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Abstract

XML and other semi-structured data may have partially
specified or missing schema information, motivating the use
of a structural summarywhich can be automatically com-
puted from the data. These summaries also serve as in-
dices for evaluating the complex path expressions common
to XML and semi-structured query languages. However, to
answer all path queries accurately, summaries must encode
information about long, seldom-queried paths, leading to
increased size and complexity with little added value. We in-
troduce the A(k)-indices, a family of approximate structural
summaries. They are based on the concept ofk-bisimilarity,
in which nodes are grouped based on local structure,i.e.,
the incoming paths of length up tok. The parameterk
thus smoothly varies the level of detail (and accuracy) of
the A(k)-index. For small values ofk, the size of the in-
dex is substantially reduced. While smaller, the A(k) index
is approximate, and we describe techniques for efficiently
extracting exact answers to regular path queries. Our ex-
periments show that, for moderate values ofk, path evalu-
ation using the A(k)-index ranges from being very efficient
for simple queries to competitive for most complex queries,
while using significantly less space than comparable struc-
tures.

1. Introduction
With the rapidly increasing popularity of XML for data
representation, there is a lot of interest in query process-
ing over data that conforms to a labeled-tree or labeled-
graph data model. A schema for such data, if present, may
only partially constrain the data. For example, in XML
Schema [31], the<any> construct allows arbitrary content
to appear under a given element. As a result, several tech-
niques have been developed to extractstructural summaries
directly from the data [13, 14, 15, 22, 23]. By aiding the
user in query formulation and serving as a convenient place
to store statistics [14], a structural summary can fulfill many
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of the roles of the schema in a traditional database, but, un-
like a schema, it is not prescriptive and thus may change
with any update.

Structural summaries can also play an important role in
query evaluation for graph-structured data, even when a
schema is present. In each of the many query languages
proposed for querying such data [1, 5, 9, 10, 11, 27], the
relatively simpleFROM clause of SQL has been replaced
by a pattern language[12] built aroundpath expressions.
While simple path expressions were popularized in object-
oriented query languages, most path languages proposed
for semistructured, XML, or graph-structured data are sub-
stantially more complex, using either regular path expres-
sions [5, 27] or XPath [7] expressions [6, 9]. Efficient
query answering in these languages clearly depends on ef-
ficient evaluation of complex path expressions. Structural
summaries of semi-structured data aid in this evaluation by
pruning the search space. Alternatively, anindex graph,
consisting of a structural summary along with a stored map-
ping from summary nodes to data nodes, may be used to
evaluate such path expressions [14, 21] directly.

This paper introduces the A(k)-indices, a family ofeffi-
cient, flexibledata structures capable of serving as structural
summaries of—or index graphs for—graph-structured data.
The key observation exploited by the A(k)-indices is that
not all structure is interesting. In particular, long and com-
plex paths tend to contribute disproportionately to the com-
plexity of an accurate structural summary [15]. The A(k)-
indices become approximate for paths longer thank, thus
exploiting the similarity of short paths to reduce the size of
the structure. The A(k)-index is substantially smaller than a
fully accurate structure, substantially faster for shorter path
expressions and, surprisingly, quite competitive for arbi-
trary path expressions.

Beyond the introduction of the A(k)-index, this paper
makes two key contributions. First, we develop efficient
techniques for extracting exact answers to path expressions
from approximate index graphs. These include techniques
for validating nodes which are in-doubt and observations al-
lowing a number of needless validations to be avoided. Sec-
ond, we report the results of a preliminary study of perfor-



mance which addresses (1) the comparative performance of
the A(k)-index, the 1-Index [21] and the original data graph
on two real-world data sets, and (2) the impact of the param-
eterk on the size of the index graph and performance. Our
performance results show that the A(k)-indices are space-
efficient and effectively support path queries. For example,
on a large classes of “simple” queries evaluated on a subset
of the Internet Movie Database [30], using the A(3)-index
reduces query processing cost (measured in graph-node vis-
its) by around 47% compared to the 1-Index. On the same
data set, the A(3)-index is much smaller than the 1-Index
with 62% fewer nodes.

The rest of the paper is organized as follows. Back-
ground material is presented in Section 2. In Section 3,
we introduce the A(k)-index and its construction algorithm.
Section 4 introduces techniques for path-expression evalua-
tion, and Section 5 evaluates the search performance of the
A(k)-index. We discuss related work in Section 6 and con-
clude in Section 7.

2. Background
We model XML or other semi-structured data as a directed,
labeled graphG = (VG, EG, root , ΣG, label , oid , value).
Each edge inEG indicates an object-subobject or object-
value relationship. “Simple” nodes inVG have no outgo-
ing edges and are given a value via thevalue function.
Each node inVG is labeled with a string-literal fromΣG

via the label function and with a unique identifier via the
oid function, with simple objects given the distinguished
label,VALUE. There is a singleroot element with the dis-
tinguished label,ROOT.

Example 1: Figure 1 shows a portion of a hypothetical
“metro-guide”, represented as a data graph. In the figure,
the numeric identifiers in nodes representoid ’s. Such a
guide could reasonably be built from a collection of XML
documents published by businesses, civic groups and other
interested parties. Non-tree edges may be implemented with
the ID /IDREF construct or XLink [29] syntax.

We now introduce some terminology about paths and
path-expressions. Anode pathin G is a sequence of nodes,
n0 . . . np such that an edge exists between nodeni and
ni+1, for 0 ≤ i ≤ p − 1. A label path is a sequence
of labelsl0 . . . lp, and a node-pathmatchesa label path if
label(ni) = li, for 0 ≤ i ≤ p. A path (if not specified,
a path refers to a label path),l0 . . . lp, matches(or is valid
for) a noden if l0 . . . lp matches a node path ending inn.
A k-path is a path withp ≤ k. A simple path expression
is a label path in which the first label is ROOT. Aregular
path expression, R, is defined in the usual way in terms of
sequencing (.), alternation (|), repetition (∗) and optional
expressions (?), as shown below.

R ::= ΣG | | R.R | R|R | (R) | R? | R∗

The symbol matches anyli ∈ ΣG. Path expressions
always begin by matching theroot element of the database
graph, and the initialROOT label is implied if omitted.
We denote byL(R), the regular language specified by
R. We say thatR matches a data graph noden, if some
label path appearing as a word inL(R) matchessome
node path ending inn. The result of evaluatingR on G is
the set of nodes inVG which matchR. For example, the
simple path expression,ROOT.metro.cultural.museum,
evaluated on the graph in Figure 1, would return{6,7}.
The following, more complicated expression finds the
names of hotels or museums in Westside or Northside:
ROOT.metro.neighborhoods.neighborhood.( | . )?.
(hotel|museum).name. This expression matches the
nodes{12,14,16,19}. Here, the optional| . allows the
query to ignore irregularities in the schema, such as the use
of attraction.cultural tags for museums but just ahotels
tag for hotels. Another common class of queries includes
an initial ∗; for example, ∗.hotel finds all hotel nodes in
the graph.

The need to create a structural summary for semi-
structured data was clearly identified in the Lore
project [18], and theDataGuide was created in re-
sponse [14, 23]. The approach taken by the dataguide, and
followed by other work including this paper, is to create a
structural summary in the form of another labeled, directed
graph. The idea is to preserve all thepathsin the data graph
in the summary graph, while having far fewer nodes and
edges.

As proposed in [14, 21], it is possible to associate an
extentwith each node in the summary to produce anindex
graph. If A is a node in the index graphI(G), thenextI(A),
the extent ofA with respect toI(G), is a subset ofVG. The
index graph resultof executing a path expressionR onI(G)
is the union of the extents of the index nodes that matchR.
We require that the extent mapping besafe: if l0.l1 . . . lk
is a label path which matches a path to nodev in G, then
there must be some nodeA in I(G) for which l0.l1 . . . lk
matches a path toA and v ∈ extI(A). This guarantees
that the result of any path expressionR on G is contained
in the result ofR on I(G). An index graph is said to be
preciseif the converse also holds; that is, ifv ∈ extI(A)
andl0.l1 . . . lk is a valid label path forA, thenl0.l1 . . . lk is
a valid label path forv.

We now define the notion ofbisimilarity [26], since it is
closely related to the A(k)-index. A symmetric, binary re-
lation≈ on VG is called abisimulationif, for any two data
nodesu andv with u ≈ v, we have that (a)u andv have
the same label, and (b) ifu′ is a parent ofu, then there is a
parentv′ of v such thatu′ ≈ v′, and vice-versa. Two nodes
u andv in G are said to bebisimilar, denoted byu ≈b v,
if there is some bisimulation≈ such thatu ≈ v. For ex-
ample, in Figure 1, objects 8 and 9 (thehotel nodes) are
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Figure 1. An example graph-structured database

bisimilar, while objects 21 and 23 (labeledattraction) are
not, since 21 has a parent labelednearby. By extension,
objects 25 and 26 (the nodes immediately below them, la-
beledcultural) are also not bisimilar, since they have non-
bisimilar parents. An easy induction shows that if two nodes
are bisimilar, the set of in-coming paths into them is the
same. The partition ofVG induced by≈b can be used to
obtain an index graph by creating an index node for each
equivalence class and setting the members of the equiva-
lence class as the extent of the node. An edge is added from
index nodeA to B when an edge exists inG from some
nodeu in ext [A] to a nodev in ext [B]. This is one way of
defining the 1-Index [21]1. This index graph is referred to
asBisim(G) or simply “the 1-Index” in this paper. Thus,
there is a worst case guarantee on the index size, since the
1-Index can never be bigger than the data graph. Further, it
can be computed in timeO(m lg n) wheren is the number
of nodes andm is the number of edges in the data graph,
using an algorithm proposed by Paige and Tarjan [25].

3. The A(k)-index
The 1-Index and the DataGuide precisely encodeall paths
in the data graph, including long and complex paths. Thus,
even when two nodes are locally similar, they may be stored
in different extents due to a variety of complex and/or cir-
cuitous paths. For instance, in the example in Figure 1, the
subtrees rooted at 6 and 7 appear similar. But, they are not
bisimilar due to the incoming path to 6 that passes through
hotel.nearby.attraction.cultural. Even in this small exam-
ple, it is clear that this path may not be very important for
queryingmuseum objects. It is easy to get longer paths
with even less semantic content in larger examples, and

1The authors of [21] also consider the use of thesimilarity relation-
ship for the 1-Index. We do not consider this alternative dueto inefficient
construction algorithms for the similarity relation – see [21] for details.

when many such paths exist, the 1-Index can be close to the
data graph in size. In fact, on a subset of the data from the
Open Directory Project (see Section 5), the 1-Index turns
out to be about 45% of the data graph size.

Of course, if these long and complex paths are key to
the majority of queries written by users, then the larger 1-
Index may be preferred. However, we expect such queries
to be rare in practice. Based on this intuition, we explore the
problem of building index graphs that take advantage oflo-
cal similarity, in order to reduce the size of the index graph.
By this, we mean that nodes with similar structure, for ex-
ample themuseum nodes of Figure 1, should be grouped
together as much as possible, even if there is some long
path (in this case through the hotels) which distinguishes
them. To accomplish this goal, we exploit the fact that any
equivalence-class partition of the nodes of the data graph
can be used to create an index graph by a process similar to
the one for the 1-Index. Any such index graph issafeand
is never larger than the data graph in size; however, such
an index graph may not beprecise. To illustrate this point,
the index graph obtained by simply classifying the nodes
of the graph shown in Figure 1 bylabel is shown in Fig-
ure 2(a). In this figure, the labels associated with the index
nodes correspond to the common label of the data nodes in
their extents. The numbers shown beside the index nodes
are theoids of the data nodes in the respective extents. We
first note that the index graph has combined the subtrees
starting from nodes labeledcultural andbusiness, respec-
tively. This is certainly an acceptable approximate summary
for the original database. However it does have false paths:
e.g., themuseum node withoid 7 is not reachable from
any node labelledhotel in the original database.

Consider further the index graph in Figure 2(b). This is a
more detailed index graph with the following special prop-
erty: there areno false paths of length 2(length measured



nearby

hotel

phone name

attraction

neighborhoodmuseum

cultural business neighborhoods

metro

ROOT

2013,15 12,14,16
19,22,24

hotels

17,18 21,23

6,7 8,9

3,25,26 4 5

2

1

10,11

(a)

hotel

metro

ROOT

neighborhoodsbusinesscultural

museum neighborhood

name hotels name

phone name

nearby

attraction attraction

cultural
cultural

2

1

543

6,7 8,9 10,11

12,14 20 22,24

13,15 16,19

17,18

21 23

25

26

(b)

Figure 2. Two index graphs for the data graph in Figure 1

in terms of number of edges) in the index graph. For exam-
ple, the nodes 25 and 26 are now separated, because of the
2-length pathnearby.attraction.cultural into node 25. We
could go further by splitting the node containing 6 and 7 in
its extent to ensure that all paths of length 3 were valid. We
formalize this process to obtain a family of index graphs.
The main idea of these structures is to give up absolute pre-
cision and group similar pieces of data together in order to
allow the index size and the maximum area of the index
graph affected by an update to be controlled by the param-
eterk, which is set to 2 in Figure 2(b). As the parameter
increases, indices in the family get more and more accurate,
finally equaling the 1-Index.

3.1 An Index-Graph Based onk-Bisimilarity
As a step towards achieving the goal of indexing the “de-
sirable” paths of a data graph, we propose the A(k)-index
which classifies data graph nodes based on paths of lengthk
entering these data nodes. We obtain the A(k)-index using
the notion ofk-bisimilarity [20], which satisfies the prop-
erty: if two nodesu andv arek-bisimilar, then the set of
k-paths into these nodes is identical.
Definition 1: ≈k (k-bisimilarity): This is defined induc-
tively.

1. For any two nodes,u andv, u ≈0 v iff u andv have
the same label.

2. Nodeu ≈k v iff u ≈k−1 v and for every parentu′ of
u, there is a parentv′ of v such thatu′ ≈k−1 v′, and
vice versa.

By a simple induction, we can see that this definition en-
sures the weaker condition it sets out to achieve. Note that
k-bisimilarity defines an equivalence relation on the nodes
of a graph. We call this thek-bisimulation. We can ob-
tain an index graph from thek-bisimulation by creating an
index node for each equivalence class and associating the
data nodes in the class to the extent of the node. Edges
are added by a process similar to the one for the 1-Index,

explained in Section 2. We call this the A(k)-index. In-
creasingk refines the partition induced by this equivalence
relation by splitting certain equivalence classes. This con-
tinues until a fixed-point is reached, at which the relation
can be shown [20] to be exactly the (maximal) bisimilar-
ity relation from whichBisim(G) (the 1-Index) is derived.
This process is illustrated in Example 2.
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Figure 3. A Sequence of A(k)-Indices

Example 2 Figure 3 shows a data graph and its A(0)-
index, A(1)-index and A(2)-index based respectively on 0-
bisimilarity, 1-bisimilarity and 2-bisimilarity. In thiscase,
the 2-bisimulation is actually the maximal bisimulation-
based 1-Index.

We also note that the index graphs shown in Figures 2(a)
and 2(b) are the A(0)-index and the A(2)-index respectively
for the data graph shown in Figure 1. This illustrates how
the family of A(k)-indices can be used to pick a structural
summary with a requisite amount of detail, or which meets
a given space constraint. We now describe, without proof,
some properties of these index graphs.
Property 2:

(a) If nodesu andv are k-bisimilar, then the set of label-
paths of length≤ k into them is the same.

(b) The set of label-paths of lengthk into an A(k)-index
node is the set of label-paths of lengthk into any node
in its extent.



(c) The A(k)-index is precise for any simple path expres-
sion of length less than or equal tok.

(d) The A(k)-index issafe, i.e., its result on a path expres-
sion always contains the graph result for that query.

(e) The(k + 1)-bisimulation is either equal to or is a re-
finement of thek-bisimulation.

From Property 2(a), one can see that by varyingk, we
obtain a smooth range of A(k)-indices that increase in size
and converge to the 1-Index. Further, by Property 2(e) each
subsequent index is derived by splitting some of the nodes
in the previous index. This is the intuition behind the index
construction algorithm described in the next section. Fi-
nally, we present a property of the A(k)-index which limits
the impact of an update on the index graph. Unlike the 1-
Index, the effect on the index of any update in the data graph
is limited locally to a “neighborhood” of distancek, as for-
malized by the following property:
Property 3: Letv, x, y be three nodes such that the shortest
path tox fromv or to y fromv contains more thank edges.
If an edge is added or deleted going from a nodeu to v,
this update does not affect thek-bisimilarity relationship
betweenx andy.

3.2 A(k)-index Construction
The algorithm to compute the A(k)-index is a variant of
the standard algorithm [25] for computing the bisimulation.
Before presenting the construction algorithm, we introduce
the important notion of thestability of one set of graph
nodes with respect to another. For a set of nodes,A, let
Succ(A) denote the set of successors of the nodes inA,
i.e., the set{v| there is a nodeu ∈ A with an edge fromu
to v}.
Definition 4: Given two sets of data graph nodesA and
B, A is said to bestablewith respect toB if either A is a
subset ofSucc(B) or A andSucc(B) are disjoint.

Let us call a partition,P1, of VG stable with respect to
partition P2 of VG if each equivalence class inP1 is sta-
ble with respect to every class inP2. Then, the(k + 1)-
bisimulation is the coarsest refinement of thek-bisimulation
that is stable with respect to it. If we have two sets of
nodes (ornode-sets), A and B, and we wish to makeA
stable with respect toB, we split A into A ∩ Succ(B)
andA − Succ(B). We represent thek-bisimulation by a
list of node-sets, each of which corresponds to one equiva-
lence class in thek-bisimulation partition, and compute the
(k + 1)-bisimulation in two steps. First, we make a copy of
thek-bisimulation and then we split the equivalence classes
(node-sets) in this copy until they are stable with respect
to the equivalence classes of thek-bisimulation. The pro-
cedurecompute k bisim is sketched in Figure 4. The data
structures used to implement this efficiently are based on
the ones used in [25]. The algorithm maintains a partition

of the data nodes,Q, as a list of node-sets. In each iteration,
the algorithm stabilizesQ with respect to a copy of itself
(line 8 implements stabilization of one node-set w.r.t an-
other). This process is repeatedk times. Thus, if the initial
partition is one by label, i.e is the A(0)-index partition, then
the algorithm outputs the partition corresponding to A(k)-
index. In the figure,X is set to a copy of theQ partition.
This approach takes timeO(km) and spaceO(m), where
m is the number of edges in G. Once thek-bisimulation
partition is computed, the A(k)-index is constructed by the
procedurecompute A(k) index as shown in Figure 4.

3.3 Index Composition and the Label Map
Unlike a value-based index like a hash table, index graphs
are themselves data graphs, and in most cases,any path in-
dex which can be maintained on a data graph can be main-
tained and used on an index graph. Given a variety of pos-
sible index structures, their composition leads to a large in-
dex design space and corresponding path evaluation search
space, both of which are beyond the scope of this paper.
For this work, we consider only one composition: the addi-
tion of a label-map. Thelabel-mapis simply a partition of
data nodes by label, analogous to the “edge index” of [19],
and allows access to nodes with a certain label. It is im-
plemented as a hash table (We consider it unlikely that any
large data graph would be stored without such an mapping,
and data nodes may even be stored clustered by label).

4. Path Evaluation with Approximate Index
Graphs

In this section we present our strategies for data graph and
index graph search, introduce ourvalidation-based tech-
niques for path evaluation on approximate indices, and
present a technical result which allows unnecessary valida-
tions to be avoided.

4.1 Path Expression Evaluation
We evaluate a path expressionR on a graph with either a
forward or abackwardstrategy. The forward strategy sim-
ply involves simulating the action of an NFA on the graph
as described below. A backward evaluation strategy forR
makes use of the label-map, introduced in 3.3, to find the
nodes bearing the final label(s) mentioned inR. ThenR is
evaluated in a reverse manner from these nodes to determine
whether any paths to these data nodes match the automaton.
The intuition here is that the “end” of the expression may be
significantly more selective than the earlier parts, and thus
processing in this manner could be cheaper. Note however
that this is an optimization issue, and depending on the data
and query (as we shall see), either one of forward and back-
ward executions may be better.

One purpose of evaluating multiple search techniques,
including the use of the label-map, is to avoid certain very



procedurecomputek bisim(G,k)
begin
1. Q andX are each a list of node-sets
2. Q = partitionVG by label
3. X = (a copy of)Q
4. for i = 1 to k do
5. foreachX in X do //stabilizeQ w.r.tX
6. computeSucc(X)
7. foreachQ in Q do // split
8. replaceQ by Q ∩ Succ(X) andQ − Succ(X)
9. if there was no splitthen
10. break
11. X = (a copy of)Q
end

procedurecomputeA(k) index(G,k)
begin
1. computek bisim(G,k)
2. foreach equiv. class ink-bisimulationdo
3. create an index nodeI
4. ext[I ] = data nodes in the equiv. class
5. foreach edge fromu to v in G do
6. I [u] = index node containingu
7. I [v] = index node containingv
8. if there is no edge fromI [u] to I [v] then
9. add an edge fromI [u] to I [v]
end

Figure 4. A(k)-index computation

poor evaluation strategies. For example, an initial ‘*’
construct is commonly used to find a pattern anywhere in
the graph, yet with the naive automaton-based execution
scheme the entire graph will be explored with this pattern.
Thus, we use the label-map to begin evaluation with the
first non-wildcardlabels in the query. There are many other
feasible execution plans, but their evaluation is beyond the
scope of this paper.

Forward evaluation of regular path queries on a graph
proceeds as follows:

1. an NFA,A, is created according to the regular expres-
sionP = ROOT .R.

2. A is thenrun on the index graph, i.e., the index graph
is traversed breadth-first, while making corresponding
state transitions in the automaton for matching (node-
label, transition-label) pairs.

3. A table is kept to avoid repeatedly visiting a data node
in the graph in the same state of the automaton, thus
avoiding cycles.

4. When a node in the index graph is reached while the
corresponding automaton state is anacceptstate, the
index node is added to the final result.

Note that due to the table above, each edge is visited only
once in each state, and thus the cost of evaluation is limited
to O(|A|m) where|A| is the number of states in automaton
A andm is the number of edges in the graph. For practical
queries,|A| is a small constant.

4.2 Handling Approximate Index Graphs
To evaluate a regular expressionR on an index graph, we
simply use the (forward or backward) automaton evaluation
strategy above, but adding the nodes inext [B] rather thanB
itself to the result set whenB is accepted by the automaton.

Since our indices are safe, the A(k)-index result set for
R always is a superset of the target set (i.e., the results ob-
tained on the data graph). Further, by Property 2(c), when
the automaton execution strategy above accepts a node,B,
in the A(k)-index graphalong a path of length≤ k from the

root, a node inext [B] mustbe in the target set ofR. When
an index node is accepted by a longer path, the data nodes
are initially added to a “maybe-set”,M , instead of the result
set (By exploring the graph breadth-first, we ensure that the
shortest path to a node is found first).

We deal with the possible false positives byvalidating
the nodes ofM against the original data graph. This vali-
dation is handled by a reverse execution of the automaton
on the data graph beginning with each node inM . While
this is potentially expensive, we take advantage ofshared
pathsto mitigate the expense. The idea is to keep track, for
any node passed on the way to an accept state in the reverse
execution,which statethe automaton was in at that node.
Later, if the node is encountered again in the same state, we
know the validation leads to a “yes” answer, and can termi-
nate the current automaton execution. A similar technique,
with minor modifications, can be used to keep track of paths
that lead to failure as well.

Note that using the backward evaluation strategy on the
data graph and the validation of “maybe” nodes are closely
related. The main difference is the number of nodes which
must be checked using the reverse automaton. In fact, a
backward evaluation strategy on the data graph will usually
need to do a backward traversal from more nodes than the
A(k)-index validation. This is because the A(k)-index pro-
vides better pruning than a simple label-map, at the cost of
visiting nodes in the A(k)-index to achieve this pruning.

4.3 Avoiding Needless Validation
We now prove a theorem that significantly reduces the need
to validate nodes by allowing node extents to be marked di-
rectly as valid. Consider a label-pathp = l1, l2, . . . , lj , j ≤
k and an A(k)-index nodeN , such thatp is thesuffixof one
or more paths toN . For path expressionP , letL(P ) denote
the associated regular language.

Theorem 1: If all pathsp′.p that exist in the database are
in L(P ) for a path expressionP , then all data-graph nodes
in theext [N ] are in the target set ofP .



The proof of Theorem 1 appears in the full version of the
paper [4]. To illustrate the idea behind Theorem 1, consider
evaluating two path expressions,

• bad =A.B.D.E and
• good =A.(B|C).D.E

evaluated on the A(1)-index shown in Figure 3. Upon ar-
riving at oid 7 in the index when evaluatinggood , we can
conclude that it is a valid member of the answer set and
need not be validated, even though it is at distance 3 from
the root along the path we matched. The reason is as fol-
lows: (1) Since the A(1)-index is accurate for the suffixD.E
of the path into the data graph node 7, the existence of a
parent with labelD (in this case, node 5), is ensured, (2)
node 5 is connected to the root, and so there is a path with
suffix D.E into node 7, (3) every path ending inD.E in the
database is matched by this query and hence (4) node 7 is in
the result set of this query. Since this is not the case forbad ,
node 7 must be validated (and in this case will be discarded
from the exact answer).

Our current implementation takes advantage of Theo-
rem 1 in only two cases. First, we disregard the distin-
guished root of the graph, since our data files are drawn
from XML where each document has a single root (and thus
all paths go through that root also). Second, we make use of
the subcase where the path expression is of the form∗ .R,
a common construct. That is, if a nodeN in an index graph
is recognized by an automaton due to some pathp, the por-
tion of p that was matched by the∗ trivially satisfies the
condition of Theorem 1, and thus only the length of the por-
tion of the path matched byR need be considered. The
result of these observations is that many simple queries can
be evaluated accurately on the A(k)-index, and this fact is
demonstrated on queries on real-world data in the next sec-
tion.

5. Performance
In this section, we investigate the performance of the A(k)-
index. We begin with a description of our experimental
framework and datasets, then discuss the impact ofk on in-
dex graph size. Next, we address the performance costs of
evaluating several classes of path expressions against data
graphs drawn from two real-world sources. Section 5.5
summarizes the results of our experimental study.

5.1 Experimental Framework
Data
The experiments described in this section use XML data
drawn from two web sites supporting querying and brows-
ing of that data. The first source we use is the Inter-
net Movie Database (IMDB) [30], and the second is the
Open Directory Project (ODP) [24]. We selected the IMDB
database since it was identified in [14] as a highly cyclic

database likely to stress path-indexing algorithms (neither
the authors of [14] nor we were able to compute the strong
DataGuide on significant subsets of this data). The portion
of the database we use is organized aroundmovie elements
and elements for classes of people who appear in movie
credits–e.g.,actor, director, composer, etc, as well as a
wide variety of information about movies. Cyclicity arises
since each movie element has pointers to individuals who
worked on that movie, and each element representing an in-
dividual has pointers to the movies on which s/he worked.
To create our dataset, we chose a small subset of movies and
all the people associated with these movies. We then sam-
ple all movies associated with current set of people and add
these movies and their associated people to the database.
This process was repeated until the desired database size
was reached, then dangling pointers were removed.

The Open Directory Project [24] data is a hierarchical
classification of topics and internet sites. We extracted
subsets of this data by choosing a set of top-level topics, in
this case “Shopping”, “Home”, “Society”, and “Regional”
forming the “SHSR” data set. We manipulated the original
RDF format so that inter-topic references would appear
as IDREF edges, and selectively replaced<Topic> tags
with the word which served as the topic’s title. That
is, <Topic Name=“home”> would become<Home
NodeType=“Topic”>. This transformation allows mean-
ingful path queries. We note that in a complete query
processing system utilizing index graphs, transformations
like this can be made via simple mappings during index
creation and path expression evaluation. Further, we note
that topics which appear in a path expression but not the
index can be replaced with the tag “Topic” and the final
result set filtered on the original topic. We varied the
complexity of the index graph by only applying the above
transformation to a subset of those tags that appeared most
frequently in the data, e.g., the top 200 frequent tags.

Path Expression Queries

We divide path expressions into two classes for purposes
of evaluating index performance,short and long. Our
queries are linear path expressions generated by performing
random walks on the A(1)-index for a given data set. With
some probability, “don’t care” symbols () were added.
This construct is chosen to simulate an expression which
ignores a few tags at certain levels in the query, perhaps
when the structure of the document is imperfectly known
(note that on cyclic data, ‘*’ accomplishes this very
poorly). For short queries, the length of a path matching
the query varies from 1 to 4, and for long queries the
corresponding lengths are 4 to 8. The intention is that most
short queries will be answered precisely by the A(k)-index
(for most values ofk), while the long queries will require
validation. We also consider two classes of more complex



queries — long queries with an initial ‘*’, and long queries
with an ‘ *’ in the middle.

Query Evaluation Cost Model
In the absence of a standard storage scheme for graph-
structured data, we use a simple in-memory cost model –
the cost of a query is defined to be thenumber of nodes vis-
ited in the index or data graph during automaton execution.
Nodes are not counted as visited when their ids appear in
the extent of a matched index node; however, in the case
of the approximate indices, the data graph nodes visited for
result validation are counted. This cost corresponds to the
number of I/Os if we use a native storage engine to store the
data and indices, and assign a uniform cost to every object
examination. As noted in [14], it is difficult to make guar-
antees about clustering in a graph-based model; each object
examination may therefore require a random disk access.

5.2 Size
As in the case of the 1-Index [21], the size of the A(k)-index
has an upper bound dependent only on the number of dis-
tinct tags and the length of the longest simple path (i.e., a
path without cycles) in the data, independent of the size of
the data. In particular, if we have multiple copies of the
same data graph, the size of the A(k)-index does not in-
crease (of course, the number ofoids stored in the extents
of the A(k)-index increases). However, if the data is “un-
structured”, the A(k)-index is big. One worst case is when
each data node has a unique tag — this represents the case
when there is absolutely no structure in the data. In this
case, the A(k)-index equals the data in size.
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Figure 5. A(k)-index Sizes
Figure 5 shows the variation in the number of nodes in

the A(k)-index on the databases we used for our experi-
ments. The lower curve shows the number of nodes in
the A(k)-index on a sample IMDB database with 190,000
nodes. The A(k)-index, for a range of values ofk, is shown
in the figure as a fraction of the database size. For this
data set, the A(k)-indices are less than 10% of the database
size. Also note that the A(k)-index converges to the 1-Index
(which is also small in this case) for a relatively small value

of k = 15. In fact, beyondk = 6 or so, the A(k)-index is al-
most equal in size to the 1-Index. However, betweenk = 0
andk = 6, the A(k)-index shows a wide range of sizes.

The second curve in Figure 5 shows the A(k)-index sizes
on a subset of ODP data generated using the top 200 fre-
quent tags of the SHSR dataset. The size of the database is
143,242 nodes built on 41,445 topics. The variation in the
sizes of the indices is similar to the case of the IMDB data.
However, note that the size of the 1-Index (which the A(k)-
index converges to atk = 9) is a significantly higher frac-
tion of the database – nearly 45%. Thus the space-saving
properties of the A(k)-index are significantly more impor-
tant for this dataset.

5.3 A(k)-index for Approximate Answers

Long Queries with Initial _*, IMDB Data
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Figure 6. A(k)-index Accuracy
Figure 6 shows details regarding the accuracy of the A(k)-
index on path expression queries. The data set used was
the IMDB data set described in the earlier section, and the
queries were long queries with an initial ‘*’, as described in
Section 5.1. For the moment, we ignore the query execution
mechanism and associated cost, which we shall return to in
subsequent sections. The results shown are averaged over
30 queries.

The x-axis in Figure 6 refers to thek parameter of
the A(k)-index, and the A(k)-index results are shown as
a stacked bar of three components, from bottom to top:
(1) nodes that are guaranteed to be in the answer, (2) correct
nodes that need to be validated (i.e., they are accessible by
paths2 longer than thek of the index), and (3) false posi-
tives.

As expected, the A(0)-index, which simply classifies
nodes by labels, gives a very large number of false answers.
This is because the A(0)-index is extremely small and en-
codes very little of the original graph’s structure. However,
the fraction of false positives quickly drops to below 1, and
is close to 0 fork > 3. Further, the initial ‘*’ in our
queries illustrates how the A(k)-index accurately preserves
all paths of length k, and not just those that start from the

2Note that for “ *” queries, accurate results include those withink from
the node that matches the first label following the “*”



root. The results on queries that do not have the initial ‘*’
are very similar, and are omitted. Note that, of the correctly
returned answers, we still have to validate some of them
since we cannot guarantee their correctness. This number
too drops rapidly ask increases (perhaps making the un-
validated A(k)-index result a reasonableapproximate an-
swerin some applications).

5.4 Path Expression Evaluation Results

Comparison of Index Graphs for Short and Long
Queries
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Figure 7. Query Execution Costs

We first present a cross-section of our results on query pro-
cessing costs for the A(k)-index, the 1-Index and the data
graph. Figure 7 compares query performance across these
graphs, and for different execution strategies and queries.

Each group of bars in the figure shows the following
query execution costs: the A(3)-index3, the 1-Index and
the data graph forward execution costs, followed by the
backward (i.e., with label map) execution costs for these
three graphs in the same order. The execution cost in each
group is averaged over 30 queries and normalized to thefor-
ward execution costof the data graph for that experiment.
The groups correspond to experiments on the IMDB dataset
with short queries, the IMDB dataset with long queries and
ODP dataset with short queries.

This figure brings out the following points: First, therel-
ative performanceof the A(3)-index, 1-Index and the data
graph is very similar across all shown data sets, query types
and execution strategies. (Note that the results for more
complex queries—those containing an ‘*’—are mixed, and
are discussed later). The A(3)-index in these experiments is
clearly better than the 1-Index, which in turn is better than
the data graphregardless of whether a label map is used
(i.e., regardless of which evaluation we use). For instance,
on the IMDB dataset for short queries, the best A(3)-index
cost is half that of the 1-Index cost, which is a quarter of
the data graph cost. Finally, the use of a label map (i.e.,

3Note that the A(3)-index size in the IMDB database is 38% of the
1-Index, and for the ODP database it is 58% of the 1-Index size

backward execution) is not always the best execution strat-
egy. As an example, for short queries, the forward execution
strategy is the cheaper one.

This variation in query performance for forward and
backward execution is mainly due to the use of the shared
paths optimization (see Section 4). On longer paths,
there is a greater chance of sharing, and hence a greater
saving. As an example of the benefit of the shared path
optimization, consider the second group of bars (IMDB
data, long queries): the backward evaluation on the data
graph without this simple optimization (not shown) is a
factor of 3 worse than when it is used. Hence on longer
queries, the backward execution strategy tends to work
better. On shorter paths, there is less likelihood of this
sharing, and forward execution is more efficient for these
queries.

Impact of the Parameterk
Figure 8 shows the impact of the parameterk on A(k)-
index query processing for different query sets and execu-
tion strategies on the IMDB dataset. In each figure, the
execution cost of the A(k)-index is shown as a fraction of
the corresponding 1-Index cost, with the index traversal and
validation costs marked separately. As described earlier,the
validation cost is the number of data graph nodes visited to
resolve the doubtful cases from the A(k)-index result. The
results shown correspond to the best plan in each case (for
shorter queries, forward execution and for longer queries,
backward execution).

Figure 8(a) shows the performance of the A(k)-index on
short queries. As can be seen, the index traversal cost for
the A(k)-index is cheaper by a large factor for the smallerk-
values. Further, the validation cost drops drastically ask in-
creases, and for intermediatek-values it is actually cheaper
to get an approximate result and validate it to get correct
answers, than it is to use the accurate 1-Index. As expected,
larger A(k)-indices do not have noticeable validation costs,
since the queries are mostly satisfied on paths shorter than
k. Figure 8 (b) shows a similar comparison between the 1-
Index and the A(k)-index onlonger queries. The results,
while being largely similar to the previous graph, show a
new feature: the larger A(k)-indices also show some com-
ponent of validation cost.

Figure 9 shows the performance of A(k)-index in com-
parison to the 1-Index for short queries on the ODP data.
The normalizing factor is the 1-Index execution cost for the
same execution mechanism. As can be seen, the results
are quite similar to that of the short queries on the IMDB
database.

This result is important, however, in the light of the con-
siderable size of the 1-Index on this database. Hence, the
results here, combined with the space saving qualities of
the A(k)-index make it a clear winner. We do not consider
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Figure 9. Short Queries on ODP Data

the ODP data for further queries, such as longer queries or
queries containing ‘*’ since the ODP database contained
relatively fewer long paths, and our random walk returned
very few of them.

Summing up the results presented above, we see that
for intermediate values ofk (2-4), the A(k)-index actually
outperforms the 1-Index, even with the validation cost
factored in. We note here that at the value ofk at which the
performance of A(k)-index is best, the size of A(k)-index
is significantly smaller than that of the 1-Index. In fact,
for larger k, since the A(k)-index is almost equal to the
1-Index, there is little difference in performance.

Path Expressions with ‘ *’
We now consider the effect that the presence of an ‘*’ in the
query has on the performance of the A(k)-index. The graph
in figure 10(a) compares the 1-Index and the A(k)-index for
longer path expression queries that have a single ‘*’, at the
beginning of each query. The results again correspond to
the best execution plan. The plot shows how in this case
too, using the A(k)-index can give significant benefits over
the 1-Index. Also note for comparison that the data graph
execution cost (not shown) is a factor of 12 worse than the
1-Index cost.

Figure 10(b) shows the performance of the A(k)-index
on queries that have a single ‘*’, placed somewhere within

the query. We see that in this case the A(k)-index does
worse than the 1-Index. Most of the cost of the A(k)-index
execution is for validating the large number of false paths
found by the ‘*’. Note that these results are for the back-
ward evaluation strategy (Again, for comparison, the best
execution strategy on the data graph is 3.5 times the 1-Index
cost).

5.5 Summary
The results of our experiments section can be summarized
as follows:

• The A(k)-index, while approximate, is close to accu-
rate (for intermediate values ofk) on many path ex-
pressions. This includes simple paths that are longer
than thek of the index, and queries that start with ‘*’.

• The A(k)-index execution cost is competitive and, for
appropriate values ofk, even better than the 1-Index.
This is true even taking into account the validation cost
that the A(k)-index has to bear.

• Some complex queries, (including those which contain
an ‘ *’) show different results, where the A(k)-index
is worse than, although close to, the 1-Index in perfor-
mance.

The A(k)-index is clearly advantageous when most user
path expressions are short, or when a query optimizer can
select which path index to use. When there is a mix of user
queries, the A(k)-index may still be the best choice, since it
is small, will win for most expressions, and will be compet-
itive for most other queries.

6. Related Work
Two previous proposals for indexing semistructured data for
path expressions are the (strong) DataGuide [14] and the 1-
index [21]. We have already examined the difference be-
tween the 1-index and the A(k)-index in Section 3. The
strong DataGuide of a graph can be computed by interpret-
ing it as a non-deterministic automaton and obtaining an
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Figure 10. A(k)-index Performance on Queries Containing ‘*’

equivalent deterministic automaton [2]. A simple path ex-
pression consisting ofn labels can be evaluated by examin-
ing a sequence of exactlyn nodes in the strong DataGuide.
A side-effect is that a data node can appear in the extent
of more than one index node. Also, directly analogous to
deterministic automata, the worst-case number of nodes in
the strong DataGuide is exponential in the size of the data
graph. This behavior is actually attained on a real data set,
as noted by [14], as they were unable to compute the strong
DataGuide on a small subset of the highly-cyclic Internet
Movie Database.

The authors of [23] propose the Representative Object
as a structure that can be used for schema discovery as
well as for path queries. The Full Representative Objects
(FROs) are implemented as DataGuides. They also propose
an approximation of the FROs, thek-Representative Ob-
jects. The A(k)-index is similar to thek-RO in that every
path of lengthk present in the database is present in the
k-RO “automaton summary”. However, the A(k)-index (1)
stores more information than thek-RO, since it returns spe-
cific oids instead of labels, and hence (2) is more directly
suitable for path queries and (3) is non-deterministic. Other
approximate versions of the DataGuide appear in [15], but
applicability to path evaluation is not their focus and hence
not discussed. The typing scheme proposed in [22] is global
in nature. The first phase of their approach is similar to a
bisimulation computation, but it takes into account both the
incoming and outgoing paths. This minimal perfect typing
would yield a bigger path index, but one that could be used
for outgoing paths as well.

In [28], the authors propose a storage/indexing strategy
in which data nodes are partitioned into relational tables
by the extent of the DataGuide into which they fall. This
storage/indexing strategy can be equally well applied to the
1-Index or A(k)-index. They also present their results on
tree data. In [17], a numbering scheme for XML data trees
is proposed that enables ancestor queries to be answered
in constant time. In [8], every path in the tree is viewed
as a string and stored in a multi-level Patricia trie. Nei-
ther of these structures can be directly extended to handle

graph data since a numbering scheme based on preorder and
postorder numbers does not generalize to graphs, and there
could be infinite paths in a graph - in fact, even an acyclic
graph could have exponentially many paths.

Although we explore the application of local similarity
to structural summaries and path indexing, we expect these
ideas to be more widely applicable, especially in the area of
statistics for query optimization. In particular, the technique
based on Markov chains with finite memory proposed in [3]
to estimate the selectivity of path expressions also exploits
local structure to save space.

Finally, we note that the index graph as defined here, as
well as the 1-index and DataGuide, are similar in structure
to thequotient graphof [16], and that such structures are
commonly used for summaries of program automata.

7. Conclusion
The A(k)-index is a clean generalization of the 1-Index. By
varying k, this family of indices offers a smooth tradeoff
between the size of the index graph and accuracy. Owing to
their smaller size for small values ofk, they perform much
better than the 1-Index for interesting classes of queries,
while remaining competitive for most other queries. We
expect that their use will extend beyond structural sum-
maries and indexing, to areas such as schema extraction and
query optimization—for instance, in maintaining statistics.
We also expect our techniques to generalize to handle more
complex path conditions such as selection and branching.
This is part of our future work.

Handling updates is an important aspect of the struc-
tural summary/path indexing problem. Since the 1-Index
is the A(k)-index for a specifick, an update algorithm for
the A(k)-index would be applicable for the 1-Index as well.
The A(k)-index has a worst case guarantee on the impact of
updates - the effect of updates is restricted to a distance of
k. By storing a tree of splits representing the history of how
the A(k)-index builds up overk iterations, it is possible to
arrive at an update algorithm for edge insertions. This is a
topic for future work.



Following the goal that complexity should not be main-
tained in the index structure which is never utilized in its
application, we will investigate techniques to make our in-
dex structures moreadaptableto specific query workloads.
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