif testing instance is defined by:
inf — 4 —1092P(Cli) +log; P'(Cli), P'(Cli) > P(Cl) (28)
" | —(~logy(1-P(Cl)) +logy(1—P'(CI))), P/(Cl) <P(Cl)

Cl; is the correct class of theth testing instance?(Cl) is the prior probability of clas€l and
P’(Cl) the probability provided by the classifier.

In Tables 2 — 4 the results of clinicians and Machine Learmilggrithms are presented and
compared. The information score is given in bits, while thieeo three measures are given as
probabilities.
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Accuracy| Inf. score| Specificity | Sensitivity
Exercise ECG only
Clinicians 0.65 0.10 0.76 0.61
Signs and symptoms only
Backpropagation| 0.80 0.59 0.76 0.82
Naive Bayes 0.80 0.65 0.53 0.92
Semi-naive Bayes 0.80 0.65 0.54 0.92
Signs, symptoms, and exercise ECG
Naive Bayes 0.82 0.69 0.62 0.90
Semi-naive Bayes 0.81 0.69 0.59 0.90

Table 3: Exercise ECG. The best results of Machine Learniggyisthms compared with clini-
cians.

As we can see, all the algorithms significantly outperforimicians on all diagnostic levels,
especially when using all available data. The most significaprovements were reached
by using the backpropagation learning of neural networld semi-naive Bayesian classifier
on all available data. Both significantly outperform cliaigs in classification accuracy (0.92
and 0.91, respectively, versus 0.83). However, this haddsassification accuracy only. In
our case, the goal was to increase the specificity, evendfrttéans a slight decrease in the
specificity. From this point of view the clinicians still germed slightly better (0.85 versus
0.84 and 0.81, respectively), although for the price of giggntly lower sensitivity(0.83 versus
0.86 in both cases). Since the algorithms are designed tammexclassification accuracy, we
cannot directly influence their sensitivity and specifickpwever, this can be done via variable
misclassification cost (Section 5.1).

The second interesting result is that using machine legreichniques one can merely from
the evaluation of signs and symptoms achieve the speciitily76 and the sensitivity of 0.82
(as achieved by the neural networks). This means that wils#éime specificity, much higher
sensitivity can be reached compared to the results the@ims obtained from the exercise ECG
data (specificity 0.76, sensitivity 0.61). Since the resoftthe Machine Learning algorithms
when evaluating signs, symptoms, and exercise ECG togefer almost the same, it seems
that the exercise ECG test results do not provide much newnrdtion.

5.1 ROC Analysis and experiments with misclassification cts

ROC (receiver operating characteristic) graphs have l@enhused in signal detection theory
to depict trade-offs between hit rateefisitivity and false alarm rate (A— specificity. ROC
analysis has lately been extended for use in visualizingaaradysing the behaviour of diag-
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Accuracy| Inf. score| Specificity | Sensitivity
Myocardial scintigraphy only

Clinicians 0.83 0.51 0.85 0.83
Backpropagation| 0.90 0.73 0.82 0.93
Semi-naive Bayes 0.90 0.87 0.81 0.94
Assistant-I 0.90 0.78 0.79 0.94

Signs, symptoms, exercise ECG and
myocardial scintigraphy

Backpropagation| 0.92 0.75 0.84 0.96

Semi-naive Bayes 0.91 0.88 0.81 0.96

Table 4: Myocardial scintigraphy. The best results of Maehiearning algorithms compared
with clinicians

nostic systems, and is used for visualization in medicime\&st and Fawcett, 1997], where
specificity—sensitivity relations are often analysed.

In the usual setting, the Machine Learning algorithms aneduto maximize classification
accuracy. In our case, the sensitivity and specificity weoeenimportant. The clinicians espe-
cially wanted to see if it is possible to increase the spatyifaf the diagnostic process without
affecting the sensitivity too much (this may lead to the otun of number of patients that are
being unnecessarily submitted to invasive pre-operattaengnations).

The idea was to see whether and how much we can influence theibehof the algorithms
(with cost-sensitive modifications) by changing the missification costs in favour of one or
another class. By giving examples from tiegativeclass higher costs, the classifier should be-
come more specific and less sensitive. On the other handylmggxamples from thpositive
class higher costs, the classifier should become more senaitd less specific. Note that the
modifications of algorithms (Section 4) are not limited te tiwo-class problems. However, in
the multi-class case the results cannot be presented inQiazdraphs.

In our experiments, the misclassification costs varied betwd : 20 in favour of theegative
class (no IHD present; higher specificity) and 20 : 1 in favaitthe positiveclass (IHD present;
higher sensitivity). The results of our experiments witffetent algorithms are presented in
Figures 5 — 16 Each algorithm’s behaviour is shown in two ggurThe first one depicts clas-
sification accuracy, sensitivity and specificity. The \a@tiline marks thauniform cost(1 : 1)
situation (behaviour of the unmodified algorithm). The setbigure shows the ROC (receiver
operating characteristic) curve, that is, a trade-off leswsensitivity and specificity. By chang-
ing the misclassification costs, one actually traversesgatbis curve. The results shown are
averages of the ten-fold stratified cross validation on tiraglete dataset (all diagnostic levels,
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77 attributes, 327 examples).

From the Figures 5 — 16 it can be seen how even a slight incadasggecificity drastically
reduces sensitivity and vice versa. The most suitable mrinthe ROC curve was selected by
the clinician (Figure 8). It is not necessarily the point wthe highest classification accuracy
was reached. This point shows the 0.03 increase in spegifiod 0.06 in sensitivity, when
compared with clinicians’ results on the same data. It wdsexed by the naive Bayesian
classifier (Figures 7 and 8). The misclassification costewéghtly in favour of the negative
class. The achieved classification accuracy was 0.88,fgpiod.88 and sensitivity 0.89.

In the clinicians’ opinion these results are good enoughetageful in practice, especially
when viewed in the spirit of their predictive power (Sect®n

Another interesting and somewhat surprising result is sbatetimes, by slightly changing
the misclassification costs in favour of the positive (mi&rclass, the classification accuracy
actually improves, compared to the uniform costs situatidns behaviour is unexpected, since
the uniform costs situation corresponds to the unmodifigdrihms, as they are designed
to maximize the classification accuracy. We also experiggemtith other domains, but this
phenomenon seems to be limited to the IHD dataset, desdnlibis paper.
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Inf.gain x?> Relief-F
Backpropagation| 0.92 0.93 0.92
Naive Bayes 092 091 091
Semi-naive Bayes 0.92 0.92 0.92
K-nearest (K=5) 090 091 091
Assistant-R 091 090 0.90
Assistant-| 090 091 0.90

\°44

Table 5: Maximum accuracy, achieved with different algurs and estimates. The result with
th best accuracy : number of attributes used ratio is empédsi

5.2 Feature subset selection

Since the amount of data describing each patient is too famgeeliable and objective eval-
uation by clinicians, we wanted to determine the minimum hanof attributes, where the
accuracy, sensitivity, and specificity reach their maximuife were interested in reaching as
high accuracy, sensitivity and specificity as possible w&gHew attributes as possible.

We experimented with three different measures for assgslsaattribute’s importance: in-
formation gain [Quinlan, 1986], Relief-F [Kononenko et, dl997] andy? statistics [Chase
and Brown, 1986, pages 589-593]. The results were obtaipeldebten-fold stratified cross-
validation procedure. All the experiments were performadhe complete dataset (all diagnos-
tic levels, 77 attributes, 327 examples). We ordered thiates according to the used measure
and then trained and tested the classifiers by graduallgasong the number of attributes. The
classification accuracy, specificity and sensitivity, agkd with different number of attributes,
were measured.

As we can see from Table 5, all the algorithms using diffecederings of attributes achieved
approximately the same maximum classification accuracyveyer, Figure 17 shows that the
accuracy of 0.92 can be achieved with as low as 10 attribates,(the accuracy remains that
high up to 31 attributes). Decision tree learners Knrdearest neighbours are superior to other
algorithms with respect to obtaining maximum accuracy Vg attributes. Relief-F seems
to be the most appropriate measure for ordering the atefyuiecause with its ordering, the
algorithms achieve the maximum accuracy with (on averame¢s$t number of attributes.

Overall, the accuracy of 0.92, achieved by the semi-naiweBavith Relief-F’'s ordering
on only 10 attributes, seems to be the best result. Figureep&t$ the accuracy of different
algorithms when increasing the number of used attributesi€¢RF’s ordering).

However, we should not concentrate only on the classifinaéiccuracy, because in our
case, the specificity and sensitivity are more importanie bést result was obtained with the
semi-naive Bayesian classifier using Relief-F's orderifgttysibutes (Figure 18). With only 10
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attributes the achieved specificity was 0.84 and sengitivés 0.96.
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Figure 17: The minimum number of attributes, where maximweueacy was first achieved,
using different algorithms and estimates.

Used attributes come mainly from the third diagnostic ldweyocardial scintigraphy): 9
out of 10 best estimated attributes (with Relief-F) comerfrdis level and one comes from
the first level (AP — angina pectoris — how typical the chest . If we look at the first 20
attributes, the only attributes that don't come from thedevel are:

o from first level AP in the 1st spot, MI(previous myocardiafarction) in the 12th spot,
and previous invasive procedures performed on the patiehte 18th spot.

e From the second level(exercise ECG) the ST segment dowpisijs in the 14th spot
and chest pain during exercise in the 19th spot.

This means, that if we use 10 attributes (the best result)ease out 28 of 29 attributes from
the first diagnostic level, 21 out of 21 attributes from set&avel and 8 of 17 attributes from
third level. When interpreting the results we should keemind that the training data includes
only those patients with completed all four diagnostic Isve

Thus, many patients, those conclusively diagnosed at steofisecond level, are excluded
from this study, and our findings may not hold in general. Intipalar, the first or second
diagnostic level cannot be considered unnecessary, gthibmay appear so from the results.
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Figure 18: Accuracy, achieved with 6 algorithms using eatarRelief F.

6 Improving the predictive power of tests

Unless we perform the morphological examination such asadhenary angiography, which is
100% sensitive and 100% specific, the test results are radytoeliable and should therefore be
interpreted in a probabilistic sense. That means that aftest the probability of the presence
of the disease is reported. The post-test probabilitieeipéndicate the degree of certainty
with which the diagnoses are made. The concept of the psstiggnostic probabilities was
first used by Diamond and Forester [Diamond and Foreste®Q]19%f/states that the predictive
value of any diagnostic test is influenced by the prevalentieeopre-test probabilityR;) of the
disease among the tested population, by the results of Hymdstic test and by the sensitivity
(Se and the specificity§p of the test. It is easy to calculate the post-test proksi{i,) using
the following formulae:

Result of the test Posttest probability
Positive P =(PLxSe/(P1xSe+ (1-P;)(1-Sp) (29)
Negative Po=(P1x(1-S6)/(PL+(1-S8+(1-P1)«Sp

The post-test probability of any patient after a diagnatetst represents the pre-test probability
for the subsequent test. This approach in the diagnosis Df s the advantage of incor-
porating not only one or several of the test results but dlgodata from the patient’s history
[Diamond and Forester, 1979]. As already stated, the faagrbstic levels for IHD are: signs
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Specificity Sensitivity| Post-test probability
negative positive
Clinicians 0.85 0.83 0.43 0.75
Naive Bayes| 0.88 0.89 0.25 0.90

Table 6: Comparison of average diagnostic value betweeaicizins and the naive Bayesian
classifier.

and symptoms, exercise ECG, myocardial scintigraphy, amdnary angiography. The pre-
test probability of IHD is assessed from three variableg, @gx and type of chest pain. Itis
based on the results obtained from a medical dataset of 48&nps with angiographically
proven IHD [Gerson, 1987]. This value is the pre-test praiigior the exercise ECG. The
post-test probability of the exercise ECG represents theigst probability for the myocardial
scintigraphy.

Using this approach the clinician has to decide the levekdfinty that he or she requires.
It is considered [Diamond et al., 1983] that sufficient diasfic certainty is reached when the
post-test likelihood of IHD is greater thand®, or less than Q0. In the interval between 00
and 090, the test results are considered as unreliable and furtessive testing is necessary.

6.1 Improving the predictive power with Machine Learning

Our goal was to predict the results of the coronary angidgydmm all the available data (signs,
symptoms, and results of earlier tests - exercise ECG, nig@ascintigraphy) with Machine
Learning methods. For comparison with the classical apypre#e selected the naive Bayesian
classifier at its most suitable point of the ROC curve (Figixe The results were compared
with that of myocardial scintigraphy as the highest stepghm ¢lassical diagnostic procedure.
All available data was used, because Machine Learning rdstli@ not prone to suggestibility.
Our hypothesis was that for some unreliable test resultpdisé-test probability would change
towards 090 (for positive test results) or towardslO (for negative test results).

6.2 Comparison with the classical approach

As we see in the Table 6 the clinicians’ sensitivity of myaftak scintigraphy was 0.83 and
specificity 0.85. The post-test probability for IHD was 0f6% positive results and 0.43 for
negative ones. With the application of cost-sensitive e@dayesian classifier [GroSelj et al.,
1997] we achieved sensitivity 0.89, specificity 0.88 andaherage post-test probability 0.90
for positive and 0.25 for negative results.

The results of our work are promising. In our group of patsdiie naive Bayesian classifier
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Pre-test (signs Post-test Post-test myo- Post-test

and symptoms) exercise ECG cardial scintigraphy naive Baye
Diagnosis positive negative positive positive
Probability 0.50 0.31 0.73 0.95

Table 7: An example of pre-test and post-test probabilitiegether with the results of naive
Bayesian classifier. Results of coronary angiography wstssosis LAD> 75%, stenosis LCX
> 75%, stenosis RCA 50%. Conclusive diagnosis: IHD present.

significantly improved the diagnostic accuracy of the myd scintigraphy. When compared
to the standard diagnostic approach, the naive Bayesiasifita shows significant improve-
ments in sensitivity (83 — 0.89) as well as in specificity (85— 0.88). These results are
even more promising when we observe them in the sense oft@stsprobabilities. For our

group of patients the average positive probability for IHizreased from 0.75 to 0.90, and
negative decreased from 0.43 to 0.25.

What does this mean? As already mentioned, the non-invgsieained diagnosis al-
ways deals with probability of persistence of the diseasgost-test probability greater than
0.90 is sufficient to confirms the presence of the disease andtagst probability under.Q0
its absence. Further diagnostic procedures are not negesshese situations. The only addi-
tional diagnostic procedure indicated is eventual intetie® therapy. In our case, in 34 patients
(10.4%) the post-test probability changed to a value of 6V&0, in 6 patients (1.8%) from over
0.90 to under @O, in 17 patients (5.2%) to underl® and in 5 patients (1.5%) from unded.0
to over Q10. This means that potentially 12.2% fewer patients woaklElo be examined with
other (invasive) tests. In this way, a significant impactlmmdccuracy and rationalisation of the
diagnosis of IHD can be achieved by using Machine Learninthous.

7 Discussion

The results of our study are promising. The increase of fipggiand sensitivity of the myocar-
dial scintigraphy by using the information from the evailaatof signs and symptoms and from
the exercise ECG, is a significant result. The naive Bayedassifier increased the specificity
by 0.03 and the sensitivity by 0.06. If such a system were @amginted in practice two-fold
rationalization might be expected. Due to higher specyfit@tver patients without the disease
would have to be examined with coronary angiography whighuvasive and therefore danger-
ous. Together with higher sensitivity this would also savaey and shorten the waiting times
of the truly ill patients

The second interesting result is that using machine legreichniques one can merely from
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the evaluation of signs and symptoms achieve the classifitcatcuracy of 0.80, specificity of
0.76 and sensitivity of 0.82 (as achieved by the backprapagéearning of neural networks).
This is, because of higher sensitivity (by 0.21 higher), Zimetter result than that of clinicians
when evaluating the exercise ECG. The fact that the exeEfe does not provide much new
information is known to clinicians, but it holds only for Hity experienced specialists. Less
experienced medical doctors need the exercise ECG resuklfable diagnostics. By using
Machine Learning techniques this (time consuming) test beagvoided.

The third interesting result is that, with only 10 attribsitéthe maximum accuracy of the
test can be reached. A closer look at the structure of thisedudf attributes suggests that most
of the original 77 attributes are redundant in the diagrgstocess. Although only a handful
of attributes from the lower diagnostic levels are consdeas important (e.g., Angina Pec-
toris and ST segment downslopping), they significantly gbate to the improved diagnostic
performance of the test and therefore shouldn’t be excldiced the diagnostic process.

The most significant result of our study are the improvementke predictive power of
the diagnostic process. The 12.2% of the patients who wooldheed to be examined with
costly further tests, represents a significant improvenrettte diagnostic power as well as in
the rationalization of the existing IHD diagnostic procezlu

However, it should be emphasised that the results of ouysitelobtained on a significantly
restricted population and therefore may not be generalpfiegible to the normal population,
i.e. the patients coming to the Nuclear Medicine DepartmEuatther studies might be needed
to verify our findings. In particular, on-line data gatheyis necessary to obtain a representative
dataset.
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