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ABSTRACT

As the third in a series of projects investigating common-
sense computing — the relevant knowledge that students have
before any formal study of computing — we examine stu-
dents’ commonsense understanding of concurrency. Specif-
ically, we replicated (with modifications) an experiment by
Ben-David Kolikant. [2] Ben-David Kolikant’s data were
gathered from high-school seniors who had previously stud-
ied computing, at the beginning of an advanced class in
concurrent and distributed programming. Modifying one of
her questions to reflect our students’ lack of background, we
asked students at five different institutions, in the first week
of CS1, to describe in English the problems that might arise
when more than one person is selling seats to a concert.
Almost all students (97%) identified the problem of inter-
est — that a race condition may occur between sellers. 73% of
students identified at least one possible solution. We found
that the categorizations developed by Ben-David Kolikant
were also meaningful when applied to our data, that our
beginning CS1 students are more likely to give centralized
solutions (as opposed to decentralized ones) than Ben-David
Kolikant’s concurrency students, and that the granularity of
solutions is finer among the more experienced students.
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1. INTRODUCTION

This paper reports on the third in a series of projects in-
vestigating “commonsense computing”: what students know
about computing concepts before having formal instruction.
Recent studies of computing students indicate that students
lack certain skills: both their ability to write programs [16],
and their ability to read and trace code [15] are well below
what we might expect. Ben-David Kolikant [3] found that
students apply a sense of “mostly correct” to their programs,
suggesting they do not even know what it would mean for
their programs to work. These results are independent of
the programming language and paradigm of instruction.

Other studies have also demonstrated that students have
considerable ability to reason about computer science topics.
Gibson and O’Kelly [13] found pre-college students could
solve a variety of search problems and beginning computer-
science students could prove results about the Towers-of-
Hanoi. This paper follows up work by Ben-David Kolikant
[2], who found students beginning a concurrent-and-distributed-
programming class could reason about concurrency.

This disconnect between demonstrated programming knowl-
edge and demonstrated reasoning skills suggests students
have considerable knowledge that we, as instructors, can
leverage to teach computer science more effectively. To
leverage students’ existing knowledge, however, we must
first determine what that knowledge is. As a result, we have
begun to investigate what students with no prior computing
instruction (“beginners”) know about computing.

In our earlier projects, we found that most of the be-
ginners could give an algorithm to solve a sorting problem.
They used both conditionals and post-test loops. Many even
suggested algorithms that are recognizable as selection or in-



sertion sort. Their understanding of the way numbers are
represented was unexpected, however, and led to suggestions
for possible interventions by instructors. [8, 23, 9]

In this project, we adapt a question from Ben-David Ko-
likant’s study [2] to examine beginners’ understanding of
concurrency. Examining concurrency provides a broader
perspective of commonsense computing. The answers of be-
ginners provide evidence of computer science problem solv-
ing skills, in terms of task analysis to see the problem and
in terms of an ability to suggest solutions. The particular
advantage of replicating the Ben-David Kolikant study is
additional perspective in both analysis and results. Using
this study as a template constrains categorizations we make
but also demonstrates that these categorizations can in fact
apply to complete beginners. This study also allows a com-
parison between beginners and students who have significant
computer science skills though they do not have significant
experience with concurrency. This comparison provides a
sense of how much additional sophistication has been gained
by the more experienced students and how much problem-
solving sensibility has been with the students from the day
they entered the first course.

Our questions were:

e Would beginners be able to recognize the key concur-
rency issue regarding a critical section?

e Would they give answers similar to those reported by
Ben-David Kolikant?

e Would the categories developed by Ben-David Kolikant
even make sense when applied to our data?

We find, consistent with Ben-David Kolikant, that stu-
dents are able to recognize at least one key concurrency issue
(duplicate sales) but few are able to recognize the problem of
interleaving accesses of non-atomic operations. In contrast
to Ben-David Kolikant, the solutions are more likely to be
centralized than decentralized. However, the categories de-
veloped by Ben-David Kolikant are reasonable when applied
to the beginners, suggesting that students can reason about
concurrency even as they begin studying computer science.
As in our earlier studies, we thus see that students are not so
much “learning problem solving” as they are learning how
to express solutions in a programming language and to do a
finer-grained analysis of problems.

The rest of this paper is organized as follows. In Sec-
tion 2 we review the related work on preconceptions and con-
currency, particularly Ben-David Kolikant’s work [2] upon
which this study is based. In Section 3 we discuss our re-
search methodology, specifically how and where we collected
the data, and how we analyzed it. In Section 4, we present
our results, and discuss them further in Section 5. Finally
we conclude in Section 6 with some suggestions for future
work.

2. RELATED WORK

Although we are examining a different topic, this project
has the same basic philosophy as our earlier commonsense
computing projects [8, 23, 9]. In our earlier projects, we ex-
amined students’ commonsense knowledge of sorting, asking
students to write a paragraph describing how they would
sort a list of ten numbers (or dates).

All of our commonsense computing projects are moti-
vated by the constructivist view of learning, which holds

that learning takes place by refining and extending what
the student already knows [1, 7]. Bransford et al. [6] argue
that learning must engage the students’ preconceptions to be
effective. Schwill [21] applies Bruner’s notion of fundamen-
tal ideas [7] to computing, and argues that the fundamental
computing ideas, which provide a framework for learning
constructively, have meaning in everyday life, and can be
described in ordinary language.
Several researchers have studied student preconceptions:

e Miller [17] analyzed “natural language” programs by
students who had not had a formal programming course,
with the purpose of exploring the idea of writing com-
puter programs in natural language. He found that a
number of standard programming concepts showed up
in these natural language descriptions, but that there
were differences between these and programs in com-
puter languages, especially in terms of knowledge im-
plicit in context or general world knowledge.

e Onorato and Schvaneveldt [18] also looked at natu-
ral language descriptions of a programming task, com-
paring subjects drawn from different pools: naive—
students with no programming experience, beginner—
students currently taking their first programming course,
and ezpert-students with a good deal of programming
experience. Along with differences between experts
and novices, they also found differences between the
naives and beginners though neither had experience
programming.

e While studying misconceptions of novice programmers,
Bonar and Soloway [5] specifically considered prepro-
gramming knowledge, which they call “step-by-step
natural language programming knowledge.” They dis-
tinguish this preprogramming knowledge from knowl-
edge of the programming language Pascal, which the
students were learning in their introductory course.
They found that many of the observed bugs could be
explained by a mismatch between students’ knowledge
in these two different domains.

e Gibson and O’Kelly [13] looked at a variety of search
problems (with pre-college students) and Towers-of-
Hanoi problems (with beginning computing students),
and found that both groups showed “algorithmic un-
derstanding” of how to solve these problems—they
were able to consider and reason about the process
used to solve the problem, not just find a solution.

Like Smith et al. [24], Hammer [14], and Ben-David Kolikant
[2], we seek preconceptions that might be built upon to help
students learn specific concepts within a particular context.

Many studies [4, 12, 20, 25, 26] have tried to predict
performance in computing courses using beginners’ charac-
teristics such as math background, gender, age, attitude,
and prior programming experience. The BRACE study [22]
looked at beginning-student performance on non-computing
tasks—paper folding, map sketching, and telephone direc-
tory searching (as in [18])—that could relate to student
preconceptions about computing topics. They then used
these data to predict student performance in a programming
course, and found that some things detected in the task per-
formance were positively correlated with final course grade
attained. Rather than trying to predict performance, we



are trying to characterize student knowledge, as a basis for
deciding how to teach. The data we use are also richer than
many of the predictive factors.

There is a substantial body of work both in computing
and other disciplines on misconceptions: incorrect concept
understandings that need to be replaced with correct mod-
els. Clancy [10] provides a survey of this work in computer
science; the National Academy’s Committee on Undergrad-
uate Science Education [11] (Ch. 4) gives a more general
overview. Smith et al. [24] challenge this view in the con-
text of math and science education, arguing that miscon-
ceptions are limited mental models that can be built upon
to gain correct understanding. Like Smith et al. our intent
is to build on our students’ understandings, rather than to
replace them.

Most important to this particular project is Ben-David
Kolikant’s work examining student preconceptions about con-
currency. [2] She found that students without any back-
ground in concurrency were able to draw upon real-life ex-
perience to come up with the necessary mechanisms to solve
simple problems.

Her data were gathered from about 140 Israeli 12th-grade
high-school students in six classes in three different schools.
The students had previously studied computing, and were
taking an advanced class in concurrent and distributed com-
puting. At the beginning of the course she gave these stu-
dents a critical-section problem where multiple agents share
a common resource: two offices selling tickets for the same
movie. As shown in Figure 1, the question is posed in a
detailed, pseudo-code format. It expects a relatively sophis-
ticated answer, including a hardware system specification
for supporting multiple machines servicing sales requests,
pseudo-code for the solution, and an explanation of the an-
swer and how it avoids duplicate ticket sales. Students’ an-
swers were graded as part of the course.

Ben-David Kolikant divided responses into two major cat-
egories. Centralized responses involve a solution in which
communication and control for the solution is centralized.
Decentralized responses implicitly or explicitly involve the
sellers communicating with each other to achieve a concur-
rent solution.

Within the centralized solutions, she found three sub-
categories: those with a central entity (C1), essentially a
master computer that makes all decisions; those in which
the solutions involve an assumption either of a constant rate
of operations or an assumption that operations happen in a
particular order (C2); and those in which solutions assume
that sellers have private resources (C3), each selling tickets
for a separate area of the theater. She describes categories
C2 and C3 as solutions that “attempted to solve a similar,
but different problem” [2, p. 235]. Decentralized solutions
are divided into those solutions in which communication is
implicit (D1) and those in which is explicit (D2).

Ben-David Kolikant’s discussion focuses on three aspects
that together contribute to the solutions she evaluated. She
describes these as “(a) the algorithmic goal of the system,
(b) synchronization goals, and (c) reasonableness” [2, p.
236].

The “algorithmic goal” is the problem the system is in-
tended to solve: in this case, selling the best ticket possible.
The cinema-ticket problem was very well constrained, so the
students’ responses all shared this goal.

The synchronization goals of the cinema-ticket problem

The cinema tickets problem

A ticket office sells movie tickets for a certain cinema. The
next client always gets the best available ticket. Computer
software decides what is the next best available seat, and
prints the ticket.

Assumptions:

e The movie is only screened once.

e This is the only office that sells tickets for this movie.
e FEach client can only buy exactly one ticket.

e There are many people waiting to buy the tickets.

The following procedures are defined in the software:

Function: Input: The Hall
BestAvailableSeat() Return value: Best available
seat in the Hall. -1 if no
available seat.
Procedure: Input: Seat is the place of
MarkAvailable- an available seat in the Hall.
Seat(Seat) On output: the place of Seat
is marked as taken.
Procedure: Input: Seat is the place of
PrintTicket(Seat) an available seat in the Hall.
On output: a ticket for place
Seat is printed.

Handling a client is done as follows:

Seat < BestAvailableSeat()
If Seat <> -1 then
MarkAvailableSeat(Seat)
PrintTicketSeat(Seat)

Since the waiting time in the line was too long, the owners
decided to add another ticket office. Both offices shall be
opened at the same time and sell tickets for the same movie
screening. Each office shall have its own printer for printing
the tickets it sells. (for this exercise you don’t need to deal
with the money issues).

You have to develop the system according to the following
steps:

1. What is the required hardware? (Screens, Printers,
keyboards, others). Specify how the hardware is dis-
tributed in the system.

2. Write PseudoCode for the software of the required sys-
tem (selling tickets in 2 offices). You may use the
procedures in table 1. No need to redefine them.

Figure 1: Ben-David Kolikant’s cinema-tickets as-
signment

are “to coordinate ... access to a common resource (the
database) in order to avoid selling the same ticket twice”
[2, p. 236] and “the prevention of the interleaving of the
access to the database” [2, p. 237]. She found that stu-
dents did not identify the problem of interleaving in their
written answers. She followed up with interviews in order
to investigate whether they had failed to write it down, or
there was in fact a lack of understanding. She found that




the students assumed that the key actions were inseparable:
“they assume that the two critical actions of checking and
updating the database are always executed successively” [2,
p. 238]. As a result, they assumed that the key issue was
communication: making sure that all sellers were aware of
the seats that had already been sold.

In general, she found that a significant number of students
used centralized solutions, although this is somewhat less
true for the cinema ticket problem than for her other two
assignments. Here, 33% of students presented centralized
solutions and 67% presented decentralized solutions.

The final aspect of the students’ solutions that Ben-David
Kolikant considered is “reasonableness:” solving the prob-
lem “in a reasonable or realistic way ... according to the
context of the problem” [2, p. 238]. One might also think of
this as modeling — understanding the relationship between
the solution and the original problem domain.

Ben-David Kolikant found that some students did seem to
understand the modeling issues, but still simplified the prob-
lem in a way they admitted was not realistic, just so that
they could solve it. She found this not in the cinema-ticket
problem, but in her second problem, which involved garden-
ers planting trees. Students made the assumption that all
the gardeners worked at the same rate. One commented,
“I assumed it, to make the algorithm succeed. In spite of
reality” [2, p. 239]. This is reminiscent of the old joke about
the engineer and the economist who fall into a deep pit. The
engineer looks for stones that they can pile up so they can
climb out of the pit. The economist says, “First, assume we
have a ladder ....”

Ben-David Kolikant also notes several issues with regard
to the students’ answers. First, she argues that solution type
C3 — dividing the tickets among the different sellers — over-
simplifies the problem. While this is a workable solution
that can be translated back into the real-world situation,
it does not ensure that each buyer will get the best seat
currently available. Second, she found that students were
influenced by their real-world experience with concurrency
and networks. In the real world, for example, it may seem
that speaking is an action, but hearing just happens. (Of
course, even in the real world, the listener is not guaranteed
to be paying attention.) Finally, she considered the stu-
dents’ computational model. Her question required the stu-
dents to suggest hardware and software to solve the problem.
The students showed a strong preference for using multiple
computers, rather than time-sharing a single computer.

3. METHODOLOGY
3.1 The students

In this study, in the first week of a CS1 class, students were
each randomly assigned two tasks. One of the possible tasks
was the concurrency task that we explore here. This task
was completed by 66 students from five different institutions.
The participating students were all beginners.

All but eight of the students completed these questions on-
line (outside of class), by typing English answers into a text
box. Eight students (all at the same institution) completed
this question on paper in a laboratory setting. All subjects
were given credit for completing the assignment, though the
quality of the solution was not evaluated for credit.

Subject identifiers presented in this paper have been renum-
bered and do not reflect institutional affiliation. The insti-

tutions’ characteristics, which vary significantly, are sum-
marized in Table 1.

3.2 The task

Students were asked to answer the following question:

Suppose we sell concert tickets over the telephone
in the following way — when a customer calls in
and asks for a number (n) of seats, the seller
1) finds the n best seats that are available, 2)
marks those n seats as unavailable, and 3) deals
with payment options for the customer (e.g. get-
ting credit or debit card number, or sending the
tickets to the Will Call window for pickup).

Suppose we have more than one seller working
at the same time. What problems might we see,
and how might we avoid those problems?

There are several differences between this task and Ben-
David Kolikant’s. We modified the question so that it would
refer to concert tickets, since our students likely have more
experience with ordering concert tickets. Second, we re-
moved the restriction that each buyer can only buy one
ticket. And finally, due to our students’ lack of background,
it was necessary to phrase the question less technically and
to ask for responses in English paragraphs, without pseu-
docode or detailed hardware and software specifications.

3.3 Analysis

After the data were collected, researchers read through all
of the responses to get a general sense of the responses. We
then set up categorizations for the responses based on the
categorizations used by Ben-David Kolikant [2].

In our study, we consider C2 and C3 answers (along with
C1 and D) to be “reasonable” solutions to the question
posed — in part based on the less explicit form of our ques-
tion. More detail on the differences in Ben-David Kolikant’s
methodology and analysis and that used in this study is
given in Section 5.1.

Having read through the solutions, we determined that
in many cases the student response was not clear about ex-
plicit or implicit communication — resulting in only one de-
centralized categorization. There were also cases in which
the student response was ambiguous and could not be de-
scribed as either centralized or decentralized. In others, the
response could not be reasonably said to solve the problem.
Some responses did not offer a solution. This set of cat-
egories comprises our “non-reasonable” solutions. Finally,
some responses provided solutions to problems that were
not our central focus, though they may have been interest-
ing problems — some involving concurrency issues. Along
with tagging responses that gave problems we did not focus
on, we recorded the problem suggested so we could examine
this list for commonalities across students.

Unlike Ben-David Kolikant’s participants, the students in
our study often gave more than one possible solution to
the problem. We counted and coded each solution. After
determining categories, all five researchers coded the data.
There were only a few conflicts in our coding, easily resolved
through discussion.

4. RESULTS

In this section we provide a sense of the responses from the
students, first giving overall characteristics of the responses



[ Institution Characterization | n | Class Characteristics
Private institution on west coast of USA with approx. | 25 | Students 18-20, a CS1 serving all engineering, most of class
3,200 undergraduates and a school of engineering is electrical engineering majors with a prior matlab course
Public research institution on west coast of USA with ap- | 20 | Students 18-20, a CS1 serving mostly CS majors
prox. 27,000 undergraduates and a school of engineering
Public research institution on east coast of USA with ap- | 10 | Students 18-20, a CS1 serving computer science and/or
prox. 21,000 undergraduates and a school of engineering engineering and electrical engineering, approximately 75%

of class is computing majors

Public regional institution on east coast of USA with ap- | 8 | Students 18-20, a CS1 serving mostly CS majors
prox. 2,000 undergraduates
Private liberal arts institution on east coast of USA with | 3 | Students 18-20, a CS1 serving CS majors and minors and
approx. 1,600 undergraduates math majors

Table 1: Institutional Breakdown of Respondents. n is

question.
| Accomplishment percent of students ‘
Number of solutions provided
1 solution 70%
2 solutions 20%
3 or more solutions 10%
Problems identified
Sell seat more than once 97%
Other 41%
Provided “reasonable” solution 1%
to concurrency problem

Table 2: Number of solutions and problems identi-
fied by student (n = 66)

on a per student basis — how many solutions did the stu-
dent provide? was the problem identified? did the student’s
solution seem reasonable? Next we look at the solutions,
examining them from the perspective of the categorizations
used by Ben-David Kolikant. Finally, we provide a quali-
tative look at the solutions with characteristic examples of
responses highlighting important aspects of the responses.

4.1 Per student

The 66 students in the study collectively produced a total
of 97 identified solutions. Table 2 summarizes characteristics
of these solutions. Because of the descriptive nature of the
solution requested, many students would discuss multiple
issues they saw stemming from the problem statement, or
outline several different solutions to the particular problem
of trying to sell the same seat to more than one person at a
time. The majority of students did discuss only one solution
(70%), but 20% identified two solutions and 10% identified
three or more solutions (with six solutions being the most
identified by any one student).

Of the 66 students, 97% at least identified our main prob-
lem of interest — that it may be possible to sell a given
seat to more than one person — good evidence that even
novice students can identify this critical concurrency issue.
Additionally, Six students explicitly noted the problems of
interleaving access to the database that may result in one
customer reserving but another customer buying the tick-
ets. 71% of all students (73% of those who identified the
main problem) did identify at least one “reasonable” solu-
tion to the problem (an answer that is categorized as C or
D). Moreover, many of the beginners gave more than one

the number of students answering the concurrency

type of answer. 12/47 (26%) of students who gave a reason-
able answer, actually gave both centralized and decentral-
ized answers.

Finally, many beginners (41%) identified a problem be-
yond that of selling the same seat. Other problems identi-
fied included: group sales of a large ticket block, having seats
be reserved, but not paid for, problems with identity theft,
choosing seats by price rather than best available, payment
transaction delays, and data tracking and storage.

4.2 Per solution

As many students gave multiple solutions in their answers,
it is useful to look at the diversity of responses out of the
total number of solutions provided — 97. Table 3 provides
the breakdown on solution types.

We find that 69% of the solutions provided are reasonable
solutions to the multiple seat selling problem. 31% of the
solutions are not reasonable solutions; the majority of these
are cases in which the student described the problem (often
correctly) but did not offer any solution to the problem.

Of the reasonable solutions we found 55% to describe a
centralized solution where the selling entities passed the re-
sponsibility of making a seat assignment on to some central
resource and 45% of solutions describing a method by which
individual sellers in some way made decisions about seat
assignments as individual entities.

The centralized solutions can further be broken down into
three categories. 10% of reasonable solutions relied on im-
plicit communication between “dummy” sellers and a master
resource to make assignments. 13% of reasonable solutions
uses the same master resource but requires some explicit or-
dering of communication or steps in the process, which may
include lock-stepping or pipelining the process. By far the
most popular centralized solution (31%) is also the most re-
strictive and involves distributing or dividing up resources
either by portioning out seats in the concert venue to differ-
ent sellers or serializing or otherwise pipelining the selling
process.

4.3 Qualitative Results

4.3.1 Algorithmic Goals

Many students did not further refine the goal of their algo-
rithm and either explicitly or implicitly used a goal of “best
seats available” in their response. Some students elaborated
further as they explained why they chose the particular so-




| Category | Of all Solutions | Of reasonable Solutions

Reasonable Solutions (centralized and decentralized) 69% -

Centralized 38% 55%

C1 7% 10%

C2 9% 13%

C3 22% 31%

Decentralized 31% 45%
Not Reasonable Solutions 23% -
Bad Solution 5% -
No Solution 16% -
Ambiguous 1% -
Solved different problem 8% -

Table 3: Solution Breakdown by type. Column 2:

considered over the set of 97 solutions.

Column 3:

considered over the set of 67 reasonable (C or D) solutions.

lution or even modified the point of concentration in their
algorithm.

A number of students were concerned less about choos-
ing the seats than in handling seats that are given up, for
example:

If the seats are marked as unavailable as soon as
they are requested by the customer, other sell-
ers cannot access these seats for their own cus-
tomers at that time. This is a bad thing be-
cause those better seats reserved by the first cus-
tomer may potentially still be open should the
customer change their mind about the purchase
or if payment information cannot be validated.
If the seats are marked unavailable and the pay-
ment does not come through for whatever reason,
the seats will remain unavailable and be empty
during the concert. [ID415]

One obvious problem that could appear is two
sellers giving up the same seats at the same time.
[ID405]

Some students changed their algorithmic goal when they
recognized that one could not simply reserve and sell as one
atomic action:

if more than one seller is dealing with cus-
tomers at the same time. In a very unlikely situ-
ation, the sellers could mark the seats unavaliable
at the same time. However, in a more likely sit-
uation, one of them marks seats unavaliable and
the other seller marks and sees that the seats are
unavailible, but that seller was not the one that
reserved them. Then there will be multiple tick-
ets sent to Will Call for the same seats. [[D412]

Other students, while mentioning the concurrency issue,
were also very concerned about dealing with the nature of
group sales. For example:

First of all, there could be an issue of finding
group seating. Finding n best available seats will
not necessarily do, if they have to be n best avail-
able seats together. In such a situation, each seat
should be labeled with how many seats there are
available in front, behind, and to the left and
right of it. [ID425]

scalpers and other ticket selling agencies will buy
tickets and sell them at an increased price; with
no limit on n, the number of tickets the caller
is purchasing, one caller could buy every ticket
to the concert. This problem is easily fixed by
putting an upper limit on n of 8-12 tickets (large
groups can call a special hotline and speak to an
operator to purchase more). [ID430]

Even the notion of “best seat” received further attention.
For one student, the double-selling problem was handled by
dividing up the seats among sellers. Most of algorithmic
attention was then focused on the following problem.

First of all, there would no longer be a first come
first serve basis and problems would arouse over
who actually occupies the good seats first. If it’s
only one seller, she would be able to take one
customer at a time. Two or more sellers would
make it hard to decide which seller’s customer
actually receive the seats first. [[D431]

4.3.2  Identifying the Main Synchronization Problem

The degree to which students identified the problem var-
ied. Most gave a fairly standard “sellers could mark the seats
unavailable at the same time.” [ID412] or “there could be
double booking” [ID106]. Remarks that this scenario would
be very unlikely were not uncommon, however. Some stu-
dents identified computers or technology specifically as being
the source of this problem:

One computer may be operating slower than an-
other, causing the seats that one seller saw to be
taken by another seller. [ID406]

Others may not have addressed technology specifically,
but did identify the key concept of time:

One major issue is when, and how long it takes
to mark a seat unavailable. [ID410]

A few students gave problem descriptions that went into
quite a bit more detail and hint at the kind of analysis that
will eventually be needed in constructing a full solution to
the problem, including some recognition of the interleaving
problem:

The first, most obvious problem is that of over-
lap. If all sellers are working at the same time,



then the system might display to seller A that
certain seats are open when, in fact, they have
already been reserved by seller B. Thus A will
have to find different seats, which might have, in
the intervening time, been reserved by seller C.
[ID 417]

1D417 elaborated:

Reservation information from each of the com-
puters would have to cross-pollinate to each of
the other computers as soon as the seats changed
status at all, to either of the three states. This in-
troduces the problem of crossed signals. If seller
A and seller B both book seats 145 - 160 at
the exact same time, or within milliseconds of
one another, the instructions for reserving those
seats on each of the other computers would cross
mid-stream, introducing a problematic double-
booking, or even worse, no booking at all. [ID417]

4.3.3 Identifying Other Problems

Along with the main problem, students noticed other is-

sues.

Payment and canceling of orders were two big issues:

Another problem would be if the seats are marked
unavailable before they are sold, the customer
can change their minds before payment and pos-
sibly hinder the sale of those seats to another
customer who might have wanted them at the
same time. [ID420]

... 2. How will payment information be kept and
how can customer information be shared between
sellers? 3. If a customer cancels an order, how is
that information transmitted to the other seller
within a reasonable amount of time? 4. If the
customer does not pay for the tickets at will call,
what happens to it? ... [ID 422]

Filters would be helpful for the credit card
and debit card numbers to avoid erroneous val-
ues. Throw in a few fields, and again only have
one seller able to work with it at any given time,
avoiding the redudency problem. Unfortunately,
if seats are not allowed to be made available
through the database, a customer could call, re-
serve seats, and then hang up, resulting in empty
seats reserved. ... [ID410]

Further more, at the moment of receving the pay-
ments for those tickets, problems might come up
such as; miss-communication between the sell-
ers,and charging the customer double instead of
one time. [ID419]

Will-call suggested problems for some students:

Another potential problem arises when cus-
tomers decide to place their tickets at will call.
It is possible for people to have the same name,
so more information such as phone number or
address would need to be collected by the sellers
in order to avoid confusion at the door. [ID105]

Reliability problems also were mentioned:

The computers may malfunction and the seller
may not be able to key in the requested seats.
[ID406]

As noted above when discussing the algorithmic goals,
group sales were noted as a particular problem.

Another problem that could happen is the sell-
ers not selling the seats efficiently to maximize
the amount of people that can attend the event.
Many people buy group tickets to events and ven-
dors sell them seats adjacent to another. Some-
times there will be a few seats not sold next to
those group of seats. Other larger groups won’t
be able purchase seats close to another due to
the lack of ’group’ seats. [ID412]

4.3.4 Centralized Solutions

The three variants of centralized solutions we saw had sig-
nificant distinguishing characteristics. C1 solutions relied on
implicit communication between sellers and a central sys-
tem which makes the reservation or selection on behalf of
the seller. A common characteristic of these implicit com-
munications was that they be “fast”.

These problems might be avoided by having a
computer system that automatically (to the sec-
ond) inputs the seat reservation for that cus-
tomer. [ID438]

Some answers were less specific about the solution, but
still gave evidence of a centralized solution with implicit
communication:

The program would have to temporarily mark
seats that are being looked at during a transac-
tion as unavailable so that vendors couldn’t sell
seats simultaneously. [ID313]

Others were significantly more specific about the solution,
even imposing additional restrictions, yet still leaving doubt
as to the student’s true understanding of the concurrency
issue in question. Here we see evidence of an attempt to
move the potential point of concurrent access in an expressed
solution:

The only real way to avoid this is and still have
multiple sellers is to run the booking on a com-
puter network, with a master list of the seats
available. The process would then go something
like this: a caller calls in and requests n num-
ber of seats. The master list can be ordered in
such a way that it fills the seats front to back,
left to right, and when a seller requests n seats, it
gives the next n seats on the list. Seat orders that
have been cancelled are inserted at the top of the
available list, in order of precedence. The seller
can reserve the seats, ask if the seats are accept-
able to the customer, and if so, proceed with the
transaction. .. This would avoid double booking
because during the time the seller is offering the
seats to the customer, they are withheld from the
list, and the other sellers drawing from the list
would not have access to those seats. [ID130]



C2 solutions differed from C1 in that they used explicit
communication with a centralized resource which made seat
assignments (sometimes identified as a database).

In order to avoid this, we could set up the database
so that only one person could access to the database
at a time. This would slow sales significantly, but

is the safest setup. [[D440]

Another variant of this explicit communication involved a
particular ordering required to ensure a safe process includ-
ing lock-stepping or pipelining the process.

These problems could possibly be avoided if in-
stead of multiple people selling tickets and being
involved in every step of the process, the sell-
ing process was divided between two employees.
This way, while the second employee was taking
care of the payment of the first caller, the first
employee could start to deal with the next sale,
and then transfer the call to the payment em-
ployee. [ID120]

Another variant of pipelining doesn’t require a computer
solution for the concurrency issue at all:

A possible solution to this problem would to have
a stagger-start approach when more than one
worker is on the phone. Example when the first
caller calls, worker A picks up the phone right
away and starts to do their job. Then the sec-
ond caller calls right after the first has called.
Worker B then wait until the phone rings 3 times
then worker B picks up and starts the process.
[ID121]

C3 solutions (the most common) involved distributing re-
sources in some way to avoid simultaneous access. The most
common resource to be distributed was the seats to be sold.
Some students remarked on potential issues with this ap-
proach:

Perhaps if each vendor were responsible for a
section of the concert hall, and finding the best
seats within their section, this problem would be
solved. But that solution also means that some
vendors will fill up the “good” seats in their sec-
tion faster, and the customer won’t get the ab-
solute best seats they could. Chances are good,
however, that the customer wouldn’t be aware
that there were better seats available, and would
rationalize that the concert filled up quickly. [ID303]

Others were more specific about the technique they would
use to distribute resources — by assigning a seller to a partic-
ular type of seat. They then noted that this could simplify
or uncomplicate things — pointing out a possible benefit.

One way we could fix this problem would be to
assign a section of seats to each seller. This way
no seats are sold twice and it would be more or-
ganized. One seller would be in charge of one
price and one section, so this makes the selling
of seats faster and more efficient. [ID404]

The sellers can organize themselves to sell spe-
cific seat sections. There can be an operator
that finds out the general section that is desired,
and forward the call to the seller of that section.
[ID323]

A derivative of this solution of resource distribution was
to place the entire resource under the control of one seller:

To solve this we could only have one seller work-
ing to process the seats properly and without
overlapping. [ID416]

4.3.5 Decentralized Solutions

Decentralized solutions are distinguished from centralized
solutions by one key component — did sellers themselves
make decisions and actual seat assignments? If so, then
the solution is categorized as decentralized.

A common decentralized answer may reference a shared
resource (e.g. a database or document) but the sellers make
decisions individually based on that resource, rather than
deferring to a centralized entity.

To resolve this issue, there should be some com-
munication between the sellers. Ideally, the sell-
ers would mark the seats as unavailable on the
same documents, so that there could never be
any doubling. [ID101]

Other examples of non-specific communication among dis-
tributed sellers includes “know][ing]...dr[a]w[ing] off of the
same information that was updated with each transaction
7[ID304], “inform the other sellers of this by some form of
communication.” [ID437], “using a program that is con-
stantly updated.” [ID434]

Speed is a common theme with words like “instantaneously”
[ID425], “instantly” [ID426] [ID402], “constantly” [ID434],
“continuously” [ID410], and “real-time.” [ID417]

Some were more specific in how communication needs to
occur and in some cases seemed to realize that the problem
may not be completely solved:

A much easier way however would be to use a
computer program that networks each seller. This
way, every seller has access to every seat avail-
able. As soon as a booking is made, it will auto-
matically register on ever seller’s screen, and the
chance of there being a double booking will be
close to impossible. [ID323]

One student constrained the problem, but provided very
explicit communication directives:

So I would change the order of operations so that
the 2 or more people booking seats would be re-
quired to check with each other while booking as
to not book the same seats, in that way adding
another step and aleviating the two problems.
[ID409]

4.3.6 Non-computing-oriented solutions
Several solutions distinguished themselves for their dis-

tinctive non-computing and non-technological approach, though

they could all be classified as either centralized or decentral-
ized.



We could mark the same seat map with different
colored markers for each sell. [ID106]

This solution is a decentralized one, since one imagines in-
dividual sellers, each with their own colored marker, racing
forward to a large map to mark off seats.

This problem could be avoided by only allowing
one vendor into the concert hall at a time. But
this would be unreasonable if the concert hall
were too large, or there were too many vendors
working to reserve seats. Perhaps if each vendor
were responsible for a section of the concert hall,
and finding the best seats within their section,
this problem would be solved. [ID303]

This response provided two solutions, the first decentral-
ized and the second centralized by division of resource. Here
we imagine sellers with cell phones dashing around the phys-
ical hall, placing markers of some sort on actual, physical
seats. Of note is the discussion of scaling issues in the an-
swer.

4.3.7 Common Errors in Solutions

The two most common errors in student solutions were in
thinking that the problem could be solved with a faster sys-
tem and in devising solutions that simply moved the point
of concurrency to another point in the algorithm.

As we noted when describing the decentralized solutions,
students suggested speed was needed to avoid many prob-
lems.

To avoid this problem we could have very high
“refresh” rates or have a way of reservering “n”
seats as the process is still going through. [ID
423]

Second, there must be instantaneous updates to
the availability of seats. As soon as n seats are
marked unavailable - even before the payment
processing - the seats need to be marked unavail-
able. This way, another seller cannot try to re-
serve a seat that has already been “reserved”.
In addition, the system (and screen) would need
to be refreshed every time a reservation is made.
[ID 425]

These problems might be avoided by having a
computer system that automatically (to the sec-
ond) inputs the seat reservation for that cus-
tomer. [ID438]

Many solutions moved the point of concurrency.
Here, the point is moved to a preview step:

One more solution would be to have the com-
puter show the n seats as unavailable as soon as
any seller has them pulled up on their screen.
With this system, only one seller could see these
seats available at a time. If one seller (seller A)
pulls up n seats for a customer, then another
seller (Seller B) searches for the best seats, those
seats that seller A was looking at would not be
shown to seller B. [ID122]

show which seats are being worked with by which
seller, so that other sellers can’t choose the same
seats at the same time [ID420]

Another re-targeting of the point of concurrency was to a
graphical interface:

Creating a visual representation of the concert
hall using a computer would alleviate this prob-
lem. Each seller working would mark a certain
number of seats for their clients, letting other
sellers know which seats are being purchased (po-
tentially) and which seats are free for booking.
[ID413]

One student realized his distributed, graphical interface
only hid the concurrency problem and made a novel sugges-
tion that appears to use the inherent randomness of human
interaction to deal with the problem.

Each seller would have their own computer and
all of them would be connected, so once a seat
is claimed, all of the other sellers will see it. If
two sellers happen to click at the same time, a
seperate window will have to open and they both
will have to try again. [ID402]

One interpretation of this solution is that the separate
window opens when a conflict is detected and forces the
sellers to back off and retry, assuming that it is unlikely
the sellers will try again at the same time. This of course
leaves many issues unresolved including how the conflict is
detected and whether or not other sellers could get in and
reserve the seat desired by these two sellers.

S. DISCUSSION

5.1 Comparisons with Ben-David Kolikant’s
study

While our study is strongly based on Ben-David Kolikant’s
work [2] there are a number of significant differences. In this
section we compare the two studies’ methods, and results,
and discuss points of similarity and hypothesize about dif-
ferences in the results. We also address possible cultural
complications which may have affected solutions.

5.1.1 Research methodology

Ben-David Kolikant’s research methodology involves a se-
ries of assignments in a course on concurrency, the first of
which is the cinema ticket assignment presented in Section
2. This question is posed in a detailed, pseudo-code format.
The pseudo-code given for one machine is specifically de-
signed to support the sale of one ticket at a time, which will
pick the best ticket. The solution form requested included a
hardware system specification, pseudo-code, and an expla-
nation of the answer. The work and its quality were assessed
and graded as part of the course.

Our research methodology differed significantly. Our data
comes from college students at a range of United States
institutions, at the beginning of the CS1 course. These
students have a diverse background and, due to the multi-
institutional nature of our data collection, have different ex-
pectations for the course in which they are enrolled. How-
ever, it is unlikely that they have any expectation of study-
ing concurrency in this course, and have never been exposed



to the idea of concurrency as a computing topic. Due to
students’ relative lack of experience and due to a reasonable
need not to scare students in their first week of CS1, our
assignment takes the form of a more open-ended, descrip-
tive question, written in English. As a consequence, our
assignment statement is more vague and can be interpreted
more widely and varyingly. Because no specific answer was
requested, the number and content of student answers var-
ied. A complicating factor is that, since this was a first
assignment in a new course (and in many cases in a stu-
dent’s first experience in college) concerns about what the
instructor wanted in the way of an answer and motivation
as to why this question was being asked influenced the an-
swers received. Students received credit for completing this
assignment, but the quality of the answer was not assessed
for points. Additionally, the degree to which the answers to
this assignment were integrated (or even discussed) in the
subsequent course was not controlled.

The differences in both the questions posed and the types
of response solicited did not allow us to categorize responses
in as precise a manner as Ben-David Kolikant. We began by
trying to apply the five categories defined by Ben-David Ko-
likant (three centralized and two decentralized). However,
we found that the imprecision of our English responses did
not allow us to accurately determine if communication was
an implicit or explicit event in decentralized solutions — so
we only report on decentralized solutions as a whole. Ad-
ditionally, since our problem and solution type allowed for
multiple answers and answers to different questions, we also
introduced categories to account for different problems being
addressed, not addressing the problem at all, bad solutions
to the problem, and ambiguous solutions.

5.1.2  Comparison of Results

Ben-David Kolikant’s discussion focuses on the three sub-
goals that together contribute to the solutions she evaluated.
These are described as “(a) the algorithmic goal of the sys-
tem, (b) synchronization goals, and (c) reasonableness.” [2]
We make comparisons with our study following the struc-
ture, and then look at an overall comparison.

Algorithmic goal In the Ben-David Kolikant study, the
problem posed was very well constrained, so the students all
shared the same algorithmic goal: to sell the best ticket pos-
sible. Because of the unconstrained nature o f our questions,
our subjects did not have the same consensus: they identi-
fied a number of different goals, some of which are provided
in the results section. Two goals stand out in particular:
students cared about making it easy to make seats avail-
able again after being given up, particularly as it related to
the goal of providing the best seats to later customers; and
students were concerned with handling group ticket sales,
making sure seats were available for large groups to sit to-
gether even as the venue filled.

Synchronization Goal 33% of the solutions in the Ben-
David Kolikant study were centralized. Our study shows
an even higher number of centralized solutions (55%). This
is consistent with Resnick [19], whose studies show that in
daily experience managing a centralized solution to a prob-
lem is easier than managing entities in a decentralized way.
Interestingly, despite the explosion of decentralized entities,
particularly the Internet, since Resnick’s studies, the stu-
dents in this study were still more inclined to a centralized
solution. Ben-David Kolikant notes that Resnick believed

an increase in exposure to decentralized entities would in-
crease the likelihood of using decentralization, but we find
no evidence this has happened. (We did not ask students
about their Internet experiences. Anecdotally, however, we
believe that all the students in this study were experienced
Internet users.) We will return to discuss the differences
in breakdown of centralized and decentralized solutions be-
tween these two studies at the end of this section.

Consistent with the Ben-David Kolikant study, we found
that students concentrated on sharing information across
sellers rather than preventing interleaving access to the data-
base, with only six students discussing the interleaving of
operations. However, it may well be that the nature of our
task was simply not as suggestive of database issues as the
specific pseudo-code given in Ben-David Kolikant’s problem
statement, particularly given the lack of experience in our
CS1 students.

While Ben-David Kolikant is able to show that students
“exaggerate the grain of an atomic action,” assuming check-
ing and updating the database is atomic, we find that a
description of even this level of granularity is present only
in the most explicit and detailed of our solutions. Many of
the responses did not make this level of description of gran-
ularity of interaction clear, leaving it ambiguous as to how
well they really understood the issue at hand.

Reasonableness In her interviews with students, Ben-David
Kolikant found that students sometimes solved a simpler
problem than the one assigned (the “assume-we-have-a-ladder”
phenomenon). Ben-David Kolikant refers to these solutions
as ones that do not fulfill the goal of being “reasonable” so-
lutions. We see this phenomenon in our student solutions
as well. From the wording of solutions, it is sometimes clear
that students propose C2 (constant rate) or C3 (division of
resources) solutions as “easy” or “simple” answers.

Interestingly, some of our students showed an ability to
reason about the quality of their solutions. This student
recognized the limitations of his or her solution, without
suggesting a better one:

Perhaps if each vendor were responsible for a
section of the concert hall, and finding the best
seats within their section, this problem would be
solved. But that solution also means that some
vendors will fill up the “good” seats in their sec-
tion faster, and the customer won’t get the ab-
solute best seats they could. Chances are good,
however, that the customer wouldn’t be aware
that there were better seats available, and would
rationalize that the concert filled up quickly. Also,
someone will move in to any “better” seats that
are left empty after the start of the concert. [ID303]

This student gave both an “assume-we-have-a-ladder” so-
lution and alternatives (s)he believed to be better:

So the obvious solution would be to fire one seller,
and just have one working at a time. (Just kid-
ding — kinda). But the thing to do would be
to ’assign’ each seller a section of the arena or
wherever the concert is taking place. One seller
would be in control of half of the seats, and the
other of the other half. There would be no con-
flicting seats. Or they could just switch systems
to general admission. One more solution would



be to have the computer show the n seats as un-
available as soon as any seller has them pulled
up on their screen. With this system, only one
seller could see these seats available at a time. If
one seller (seller A) pulls up n seats for a cus-
tomer, then another seller (Seller B) searches for
the best seats, those seats that seller A was look-
ing at would not be shown to seller B. There-
fore this would be a first come first serve system
and would be flawless and not one seat would be
shown as available at more than one time. [ID
122]

Influence of Real World Ezperience Ben-David Kolikant
notes the influence of real-world experience with servers,
databases, and networks which can be used to share infor-
mation and allow communication among entities. We see
similar references in our answers. Additionally, given our
subject pool, we see significant influence of the U.S. cultural
phenomenon, Ticketmaster®, and probably specifically the
ticketmaster.com website. On this website, one selects an
event of interest (performer, venue, date and time), then
provides the number of seats desired and the price level one
is willing to pay. The site then presents the best seats for
the event at the price level. Customers have two minutes to
pay for the tickets before they are released. One can also
search again for different seats.

Overall Comparison Our results differ significantly from
Ben-David Kolikant in the percentage of centralized solu-
tions. It is our belief that our larger percentage of central-
ized solutions stem from two related causes. First, 82% of
our centralized solutions are C2 or C3 solutions. Only 33%
of Ben-David Kolikant’s centralized solutions were C2 or C3
solutions. As Ben-David Kolikant brings up in the discus-
sion of reasonableness, students will often make simplifying
assumptions, not because they are reasonable, but because
it will allow them to solve the problem posed to them more
easily. Given our more open-ended response type, we be-
lieve that it was more “reasonable” to students to at least
pose a C2 or C3 solution to our problem. A second and
related effect also relates to simplicity and reasonableness.
Given our less-well-defined problem statement and reduced
direct engagement in the classroom setting of the problem
we posed, students were not necessarily prodded to consider
or outline a more complex decentralized solution in the same
way that Ben-David Kolikant’s students might have been.

5.2 Beginner Preconceptions and Pedagogy

Focusing on the issue of student preconceptions, we ob-
serve that students certainly understood the cause of prob-
lems inherent in supporting multiple sellers and expressed
the problem well. Many were also capable of suggesting rea-
sonable solutions. However, there are clear boundaries to
the commonsense knowledge students brought to this topic.
Many students chose to “pass the buck” on concurrency,
pushing the issue from buying a seat to reserving it. In ad-
dition, they seemed to believe that if the sellers have a fast
enough reservation system, there is no race condition.

In both correct and incorrect preconceptions, these stu-
dents appear to essentially enter our first class at the same
level of intuition as they enter whichever course is their first
experience with concurrency. Instructors in concurrency
courses may find it useful to leverage the preconceptions
by conducting an exercise like this and picking out a va-

riety of answers for further discussion to explicitly address
the common errors, in particular emphasizing the real-world
nature of the problem, pointing out that the same problem
will exist for reservations as exists for sales, and that race
conditions will come up even on a “fast system”.

The combined effect of this study and Ben-David Ko-
likant’s study suggest that dealing successfully with con-
currency is not completely natural — students recognize the
problems, but propose solutions that may simplify the prob-
lem or not quite handle the race conditions involved. It
may be useful as instructors in early courses to point out in-
terleavings, atomic operations and possible race conditions
as they come up, for example, in the use of GUI inter-
faces. While a solution does not need to be provided at
the CS1/CS2 level, the introduction of the issue may help
students grapple with it more successfully in an operating
systems or concurrency course.

6. CONCLUSIONS AND FUTURE WORK

This paper reports on a modified replication of the cin-
ema ticket problem by Ben-David Kolikant [2] to identify
preconceptions students have regarding concurrency issues.
In this study CS1 students from five institutions in the U.S.
were asked in their first week of study to answer, in English,
an open ended question about the difficulties of having more
than one person selling tickets for the same concert. Answers
were categorized as centralized and decentralized solutions
using the scheme developed by Ben-David Kolikant [2].

We find that students are able to recognize the big issue
of selling duplicate tickets and that many are able to sug-
gest solutions to this problem. We find that students gave
solutions of sufficient quality that we could use Ben-David
Kolikant’s categorization scheme for analyzing solutions of
more advanced students with few modifications. Some stu-
dents were able to describe both centralized and decentral-
ized solutions to the problem. We found a greater occur-
rence of centralized solutions than reported by Ben-David
Kolikant, which may be a factor of the less specified prob-
lem statement or by the reduced engagement of the students
in the response.

While not relating directly to most introductory computer
science classes, this study provides more evidence that be-
ginners are neither blank slates nor empty of useful skills.
They bring analytical skills into the first day of computer
science and this skill can be leveraged. It suggests again
that instructors can leverage the inherent problem-solving
and analysis skills of students by selecting problems with a
context they understand, and then refining these problems
in ways that illuminate differences and difficulties between
their reasoning and solutions and those most easily created
on the computational models we use.

We see evidence, in the comparison with Ben-David Ko-
likant, that experience provides more sophistication, for ex-
ample in the granularity of the described solution and in
the use of distributed resources. Going further in this direc-
tion, it may be worth asking students after the first course
to address this concurrency problem to see what new fea-
tures appear in the solutions. It is also worth investigating
other real-world tasks that demonstrate these boundary con-
ditions — cases in which most students can give a good start
but that also provide an entry into showing the need for a
deeper sophistication. Tasks relating to typical introductory
computer science topics would be particularly valuable.
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