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Abstract

We study higher-order effects in the electromagnetic production of electron-

positron pairs in relativistic heavy ion collisions. Treating the field of the

heavy ions as an external field and neglecting the interaction among electrons

and positrons, we show that the N -pair creation amplitude is the antisym-

metrised product of N one-pair creation amplitudes and the vacuum ampli-

tude. Neglecting contributions coming from exchange terms, we show that

the total probability for N pairs is approximately a Poisson distribution. We

investigate further the structure of the reduced one-pair amplitude, concen-

trating especially on multiple-particle corrections. We calculate the first of

these corrections in second order Magnus theory based on our previous result

in second-order Born approximation for impact parameter b zero. Explicit

calculations show that the total probability is increased up to 10 % by this

correction for realistic collider parameters. The calculations can also be used

to confirm the use of the Poisson distribution for the total probability.
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I. INTRODUCTION

The electromagnetic production of electron-positron pairs in relativistic heavy ion col-
lisions has gained some interest recently due to the observation that the total probability
violates unitarity if calculated in lowest order even for realistic energies and impact parame-
ters as large as the Compton wavelength [1]. It can be expected therefore that higher-order
effects — especially the multiple-pair production — are of importance. Several models have
been used in order to cure the unitarity violation and predict multiple-pair probabilities,
based on the summation of some subclasses of diagrams [2–5]. All authors find that the
pair multiplicity can be approximated by a Poisson distribution and that the lowest-order
results should be interpreted as the pair multiplicity. Unitarity is no longer violated due to
the inclusion of the vacuum amplitude, which reduces all N -pair probabilities by the same
factor. Recently Ionescu [6] has proposed a model, which differs from the previous ones, but
which is not applicable for multiple-pair production.

We are going to extend these existing models into two directions: First we address
the question how the N -pair creation amplitude is exactly reducible to one-pair creation
amplitudes and what approximations are necessary in order to get the Poisson distribution.
We then compare with earlier results. Secondly we study higher-order processes contributing
to the lowest-order one-pair creation amplitude. We concentrate on multiple-particle effects,
which have not been included in previous models.

This paper is arranged as follows: In Sec. II we show that the N -pair creation amplitude
can be written as an antisymmetrised product of reduced one-pair creation amplitudes and
the vacuum amplitude. For this we use Feynman boundary conditions for the fermion field.
Neglecting contributions from exchange terms in the calculation of the total probability
we get a Poisson distribution for the total N -pair probability quite easily. In Sec. III the
same result is derived using the perturbation expansion of the S-matrix, which gives us
some insight into the processes contributing to the reduced pair creation amplitude and the
vacuum amplitude. Finally we compare in Sec. IV our results with other existing ones.

In Sec. V we derive the general form of the S-operator in second-order Magnus theory and
use it in Sec. VI in order to extract from this the lowest-order multiple-particle correction to
the one-pair creation probability. This correction is then calculated in Sec. VII based on our
analytic form of the differential pair creation amplitude in second-order Born approximation
for impact parameter b zero [7]. The same calculation is used also to study the deviation of
the total two-pair creation probability from the Poisson distribution, which is found to be
rather small. Results of these calculations together with conclusions are then summarized
in Sec. VIII.

In the Appendix, we show a way to calculate the coefficients appearing in the Magnus
theory expansion, which can therefore be calculated to arbitrary order.

Throughout this paper, we treat the fields of the heavy ions as external fields. We neglect
the electromagnetic interaction between electrons and positrons. This seems to be justified
for almost all fermions, apart from electrons and positrons, which are produced with very
low relative velocitiy, and even in a bound e+–e− state, due to the smallness of the coupling
constant α between the fermions compared to the effective coupling constant Zα for the
interaction with the external field. Due to these assumptions, our many particle system is
essentially a system of independent fermions in an external field. For such a system the S
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operator is known to be of the form of a time-ordered exponential

S = T exp
{
−i
∫ +∞

−∞
HI(t)dt

}

= T exp
{∫

d4x : Ψ̄(x)[−ie 6A(x)]Ψ(x) :
}

, (1)

where HI is the Hamiltonian in the interaction picture. This form of the S operator is the
starting point for our calculations.

The general theory of a fermion interacting with an external electromagnetic field is
rather old and has been developed already from the beginning of QED. It has been developed
especially by Feynman [8] and Schwinger [9]. An overview can also be found in [10–12].

Although we discuss only the electromagnetic pair production by heavy ion collisions,
the general theory can also be applied to other pair production processes in external fields,
for example, pair creation due to bremsstrahlung [13].

II. REDUCTION USING FEYNMAN BOUNDARY CONDITIONS

The amplitude for the N -pair creation is given with the help of the S operator above as

Sfi = 〈f |S |i〉 . (2)

As we want to calculate pair creation, the initial state is the vacuum state |0〉 and the final
state an N -pair state given by

|f〉 = b+
k1

d+
l1
· · · b+

kN
d+

lN
|0〉 , (3)

where ki denotes the electron quantum numbers, for example, momentum and spin, and li
the same for the positrons. The S matrix is therefore

SN := S(k1, l1 · · · , kN , lN) = 〈0| dlN bkN
· · ·dl1bk1S |0〉 . (4)

If we neglect the interaction of the electrons and positrons among each other, we are
essentially dealing with a system of independent particles. Therefore the field operator at
any given time is linearly connected to its value at the boundary. As we can decompose the
field operator into creation and annihilation operators, the same is also true for them.

Using retarded boundary conditions this means that the creation and annihilation oper-
ators for electrons and positrons at t → +∞ are connected through a unitary matrix with
those at t → −∞. In the interaction picture this transformation is expressed as

bpS =
∑

i>0

api Sbi +
∑

j<0

apj Sd+
j , (5a)

dqS =
∑

i>0

a∗
qi Sb+

i +
∑

j<0

a∗
qj Sdj. (5b)

The main idea is now not to use these boundary conditions but Feynman boundary
conditions instead. These are of a mixed retarded and advanced type. With these the
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electron creation operators for t → +∞ are connected with the electron creation opera-
tors for t → −∞ and the positron annihilation operators for t → +∞. This corresponds
to the Stückelberg-Feynman interpretation of electrons moving forward, positrons moving
backwards in time. Again in the interaction picture this is written as [11,14,15]

bpS =
∑

q>0

s++
pq Sbq +

∑

q′<0

s+−
pq′ d

+
q′S. (6)

It has been shown already by Feynman that these boundary conditions are completely
equivalent to the retarded ones, but that they are better suited for QED [8]. For this
relation to be applicable, we assume also that the external field vanishes asymptotically.

Similar relations exist for all other creation and annihilation operators also; Eq. (6) is
the only relation we will need in the following. Applying it to bk1 we get for SN :

SN = 〈0| dlN bkN
· · · bk2dl1

×


∑

q1>0

s++
k1q1

Sbq1 +
∑

q′1<0

s+−
k1q′1

d+
q′1

S


 |0〉 . (7)

The bq1 operator annihilates the vacuum state, therefore we drop this term:

SN = 〈0| dlN bkN
· · · bk2dl1

∑

q′1<0

s+−
k1q′1

d+
q′1

S |0〉

=
∑

q′1<0

s+−
k1q′1

〈0| dlN bkN
· · · bk2dl1d

+
q′1

S |0〉 . (8)

Using the fact that bk2 anticommutes with dl1 and d+
q′1

we get

SN =
∑

q′1<0

s+−
k1q′1

〈0| dlN bkN
· · · dl1d

+
q′1

bk2S |0〉 . (9)

Now one replaces bk2 using again Eq. (6) and then commutes the next bki
to the most

right. Doing this for all bki
we finally get:

SN =
∑

q′1···q
′

N
<0

s+−
k1q′1

· · · s+−
kNq′

N

×〈0| dlN · · · dl1d
+
q′1
· · · d+

q′
N
S |0〉 . (10)

The vacuum expectation value can be calculated easily using the anticommutation rela-
tions

{
dli, d

+
q′
j

}
= δli,q′j

(11)

in order to move d+
q′1

to the left, until it reaches the left side, where it annihilates the vacuum.

Doing this for all creation operators we see that we get a nonvanishing result only, if every
q′i is equal to some lj, and the overall sign of the vacuum expectation value is equal to the
signum of the permutation to arrange l1 · · · lN in the same sequence as the corresponding
q′1 · · · q

′
N . We get
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〈0| dlN · · · dl1d
+
q′1
· · · d+

q′
N
S |0〉 =

〈0|S |0〉
∑

σ

sgn(σ)δ(lσ(1), q
′
1) · · · δ(lσ(N), q

′
N) (12)

and therefore for SN :

SN(k1, l1, · · · , kN , lN) =

〈0|S |0〉
∑

σ

sgn(σ)s+−
k1lσ(1)

· · · s+−
kN lσ(N)

, (13)

where the sum consists of N ! terms. This can also be written formally as

SN = 〈0|S |0〉det
[
s+−

kilj

]
. (14)

This is the main result, which we will use. The N -pair creation amplitude can be written
as an antisymmetrised product of the s+−

kl times the vacuum amplitude. It is easy to see
that the s+−

kl are just the one-pair creation amplitudes divided by the vacuum amplitude.
In the following we call this amplitude the “reduced” amplitude.

Normally the vacuum amplitude does not show up in calculations, as it is often of mag-
nitude one, for example, for time independent systems. In our case the external fields are
explicitly time dependent, therefore the vacuum amplitude can not be neglected. This can
be understood easily, if one notices that the vacuum amplitude is the amplitude for the
“no pair creation process”, that is, the probability amplitude for the vacuum to remain
the vacuum. As pair creation does occur, this probability must be smaller than one and
therefore the amplitude has to be of magnitude less than one. Also we see here that the
vacuum amplitude appears as a factor in all N -pair amplitudes and therefore reduces all
these amplitudes by the same factor.

From this we can get easily an approximate Poisson distribution for the total N -pair
probability, which has also been found by earlier calculations. For this we need the absolute
value squared of SN . As SN consists of N ! terms, we get a total of (N !)2 terms. In most
of these terms we have the product coming from two different permutations. Normally
the produced electrons and positrons are correlated to some extent with each other. If
we therefore assume that terms, where two different permutations appear, are much smaller
than those with the same permutation and can therefore be neglected, we get only N ! terms:

P (N) ≈ |〈0|S |0〉|2
∑

σ

∣∣∣s+−
k1lσ(1)

∣∣∣
2
· · ·

∣∣∣s+−
kN lσ(N)

∣∣∣
2
. (15)

Summing or integrating now over all states we get for the total probability

Ptotal(N) ≈
1

(N !)2 |〈0|S |0〉|2

×
∑

k1,l1,···,kN ,lN

∑

σ

∣∣∣s+−
k1lσ(1)

∣∣∣
2
· · ·

∣∣∣s+−
kN lσ(N)

∣∣∣
2
, (16)

where the factor 1/ (N !)2 has been introduced in order to correct for the multiple summation
over electrons and positrons. As every term in the sum over σ gives the same result, we get
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Ptotal(N) ≈
1

N !
|〈0|S |0〉|2

∑

k1,l1

∣∣∣s+−
k1l1

∣∣∣
2
· · ·

∑

kN ,lN

∣∣∣s+−
kN lN

∣∣∣
2

=
1

N !
|〈0|S |0〉|2


∑

k,l

∣∣∣s+−
kl

∣∣∣
2




N

= P (0)

[
P R

total

]N

N !
, (17)

with P (0) the “no pair” probability and P R
total =

∑
k,l

∣∣∣s+−
kl

∣∣∣
2

the total reduced one-pair

probability. This is just a Poisson distribution, and P (0) can be calculated using the fact
that the sum over all N has to be one:

P (0)
∑

N

[
P R

total

]N

N !
= P (0) exp

[
P R

total

]
= 1. (18)

From this we finally get

Ptotal(N) = exp
[
−P R

total

]
[
P R

total

]N

N !
. (19)

The only approximation that was necessary in order to get this result was the neglection
of all “exchange terms” in the calculation of the probability. We show later that at least for
the two-pair creation this neglection seems to be justified.

Therefore for the calculation of the N -pair creation probability it suffices to calculate the
reduced one-pair creation probability. All other probabilities are given then by the Poisson
distribution. If one wants to go beyond the Poisson distribution, it suffices to calculate the
reduced one-pair creation amplitude and the vacuum amplitude.

This derivation is rather simple, but it is not useful for explicit calculations. Especially
the nature of the processes contributing to the reduced pair creation amplitude as well as
the vacuum amplitude remains unexplained. Therefore we derive the same result in the next
section using the perturbation-theory expansion of the S operator together with the Wick
theorem.

III. REDUCTION USING PERTURBATION THEORY

In this section we use the field operator Ψ(x) directly instead of the creation and anni-
hilation operators as in the previous section, that is, we are going to calculate

SN(y1, · · · , yN , y′
1, · · · , y

′
N) = 〈f |S |i〉 , (20)

where the initial state is again the vacuum |0〉, and the final state is

|f〉 = Ψ̄(+)(yN)Ψ(−)(y′
N) · · · Ψ̄(+)(y1)Ψ

(−)(y′
1) |0〉 . (21)

Here we have made use of the frequency parts of the field operators for electrons and
positrons. The electron coordinates are yi, the positron coordinates y′

i and the time co-
ordinate is the same for all coordinates and assumed to go to ∞. SN gives the probability
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amplitude in occupation number space to get electrons finally at yi and positrons at y′
i. We

rewrite the final state a little bit by introducing normal ordering of the field operators:

〈f | = 〈0| : Ψ̄(y′
1)Ψ(y1) · · · Ψ̄(y′

N)Ψ(yN) : , (22)

where we can use the whole field operators instead of the frequency parts, as the normal
ordering together with the vacuum state guarantees that only the appropriate part of each
field operator contributes. Throughout the calculation in this section the Dirac indices will
be suppressed. In the final form we arrange the operators in the appropriate form, which is
not always possible at intermediate steps, but generally Dirac indices can be looked at, as
if they are incorporated into the coordinates.

Using the form of the S matrix from Eq. (1) we get

S(y1, · · · , yN , y′
1, · · · , y

′
N) =

〈0| : Ψ̄(y′
1)Ψ(y1) · · · Ψ̄(y′

N)Ψ(yN) :

×T exp
{∫

d4x : Ψ̄(x)[−ie 6A(x)]Ψ(x) :
}
|0〉 . (23)

As the time, when we detect electrons and positrons, is ∞, the time ordering can be extended
to the whole expression.

We use now the Wick theorem in the following form [16], where Oi is an arbitrary
fermionic operator:

〈0| T O1 · · ·OM |0〉 =
∑

j,(j 6=i)

sgn(π(j, i)) 〈0| T OjOi |0〉

× 〈0| T O1 · · · Ôj · · · Ôi · · ·OM |0〉 . (24)

Here i is a fixed index, π(j, i) is the permutation to put Oj and Oi to the left of all other
operators, and the hat in the vacuum expectation value means that these operators have
been removed from the expression. In our case the Oi are either Ψ̄ or Ψ and we can use the
fact that

〈0| T Ψ(x)Ψ(y) |0〉 = 〈0| T Ψ̄(x)Ψ̄(y) |0〉 = 0 (25)

and

〈0| T Ψ(x)Ψ̄(y) |0〉 = iSF (x − y), (26)

where SF is the usual Feynman propagator. As we have also normal-ordered products, the
sum over j in this case also excludes those operators, which are in the same normal-ordered
product as the Oi.

In a first step we apply Eq. (24) to Ψ(yN) in the expansion of SN :

IM :=
∫

dx1 · · ·dxM 〈0| T : Ψ̄(y′
1)Ψ(y1) · · · Ψ̄(y′

N)Ψ(yN) :

× : Ψ̄(x1) [−ie 6A(x1)] Ψ(x1) : · · · : Ψ̄(xM ) [−ie 6A(xM )] Ψ(xM) : |0〉

=
∫

dx1 · · ·dxM

M∑

i=1

〈0| T Ψ(yN)Ψ̄(xi) |0〉 [−ie 6A(xi)]

×〈0| T : Ψ̄(y′
1)Ψ(y1) · · · Ψ̄(y′

N) : Ψ(xi) : (1) : · · · ̂: (i) : · · · : (M) : |0〉

= M
∫

dz1 dx1 · · · dxM−1 SF (yN − z1)e 6A(z1)

×〈0| T : Ψ̄(y′
1)Ψ(y1) · · · Ψ̄(y′

N) : Ψ(z1) : (1) : · · · : (M − 1) : |0〉 , (27)
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where we have used the fact that each term in the sum is identical after an even permutation
and a renumbering of the variables xi. This integral is just one term in the expansion of the
exponential in S and applying this reduction to every term we get

SN =
∫

dz1 SF (yN − z1)e 6A(z1) 〈0| T : Ψ̄(y′
1)Ψ(y1) · · · Ψ̄(y′

N) : Ψ(z1)

× exp
{∫

dx : Ψ̄(x) [−ie 6A(x)] Ψ(x) :
}
|0〉 . (28)

In a next step we apply the Wick theorem to Ψ(z1) and get similar as in the previous
case for the integral

I ′
M :=

∫
dx1 · · · dxM 〈0| T : Ψ̄(y′

1)Ψ(y1) · · · Ψ̄(y′
N) : Ψ(z1) : (1) : · · · : (M) : |0〉

=
N∑

i=1

−iSF (z1 − y′
i)
∫

dx1 · · · dxM

×〈0| T : Ψ̄(y′
1)Ψ(y1) · · · ¯̂Ψ(y′

i)Ψ(yi) · · · Ψ̄(y′
N) : : (1) : · · · : (M) : |0〉

+M
∫

dz2 dx1 · · · dxM−1 SF (z1 − z2)e 6A(z2)

×〈0| T : Ψ̄(y′
1)Ψ(y1) · · · Ψ̄(y′

N) : Ψ(z2) : (1) : · · · : (M − 1) : |0〉 , (29)

which is again a term in the expansion of SN , so that our amplitude is

SN =
N∑

i=1

−i
∫

dz1 SF (yN − z1)e 6A(z1)SF (z1 − y′
i)

×〈0| T : Ψ̄(y′
1)Ψ(y1) · · · ¯̂Ψ(y′

i)Ψ(yi) · · · Ψ̄(y′
N) :

× exp
{∫

dx : Ψ̄(x) [−ie 6A(x)] Ψ(x) :
}
|0〉

+
∫

dz1dz2 SF (yN − z1)e 6A(z1)SF (z1 − z2)e 6A(z2)

×〈0| T : Ψ̄(y′
1)Ψ(y1) · · · Ψ̄(y′

N) : Ψ(z2) exp
{∫

dx : Ψ̄(x) [−ie 6A(x)] Ψ(x) :
}
|0〉 . (30)

The vacuum expectation value in the first term is just the (N−1)-pair creation amplitude,
that is,

SN =
N∑

i=1

(−i)
∫

dz1 SF (yN − z1)e 6A(z1)SF (z1 − y′
i)

×sgn(σ)SN−1(y1, · · · , yN−1, y
′
1, · · · , ŷ

′
i, · · · , y

′
N)

+
∫

dz1dz2 SF (yN − z1)e 6A(z1)SF (z1 − z2)e 6A(z2)

×〈0| T : Ψ̄(y′
1)Ψ(y1) · · · Ψ̄(y′

N) : Ψ(z2) exp
{∫

dx : Ψ̄(x) [−ie 6A(x)] Ψ(x) :
}
|0〉 , (31)

where σ is the permutation to rearrange the Ψ̄(y′
j) and Ψ(yj) to the standard form. We

can use Eq. (29) again for the vacuum expectation value in the second term. Doing this
recursively and assuming that the series converges we finally get
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SN =
N∑

i=1

sgn(σ)SN−1(y1, · · · , yN−1, y
′
1, · · · , ŷ

′
i, · · · , y

′
N)

×(−i)
[∫

dz1 SF (yN − z1)e 6A(z1)SF (z1 − y′
i)

+
∫

dz1dz2 SF (yN − z1)e 6A(z1)SF (z1 − z2)e 6A(z2)SF (z2 − y′
i)

+ · · ·
]
. (32)

The infinite series is just the normal perturbation theory expansion for the pair creation
without any disconnected parts. We identify it with the reduced one-pair creation amplitude
SR(yN , y′

i). Therefore we have found a way to reduce the N -pair amplitude to a (N −1)-pair
amplitude. Recursively we can write for SN :

SN(y1, · · · , yN , y′
1, · · · , y

′
N) =

S0

∑

σ

sgn(σ)SR(y1, y
′
σ(1)) · · ·S

R(yN , y′
σ(N)) (33)

with the vacuum amplitude

S0 = 〈0| T exp
{∫

dx : Ψ̄(x)[−ie 6A(x)]Ψ(x) :
}
|0〉

= 〈0|S |0〉 . (34)

This is identical to the result of the last section. Therefore we have found an expression
for SR, that is, for s+−. It is just the perturbation theory expansion of a fermion interacting
an arbitrary number of times with an external field without any disconnected parts.

Finally we want to find also a perturbation theory expression for S0. Expanding the
exponential we get

S0 =
∞∑

M=0

1

M !
ĨM , (35)

with ĨM defined as

ĨM :=
∫

dx1 · · · dxM

×〈0| T : Ψ̄(x1) [−ie 6A(x1)] Ψ(x1) : · · · : (M) : |0〉 . (36)

We are now using the Wick theorem again in order to reduce this expression. Applying
it to Ψ(x1) we get

ĨM = (−i)(M − 1)
∫

dx1dx2 · · · dxM

×e 6A(x1)SF (x1 − x2)e 6A(x2)

×〈0| T Ψ̄(x1)Ψ(x2) : (3) : · · · : (M) : |0〉 . (37)

Similar we get for the following expression
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J̃M(x1, x2) :=
∫

dx3 · · · dxM 〈0| T Ψ̄(x1)Ψ(x2) : Ψ̄(x3) [−ie 6A(x3)] Ψ(x3) : · · · : (M) : |0〉

= −iSF (x2 − x1)
∫

dx3 · · · dxM 〈0| T : (3) : · · · : (M) : |0〉

+(M − 2)
∫

dx3dx4 · · · dxM iSF (x2 − x3) [−ie 6A(x3)]

×〈0| T Ψ̄(x1)Ψ(x3) : (4) : · · · : (M) : |0〉 . (38)

That is,

ĨM = −i(M − 1)
∫

dx1dx2 e 6A(x1)SF (x1 − x2)e 6A(x2)J̃M(x1, x2) (39)

and

J̃M(x1, x2) = −iSF (x2 − x1)ĨM−2 + (M − 2)
∫

dx3 SF (x2 − x3)e 6A(x3)J̃M−1(x1, x3). (40)

Using both relations in order to reduce ĨM in terms of Ĩk we get

ĨM = (M − 1) C2ĨM−2 + (M − 1)(M − 2) C3ĨM−3

+ · · · + (M − 1) · · ·2 CM−1Ĩ1

+(M − 1) · · ·2 1 CM Ĩ0, (41)

with CN defined as

CN := (−1)
∫

dx1 · · · dxN

Tr
[
e 6A(x1)SF (x1 − x2)e 6A(x2) · · ·

×e 6A(xN )SF (xN − x1)
]
, (42)

writing explicitly the Dirac indices to get the trace. For ease of writing we define also
C0 = C1 = 0 and use that Ĩ1 = 0 and Ĩ0 = 1. With these we can write more compactly

ĨM =
M∑

k=1

CkĨM−k
(M − 1)!

(M − k)!

=
M !

M

M∑

k=1

Ck
ĨM−k

(M − k)!
. (43)

This reduction formula can now be used in order to find an expression for S0. For this we
write ĨM in a series ordered by the number of Ci’s (that is, as we will see later, the number
of loops) that appear in each term after a complete reduction. We see that the formula
above just gives us a recipe, how the next order can be derived from the lower one. Only
one term with no Ci in it exists:

Ĩ
(0)
0 = 1, (44)

giving therefore in zeroth order for S0:
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S
(0)
0 = 1. (45)

Using this only nonzero Ĩ
(0)
M in Eq. (43) we get in first order only a contribution if k = M

Ĩ
(1)
M =

M !

M
CM (46)

and for S0

S
(1)
0 =

∞∑

M=0

1

M !
Ĩ

(1)
M =

∞∑

M=1

CM

M
. (47)

In second order we get

Ĩ
(2)
M =

M !

M

M∑

k=1

Ck
Ĩ

(1)
M−k

(M − k)!
=

M !

M

M∑

k=1

k
Ck

k

CM−k

M − k

=
M !

M

1

2

M∑

k=1

[
k
Ck

k

CM−k

M − k
+ (M − k)

CM−k

M − k

Ck

k

]

=
M !

2

M∑

k=1

Ck

k

CM−k

M − k
, (48)

where we have changed the summation index from k to M − k in one step. For S0 we get

S
(2)
0 =

∞∑

M=0

1

M !
Ĩ

(2)
M =

1

2

∞∑

M=0

M∑

k=1

Ck

k

CM−k

M − k

=
1

2

[
∞∑

k=1

Ck

k

] [
∞∑

l=1

Cl

l

]
=

1

2

[
S

(1)
0

]2
. (49)

Using the same transformations we can express also all higher terms of S0, for which we get

S
(n)
0 =

1

n!

[
S

(1)
0

]n
, (50)

so that we finally get the vacuum amplitude as

S0 = exp
[
S

(1)
0

]
= exp

{
−

∞∑

M=2

1

M

∫
dx1 · · ·dxM

×Tr [e 6A(x1)SF (x1 − x2) · · · e 6A(xM )SF (xM − x1)]
}
.

(51)

This is a well known result [9–11,14]. Its interpretation is straightforward. The sum in the
exponential is just the sum over all single loops, whereas the exponential accounts for the
fact that we can have also two or more loops.

With this we have found now perturbation-theory expressions for all terms occurring in
the reduction formula Eq. (33), that is, for the reduced one-pair amplitude and the vacuum
amplitude.

A final remark has to be made about the vacuum amplitude S0. Already Schwinger
found out that the expression for S0 is not finite due to infinities in the imaginary part of
S

(1)
0 [9](see also [12]). But he also mentioned that in the total probabilities we need only the

absolute value squared of S0, where only the real part of S
(1)
0 contributes, which is finite.
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IV. COMPARISON WITH EARLIER RESULTS

The results of the previous two sections suggest the following picture of the pair pro-
duction: In the Feynman picture the N -pair production can be described by two forms of
processes (Fig. 1). N positron lines enter the interaction region coming from the future.
They interact with the external field an arbitrary number of times, where they may change
also their direction in time. Finally they leave the interaction region as electron lines mov-
ing into the normal time direction. Besides these processes, which are characterized each
by a continuous line coming from and leaving to the future, there are also processes, which
consists of closed loops. As they remain entirely inside the interaction region, they are not
visible as physical processes. These closed loops form the vacuum amplitude. From this
picture it is also clear that the vacuum amplitude is the same for all N -pair amplitudes
and therefore a common factor in all of them. The fact that we are dealing with multiple
particles only shows up in the calculation through the antisymmetrisation with respect to
all electrons (or equivalent to all positrons).

This means that for a complete calculation of the N -pair creation probabilities we need
to know only the reduced one-pair creation amplitude together with the vacuum amplitude.
Both can be calculated in principle using perturbation theory, where the reduced one-pair
amplitude is identical to the usual perturbation series result and setting the vacuum ampli-
tude to one, that is, neglecting all diagrams with disconnected parts.

If one neglects the exchange terms in the calculation of the probability, it suffices to know
the reduced one-pair creation probability, as this is the only result needed for the Poisson
distribution of the multiple-pair probabilities.

Note that according to the rules of the Feynman diagrams we have neglected the antisym-
metrisation and therefore the Pauli principle for all intermediate states. There is a deeper
reason for doing so, which has to do with the connection of the higher-order processes and
the occurrence of the vacuum processes through antisymmetrisation. This is, for example,
discussed in detail in [11,14]. Let us look, for example, at a typical higher-order diagram in
perturbation theory, where we would expect corrections because of the Pauli principle. In
Fig. 2 we would expect a deviation as we have two electrons, which are not allowed to be in
the same state. (The same is also true for the two positrons.) But it can be shown that the
contributions from this process are just canceled by those of the vacuum correction shown
in Fig. 3, where the electron in the loop and the produced electron are not allowed to be in
the same state also. Both processes are connected with each other, as we get one from the
other, if we exchange the two electron lines or the two positron lines. This result is of a very
general nature, so that the antisymmetrisation of all intermediate particles can be dropped,
if we also include the vacuum processes (again without antisymmetrisation).

This shows that the higher-order multiple-particle corrections to the one-pair creation
are connected with the vacuum process. Therefore we think that these processes should be
studied in more detail. Especially as we know that the vacuum processes are not negligible,
as they decrease the reduced probabilities larger than one to values less than one.

The inclusion of these higher-order processes is straightforward in our model. As the
Poisson distribution needs only the neglection of the exchange terms, we can include the
higher-order terms into the calculation of the reduced probability and use this result then in
the Poisson distribution for the multiple-pair probabilities. This procedure is consistent, as

12



it includes automatically the higher-order corrections to the vacuum amplitude. Therefore
the calculation changes only the reduced probability used in the Poisson distribution but
not the explicit form.

Let us compare this result with the other models [2,4,5]: All three models get a Poisson
distribution for the multiple-pair creation as well but only based on the summation of a
restricted class of diagrams. Studying further these approximations one finds that all of them
are essentially “quasi boson” approximations. This means that they have as fundamental
processes a pair creation and a pair annihilation process (neglecting at the moment the
Coulomb scattering). Combining these processes all previous models assume that only pairs,
which have been produced together in a creation process, can be annihilated. Therefore the
electron and the positron are seen as an unbreakable pair, which behaves more or less like a
boson. And for bosons in an external field the Poisson distribution comes out exactly [10].
Even the inclusion of Coulomb scattering in some of these models does not change the “quasi
bosonic” nature of them. Our calculation indicates that there are higher-order processes in
which electrons and positrons do not behave as “quasi bosons”. These processes are multiple-
particle processes in the sense that more than one electron or positron are essentially needed
in an intermediate step.

The fact that these are multiple-particle effects also shows the advantage of using the
Feynman boundary conditions instead of the retarded boundary conditions used in the Dirac
sea picture. In the Feynman picture the production of a pair is described by a continuous
fermion line, where the inclusion of multiple-particle effects presents no difficulties. The
advantage of the Dirac sea picture is mainly that its particle hole interpretation allows to
treat the creation of one electron-positron pair in a single particle formalism. As the higher-
order processes need the existence of more than one electron and one hole, this advantage
of the Dirac sea picture is no longer existent then.

The other advantage of the Feynman boundary conditions is that the different processes
can be separated from each other. Especially the vacuum processes are independent of the
reduced pair creation processes. This is not the case in the Dirac sea picture, where vacuum
processes and pair creation processes can not be separated in the intermediate steps but
only in the final state.

In the following we show that the processes of the type of Fig. 2 are the lowest-order
corrections to the one-pair creation processes if we neglect Coulomb scattering terms. For
this we restrict ourself to second-order Magnus theory.

V. THE S OPERATOR IN MAGNUS THEORY

The Magnus theory can be seen as an expansion in the interaction time. For large values
of γ the interaction time of the two heavy-ion fields is very short, therefore the use of this
approximation seems to be justified. Up to second order the S operator is given by [17,18]

S = T exp
[
−i
∫ +∞

−∞
HI(t) dt

]

≈ exp
[
−i
∫ +∞

−∞
HI(t)dt +

1

2
(−i)2

∫ +∞

−∞
dt2

∫ t2

−∞
dt1 [HI(t2), HI(t1)] + · · ·

]
. (52)
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The commutator of the HI ’s for t1 < t2 is the difference of the time-ordered and the
anti-time-ordered product. We rewrite S as

S = exp
{
−i
∫ +∞

−∞
HI(t)dt +

1

4
(−i)2

∫ +∞

−∞
dt2

∫ +∞

−∞
dt1

×T [HI(t2)HI(t1)] −A [HI(t2)HI(t1)] + · · ·
}

(53)

= exp
{∫

d4x e : Ψ̄(x)[−ie 6A(x)]Ψ(x) :

+
1

4

∫
d4x1 d4x2 (T − A) : Ψ̄(x2)[−ie 6A(x2)]Ψ(x2) : : Ψ̄(x1)[−ie 6A(x1)]Ψ(x1) :

}
. (54)

Now we use again the Wick theorem in order to put the field operators into normal-
ordered form. We use it for the time-ordered and anti-time-ordered products in the form

T AB = : AB : + 〈0|T AB|0〉 = : AB : + 〈T AB〉 , (55a)

AAB = : AB : + 〈0|AAB|0〉 = : AB : + 〈AAB〉 . (55b)

As the first term in S is in normal-ordered form already, only the second one has to be
rearranged. For the time-ordered product we get

T : Ψ̄2Ψ2 : : Ψ̄1Ψ1 : = : Ψ̄2Ψ2Ψ̄1Ψ1 : + : Ψ2Ψ̄1 :
〈
T Ψ̄2Ψ1

〉

+ : Ψ̄2Ψ1 :
〈
T Ψ2Ψ̄1

〉
+
〈
T Ψ̄2Ψ1

〉 〈
T Ψ2Ψ̄1

〉
, (56)

and the same for the anti-time-ordered product by replacing T with A. We get for S

S = exp
{∫

dx [−ie 6A(x)αβ(x)] : Ψ̄αΨβ : +
1

4

∫
dx1dx2 [−ie 6A(x2)αβ ][−ie 6A(x1)γδ]

×[: Ψβ(x2)Ψ̄γ(x1) :
〈
DΨ̄α(x2)Ψδ(x1)

〉
+ : Ψ̄α(x2)Ψδ(x1) :

〈
DΨβ(x2)Ψ̄γ(x1)

〉

+
〈
T Ψ̄α(x2)Ψδ(x1)

〉 〈
T Ψβ(x2)Ψ̄γ(x1)

〉
−
〈
AΨ̄α(x2)Ψδ(x1)

〉 〈
AΨβ(x2)Ψ̄γ(x1)

〉
]
}
,

(57)

where we have defined D as T − A. The last two terms can be rewritten to give
〈
DΨ̄α(x2)Ψδ(x1)

〉 〈
T Ψβ(x2)Ψ̄γ(x1)

〉
+
〈
AΨ̄α(x2)Ψδ(x1)

〉 〈
DΨβ(x2)Ψ̄γ(x1)

〉
. (58)

Exchanging the integration of dx1 and dx2 we see that the second and the third term of
Eq. (57) can be combined and also the last two terms, so that we get

S = exp
{∫

dx [−ie 6A(x)αβ(x)] : Ψ̄αΨβ : +
1

4

∫
dx1dx2 [−ie 6A(x2)αβ][−ie 6A(x1)γδ]

×
[
2 : Ψβ(x2)Ψ̄γ(x1) :

〈
DΨ̄α(x2)Ψδ(x1)

〉

+
〈
(T + A)Ψβ(x2)Ψ̄γ(x1)

〉 〈
DΨ̄α(x2)Ψδ(x1)

〉]}
. (59)

Now we transform S into momentum space. For this we need the Fourier transform of
the field operator as well as of the vacuum expectation values.
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The field operator and its conjugate can be written as

Ψ(x) =
∑

s

∫
dp̃
[
b(p, s)u(p, s) exp(−ipx)

+d+(p, s)v(p, s) exp(ipx)
]
, (60a)

Ψ̄(x) =
∑

s

∫
dp̃
[
b+(p, s)ū(p, s) exp(ipx)

+d(p, s)v̄(p, s) exp(−ipx)
]
. (60b)

where we have introduced dp̃, which is defined as

dp̃ :=
d3p

(2π)3/2(2p0)1/2
. (61)

In the following we need also the factor of dp̃ alone together with the Lorentz invariant phase
space, therefore we define also

γ(p) :=
1

(2π)3/2(2p0)1/2
, (62)

and

dΓ(p) :=
d3p

(2π)32p0

. (63)

With the usual relations between vacuum expectation values, propagators, and singular
function, one gets for the vacuum expectation values [19–21]

〈0| T Ψ(x)Ψ̄(x′) |0〉 = iSF (x − x′)

= i
∫

d4p

(2π)4

6p + m

p2 − m2 + iǫ
exp(−ip(x − x′)), (64a)

〈0| AΨ(x)Ψ̄(x′) |0〉 = −iSA(x − x′)

= −i
∫

d4p

(2π)4

6p + m

p2 − m2 − iǫ
exp(−ip(x − x′)). (64b)

Combining both we get for D and T + A:

〈0| DΨ(x)Ψ̄(x′) |0〉 = i [SF (x − x′) + SA(x − x′)]

= i
∫

d4p

(2π)4
( 6p + m)

(
1

p2 − m2 + iǫ
+

1

p2 − m2 − iǫ

)

× exp(−ip(x − x′))

= 2i
∫

d4p

(2π)4
( 6p + m)

P.P.

p2 − m2
exp(−ip(x − x′)), (65)

where P.P. denotes the principal part of the integral, and
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〈0| (T + A)Ψ(x)Ψ̄(x′) |0〉 = i [SF (x − x′) − SA(x − x′)]

=
∫

dΓ(p) ( 6p + m) exp(−ip(x − x′))

−
∫

dΓ(p) ( 6p − m) exp(ip(x − x′)), (66)

which describes the propagation of on-shell electrons and positrons.
These forms of the vacuum expectation values are put into S together with the decom-

position of the field operators Ψ(x) and Ψ̄(x) and using also the Fourier transform of the
external field

A(x) =
∫ d4q

(2π)4
A(q) exp(−iqx). (67)

The integration over the coordinate space can be done, giving deltafunctions for the
momenta. Reducing the momentum integrals with the help of these, we finally get

S = exp

{
−ie

∫
dp̃1 dp̃2

×
[
: b+(p1)b(p2) : ū(p1) 6A(p1 − p2)u(p2)

+ : b+(p1)d
+(p2) : ū(p1) 6A(p1 + p2)v(p2)

+ : d(p1)b(p2) : v̄(p1) 6A(−p1 − p2)u(p2)

+ : d(p1)d
+(p2) : v̄(p1) 6A(−p1 + p2)v(p2)

]

−ie2
∫

dp̃1 dp̃2
dp

(2π)4

×
[
: b+(p1)b(p2) : ū(p1) 6A(p1 − p) (6p + m)

P.P.

p2 − m2
6A(p − p2)u(p2)

+ : b+(p1)d
+(p2) : ū(p1) 6A(p1 − p) ( 6p + m)

P.P.

p2 − m2
6A(p + p2)v(p2)

+ : d(p1)b(p2) : v̄(p1) 6A(−p1 − p) (6p + m)
P.P.

p2 − m2
6A(p − p2)u(p2)

+ : d(p1)d
+(p2) : v̄(p1) 6A(−p1 − p) ( 6p + m)

P.P.

p2 − m2
6A(p + p2)v(p2)

]

+i
e2

2

∫
dp

(2π)4
dΓ(p′) Tr

[
( 6p′ + m) 6A(p′ − p)( 6p + m)

P.P.

p2 − m2
6A(p − p′)

]

−i
e2

2

∫ dp

(2π)4
dΓ(p′) Tr

[
( 6p′ − m) 6A(−p′ − p)( 6p + m)

P.P.

p2 − m2
6A(p + p′)

]}
. (68)

Again, we have not written explicitly the spins of the leptons, which we look at as
included in the momenta.

The interpretation of the individual terms is straightforward (see Fig. 4). Terms of the
form : b+b : are electron Coulomb scattering terms, : dd+ : the corresponding positron
scattering terms. : b+d+ : corresponds to pair creation and : db : to pair annihilation. The
last two terms have no operators in them. They correspond to the lowest-order vacuum
corrections. As they are only numbers, they commute with all other terms.
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VI. APPLICATION TO ELECTROMAGNETIC PAIR CREATION

We apply this result, which is true for an arbitrary external field, to the special case of
pair production in heavy-ion collisions. In this case there are some kinematical restrictions,
so that some of the terms in S can be dropped. Especially there is no pair creation or pair
annihilation in first-order Magnus theory and we can replace the principal value integrals
in the pair creation and annihilation term in the second order by ordinary integrals, as the
intermediate state is not allowed to be on-shell in this case.

As we want to concentrate on the multiple-particle effects we will neglect also all Coulomb
scattering terms. It is generally assumed that these terms do change the differential prob-
abilities, but are only of minor importance for the total probabilities. Also their influence
seems to become smaller for higher energies. Therefore we will neglect all terms of the form
: b+b : and : dd+ :. Also the vacuum terms will be dropped, as we are only interested in
the calculation of the reduced amplitude, where vacuum corrections do not appear. The S
operator with these approximations is

S = exp
{
−ie2

∫
dp̃1 dp̃2

dp

(2π)4

×
[
b+(p1)d+(p2)

×ū(p1) 6A(p1 − p)
6p + m

p2 − m2
6A(p + p2)v(p2)

+d(p1)b(p2)

×v̄(p1) 6A(−p1 − p)
6p + m

p2 − m2
6A(p − p2)u(p2)

]}
. (69)

The integrals over p in this expression are just the pair creation and pair annihilation
amplitude in second-order Born approximation. We define the pair creation and annihilation
potential V and V ∗ as

V (p1, p2) = e2
∫

dp

(2π)4

×ū(p1) 6A(p1 − p)
6p + m

p2 − m2
6A(p + p2)v(p2) (70a)

V ∗(p2, p1) = e2
∫ dp

(2π)4

×v̄(p1) 6A(−p1 − p)
6p + m

p2 − m2
6A(p − p2)u(p2) (70b)

(where V ∗ is just the complex conjugate of V ) in order to write S as:

S = exp

{
−i
∫

dp̃ dq̃

×
[
b+(p)d+(q)V (p, q) + d(q)b(p)V ∗(p, q)

]}
. (71)
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The matrix element of the pair creation in second order is connected with the potential V
through

M(p, q) = −iV (p, q). (72)

For the reduced one-pair creation amplitude we have to calculate

〈f |S |i〉 = 〈0| d(qf)b(pf )S |0〉 . (73)

We are now expanding the exponential in S in order to get the different contributions to
the one-pair creation. In lowest order we expect to get back the second-order Born result.
We get

〈f |S(1) |i〉 = −i
∫

dp̃ dq̃ V (p, q) 〈0| d(qf)b(pf )b+(p)d+(q) |0〉

= −iγ(pf )γ(qf)V (pf , qf)

= M(pf , qf)γ(pf)γ(qf ), (74)

The differential probability in first order therefore is

P (pf , qf ) = |M(pf , qf)|2 γ2(pf)γ2(qf) (75)

and the total probability is given by

Ptotal =
∫

|M(pf , qf )|2 dΓ(pf)dΓ(qf), (76)

which is indeed the Born result.
As the vacuum expectation values, we get from higher orders, vanish, if the number of

creation and annihilation operators is not equal for each kind of particles, we see easily that
only odd orders in the expansion of S contribute. The next order is therefore the third one,
where we get

〈f |S(3) |i〉 =
i

3!

∫
dp̃1 dp̃2 dp̃3 dq̃1 dq̃2 dq̃3

×
[
V (p1, q1)V ∗(p2, q2)V (p3, q3) 〈0| d(qf)b(pf )b+(p1)d+(q1)d(q2)b(p2)b+(p3)d+(q3) |0〉

+V ∗(p1, q1)V (p2, q2)V (p3, q3) 〈0| d(qf)b(pf )d(q1)b(p1)b
+(p2)d

+(q2)b+(p3)d
+(q3) |0〉

]
.

(77)

Here we have used the fact that only two of the eight possible combinations do not vanish
trivially. Again the vacuum expectation value can be calculated using the anticommutation
relations of the particle operators. The first expectation value is

〈0| d(qf)b(pf )b+(p1)d+(q1)d(q2)b(p2)b+(p3)d
+(q3) |0〉 =

δ(pf − p1)δ(p2 − p3)δ(qf − q1)δ(q2 − q3) (78)

and the second one
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〈0| d(qf)b(pf )d(q1)b(p1)b+(p2)d
+(q2)b+(p3)d

+(q3) |0〉 =

δ(p1 − p2)δ(q1 − q2)δ(pf − p3)δ(qf − q3)

−δ(p1 − p2)δ(pf − p3)δ(qf − q2)δ(q1 − q3)

−δ(pf − p2)δ(p1 − p3)δ(q1 − q2)δ(qf − q3)

+δ(pf − p2)δ(p1 − p3)δ(qf − q2)δ(q1 − q3). (79)

Terms of the form δ(p2−p3)δ(q2−q3) describe closed fermion loops, and we drop them in
the calculation of the reduced amplitude. Therefore only two terms remain. In third order
we get

〈f |S(3) |i〉 = −i
2

3!
γ(pf)γ(qf )

∫
dΓ(p1)dΓ(q1)V (pf , q1)V

∗(p1, q1)V (p1, qf ). (80)

Combining both results we get up to third order

〈f |S(1+3) |i〉 = γ(pf )γ(qf)
[
M(pf , qf) +

1

3

∫
dΓ(p1)dΓ(q1)M(pf , q1)M

∗(p1, q1)M(p1, qf )
]
.

(81)

The interpretation of this higher-order process is straightforward. If we keep in mind
that M(p, q) is the amplitude for the production of a pair and M∗(p, q) the amplitude for
the annihilation of a pair, we get the Feynman diagram as shown in Fig. 5. These are just
those higher-order processes, we already discussed before in Sec. IV (see Fig. 2). Two pairs
are created and then one of the electrons annihilates with the other positron, so that finally
only one electron and one positron remain. The Magnus theory restricts these intermediate
particles to the mass shell, so that we only need the on-shell M , whereas they may be
off-shell in the general case.

Using the same technique higher orders can also be calculated. The explicit calculation
of the fifth and seventh order gives

〈f |S(5) |i〉 =
16

5!
γ(pf )γ(qf)

∫
dΓ(p1)dΓ(q1)dΓ(p2)dΓ(q2)

×M(pf , q1)M∗(p1, q1)M(p1, q2)M
∗(p2, q2)M(p2, qf) (82a)

〈f |S(7) |i〉 =
272

7!
γ(pf)γ(qf )

∫
dΓ(p1)dΓ(q1)dΓ(p2)dΓ(q2)dΓ(p3)dΓ(q3)

×M(pf , q1)M∗(p1, q1)M(p1, q2)M
∗(p2, q2)M(p2, q3)M

∗(p3, q3)M(p3, qf ), (82b)

where in the calculation of the vacuum expectation values also more complicated fermion
loops occur, which have to be neglected. The following properties are remarkable, as they
are true for all higher orders: First all contributions coming from the same order are of the
same type and can therefore be summed. Second all amplitudes have the same sign, that is,
they are all added coherently. Therefore they increase all the reduced total probability, no
cancellation or reduction occurs. This same sign can also be understood from the connection
of the higher-order processes with the vacuum corrections. Vacuum loops contribute with a
negative sign to the amplitude (see Sec. III and [14]). As our diagrams are connected with
a vacuum diagram by the permutation of some lines, it is clear that it has to have the same
sign as the lowest-order diagram. The general form of the nth order therefore is
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〈f |S(n) |i〉 = cnγ(pf)γ(qf)
∫

dΓ(p1)dΓ(q1) · · ·dΓ(p(n−1)/2)dΓ(q(n−1)/2)

×M(pf , q1)M∗(p1, q1)M(p1, q2) · · ·M
∗(p(n−1)/2), q(n−1)/2)M(p(n−1)/2, qf ), (83)

For higher orders the number of terms occurring in the reduction of the vacuum expec-
tation values gets rather large and the number of diagrams increases rapidly. However we
show in the appendix how these total number of processes and therefore cn can be calculated
using combinatorial arguments and a recursive formula.

Finally we calculate the lowest-order correction to the reduced total probability. Squaring
the pair production amplitude up to third order (Eq. (81)) we get

P (1+3)(pf , qf) =
∣∣∣〈f |S(1+3) |i〉

∣∣∣
2

=
[
M∗(pf , qf) +

1

3

∫
dΓ(p)dΓ(q)M∗(pf , q)M(p, q)M∗(p, qf)

]

×
[
M(pf , qf ) +

1

3

∫
dΓ(p′)dΓ(q′)M(pf , q

′)M∗(p′, q′)M(p′, qf)
]

×γ2(pf )γ2(qf )

=
{
|M(pf , qf )|2 +

1

3

[∫
dΓ(p)dΓ(q)M(pf , qf)M∗(pf , q)M(p, q)M∗(p, qf)

+M∗(pf , qf)M(pf , q)M∗(p, q)M(p, qf)
]

+ · · ·
}
γ2(pf)γ2(qf)

=
{
|M(pf , qf )|2 +

2

3

∫
dΓ(p)dΓ(q)

×Re [M(pf , qf)M∗(pf , q)M(p, q)M∗(p, qf )] + · · ·
}
γ2(pf)γ2(qf ). (84)

Integrating over pf and qf we get the total probability (Fig. 6)

Ptotal =
∫

dΓ(pf)dΓ(qf)|M(pf , qf )|2 +
2

3

∫
dΓ(pf)dΓ(qf)dΓ(p)dΓ(q)

×Re [M(pf , qf)M∗(pf , q)M(p, q)M∗(p, qf)] (85)

=: P (B) + P (M). (86)

This result is easily generalized. The general series is of the form

Ptotal =
∫

dΓ(p1)dΓ(q1)|M(p1, q1)|
2

+d3

∫
dΓ(p1)dΓ(q1)dΓ(p2)dΓ(q2)Re [M(p1, q1)M

∗(p1, q2)M(p2, q2)M∗(p2, q1)]

+ · · ·

+d2l−1

∫
dΓ(p1) · · ·dΓ(ql)Re [M(p1, q1)M

∗(p1, q2) · · ·M(pl, ql)M
∗(pl, q1)]︸ ︷︷ ︸

l×

+ · · · . (87)

The coefficients dn are again calculated in the appendix. They can be derived easily from
the coefficients cn of the amplitudes.
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VII. CALCULATION FOR IMPACT PARAMETER ZERO

For the calculation of the lowest-order multiple-particle correction to the one-pair cre-
ation probability we make use of the analytic form of the matrixelement for impact parameter
b zero. Details of this calculation can be found in a previous publication [7], therefore we will
only review rather briefly the main properties. The Feynman diagrams contributing to the
lowest order Born calculation are shown in Fig. 7, where (1) and (2) denotes the interaction
with the external field of ion 1 and 2 , respectively. The matrix element is

M(p, q) = −ie2ū(p)

×
[∫

d4k

(2π)4
6A1(p − k)

6k + m

k2 − m2
6A2(q + k)

+
∫

d4k

(2π)4
6A2(p − k)

6k + m

k2 − m2
6A1(q + k)

]
v(q). (88)

The external fields are given by

A(1,2)
µ (q) = −2πZ(1,2)eu

(1,2)
µ δ(qu(1,2))

F (q2)

q2
. (89)

u(1,2) are the four velocities of the ions and F (q2) is their form factor. All calculations are
done for collisions of the same type of ions and in the center of mass system. For the form
factor a simple dipole form factor of the form

Fdipole(q
2) =

Λ2

Λ2 − q2
, (90)

with Λ = 83MeV, has been used together with a second form factor, which is a linear
combination of two dipole form factors. In the previous publication the integral has been
solved in order to calculate the lowest-order Born result. Here we use this analytic result
for M in Eq. (86). The usual way to calculate expressions of this kind is to rewrite the
spin summation as a trace over gamma matrices. But as each of the M consists of two
diagrams, we finally get a total of sixteen different traces, which all give large expressions,
which are not manageable by an algebraic calculation program and therefore can not be
used for numerical calculations. Therefore we prefer to calculate M directly and to do the
spin summation numerically.

Several methods have been proposed in the literature how to calculate amplitudes directly
instead of their squares [22–24]. We use the method described by Fearing and Silbar [25].
It consists of multiplying and dividing M with v̄(q)u(p) in order to get

M = ū(p)M̂v(q)

=
1

v̄(q)u(p)
Tr
{
v(q)v̄(q)u(p)ū(p)M̂

}

=
1

v̄(q)u(p)
Tr
{

( 6q − m)
1

2
(1 + γ5λq 6sq)

× ( 6p + m)
1

2
(1 + γ5λp 6sp) M̂

}
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=
1

4S(p, q)
Tr
{

( 6q − m)

× (1 + γ5λq 6sq + γ5λp 6sp − λpλq 6sq 6sp)

× ( 6p + m) M̂
}
, (91)

where sp, sq are the spinvectors of the electron and the positron, and λp, λq are the eigenval-
ues of the spinors with respect to the spinvector, that is, they have values of ±1. S(p, q) is
a complex number, which has been calculated using an explicit form for the spinors for the
standard form of the gamma matrices. In order to make the numerical calculations easier
we have used polarisation vectors sp and sq, which are longitudinal vectors:

sp =
1√

p2
0 − p2

z

(pz, 0, 0, p0) (92)

and similar for sq. The calculation of the trace has been done with the help of the algebraical
calculation program form [26]. All sixteen different spin combinations have been calculated
and summed. The final expression has to be real, which has been used to test the program
(As the final expression can be expressed as a trace, which does not contain any γ5 matrices, it
must be equivalent to an expression containing only real numbers and real scalar products,
therefore it has to be real). The integration over four particles gives a 12-dimensional
integral, of which one angular integration is trivial. It was calculated using a Monte Carlo
(MC) integration routine (vegas [27,28]). Together with the total probability we have
calculated also single differential probabilities by sorting the points into appropriate bins.
The error of the total probability is always less then 1%. An explicit error estimate is given
for the differential probabilities. As our calculation is symmetric with respect to all four
momenta and all four electron-positron combinations, this error has been calculated from
the standard deviation of the four results.

Finally we want to point out that the expression in Eq. (86) can be interpreted also in
a different way: If we calculate the reduced total two-pair creation probability exactly in
lowest order according to the previous section, we get

P
(2)
total =

1

(2!)2

∫
dΓ(p1)dΓ(p2)dΓ(q1)dΓ(q2)

× [M∗(p1, q1)M
∗(p2, q2) − M∗(p1, q2)M∗(p2, q1)]

× [M(p1, q1)M(p2, q2) − M(p1, q2)M(p2, q1)]

=
1

2

∫
dΓ(p1)dΓ(p2)dΓ(q1)dΓ(q2)

×
{
|M(p1, q1)|2 |M(p1, q1)|2

−Re [M∗(p1, q1)M(p2, q1)M∗(p2, q2)M(p1, q2)]
}

= P
(D)
total − P

(X)
total. (93)

The first term is the direct part, which is used in order to get the Poisson distribution,
whereas the second term is the exchange part, which we neglect in the Poisson distribution
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(see also Fig. 8). Comparing the second expression with that in Eq. (86) we see that they are
identical. Comparing Fig. 8 with Fig. 6 we see that we only have to change the interpretation
of the diagram by cutting it at a different point. Therefore the result of the calculation for
the total probability can also be used to test, whether the neglection of the exchange term
in order to get the Poisson distribution is justified.

VIII. RESULTS AND CONCLUSIONS

Figure 9 shows the results of our calculations for the reduced probability as a function
of γ. In all our diagrams we set Zα = 1, as this is a common factor in all results. Also
shown is the result for the corresponding probability of the lowest-order calculation (see
[7]). In order to test the dependence on the form factor the calculations have been done
for the dipole form factor and the double dipole form factor. Both agree within the error
interval, therefore we show here only the results for the double dipole form factor. We see
that the correction is similar in size as the lowest-order result for large values of γ. Using
realistic values for Zα its importance is reduced, as the higher-order correction has to be
multiplied by (Zα)8, the lowest-order result by (Zα)4. In Table I we give predictions for the
contribution of the higher-order correction to the reduced total probability. For γ and Z
we have used typical values for relativistic heavy-ion colliders. The higher-order correction
increases the reduced probability for Pb and U up to about 5–10%. Therefore they should
be observable in principle. Based on this calculation we expect that higher-order corrections
(5th order and more) are again only of about 5–10% of the third-order results and are
therefore corrections of less than 1% to the total probability.

Also shown are the results for the differential probabilities as a function of the energy
E (Fig. 10) and the angle with the beam axis θ (Fig. 11). In these as in all other single
differential probabilities as well the correction follows more or less the lowest-order result.

In Fig. 12 we compare both terms contributing to the total two-pair production prob-
ability. Here the first and the second diagrams of Fig. 8 are multiplied by the same factor
(Zα)8, therefore the ratio of both curves gives directly the contribution of the exchange term
to the first term, which is used in the Poisson distribution alone. We see that the exchange
diagram contributes only with about 1% to the reduced total probability. Also its impor-
tance gets smaller for larger values of γ, therefore the use of the Poisson distribution seems
to be justified. This could be different, of course, if one looks at differential probabilities in
some region of the phase space.

Let us summarize our results: We have shown that the N -pair creation amplitude can
be reduced exactly to the reduced one-pair creation amplitudes and the vacuum amplitude.
Therefore for the calculation of all N -pair probabilities, it suffices to calculate those two
amplitudes. The use of the external field approximation and the neglection of the interaction
among electrons and positrons is essential in order to get this result. We have shown that we
get a Poisson distribution for the total probabilities very generally, if we neglect all exchange
terms. A calculation of the reduced one-pair creation probability then suffices alone, as all
higher-order processes are given by the Poisson distribution.

We have found perturbation theory expressions for the reduced amplitude as well as
for the vacuum amplitude, so that both can in principal be calculated using perturbation
theory. None of them is of a principal nonpertubative character.
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We have compared this result with earlier calculation, where we have pointed out that
they have mainly made use of a quasi boson approximation of the electron-positron pairs in
order to get the Poisson distribution. On the other hand our form of the Poisson distribution
needs only the neglection of the exchange terms, therefore higher-order processes beyond the
quasi-boson model can easily be incorporated.

Based on the general form of the S operator in second-order Magnus theory we have
calculated the lowest-order contribution of such higher-order multiple-particle effects to the
total probabilities for collisions with impact parameter b zero. The contribution were found
to be on the 1 – 10% level for high Z, and should therefore be incorporated into the calcu-
lations.

Finally we compared the deviation of the two-pair creation probability from the Poisson
result. This deviation was found to be small, therefore the use of the Poisson distribution
seems to be justified.

APPENDIX A: COEFFICIENTS IN MAGNUS THEORY

As shown in Sec. V all higher-order processes in the Magnus theory without Coulomb
rescattering terms are of the same type. The number of terms in each order is given by the
reduction of the vacuum expectation values. The explicit reduction is not useful because
the complexity of the expressions increases quickly. Therefore we show here how these can
be calculated more easily.

This is a combinatorial problem, which can be formulated in the following way: In Nth
order we have N interaction points, each of which either corresponds to a pair creation or
pair annihilation process. In terms of the fermion lines this means that a line entering one
point from the left also leaves it to the left and the same from the right. We need the total
number of paths through these N points using the above condition, where the line initially
enters from the right and finally leaves to the right. As we look only at reduced amplitudes,
no closed loops are allowed.

Let us find a recursive formula for the number of paths: We define A(n, i) as the number
of distinct paths for i fermion lines (coming from and leaving to the right) going through
n interaction points. If we add now another interaction point to the right, there are two
possibilities: If it is a pair creation process, the number of lines is increased by one. If we
have a pair annihilation process, we have to connect it with one outgoing and one ingoing
line, therefore reducing their number by one. For this we have to choose one of the i
outgoing lines and one of the ingoing lines, where we have to be careful not to make a closed
loop; therefore only i − 1 of them are allowed. This means that there are i(i − 1) possible
combinations. This gives us the recursion relation

A(n + 1, i) = A(n, i − 1) + i(i + 1)A(n, i + 1), (A1)

together with the boundary conditions

A(1, 1) = 1 (A2a)

A(1, i) = 0 for i > 1 (A2b)

A(n, 0) = 0 for all n. (A2c)
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With this recursion relation we can calculate A(n, 1) for all n. This is just the number of
diagrams that we were looking for. Dividing it by n! gives the coefficient cn in the expansion
of the amplitude. These coefficients are given in Table II. For the coefficients in the reduced
total probability we have to multiply cl and cn+1−l and sum over all l ∈ 0 . . . n. These are
the coefficients dn of Eq. (87). They are also given in Table II.
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FIGURES

FIG. 1. Graphical illustration of the general form of the N -pair production process. The

creation of a pair is described by a connected fermion line entering from and leaving to the future.

The vacuum processes are described by all sorts of closed fermion loops. The interaction with the

external field is shown as a cross.

FIG. 2. One possible higher-order pair creation process, where the Pauli principle is neglected

in the intermediate state. Interaction with the external field is shown as a cross.

FIG. 3. Vacuum correction to the one-pair creation connected by an exchange of two lines with

the process shown in Fig. 2.

FIG. 4. Graphical illustration of the processes occurring in first (a) and second-order Magnus

theory (b and c). Dotted lines denote the propagator, where only the principal part is taken,

double lines denote electrons or positrons, which are on-shell. Interaction with the external field

is shown as a cross.

FIG. 5. Third order correction to the one-pair creation process in second-order Magnus theory;

compare with Fig. 2. Double lines mean that the particles are on shell.

FIG. 6. Lowest order (a) and the first two correction terms (b and c) to the reduced one-pair

creation probability.

FIG. 7. The two Feynman diagrams contributing to the one-pair creation in lowest order. The

interaction with the external field of ion 1 and 2 is denoted by (1) and (2), respectively.

FIG. 8. The two Feynman diagrams for the lowest-order two-pair creation process; direct term

(a) and exchange term (b).

FIG. 9. Comparison of the correction to the reduced one-pair creation probability with the

lowest-order result as a function of γ. Zα is set to 1. The points are the results of the calculation

of the multiple-particle corrections, the solid line a fitted ln γ dependence. The dotted line is the

result of the lowest-order Born approximation.

FIG. 10. Comparison of the differential probability P (E) for γ = 3400. Data points are the

results of the calculation of the multiple-particle correction, the solid line results of the lowest-order

Born calculation. Zα is set to 1.

FIG. 11. Comparison of the differential probability P (θ) for γ = 3400. Definitions are the same

as in Fig. 10.
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FIG. 12. Comparison of the contributions of the direct process P (D) (dotted line) and the

exchange process P (X) (solid line and data points) to the reduced two-pair creation process. Zα

is set to 1.
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TABLES

γ Ion P (B) P (M)

SPS 10 Pb 0.63 0.013 2.1 %

RHIC 100 Au 1.6 0.059 3.7 %

LHC 3400 Pb 3.9 0.21 5.3 %

LHC 3400 U 6.1 0.49 8.1 %

TABLE I. Comparison of the contribution of the multiple-particle correction P (M) to the re-

duced probability with the lowest-order Born result P (B) (see Eq. (86)).

n # Diags. cn dn

1 1.0000 × 100 1.0000000000 1.0000000000

3 2.0000 × 100 0.3333333333 0.6666666667

5 1.6000 × 101 0.1333333333 0.3777777778

7 2.7200 × 102 0.0539682540 0.1968253968

9 7.9360 × 103 0.0218694885 0.0974955908

11 3.5379 × 105 0.0088632355 0.0466976645

13 2.2368 × 107 0.0035921280 0.0218375158

15 1.9038 × 109 0.0014558344 0.0100304665

TABLE II. The number of diagrams and the coefficients cn and dn appearing in Magnus theory

for different orders n.
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