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Abstract We consider the stationary states of a chain of n anharmonic coupled oscilla-
tors, whose deterministic Hamiltonian dynamics is perturbed by random independent sign
change of the velocities (a random mechanism that conserve energy). The extremities are
coupled to thermostats at different temperature T� and Tr and subject to constant forces τ�

and τr . If the forces differ τ� �= τr the center of mass of the system will move of a speed Vs

inducing a tension gradient inside the system. Our aim is to see the influence of the tension
gradient on the thermal conductivity. We investigate the entropy production properties of the
stationary states, and we prove the existence of the Onsager matrix defined by Green-Kubo
formulas (linear response). We also prove some explicit bounds on the thermal conductivity,
depending on the temperature.

Keywords Thermal conductivity · Green-Kubo formula · Non-equilibrium stationary
states

1 Introduction

Chains of anharmonic oscillators have been used as simple non-linear microscopic models
for the study of thermal conductivity. When coupled at the extremities to thermostats at
different temperatures, they have been the natural set-up, numerically and theoretically, for
the macroscopic Fourier law [3]. When the interaction is anharmonic and a pinning potential
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is present, the thermal conductivity is expected to be finite and generally depending on
the temperature. In fact a pinning potential destroys translation invariance of the system
(i.e. the conservation of momentum), and temperature is the only parameter for equilibrium
states, corresponding to the energy conservation. If the chain is unpinned, equilibrium states
are parameterized also by the tension, and we would expect a dependence of the thermal
conductivity also on this parameter. On the other hand in the unpinned case, we expect
typically a divergence of the thermal conductivity with the size of the system.

We study here a stochastic perturbation of the dynamics of the anharmonic unpinned os-
cillators, such that energy is conserved but not momentum, but still the equilibrium measures
are parameterized by temperature and tension. This stochastic perturbation is extremely sim-
ple: each particle waits independently an exponentially distributed time interval and then
flips the sign of its velocity.

Furthermore, in order to produce a stationary state with a profile of tension and of temper-
ature, we apply at the extremities unequal forces, and thermostats at different temperatures.
In the corresponding stationary state the system will have a constant energy current Js and
a velocity Vs . These quantities are related, at the first order, to the gradients of temperature
and tension by the Onsager matrix, that turns out to be diagonal. In fact Vs can be computed
explicitly and is independent of the gradient of temperature (in fact it is independent of the
anharmonicity).

While it is straightforward to show that Vs is proportional to the inverse of the size of the
system, we are not able to prove the same for Js (i.e. Fourier’s law). Only in the harmonic
case we are able to show this property, by explicit calculations (cf. Sect. 7), together with the
stationary flux of energy exchanged with the thermostats. A closer look to these formulas
reveals that, by properly doing work on the system through the tension applied at the bound-
aries, we can push energy into the hot reservoir, but it is impossible to extract energy from
the cold reservoir. In other words, the system can act as a heater, but not as a refrigerator.

In Sect. 3 we study the entropy production of the stationary state. In fact we relate what
is known as entropy production to the time derivative of the entropy of a non-stationary
state, in the following sense. Let μt a non-stationary state of the system at time t . Since we
are dealing with a system with stochastic thermostats, μt has a density with respect to the
Lebesgue measure and it can be defined its entropy H(μt). Computing the time derivative
of H(μt), we find that it is composed by two terms: the entropy rate of change of the
thermostats and of the noise mechanism, that is always positive, and a term that is usually
called, up to a sign change, the entropy production of the system in the state μt . If we start
with the stationary state μss , then obviously the time derivative of the entropy is zero, and
the entropy production of the system equals the entropy rate of change of the thermostats and
the noise, i.e. is positive. We prove that it is strictly positive unless we are in the equilibrium
state with same temperature and forces at the boundaries. We actually work with a local
Gibbs measure as reference measure, but computations are similar.

2 Mathematical Formulation and Main Results

2.1 The Model

We denote by q1, . . . , qn the absolute positions of the particles, and by p1, . . . , pn the corre-
sponding momenta (particles mass is set equal to 1). The relevant coordinates are the inter-
particle distances rx = qx − qx−1, x = 2, . . . , n. Thus, the state space of our system is given
by �n = R

n−1 × R
n and we shall denote a typical configuration (r2, . . . , rn,p1, . . . , pn) by
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ω = (r,p) ∈ �n. Between the particles there is an anharmonic spring with potential V (rx),
and the corresponding Hamiltonian dynamics is perturbed by independent random flips of
the sign of the velocities. Furthermore on the boundary particles 1 and n there are acting
Langevin thermostats at different temperature T� and Tr , and two external constant forces τ�

and τr .
The generator of the dynamics is given by

L = Aτ�,τr + γ S + γ�B1,T�
+ γr Bn,Tr

where Aτ�,τr is the Liouville operator, Bj,T the generator of the Langevin bath at temperature
T acting on the j -th particle and S the generator of the noise. The strength of noise and
thermostats are regulated by γ , γ� and γr . The Liouville operator is defined by

Aτ�,τr =
n∑

x=2

(px − px−1) ∂rx +
n−1∑

x=2

(
V ′(rx+1) − V ′(rx)

)
∂px

− (
τ� − V ′(r2)

)
∂p1 + (

τr − V ′(rn)
)
∂pn . (2.1)

The generators of the thermostats are given by

Bj,T = T ∂2
pj

− pj∂pj
. (2.2)

The noise corresponds to independent velocity change of sign, i.e.

(Sf )(ω) =
n−1∑

x=2

(f (ωx) − f (ω)) , f : �n → R. (2.3)

Here, the configuration ωx (resp. px ) is the configuration obtained from ω (resp. p) by
flipping the momentum of particle x, i.e. ωx = (r,px) with (px)z = pz, z �= x, (px)x = −px .

In order to have a well defined process with good ergodic properties, we assume that V

is a smooth even potential satisfying the following assumptions:

(A) There exist positive constants k ≥ 2 and ak > 0 such that

lim
λ→+∞λ−kV (λx) = ak|x|k, lim

λ→+∞λ1−kV ′(λx) = k.ak|x|k−1 sign(x).

(B) For any q ∈ R, there exists m = m(q) ≥ 2 such that V (m)(q) �= 0.

Here sign(x) denotes the sign of x and V (m) the m-th derivative of V . Many of the results in
the following should be valid for more general potentials V , but this go beyond the purpose
of this article.

We shall denote by (ω(t))t≥0 the Markov process generated by L, and by (Tt )t≥0 the
corresponding semigroup, i.e. for any bounded function f : �n → R, and any ω ∈ �n,

(Ttf )(ω) = Eω

[
f (ω(t))

]
.

The energy of atom x is defined by

E1 = p2
1

2
, Ex = p2

x

2
+ V (rx), x = 2, . . . , n.

For any positive constant θ we define the Lyapunov function Wθ by

Wθ(ω) = exp

(
θ

n∑

x=1

Ex

)
, ω ∈ �n,
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and the corresponding weighted Banach space (Bθ ,‖ · ‖θ ):

Bθ =
{
f : �n → R continuous,‖f ‖θ = sup

ω

|f (ω)|
Wθ(ω)

< +∞
}
.

In Sect. 8 is proved the following proposition:

Proposition 1 Assume that V satisfies (A). Then, if θ is sufficiently small, the semigroup
(Tt )t≥0 can be extended to a strongly Feller continuous semigroup on Bθ with a probability
transition that is absolutely continuous with respect to the Lebesgue measure. Moreover,
there exists a unique invariant probability measure μss for (Tt )t≥0 and it is absolutely con-
tinuous with respect to the Lebesgue measure.

Remark 1 We believe that the density of μss is smooth. The actual proof would require a
delicate reworking of Hörmander theorem.

When we are at equilibrium, i.e. T� = Tr = T , τ� = τr = τ , the generator L is denoted
by Leq.. A simple computation shows that the Gibbs measure μn

τ,T with density w.r.t. the
Lebesgue measure on �n given by

gn
τ,T (r,p) =

n∏

x=1

e−β(Ex−τrx )

Z(τβ,β)
, β = T −1,

is invariant for Leq.. In the formula above we have introduced r1 = 0 to avoid annoying
notations. In fact, it is easy to check that Aτ,τ is antisymmetric in L

2(μn
τ,T ) and that S, Bj,T ,

j = 1, n, are symmetric.
Let ∇ be the discrete gradient defined, for any function u : Z → R, by (∇u)(x) =

u(x + 1) − u(x). The local conservation of energy is expressed by the microscopic con-
tinuity equation

L(Ex) = −∇jx−1,x, x = 1, . . . , n,

where the energy current jx,x+1 from site x to site x + 1 is given by

j0,1 = −τ�p1 + γ�(T� − p2
1),

jn,n+1 = −τrpn − γr(Tr − p2
n), (2.4)

jx,x+1 = −pxV
′(rx+1), x = 1, . . . , n − 1.

The energy current j0,1 (and similarly for jn,n+1) is composed of two terms: the term
−τ�p1 corresponds to the work done on the first particle by the linear force and the term
γ�(T� − p2

1) is the heat current due to the left reservoir.
We shall denote by 〈·〉ss the expectation with respect to the steady state. Let Vs be the

velocity of the center of mass of the system and Js be the average energy current, which are
defined by

Vs = 〈px〉ss and Js = 〈jx,x+1〉ss .
Observe that we are in Lagrangian coordinates and that Js is really the interparticle ex-

change of energy, that does not take into account the trivial energy flux of the Eulerian
coordinates due to the center of mass movement.

We have the simple relation between these two quantities

Js = −τ�Vs + γ�(T� − 〈p2
1〉ss), Js = −τrVs − γr(Tr − 〈p2

n〉ss). (2.5)
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The value of Vs can be determined exactly and is independent of the nonlinearities
present in the system. It follows that the tension profile, defined by τx = 〈V ′(rx)〉ss , is linear.

Lemma 1 The velocity Vs of the center of mass is given by

Vs = τr − τ�

2γ (n − 2) + γ� + γr

(2.6)

and the tension profile is linear:

τx = 2γ (x − 2) + γ�

2γ (n − 2) + γ� + γr

(τr − τ�) + τ�, (2.7)

that implies

lim
n→∞ τ[nu] = τ� + (τr − τ�)u, u ∈ [0,1]. (2.8)

Proof We have
⎧
⎨

⎩

L(px) = (V ′(rx+1) − V ′(rx)) − 2γpx, x = 2, . . . , n − 1,

L(p1) = V ′(r2) − τl − γ�p1,

L(pn) = τr − V ′(rn) − γrpn.

(2.9)

The first line of (2.9) implies

2(n − 2)γ Vs =
n−1∑

x=2

{τx+1 − τx} = τn − τ2.

The two last lines of (2.9) give

τ2 − τ� − γ�Vs = 0, −τn + τr − γrVs = 0,

and we get easily the value of Vs .
To obtain the expression of the tension profile we observe that (2.9) gives a discrete

difference equation which can be solved exactly since we have the value of Vs = 〈px〉ss . �

For purely deterministic chain (γ = 0), the velocity Vs is of order 1, while the tension
profile is flat at the value (γ� + γr)

−1[γ�τr + γrτ�]. The first effect of the noise is to make Vs

of order n−1 and to give a normal tension profile.
An immediate consequence of (2.6) is that the mean velocity is independent of the tem-

peratures. Consequently, by Onsager symmetry, we expect that the thermal conductivity at
the first order is independent of τr − τl , i.e. that the Onsager matrix is diagonal. We actually
prove this in Sect. 4 as well as the existence of the thermal conductivity by Green-Kubo
formula (see Sect. 5).

In the next section we prove that the entropy production �(μss) of the stationary state is
strictly positive if T� �= Tr or τr �= τl , and is given by

� (μss) =
(

1

Tr

− 1

T�

)
Js +

(
τr

Tr

− τ�

T�

)
Vs.

In Sect. 6 we prove upper and lower bounds for the thermal conductivity, in terms of the
temperature.

In Sect. 7 we show that for harmonic interactions, a Fourier’s law holds and in particular
we can compute the conductivity explicitly:



Transport Properties of a Chain of Anharmonic Oscillators 1229

lim
n→∞nJs = 1

4γ

{
(T� − Tr) + (τ 2

� − τ 2
r )

}
. (2.10)

Furthermore in this case can be computed explicitly the energy currents between the ther-
mostats and the system (cf. (7.9)), and prove that the stationary state can increase the energy
of the hottest thermostat, but not lower the energy of the cold one.

The existence and uniqueness of the stationary state is proven in the last Sect. 8.

3 Entropy Production

Let βx (resp. τx ), x = 2, . . . , n, be the linear interpolation profile between T −1
� = T −1 (resp.

τ� = τ ) and T −1
r = (T + δT )−1 (resp. τr = τ − δτ ). We also define β1 = T −1.

We use now as reference probability measure the Gibbs local equilibrium state
μlg(dr, dp) = g(r,p)dr2 . . . drndp1 . . . dpn with

g(r,p) =
n∏

x=1

e−βx(Ex−τx rx )

Z(τxβx,βx)
. (3.1)

Let μt = μlgTt be the law at time t of the process starting from f0 · μlg and μ̄[s,s+t] =
t−1

∫ s+t

s
μydy be the time averaged law of the process on [s, s + t]. The density of μt with

respect to μlg is denoted by ft . This is a solution, in the sense of the distributions, of the
Fokker-Planck equation

∂tft = L̃∗ft

where L̃∗ is the adjoint of L in L
2(μlg).

The operators B1,T�
, Bn,Tr and S are symmetric with respect to μlg while the adjoint of

the Liouville operator is

A∗
τ�,τr

= −Aτ�,τr + σ (3.2)

where

σ =
n−1∑

x=1

(βx+1 − βx) jx,x+1 +
n−1∑

x=2

(βx+1τx+1 − βxτx)px.

Hence we get

L̃∗ = −Aτ�,τr + γ S + γ�B1,T�
+ γr Bn,Tr + σ,

L + L̃∗ = 2γ S + 2γ�B1,T�
+ 2γr Bn,Tr + σ.

(3.3)

We shall denote the relative entropy of a probability measure μ with respect to a proba-
bility measure ν by H(μ|ν). This is defined by

H(μ|ν) = sup
ψ

{∫
ψdμ − log

(∫
eψdν

)}
(3.4)

where the supremum is carried over bounded measurable functions ψ . If dμ

dν
= f exists and

logf is μ-integrable, we have

H(μ|ν) =
∫

dμ logf.
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So we can call

H(t) =
∫

ft logftdμlg

the entropy of the system at time t . We choose μlg as a reference measure to estimate the
entropy but a similar consideration could be performed by replacing μlg by the Lebesgue
measure.

3.1 The Smooth Case

We first give an informal argument to estimate the entropy production, which relies on
smoothness properties of the density fss (resp. ft ) of μss (resp. μt ) with respect to μlg .
We have

d

dt
H(t) =

∫
∂tft logft dμlg + ∂t

(∫
ft dμlg

)

=
∫ (

L̃∗ft

)
logft dμlg =

∫
ft

(
L̃ logft

)
dμlg

=
∫

Aτ�,τr ft dμlg +
∫

ft

[
γ S + γ�B1,T�

+ γr Bn,Tr

]
(logft ) dμlg

=
∫

σft dμlg +
∫

ft

[
γ S + γ�B1,T�

+ γr Bn,Tr

]
(logft ) dμlg (3.5)

where we used (3.2) in the last equality. The first term on the right-hand side is the entropy
production of the Hamiltonian part of the dynamics, in the (non-stationary) state ft ,

�(μt) = −
∫

σftdμlg,

while the second term corresponds, up to the sign, to the entropy production due to the
thermostats and the flipping noise. Notice that this second term is always positive.

If we start the system from the stationary state, ft = fss for all t , and the left-hand side
in (3.5) is equal to zero. Thus, in the stationary state, we have

�(μss) = −
∫

fss

[
γ S + γ�B1,T�

+ γr Bn,Tr

]
(logfss) dμlg.

By explicit calculation we have

�(μss) = γ�T�

∫
(∂p1fss)

2

fss

dμlg + γrTr

∫
(∂pnfss)

2

fss

dμlg

+ γ

2

n−1∑

x=2

∫ [
fss(ω

x) − fss(ω)
] [

logfss(ω
x) − logfss(ω)

]
dμlg(ω),

so that the entropy production of the stationary state is clearly non-negative. In fact, it is
strictly positive if the temperatures T� and Tr are different (see below).

3.2 The Non-smooth Case

Since we cannot prove that the density fss is smooth, we have to proceed in a different way.
The entropy production �(α) of the probability measure α is given by

�(α) =
∫

σ(ω)dα(ω). (3.6)
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The Dirichlet form D(α) of a probability measure α with respect to the generator γ S +
γ�B1,T�

+ γr Bn,Tr is defined by

D(α) = sup
ψ

{
−

∫
(2γ S + 2γ�B1,T�

+ 2γr Bn,Tr )ψ

ψ
dα

}

where the supremum is carried over smooth functions ψ bounded below by a positive con-
stant and which are constant at infinity. It is easy to check that D is a positive convex and
lower semicontinuous functional.

We first estimate the change of entropy.

Proposition 2 The relative entropy H(μt |μlg) is finite for every positive time t , and, for any
s, t ≥ 0, we have

H(μt+s |μlg) − H(μs |μlg) ≤ −tD(μ̄[s,s+t]) + t�(μ̄[s,s+t]).

Proof Let us prove the claim for s = 0, the general case being similar. In Sect. 8 we prove
that the semigroup (Tt )t≥0 is such that the transition probabilities have a positive density
qt (·, ·) with respect to the local equilibrium state μlg . It follows that if ν = ψ · μlg is a prob-
ability measure on �n absolutely continuous with respect to μlg then νTt is also absolutely
continuous w.r.t. μlg with a density that we denote by ψt . In fact, ψt is given by

ψt(ω
′) =

∫
qt (ω,ω′)ψ(ω)g(ω)dω.

Formally, ψt is solution of the Fokker-Planck equation

∂tψt = L̃∗ψt, ψ0 = ψ.

If σ was bounded, the solution ψt to this equation would be given by the Feynman-Kac
formula

ψt(ω) = Eω

[
ψ(ω̂(t)) e

∫ t
0 σ(ω̂(s))ds

]
(3.7)

where (ω̂(t))t≥0 is the Feller process generated by −Aτ�,τr + γ S + γ�B1,T�
+ γr Bn,Tr .

We claim that there exists t0 > 0 such that (3.7) makes sense if t ≤ t0 and ψ is bounded.
It could be also possible to show the validity of (3.7) for any time by assuming that Tr −
T�, τr − τ� are sufficiently small (see [6]).

Observe there exists a constant c0 := c0(T�, Tr , τ�, τr ) such that for any θ > 0,

eθ |σ(ω)| ≤ Wc0θ (ω).

By the bound (8.3) of Sect. 8, if θ is sufficiently small, then

sup
t≥0

Eω

[
Wc0θ (ω̂(t))

] ≤ C(Wc0θ (ω) + 1) (3.8)

for a positive constant C(c0, θ). In fact, it is proved for (ω(t))t≥0 but the proof is the same
for (ω̂(t))t≥0. If t0 > 0 is sufficiently small, we have

Eω

[
e
∫ t

0 σ(ω(s))ds
]

≤ 1

t

∫ t

0
Eω

(
et |σ(ω̂(s))|

)
ds

≤ sup
s≤t0

Eω

(
et0|σ(ω̂(s))|

)

≤ sup
s≤t0

Eω

[
Wc0t0(ω̂(s))

]

≤ C ′(t0)
[
Wc0t0(ω) + 1

]
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which proves the claim. Moreover, since (ω̂(t))t≥0 defines a strongly continuous semigroup
with generator −Aτ�,τr + γ S + γ�B1,T�

+ γr Bn,Tr , we have

lim
h→0

ψh − ψ0

h
= L̃∗ψ0 (3.9)

if ψ0 is a smooth positive function constant at infinity.
Observe now that if P,Q are two probability measures and φ is a density function w.r.t.

Q then

H(P |Q) = H(P |φ · Q) +
∫

logφ dP.

We fix a time 0 < h < t0 sufficiently small. For any probability measure α such that
H(α|μlg) < +∞, and any positive smooth function ψ bounded bellow by a positive con-
stant and constant at infinity, we have

H(αTh|μlg) − H(α|μlg) = H(αTh|ψτ · μlg) +
∫

log(ψh) d(αTh) − H(α|μlg)

= H(αTh|(ψ · μlg)Th) − H(α|μlg) +
∫

log(ψh)d(αTh)

≤ H(α|(ψ · μlg)) − H(α|μlg) +
∫

Th (log(ψh)) dα

≤ H(α|(ψ · μlg)) − H(α|μlg) +
∫

log (Thψh) dα

= −
∫

logψ dα +
∫

log (Thψh) dα,

where we used H(αTh|βTh) ≤ H(α|β), β = ψ.μlg , in the first inequality and Jensen in-
equality in the second one. We write now (Thψh)/ψ = (Thψh − ψ)/ψ + 1 and we use the
trivial inequality log(1 + η) ≤ η to get

H(αTh|μlg) − H(α|μlg) ≤
∫

Thψh − ψ

ψ
dα.

This shows in particular that H(αTh|μlg) < +∞. By (3.9), we have

Thψh − ψ = Th(ψh − ψ) + (Thψ − ψ) = h(L + L̃∗)ψ + hε(h,ψ)

where the remainder term ε(h,ψ) vanishes as h goes to 0.
Fix a positive time t and let m be a positive integer sufficiently large. We define h = t/m

and we have

H(αTt |μlg) − H(α|μlg) =
m−1∑

i=0

{
H(αT(i+1)h|μlg) − H(αTih|μlg)

}

≤ t

m

m−1∑

i=0

∫ [(L + L̃∗)ψ]
ψ

d(αTih) + tε(h,ψ).

As m goes to infinity, the Riemann sum converges to
∫ t

0
ds

∫ [(L + L̃∗)ψ]
ψ

d(αTs)

and the remainder term vanishes. Taking the infimum over functions ψ and α = μlg , we get
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H(μt |μlg) ≤ t inf
ψ

{∫ [(L + L̃∗)ψ]
ψ

dμ̄[0,t]
}
.

By using (3.3), this concludes the proof. �

We recall that in the stationary state, 〈jx,x+1〉ss = Js and 〈px〉ss = Vs are independent
of x.

Theorem 1 The entropy production of the stationary state

� (μss) =
(

1

Tr

− 1

T�

)
Js +

(
τr

Tr

− τ�

T�

)
Vs

is strictly positive. If τ� = τr it implies that the energy flow goes from the hot reservoir to the
cold reservoir.

Proof Since the entropy is positive it follows that

0 ≤ D(μ̄[0,t]) ≤ �(μ̄[0,t]). (3.10)

In the last section is proved the convergence as t goes to infinity of μ̄[0,t] to the stationary
state. Therefore, the entropy production is non-negative

�(μss) ≥ 0.

If it is equal to zero then, by (3.10), we have

lim
t→∞ D(μ̄[0,t]) = 0

and by the lower semicontinuity of D, we have

D(μss) = 0.

Recall that since μss is the stationary state, we have
∫

(LF)(ω)dμss(ω) = 0 (3.11)

for any compactly supported smooth function F . We claim now that
∫

(GF) (ω)dμss(ω) = 0 (3.12)

for G equal to B1,T�
, Bn,Tr , S .

Indeed, since D(μss) = 0, we have that for any smooth function ψ bounded by bellow
and constant at infinity,

−
∫

(2γ S + 2γ�B1,T�
+ 2γr Bn,Tr )ψ

ψ
dμss ≤ 0. (3.13)

Let us apply this with ψ(ω) := ψ1(p1). Since S, Bn,Tr does not act on p1, it follows that
the Dirichlet form with respect to B1,T�

of the marginal μ1
ss of p1,

sup
ψ1

{
−

∫ B1,T�
ψ1

ψ1
dμ1

ss

}
,

is negative, and hence equal to zero. It is well known that it implies μ1
ss is the centered

Gaussian law with variance T� (see [5]), and we get (3.12) for G = B1,T�
. We similarly prove
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(3.12) for G = Bn,Tr . By applying (3.13) with a function ψ(ω) := ψ̄(p2, . . . , pn−1), we get
that the Dirichlet form of the marginal μ̄ss of (p2, . . . , pn−1) with respect to S ,

D̄(μ̄ss) = sup
ψ̄

{
−

∫ Sψ̄

ψ̄
dμ̄ss

}
,

is negative, and hence equal to zero. Let f̄ss be the density of μ̄ss with respect to the
Lebesgue measure. It is easy to show that

D̄(μ̄ss) = 1

2

∫

Rn−2

[√
f̄ss(px) −

√
f̄ss(p)

]2
dp2 . . . dpn−1.

It follows that μ̄ss is invariant by any flip p → px , x = 2, . . . , n − 1, and this concludes the
proof of (3.12).

By (3.11) and (3.12), we get that for any smooth compactly supported function F ,

∫ (
Aτ�,τr F

)
(ω)dμss(ω) = 0,

and consequently that

∫
(L0F) (ω)dμss(ω) = 0,

where

L0 = Aτ�,τr + γ�B1,T�
+ γr Bn,Tr (3.14)

is the generator of the deterministic chains in contact with the two heat baths. Thus, μss is
equal to the (unique) invariant probability measure νss of the process generated by L0. By
using a similar argument to [6], one can show that

�(νss) = 0

implies T� = Tr . Hence, if T� �= Tr , the entropy production of the stationary state μss is
strictly positive. �

From the equality Js = 〈j0,1〉ss = 〈jn,n+1〉ss we get

γ�〈p2
1〉ss + γr〈p2

n〉ss = γ�T� + γrTr + (τr − τ�)
2

2γ (n − 2) + γ� + γr

.

This shows there exists a constant C depending on the parameters of the model (T�, Tr , τ�, τr ,

γ�, γr ) but not on n such that

〈p2
1〉ss ≤ C, 〈p2

n〉ss ≤ C. (3.15)

It is expected there exists a positive constant C independent of the size n such that
〈Ex〉ss ≤ C for any x = 1, . . . , n. Unfortunately, apart from the harmonic case discussed
in Sect. 7, we do not know how to prove such a bound.
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4 Conductivity: Linear Response

In this section, the discussion is kept at some informal level of mathematical rigor. We shall
denote by f̃ss the derivative of the stationary state μss with respect to the local equilibrium
state μlg . It is solution, in the sense of the distributions, of the equation

L̃∗ f̃ss = 0. (4.1)

We assume that Tr = T + δT ,T� = T and τr = τ − δτ, τ� = τ with δT , δτ small. Recall
(3.3). At first order in δT and δτ , we have

L̃∗ = −Aτ�,τr + γ S + B1,T + Bn,T +δT

− δT

T 2n

n−1∑

x=1

(
jx,x+1 + τpx

) − δτ

nT

n−1∑

x=1

px + o(δT , δτ )

= −Aτ�,τr + γ S + B1,T�
+ Bn,Tr

− δT

T 2n

n−1∑

x=1

(
jx,x+1 + τpx

) − δτ

nT

n−1∑

x=1

px + γrδT ∂2
pn

+ o(δT , δτ )

= L∗
eq. + γrδT ∂2

pn
− δτ∂pn − δT

T 2n

n−1∑

x=1

(
jx,x+1 + τpx

) + δτ

nT

n−1∑

x=1

px + o(δT , δτ )

where L∗
eq. = −Aτ,τ + γ S + γ�B1,T + γr Bn,T is the adjoint in L

2(μn
τ,T ) of

Leq. = Aτ,τ + γ S + γ�B1,T + γr Bn,T . (4.2)

We now expand f̃ss at the linear order in δT and δτ :

f̃ss = 1 + ũ δT + ṽ δτ + o(δT , δτ ) (4.3)

and we get that ũ and ṽ are solution of

L∗
eq.ũ = 1

T 2n

n−1∑

x=1

(
jx,x+1 + τpx

)
,

L∗
eq.ṽ = 1

nT

n−1∑

x=1

px.

(4.4)

We can now compute the average energy current at the first order in δT and δτ in the
thermodynamic limit n → ∞.

Before, we need to introduce some notations. Let � = ⋂
α>0 �α where �α is the Banach

space composed of configurations ω = (r,p) ∈ (R × R)Z such that the norm ‖ω‖α defined
by ‖ω‖2

α = ∑
x∈Z

e−α|x|[p2
x + r2

x ] is finite. We equip � with the topology induced by these
norms. If the potential V is such that V ′′ ≤ C then one can prove that the infinite dynamics
is well defined for any initial condition belonging to � and in particular on a set of initial
conditions of full probability with respect to any infinite volume Gibbs measure μτ,T with
temperature T and pressure τ [2, 8]. As in the finite dimensional case, for any configuration
ω = (r,p) ∈ �, the configuration ωx = (r,px) is obtained from ω by flipping the momentum
of particle x. We shall denote by Ck

0 (�) the space composed of compactly supported local
functions on � which are differentiable up to order k, k ≥ 1. The generator of the infinite
dynamics is given by L = A + γS where, for any f ∈ C1

0 (�),
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(Af )(ω) =
∑

x∈Z

[
(px − px−1) ∂rx f + (

V ′(rx+1) − V ′(rx)
)
∂px f

]
(ω),

(Sf )(ω) =
∑

x∈Z

[
f (ωx) − f (ω)

]
.

We denote by θx : � → � the shift by x: for any η ∈ �, (θxη)z = ηx+z; for any g : � →
R, (θxg)(η) = g(ηxη). Let Hτ,T be the completion w.r.t. the semi-inner product �·, ·�
defined for local functions f,g : � → R, by

�f,g� =
∑

x∈Z

{
μτ,T (f θxg) − μτ,T (f )μτ,T (g)

}
. (4.5)

Observe that in Hτ,T every discrete gradient θ1f − f is equal to zero.
Let Ĵs and V̂s be the limiting average energy current and velocity:

J̃s = lim
n→∞n〈j0,1〉ss , V̂s = lim

n→∞n〈p0〉ss , (4.6)

and define Ĵs = J̃s +τ V̂s . We expect that as n goes to infinity and, at first order in δT and δτ ,
(

Ĵs

V̂s

)
= −κ(T , τ )

(
δT

δτ

)

with

κ(T , τ ) =
(

κe κe,r

κr,e κr

)

the thermal conductivity matrix. By (4.4), we get that in the thermodynamic limit n → ∞,

κe = T −2�j0,1 + τp0, (−L)−1 (j0,1 + τp0)�,

κe,r = −T −1�p0, (−L)−1 (j0,1 + τp0)�,
(4.7)

and

κr = T −1�p0, (−L)−1 (p0)�,

κr,e = −T −2�j0,1 + τp0, (−L)−1 (p0)�.
(4.8)

The argument above is formal. In fact even proving the existence of the transport coef-
ficients defined by (4.7), (4.8) is a non-trivial task. It can be made rigorous for V̂s since we
have the exact expression of Vs . From Lemma 1, we have, even if δτ, δT are not small,

V̂s = − δτ

2γ
.

If the formal expansion can be made rigorous, the quantities κr , κr,e , defined by (4.8), shall
satisfy

κr = (2γ )−1, κr,e = 0. (4.9)

In Theorem 2 we show that the transport coefficients defined in (4.7), (4.8) exist. In
Proposition 3 we prove (4.9) and the Onsager relations

κr,e = κe,r (= 0). (4.10)

Consequently, if δT and δτ are small and of the same order, the system cannot be used
as a refrigerator or a boiler: at the first order, a gradient of tension does not contribute to the
energy current. The argument above says nothing about the possibility to realize a heater or
a refrigerator if δτ is not of the same order as δT . For the harmonic chain, we will see in
Sect. 7 that it is possible to get a heater if δτ is of order

√
δT .
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5 Existence of the Green-Kubo Formula

To simplify notations we denote Hτ,T by H (defined in Sect. 4). We assume that the un-
bounded operator L with domain D(L) is the generator of a strongly continuous positive
semigroup on H and that the set C1

0 (�) forms a dense subset of D(L). Similarly, we assume
that S (resp. A) with domain denoted by D(S) (resp. D(A)) is the generator of a strongly
continuous positive semigroup on H and that C1

0 (�) forms a dense subset of D(S) (resp.
D(A)). We have D(L) ⊂ D(S) ∩ D(A). The generator L has the decomposition A + γS

in its antisymmetric and symmetric part in H. These assumptions can be proved without
difficulty in the case V ′′ uniformly bounded [2, 8]. They should be true for more general
potentials but proofs should be quite technical (see [7]).

Let χ be the set of functions ξ : Z → N a.s. equal to zero. For a given ξ ∈ χ we denote
by Hξ(p) the polynomial function

Hξ(p) =
∏

x∈Z

hξx (px)

where (hn)n≥0 are the normalized Hermite polynomials w.r.t. the centered one dimensional
Gaussian measure with variance T . It is well known that (Hξ )ξ∈χ forms an orthonormal basis
of the Hilbert space composed of square integrable functions with respect to the product
centered Gaussian measures with variance T . It follows that every functions f ∈ H can be
decomposed in the form

f (r,p) =
∑

ξ∈χ

F (ξ, r)Hξ (p).

Let Ha (resp. Hs ) be the set of functions f : � → R antisymmetric (resp. symmetric) in
p, i.e. f (r,p) = −f (r,−p) (resp. f (r,p) = f (r,−p)) for every configuration (r,p) ∈ �.
For example, the functions j0,1, p0 and every linear combination of them are antisymmetric
in p.

Since the Hermite polynomial hn is even if n is even and odd otherwise, the space
Ha (resp. Hs ) coincides with the set of functions f = ∑

ξ∈χ1
F(ξ, r)Hξ (resp. f =∑

ξ∈χ0
F(ξ, r)Hξ ) where

χ1 = {ξ ∈ χ; |ξ | is odd} , χ0 = {ξ ∈ χ; |ξ | is even}
with |ξ | = ∑

x ξx .
The system is conservative and does not have a spectral gap but we have a similar prop-

erty for the antisymmetric functions.

Lemma 2 The noise operator S lets Ha and Hs invariant. For any function f ∈ D(S)∩ Ha

we have

2�f,f � ≤ �f,−Sf �. (5.1)

Moreover, for any local function f ∈ Ha , there exists a local function h ∈ Ha such that

Sh = f.

Proof Let f be a local function belonging to H with decomposition given by

f =
∑

ξ∈χ

F (ξ, r)Hξ (p).
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For ξ ∈ χ we note W(ξ) the number defined by W(ξ) = |{x ∈ Z; ξx ≥ 1 is odd }|. Observe
that W(ξ) ≥ 1 as soon as ξ ∈ χ1. We have

S(f ) = −2
∑

ξ∈χ

W(ξ)F (ξ, r)Hξ (p) (5.2)

because S(hn(px)) = ((−1)n − 1)hn(px). This shows that Ha and Hs are invariant by S.
Observe that for any centered local functions f and g,

�f,g� = lim
k→∞

μτ,T

(
1√

2k + 1

∑

|x|≤k

θxf,
1√

2k + 1

∑

|x|≤k

θxg

)

and that S(θxf ) = θx(Sf ). Thus, the proof of (5.1) is reduced to show that if f ∈ Ha then

2μτ,T (f 2) ≤ μτ,T ((−Sf )f ).

Since f ∈ Ha , we have F(ξ, r) = 0 if ξ /∈ χ1. By (5.2) we have to prove

2
∑

ξ∈χ1

μτ,T (F 2(ξ, r)) ≤ 2
∑

ξ∈χ1

W(ξ)μτ,T (F 2(ξ, r))

which is valid since W(ξ) ≥ 1 as soon as ξ ∈ χ1.
The second claim of the proposition follows from (5.2) by taking h given by

h(r,p) =
∑

ξ∈χ1

H(ξ, r)Hξ (p), H(ξ, r) = (−2W(ξ))−1F(ξ, r). �

Theorem 2 Let f,g ∈ Ha . Then, the limit

σ(f,g) = lim
λ→0

�f, (λ − L)−1g�
exists and σ(f,g) = σ(g,f ).

Proof We introduce the H1 norm corresponding to the symmetric part S of L

‖u‖2
1 = �u, (−S)u�

and H1 the Hilbert space obtained by the completion of H w.r.t. this norm. The correspond-
ing scalar product is denoted by �·, ·�1.

By density of local functions in H we can assume that f,g are local functions. Let uλ be
the solution of the resolvent equation

λuλ − Luλ = g. (5.3)

We multiply (5.3) by uλ and integrate w.r.t. �·, ·� and we get

λ�uλ,uλ� + γ ‖uλ‖2
1 = �uλ, g�.

Since g ∈ Ha we have by Lemma 2 there exists a local function h ∈ Ha such that Sh = g.
By Schwarz inequality, we have

‖uλ‖2
1 ≤ C2γ −1

and

λ�uλ,uλ� ≤ C2γ −1.
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Since (uλ)λ is a bounded sequence in H1, we can extract a weakly converging subsequence
in H1. We continue to denote this subsequence by (uλ)λ and we denote by u0 the limit.

Let uλ(p, r) = us
λ(p, r) + ua

λ(p, r) be the decomposition of uλ in its symmetric and
antisymmetric part in the p’s. Since g is antisymmetric in the p’s, we have that �uλ, g� =
�ua

λ, g�. Furthermore S preserves the parity in p (see Lemma 2) while it is inverted by A.
We have the following decomposition

λus
λ − γSus

λ − Aua
λ = 0,

μua
μ − γSua

μ − Aus
μ = g.

We multiply the first equality by us
μ and the second by ua

λ and we use the antisymmetry
of A. We get

�ua
λ, g� = μ�ua

μ,ua
λ� + λ�us

λ, u
s
μ� + γ�uλ, (−S)uμ�.

Since ua
λ ∈ Ha ∩ D(L) we have by Lemma 2 that

2�ua
λ, u

a
λ� ≤ ‖ua

λ‖2
1 = ‖uλ‖2

1 − ‖us
λ‖2

1 ≤ C2γ −1.

Remark that ua
λ and us

λ converge weakly in H1 respectively to ua
0 and to us

0. We first take
the limit as λ → 0 and then as μ → 0 and we obtain

�u0, g� = γ�u0, (−S)u0�.

On the other hand, since Sh = g for a local function h ∈ Ha we have

�u0, g� = −�u0, h�1 = − lim
λ→0

�uλ,h�1 = lim
λ→0

�uλ, g�
= lim

λ→0

[
λ�uλ,uλ� + �uλ, (−A)uλ� + γ�uλ, (−S)uλ�

]

= lim
λ→0

[
λ�uλ,uλ� + γ�uλ, (−S)uλ�

]

≥ lim
λ→0

λ�uλ,uλ� + γ�u0, (−S)u0�
where the last inequality follows from the weak convergence in H1 of (uλ)λ to u0. It implies

lim
λ→0

λ�uλ,uλ� = 0

so that uλ converges strongly to u0 in H1. Uniqueness of the limit follows by a standard
argument.

Since f ∈ Ha we have Sh = f for some local function h ∈ Ha . It follows that

lim
λ→0

�f,uλ� = − lim
λ→0

�h,uλ�1 = −�h,u0�1 = �f,ua
0�.

To show that σ(f,g) = σ(g,f ) observe that

σ(g,f ) = lim
λ→0

�(λ − L
∗)−1g,f � (5.4)

where the adjoint L∗ of L in H is given by L∗ = −A + γS. We repeat the argument above
with L replaced by L∗. It is easy to see that the solution vλ of the resolvent equation (λ −
L∗)vλ = g satisfies va

λ = ua
λ, vs

λ = −us
λ. It follows that

�vλ, f � = �va
λ, f � = �ua

λ, f � = �uλ,f �.

Taking the limit λ → 0 we get σ(g,f ) = σ(f,g). �
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Proposition 3 The Onsager relation κe,r = κr,e = 0 holds in the following sense:

σ(j0,1 + τp0,p0) = σ(p0, j0,1 + τp0) = 0.

Proof We have

(λ − L)(p0) = (V ′(r0) − V ′(r1)) + (2γ + λ)p0.

Since every discrete gradient θ1u − u is equal to zero in H we get

σ(j0,1 + τp0,p0) = lim
λ→0

1

λ + 2γ
�j0,1 + τp0,p0�

= lim
λ→0

1

λ + 2γ
μτ,T

(
(−p0V

′(r1) + τp0)p0
)

= −τT + τT

2γ
= 0

because μτ,T (p2
0) = T , μτ,T (V ′(r1)) = τ . �

6 Temperature Dependence of the Conductivity

The exact value of the conductivity is in general out of reach and even an estimate in terms
of the parameters of the model, temperature and pressure, is difficult. The only tractable
case is the harmonic chain with interacting potential V (r) = ar2/2. In this case an explicit
formula is available:

κe(T , τ ) = κharm
a = a

2γ
.

The fact that the conductivity is independent of the temperature (and the pressure) is due
to the linear interactions. For general anharmonic chain we expect a non-trivial temperature
dependence. The aim of this section is to establish rigorous lower and upper bounds on κ

giving some insight on its behavior with respect to the temperature. In the rest of this section,
to simplify, we assume that pressure τ is equal to 0 and we note κ(T ) for κe(T ,0).

The usual assumptions on V are

V (r) ∼0 ar2, a > 0, V (r) ∼∞ A|r|α, α ≥ 2, A > 0.

From a more general point of view it makes sense to consider situations where the po-
tential V satisfies a = 0 or α < 2.

To get upper and lower bounds for the Green-Kubo formula a general approach is to
use variational formula. We introduce H1,λ and H−1,λ norms defined for any smooth local
function f by

‖f ‖2
±1,λ = �f, (λ − γS)±1f �.

We have (see e.g. [11]):

�g, (λ − L)−1g� = sup
f

{
2�f,g� − ‖f ‖2

1,λ − ‖Af ‖2
−1,λ

}

= inf
f

{‖g + Af ‖2
−1,λ + ‖f ‖2

1,λ

}
, (6.1)
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where the supremum (resp. infimum) is taken over a dense subset of D(L). The function g

we are interested in is g = j0,1. Formula (6.1) is valid as soon as the operator L = A + γS

is the generator of a strongly continuous Markov process in H with A (resp. S) being the
antisymmetric (resp. symmetric) part of L. This can be easily proved if V growths at most
quadratically at infinity but it should be valid for a more general class of potentials. In
this section we assume that potential V is such that (6.1) is valid and that the Green-Kubo
formula converges, i.e. that the conditions of Sect. 5 are fulfilled. Moreover we assume that
V (r) > 0 if r �= 0.

6.1 Upper Bounds for Generic Anharmonic Chains

In the sequel, Var(f ) denotes the variance of the function f with respect to the probability
measure μ0,T .

Proposition 4 We have the following upper bound on the conductivity

κ(T ) ≤ 1

4γ T
Var(V ′(r0)). (6.2)

Proof Take the function f = −V (r1)/2 in the second variational formula of (6.1). We have

j0,1 + Af = −p0V
′(r1) − 1

2
(p1 − p0)V

′(r1)

= −1

2
p0(V

′(r1) + V ′(r0)) + 1

2
(p0V

′(r0) − p1V
′(r1))

= −1

2
p0(V

′(r1) + V ′(r0))

because gradient terms in H are equal to 0.
Observe now that

(λ − γS)−1
[
p0(V

′(r1) + V ′(r0))
] = (λ + 2γ )−1

[
p0(V

′(r1) + V ′(r0))
]

so that

‖j0,1 + Af ‖2
−1,λ = 1

2

T

λ + 2γ
Var(V ′(r0)).

Moreover

‖f ‖2
1,λ = λ�f,f � = λVar(V (r0)).

By taking the limit λ → 0 we get

κ(T ) ≤ 1

4γ T
Var(V ′(r0)). �

Corollary 1 We have the following upper bounds on the conductivity:

• High temperature regime: Assume that the smooth non-negative potential V satisfies:
– V (r) = V (−r)

– V (r) = Arα + W(r), r ≥ 1, α > 1,
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with A a positive constant and W a smooth function such that ‖W‖∞ + ‖W ′‖∞ < +∞.
Then, there exists a constant C > 0 such that in the high temperature regime T → ∞,

κ(T ) ≤ C

T 2/α−1
.

In particular, κ(T ) converges to 0 as T goes to infinity in the subharmonic regime at
infinity (1 < α < 2).

• Low temperature regime: Assume that the smooth non-negative potential V satisfies:
– V (r) = V (−r)

– V (r) ∼ Arδ, r → 0, δ ≥ 2
– V (r) = Brα + W(r), r ≥ 1, α > 0,

with A,B positive constants and W a smooth function such that ‖W‖∞ +‖W ′‖∞ < +∞.
Then, there exists a constant C > 0 such that in the low temperature regime T → 0,

κ(T ) ≤ CT 1−2/δ. (6.3)

In particular, κ(T ) converges to 0 as T goes to 0 in the superharmonic regime at origin
(δ > 2).

Proof Consider first the high temperature regime. It is easy to show that

Z(T ) =
∫ ∞

−∞
dre−V (r)/T ∼ 2

(∫ ∞

0
e−Asα

ds

)
T 1/α.

To estimate Var(V ′(r0)) we write

Var(V ′(r0)) = 2

Z(T )

{∫ 1

0
(V ′(r))2e−V (r)/T dr +

∫ ∞

1
(Aαrα−1 + W ′(r))2e−V (r)/T dr

}

= 2

Z(T )

{
A2α2

∫ ∞

1
r2α−2e−V (r)/T dr + 2Aα

∫ ∞

1
rα−1W ′(r)e−V (r)/T dr

+
∫ 1

0
(V ′(r))2e−V (r)/T dr +

∫ ∞

1
(W ′(r))2e−V (r)/T dr

}
.

With the change of variables s = r/T 1/α and the fact

e−V (r)/T = e−Arα/T (1 + O(T −1)), uniformly for r ≥ 1,

one gets
∫ ∞

1
r2α−2e−V (r)/T dr ∼ T 2−1/α

∫ ∞

T −1/α

s2α−2e−Asα

ds

∼ T 2−1/α

∫ ∞

0
s2α−2e−Asα

ds

and
∫ ∞

1
W ′(r)rα−1e−V (r)/T dr = O(T ).

Moreover we have
∫ ∞

1
(W ′(r))2e−V (r)/T dr = O(T 1/α)
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and the remaining term
∫ 1

0 (V ′(r))2e−V (r)/T dr is of order O(1). The result follows. In fact
we have seen that

Var(V ′(r0)) ∼ C∞T 2−2/α, C∞ = A2α2

∫ ∞
0 s2α−2e−Asα

ds
∫ ∞

0 e−Asα
ds

. (6.4)

Consider now the superharmonic regime at origin and T small. It is easy to show that

Z(T ) =
∫ ∞

−∞
dre−V (r)/T ∼ 2

(∫ ∞

0
e−Asδ

ds

)
T 1/δ,

because, taking into account the asymptotic behavior of V at infinity, the part to the integral
corresponding to r ≥ 1 is exponentially small in 1/T . Observe now that

∫ ∞

1
(V ′(r))2e−V (r)/T dr = O

(
T 1/α

∫ ∞

T −1/α

(V ′(sT 1/α))2e−Bsα

ds

)
= O(e−B/(2T )),

and
∫ 1

0
(V ′(r))2e−V (r)/T dr = T 1/δ

∫ T −1/δ

0
(V ′(sT 1/δ))2e−V (sT 1/δ)ds

∼
(

A2δ2
∫ ∞

0
dse−sδ

s2(δ−1)ds

)
T 2−1/δ.

One gets (6.3). On the way we have seen that, as T → 0,

Var(V ′(r0)) ∼ C0T
2−2/δ, C0 = A2δ2

∫ ∞
0 s2δ−2e−Asδ

ds
∫ ∞

0 e−Asδ
ds

. (6.5)

�

6.2 Lower Bounds for Generic Anharmonic Chains

We are not able to obtain pertinent lower bounds for the conductivity of the process gener-
ated by L = A + γS except for the exponential interaction (see below). Nevertheless, if we
perturb the chain by the smoother second energy conserving noise S′ considered in [1, 2],
interesting lower bounds are available. Thus, we consider the infinite system with generator
L′ given by

L
′ = A + γ (S + S

′)

where S′ is defined by

S
′ = 1

2

∑

x∈Z

(px+1∂px − px∂px+1)
2. (6.6)

The noise S+S′ is energy conserving and satisfies (5.1). It is not difficult to adapt the proof
given in Sect. 5 to show that

σ ′(j0,1, j0,1) = lim
λ→0

�j0,1, (λ − L
′)−1j0,1�

exists. The disadvantage of S′, contrary to S, is that it does not satisfy (5.1). A second
difference between the noise S and the noise S′ is that the latter gives a positive trivial
contribution γ to the conductivity, so that the conductivity κ ′(T ) corresponding to L′ is

κ ′(T ) = γ + T −2σ ′(j0,1, j0,1).
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The inequality (6.2) is now replaced by

κ ′(T ) − γ ≤ 1

6γ T
Var(V ′(r0)) (6.7)

because

(S + S
′)px = −3px, (S + S

′)(p2
x) = �p2

x. (6.8)

In the harmonic case V (r) = ar2, we get

κ ′,harm
a (T ) = γ + a

3γ
. (6.9)

With this perturbation we can prove the following proposition.

Proposition 5 Consider the dynamics generated by L′ = A + γ (S + S′). Then, we have

σ ′(j0,1, j0,1) ≥ T 2[Var(V ′(r0))]2

6γ T Var(V ′(r0)) + 2T 2γ −1 Var(V ′′(r0))
.

Proof We choose the test function

v = −ap0(V
′(r0) + V ′(r1))

with a > 0 we will specify later. We have

Av = ap2
0

(
V ′′(r1) − V ′′(r0)

)
(6.10)

in H (because in H all gradient terms are equal to 0).
Let Gλ be the solution of the resolvent equation corresponding to the discrete Laplacian

� on Z:

(λ − γ�)Gλ = δ0.

By (6.8) we have

(λ − γ (S + S
′))−1(Av) = a

∑

z

G(z)p2
z

(
V ′′(r1) − V ′′(r0)

)
. (6.11)

It follows that

‖Av‖2
−1,λ = a2

∑

z,y

Gλ(z)〈p2
z (V

′′(r1) − V ′′(r0))p2
y(V

′′(ry+1) − V ′′(ry))〉

= a2T 2
∑

z �=y

Gλ(z)〈(V ′′(r1) − V ′′(r0)) (V ′′(ry+1) − V ′′(ry))〉

+ 3a2T 2
∑

z

Gλ(z)〈(V ′′(r1) − V ′′(r0)) (V ′′(rz+1) − V ′′(rz))〉

= 2a2T 2
∑

z

Gλ(z)〈(V ′′(r1) − V ′′(r0)) (V ′′(rz+1) − V ′′(rz))〉

= −2a2T 2(�Gλ)(0)Var(V ′′(r0)).

Using again (6.8) we have (recall that the pressure is fixed to 0 so that V ′(r0) is centered)

‖v‖2
1,λ = 6a2γ T Var(V ′(r0)), �j0,1, v� = aT Var(V ′(r0)).

Hence we obtain
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σ ′(j0,1, j0,1) ≥ 2aT Var(V ′(r0)) − a2
{
6γ T Var(V ′(r0)) + 2T 2γ −1 Var(V ′′(r0))

}

because

lim
λ→0

(�Gλ)(0) = − lim
λ→0

∫ 1

0

4 sin2(πk)

λ + 4γ sin2(πk)
dk = −γ −1.

Optimizing over a > 0 we get

σ ′(j0,1, j0,1) ≥ T 2[Var(V ′(r0))]2

6γ T Var(V ′(r0)) + 2T 2γ −1 Var(V ′′(r0))

which implies the result. �

Observe now that by an integration by parts we have

〈V ′′(r0)〉 = T −1 Var(V ′(r0)).

It follows that

κ ′(T ) − γ ≥
{

6γ
T

Var(V ′(r0))
− 2/γ + 2T 2

γ

〈(V ′′(r0))
2〉

[Var(V ′(r0))]2

}−1

. (6.12)

Corollary 2 Consider the dynamics generated by L′ = A + γ (S + S′). We have the fol-
lowing asymptotics for the conductivity:

• High temperature regime: If the potential V satisfies the assumptions of Corollary 1
with 1 < α < 2 then

κ ′(T ) ∼ γ + C∞
6γ

T (1−2/α), T → ∞,

with C∞ defined in (6.4).
If the potential V satisfies the assumptions of Corollary 1 with α > 2 then

CT 1−2/α ≥ κ ′(T ) ≥ C−1

with a constant positive constant C := C(α,A) independent of T . In particular in the
superharmonic regime (α > 2) the conductivity does not vanish as T → ∞.

• Low temperature regime: Assume that the potential V satisfies the assumptions of corol-
lary 1 with 2 < δ (superharmonic regime at origin). Then

κ ′(T ) ∼ γ + C0

6γ
T (1−2/δ), T → 0,

with C0 defined in (6.5).

Proof Let us start with the subharmonic regime α < 2 at infinity and let T → ∞. We claim
that if α > 1 then

T 2 〈(V ′′(r0))
2〉

Var2(V ′(r0))
= o

(
T

Var(V ′(r0))

)
. (6.13)

To prove (6.13) we observe that by (6.4) the term

T

Var(V ′(r0))

is of order T (2/α−1) and that
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Z(T )−1
∫ 1

0
(V ′′(r))2e−V (r)/T dr = O(1).

Hence we are left to estimate
∫ ∞

1
(V ′′(r))2e−V (r)/T dr = A2[α(α − 1)]2

[∫ ∞

1
drr2α−4e−Arα/T

](
1 + O(T −1)

)

+ 4Aα(α − 1)

[∫ ∞

1
drrα−2e−Arα/T

](
1 + O(T −1)

)

+
∫ ∞

1
dr(W ′′(r))2e−V (r)/T .

The last term is trivially of order O(Z(T )) = O(T 1/α). In the two other integrals we perform
the change of variables r = T 1/αs. We have

∫ ∞

1
(V ′′(r))2e−V (r)/T dr

= A2[α(α − 1)]2T (2−3/α)

∫ ∞

T −1/α

s2α−4e−Asα (
1 + O(T −1)

)

+ 4Aα(α − 1)T (1−1/α)

∫ ∞

T −1/α

sα−2W ′(T 1/αs)e−Asα (
1 + O(T −1)

) + O(T 1/α).

Observe that

∫ ∞

T −1/α

s2α−4e−Asα =
⎧
⎨

⎩

O(1), α > 3/2,

O(logT ), α = 3/2,

O(T −2+3/α), α < 3/2,

and
∫ ∞

T −1/α

sα−2e−Asα =
{ O(1), α > 1,

O(logT ), α = 1.

It follows that if 1 < α ≤ 2 we have
∫ ∞

1
(V ′′(r))2e−V (r)/T dr = O(T 1/α) (6.14)

and the claim follows.
In the superharmonic regime α > 2 the computations are similar and the proof relies on

the facts

T

Var(V ′(r0))
∼ C−1

∞ T 2/α−1, T 2 〈(V ′′(r0))
2〉

Var2(V ′(r0))
− 1 ≥ C

where C is a positive constant independent of T . If δ > 2 then similarly,

T 2 〈(V ′′(r0))
2〉

Var2(V ′(r0))
= o

(
T

Var(V ′(r0))

)
(6.15)

as T → 0 and one concludes by (6.5). �

Remark 2 In the superharmonic regime α > 2 at infinity the upper bound and lower bounds
for the high temperature regime do not coincide. The α = ∞ case formally corresponds to
the Toda lattice studied in the next subsection. For the latter the upper bound is of order 1.
Hence, we conjecture that the upper bound obtained here is not sharp.
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If the potential is a bounded perturbation of the harmonic case then we get

Corollary 3 Assume that the symmetric smooth potential V is such that V (r) = ar2 +W(r),
a > 0, with W,W ′ bounded, such that W ′(0) = W ′′(0) = 0 and W ′′(r) → 0 as r → ∞. Then

κ ′(T ) ∼ γ + κ ′,harm
a (6.16)

as T → 0 or T → ∞, with κ ′,harm
a defined by (6.9).

Proof Let us start with the high temperature regime T → ∞. Recall that by (6.4) we have
Var(V ′(r0)) ∼ 2aT . Moreover we have

〈(V ′′(r0))
2〉 = 2Z(T )−1

(∫ ∞

0
(2a + W ′′(r))2e−ar2/T dr

)(
1 + O(T −1)

)

where Z(T ) is given by

Z(T ) =
(

2
∫ ∞

0
e−ar2/T dr

)(
1 + O(T −1)

) =
√

T a

2
+ O(T −1/2).

Since

T −1/2
∫ ∞

0
(W ′′(r))j e−ar2/T dr =

∫ ∞

0
(W ′′(s

√
T ))j e−as2

ds

converges to 0 as T → ∞ for j = 1,2, we get

lim
T →∞

〈(V ′′(r0))
2〉 = 4a2.

Then the result follows by (6.12). We shall prove that the upper bound (6.7) and the lower
bound (6.12) converges to κ ′,harm

a as T goes to 0. We have

Var(V ′(r0)) =
∫
(2ar + W ′(r))2e−(ar2+W(r))/T dr

∫
e−(ar2+W(r))/T dr

= T

∫
(2au + T −1/2W ′(T 1/2u))2e−au2

e−W(T 1/2u)/T du
∫

e−au2
e−W(T 1/2u)/T du

∼ 4a2T

∫
u2e−au2

du
∫

e−au2
du

= 2aT

as T → 0. Similarly we have

〈(V ′′(r0))
2〉 =

∫
(2a + W ′′(r))2e−(ar2+W(r))/T dr

∫
e−(ar2+W(r))/T dr

=
∫
(2a + W ′(T 1/2u))2e−au2

e−W(T 1/2u)/T du
∫

e−au2
e−W(T 1/2u)/T du

∼ 4a2

as T → 0. Thus, we obtain

lim
T →0

{
6γ

T

Var(V ′(r0))
− 2/γ + 2T 2

γ

〈(V ′′(r0))
2〉

[Var(V ′(r0))]2

}−1

= a

3γ
(6.17)

and
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lim
T →0

1

6γ T
Var(V ′(r0)) = a

3γ
. (6.18)

�

6.3 The Toda Lattice

The Toda lattice is the deterministic chain with generator A and asymmetric potential

V (r) = a(e−r − 1) + ar.

The interest in this model lies in its complete integrability and its high number of conserved
quantities [12]. We denote these conserved quantities by

∑
x∈Z

θxIk , k ≥ 1. Let us just men-
tion the first three ones:

I1 = p0,

I2 =
(

p2
0

2
+ V (r0)

)
, (6.19)

I3 =
(

p3
0

3
− p0

)
+ a(p0 + p1)(e

−r1 − 1).

Remark that the first one corresponds to momentum conservation and the second one to
energy. For an integrable model, ideal conducting behavior is expected with current corre-
lations decaying to a finite value at long times. To estimate this limiting value, or at least
obtain a lower bound [14], Mazur inequality [9] is useful. It relies the long time asymp-
totic of dynamic correlations functions to the presence of conservation laws. Let us show
how to recover a Tauberian counterpart of Mazur inequality as a simple consequence of the
variational formula (6.1).

In the deterministic case, the variational formula (6.1) is (take γ = 0)

�g, (λ − A)−1g� = sup
f

{
2�f,g� − λ�f,f � − λ−1�Af,Af �}

. (6.20)

To get a lower bound a natural idea is to use for f linear combinations of the conserved
quantities I1, . . . , Ik, . . . . The term �Af,Af � is then equal to 0 and we get

λ−1�g,g� ≥ �g, (λ − A)−1g� ≥ λ−1�Pg, Pg� (6.21)

where Pg is the orthogonal projection on the linear space E generated by the conserved
quantities.

Recall that

�g, (λ − A)−1g� =
∫ ∞

0
dte−λt�etAg,g� (6.22)

where (etA)t≥0 is the semigroup generated by the Liouville operator A.
Thus, if �Pg, Pg� > 0, it means, in a Tauberian sense, that �etAg,g� remains of

order 1 as t goes to infinity. It is not difficult to see that �Pj0,1, Pj0,1� > 0 and we recover
the fact that the Toda lattice is an anomalous conductor: the conductivity defined by the
Green-Kubo formula diverges.

In the presence of the noise, the Toda lattice becomes a normal heat conductor.

Proposition 6 Consider the Toda lattice perturbed by γ (S + S′), then we have

γ +
[

6γ

a
+ 2T

γ a

]−1

≤ κ ′(T ) ≤ γ + a

6γ
.
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Proof Let Z(T ) = ∫
R

e−V (r)/T dr . Observe first that

1

aZ(T )

∫
V ′(r)e−V (r)/T dr = 0.

Since V ′′(r) = a − V ′(r), by integration by parts, we have
∫

(V ′(r))2e−V (r)/T dr = −T

∫
V ′(r)

d

dr
(e−V (r)/T )dr

= T

∫
V ′′(r)e−V (r)/T dr = T

∫
(a − V ′(r))e−V (r)/T dr

= aT Z(T ) (6.23)

and

〈(V ′′(r0))
2〉 = a2 − 2a〈V ′(r0)〉 + 〈(V ′(r0))

2〉 = a2 + T a.

We conclude by the upper bound (6.7) and the lower bound (6.12). �

In the same spirit as the “Tauberian Mazur inequality” (6.21), we can obtain a lower
bound on the conductivity by using elements of E = Span(Ik, k ≥ 1) as test functions. We
get

κ ′(T ) ≥ γ + sup
f ∈E

{
2�f, j0,1� − γ�f,−(S + S

′)f �}
. (6.24)

In the next proposition we investigate the lower bound obtained by taking f ∈
Span(I1, I2, I3). Note that this lower bound is quite different from the previous lower bound.

Proposition 7 Consider the Toda lattice perturbed by the noise γ (S + S′). Then, we have

κ ′(T ) − γ ≥ a2T 2

γ (6aT 2 + 25
3 T 3 − 8T 2 + 3T )

.

Proof We have

I3 =
(

p3
0

3
− p0

)
+ a(p0 + p1)(e

−r1 − 1). (6.25)

We inject the function αI3 (α > 0 will be fixed later) in the variational formula (6.1) with
the infimum. Since AI3 = 0 we get

κ(T ) − γ ≥ T −2
{
2α�j0,1, I3� + γα2

[�SI3, I3� + �S
′I3, I3�

]}
.

We have

2�j0,1, I3� = 2a2�p0(1 − e−r1), (p0 + p1)(1 − e−r1)� = 2aT 2.

Observe now that

SI3 = −2I3.

Hence �SI3, I3� = −2�I3, I3�. Using (6.23) we obtain
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�I3, I3� = �p3
0/3 − p0,p

3
0/3 − p0�

+ a2�(p0 + p1)(1 − e−r1), (p0 + p1)(1 − e−r1)�
= μ0,T

{
(p3

0/3 − p0)
2
} + 2T a2μ0,T

[
(1 − e−br0)2

]

=
{

5

3
T 3 − 2T 2 + T

}
+ 2aT 2.

We have

S
′I3 = p0 + (p−1 + p1)p0 − p3

0 − a(p0 + p1)(e
−r1 − 1).

It follows that

�S
′I3, I3� = −a2�(p0 + p1)(1 − e−r1), (p0 + p1)(1 − e−br1)�

+
〈〈(

p3
0

3
− p0

)
, (p0 − p3

0 + (p−1 + p1)p0)

〉〉

= − (
2T 2a + 5T 3 − 4T 2 + T

)
.

Putting everything together and optimizing over α we get

κ(T ) − γ ≥ a2T 2

γ (6aT 2 + 25
3 T 3 − 8T 2 + 3T )

. �

Recall that the lower bound on the conductivity obtained in Proposition 5 was for anhar-
monic chains perturbed by γ (S+S′). For the Toda lattice we have also a lower bound even
if the perturbation involves only S.

Proposition 8 Consider the Toda lattice perturbed by the noise γS. We have

κ(T ) ≥ a2T 2

2γ ({ 5
3T 3 − 2T 2 + T } + 2aT 2)

.

In particular there exists C > 0 such that

κ(T ) ≥ CT −1, T → ∞,

κ(T ) ≥ CT, T → 0.

Proof The proof relies on the same arguments and computations of Proposition 7. �

7 Linear Case

In this section we assume that V (r) = r2/2. In the bulk, i.e. for x = 2, . . . , n − 2, we have
the so-called microscopic fluctuation-dissipation equation

jx,x+1 = − 1

4γ
∇(p2

x + rxrx+1) + L
[

r2
x+1

4
+ (px + px+1)rx+1

4γ

]
.

It follows that
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Js = 〈j0,1〉ss = 1

n − 3

n−2∑

x=2

〈jx,x+1〉ss

= − 1

4γ

1

n − 3

n−2∑

x=2

〈∇ [
p2

x + rxrx+1

]〉
ss

= 1

4(n − 3)γ

{
(〈p2

2〉ss + 〈r2r3〉ss) − (〈p2
n−1〉ss + 〈rn−1rn〉ss)

}
. (7.1)

We first show that this term is O(n−1). Our starting point is (3.15). In the following C

denotes a constant independent of n which can change from line to line.
We have

L(p2
1/2) = −τ�p1 + p1r2 + γ�(T� − p2

1), L(r2
2 /2) = p2r2 − p1r2. (7.2)

Since Vs = 〈p1〉ss is O(n−1) (see Lemma 1), by (3.15), we get

|〈p1r2〉ss | ≤ C, |〈p2r2〉ss | ≤ C. (7.3)

We have also

L(p2r2) = (p2 − p1)p2 + (r3 − r2)r2 − 2γp2r2,

L(p1r2) = −γ�p1r2 + (r2 − τ�)r2 + (p2 − p1)p1.
(7.4)

It follows that

〈p2
2 + r3r2〉ss = −2γ 〈p2r2〉ss + γ�〈p1r2〉ss + 〈p2

1〉 + τ�〈r2〉ss . (7.5)

By (7.3), (3.15) and Lemma 1 we get
∣∣〈p2

2 + r3r2〉ss
∣∣ ≤ C. (7.6)

A similar estimate can be achieved for the term 〈p2
n−1〉ss + 〈rn−1rn〉ss and we obtain that

|Js | ≤ C/n. (7.7)

Theorem 3 Fourier law holds:

lim
n→∞nJs = 1

4γ

{
(T� − Tr) + (τ 2

� − τ 2
r )

}
(7.8)

and we have

Ĵ� = lim
n→∞n(〈p2

1〉ss − T�) = 1

4γ γ�

[
(Tr − T�) + (τ� − τr)

2
]
,

Ĵr = lim
n→∞n(Tr − 〈p2

n〉ss) = 1

4γ γr

[
(Tr − T�) − (τ� − τr)

2
]
.

(7.9)

It follows that the system can be used as a heater but not as a refrigerator.

Proof By (7.7) we get that 〈j0,1〉ss → 0 as n → ∞. Since Vs vanishes as n goes to infinity
we get 〈p2

1〉ss → T�. By (7.2) it implies that 〈p1r2〉ss and 〈p2r2〉ss go to 0. By Lemma 1 and
(7.5) we have

〈p2
2 + r3r2〉ss → (T� + τ 2

� ). (7.10)

Similarly one can prove
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〈p2
n−1 + rnrn−1〉ss → (Tr + τ 2

r ). (7.11)

We report in (7.1) and we get Fourier law.
Assume that Tr > T�. The term Ĵ� (resp. Ĵr ) is the macroscopic heat current from the left

reservoir to the system (resp. from the system to the right reservoir). Whatever the values
of τ�, τr are, Ĵ� > 0 and we cannot realize a refrigerator. But if (Tr − T�) < (τr − τ�)

2 then
Ĵr < 0 and we realized a heater. �

8 Existence and Uniqueness of the Non-equilibrium Stationary State

The aim of this section is to prove Proposition 1. We recall that �n = R
n−1 × R

n is the state
space. For any positive θ we define the Lyapunov function Wθ by

Wθ(ω) = exp

(
θ

n∑

x=1

Ex

)
, ω ∈ �n,

and the weighted Banach space

Bθ =
{
f : �n → R contiuous,‖f ‖θ = sup

ω

|f (ω)|
Wθ(ω)

< +∞
}
.

Let Fx be the flip operator defined by (Fxf )(ω) = f (ωx) for any f : �n → R and any
ω ∈ �n. We note (Tt )t≥0 the semigroup generated by L and (T̃t )t≥0 the semigroup corre-
sponding to L0, defined by (3.14).

The existence and uniqueness of the stationary state can be proved using similar argu-
ments as in [4, 10]. Nevertheless we are not able to show smoothness results for the transition
probabilities of (Tt )t≥0.

We assume that the potential V satisfies (A). In [4] is investigated the problem of exis-
tence and uniqueness of the stationary state for T̃t in the case τ� = τr = 0. It is easy to adapt
the proof of [4] when τ�, τr �= 0. In this case, without the jumps, we can apply directly the
method of [4] to obtain also the smoothness of the density w.r.t. the Lebesgue measure.

Proposition 9 Fix θ sufficiently small. The semigroup (T̃t )t≥0 can be extended to a strongly
Feller continuous semigroup on Bθ with a smooth density w.r.t. the Lebesgue measure. It has
a unique invariant probability measure π which has a smooth density w.r.t. the Lebesgue
measure and the semigroup converges exponentially fast to π in Bθ .

A simple computation shows that

LWθ = θWθ

{
τrpn − τ�p1 + T� + Tr + (T�θ − 1)p2

1 + (Trθ − 1)p2
n

}

≤ θ

(
Tr + T� + τ 2

r

4(1 − Trθ)
+ τ 2

�

4(1 − T�θ)

)
Wθ (8.1)

if θ < min(T −1
� , T −1

r ). It follows that for such a choice for θ the semigroup (Tt )t≥0 is well
defined on Bθ .

Similarly to Lemma 7.1 in [4] one can show that there exists t0 > 0, constants bn < +∞,
0 < κn < 1, with limn→∞ κn = 0, and compact sets Kn such that

Tt0Wθ(ω) ≤ κnWθ(ω) + bn1Kn(ω). (8.2)

This is sufficient to apply Theorem 8.9 in [10] and get the existence of a stationary state.
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Let us also mention that (8.2) and (8.1) imply

sup
t≥0

(TtWθ)(ω) ≤ C(Wθ(ω) + 1) (8.3)

for a positive constant C. This is because (8.2) gives for any p ≥ 1 that

(Tpt0Wθ)(ω) ≤ κ
p

1 Wθ(ω) + b1

1 − κ1

and (8.1) gives the existence of a constant c > 0 such that

(TsWθ)(ω) ≤ ecsWθ(ω), 0 ≤ s ≤ t0,

so that, writing Tt = Tt−pt0 ◦ Tpt0 with pt0 ≤ t < pt0 + 1, we obtain (8.3).
We now consider the problem of uniqueness of the steady state.
Let us denote p̃t (ω, ξ)dξ the probability transition corresponding to (T̃t )t≥0 and

pt(ω,dξ) the probability transition corresponding to (Tt )t≥0.
Let σ1 be the stopping time defined as the first time a momentum is flipped. Observe

that σ1 has an exponential law of parameter nγ . For every bounded measurable function
f : �n → R, we have

(Ttf )(ω) = Eω

[
f (ω(t))1σ1<t

] + Eω

[
f (ω(t))1σ1≥t

]

= e−γ nt

∫

ξ∈�n

p̃t (ω, ξ)f (ξ)dξ

+ γ

∫ t

0
dse−γ ns

n∑

x=1

∫

ξ∈�n

dξ p̃s(ω, ξ)

(∫

ξ ′∈�n

pt−s(ξ
x, dξ ′)f (ξ ′)

)
. (8.4)

We can iterate the argument and we obtain the following formula for pt

pt (ω, dξ)

= e−γ nt p̃t (ω, ξ)

+
∞∑

k=1

γ k

n∑

x1,...,xk=1

[∫ ∞

0
. . .

∫ ∞

0
ds1 . . . dsk+1e

−γ n(s1+...+sk+1)1{s1+···+sk≤t<s1+···+sk+1}

×
∫

ξ1,...,ξk∈�k
n

p̃s1(ω, ξ1)p̃s2(ξ
x1
1 , ξ2) . . . p̃sk (ξ

xk−1
k−1 , ξk)p̃t−(s1+···+sk)(ξ

xk

k , ξ)dξ1 . . . dξk

]
.

This shows that pt(ω,dξ) = pt(ω, ξ)dξ is absolutely continuous with respect to the
Lebesgue measure on �n. Therefore, (Tt )t≥0 is strongly irreducible, i.e. for every t > 0,
every ω ∈ �n and every open subset O of �n,

pt(ω,O) > 0

because T̃t is strongly irreducible.

Lemma 3 The semigroup (Tt )t≥0 is strongly Feller, i.e. it maps bounded measurable func-
tions to continuous bounded functions.

Proof By Proposition 9, the semigroup (T̃t )t≥0 is strongly Feller. It implies (see e.g. Corol-
lary 2.4 of [13]) that for every t > 0, for all compact sets K ⊂ �n, we have
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lim
δ→0

sup
|ω−ω′|≤δ,

ω,ω′∈K

sup
‖u‖∞≤1

∣∣∣(T̃tu)(ω) − (T̃tu)(ω′)
∣∣∣ = 0. (8.5)

Let f be a bounded measurable function with ‖f ‖∞ ≤ 1. We have to show that, for any
fixed t > 0, Ttf is a continuous bounded function. By (8.4), we have

(Ttf )(ω′) − (Ttf )(ω) = e−γ nt
(
(T̃tf )(ω′) − (T̃tf )(ω)

)

+ γ

n∑

x=1

∫ t

0
e−γ n(t−s)

{(
T̃t−s ◦ Fx ◦ Ts ◦ f

)
(ω)

−
(
T̃t−s ◦ Fx ◦ Ts ◦ f

)
(ω′)

}
ds. (8.6)

Observe that the absolute value of the second term on the right hand side is bounded above
by

γ

n∑

x=1

∫ t

0
e−nγ (t−s) sup

‖g‖∞≤1

∣∣∣
(
T̃t−sg

)
(ω) −

(
T̃t−sg

)
(ω′)

∣∣∣ ds

because

‖Fx ◦ Ts ◦ f ‖∞ = sup
ξ

∣∣Eξx (f (ωs))
∣∣ ≤ ‖f ‖∞ ≤ 1.

By the bounded convergence theorem and (8.5) we have

lim
ω′→ω

((Ttf )(ω′) − (Ttf )(ω)) = 0. �

These two last properties (irreducibility and strong Feller property) are sufficient to have
uniqueness of the invariant measure μss . To show that the latter has a density, we observe
that for any t > 0, the condition μssTt = Tt means that for any measurable set A of �n we
have

μss(A) =
∫

�n

dμss(ω)

(∫

�n

1A(ξ)pt (ω, ξ)dξ

)

=
∫

�n

1A(ξ)

(∫

�n

dμss(ω)pt (ω, ξ)

)
dξ

where the second line follows from Fubini theorem.
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