
A Network-Assisted System for Energy Efficiency
in Mobile Devices

Joshua Hare Dheeraj Agrawal Arunesh Mishra Suman Banerjee Aditya Akella
Dept. of Computer Sciences, University of Wisconsin-Madison, 53706

{hare, dheeraj, arunesh, suman, akella}@cs.wisc.edu

Abstract—We present the design and implementation of
Scepter, a system with explicit infrastructure support to reduce
energy consumption and improve battery life of mobile devices.
Scepter focuses on effective techniques that can reduce the
total number of bits transmitted to communicate the same
information from a mobile device to a base station. Scepter
combines multiple techniques into a single unified architecture
by utilizing a stateful proxy located within the infrastructure
close to the wireless base station. Scepter intentionally intro-
duces asymmetries in wireless communication tasks between
a mobile device and the stateful proxy to provide greater
energy advantages to the mobile device. In this work, we have
implemented all capabilities of Scepter as various kernel- and
user-level enhancements. Our detailed evaluation demonstrates
the performance advantages of Scepter. In various experiments
with different wireless conditions and traffic patterns, Scepter
improves the energy consumption of these devices between 15%
and 54%.

I. INTRODUCTION

Various wireless communication technologies are being
integrated into an increasing number of mobile devices,
beyond just laptops and cellular phones. Examples of such
integration span music players, e.g., iPod Touch, GPS-based
navigation tools, e.g., Garmin Nuvi 880, digital cameras, e.g.,
Nikon S6, electronic readers, e.g., Kindle, and PDAs, thereby
adding significantly new capabilities to them. However, as
wireless communication is quite a power-hungry operation,
vendors are increasingly seeking new ways to make all wire-
less communication technologies more energy efficient. Over
more than a decade, a number of energy efficiency techniques
have been developed that can be classified into hardware-
based and software-based approaches. The hardware-based
approaches focus on improving the energy consumption of the
wireless hardware and its RF front-end, while software-based
approaches often suggest either protocol-level optimizations
or better configuration of device parameters.

In this paper, we propose Scepter, which is a software-
only technique, for further improving the energy efficiency
of mobile devices when they are communicating with the
network infrastructure. Scepter stands for a Stateful proxy-
based system for Control overhead Elimination and Payload
reduction Through Elimination of Redundancy. In particular,

Hare, Agrawal, Mishra, and Banerjee were supported in part by US NSF
awards: CNS-1040648, CNS-0916955, CNS-0855201, CNS-0747177, and
CNS-0627589.

Scepter

MAC SCEP DATA

MAC IP DATATCP/UDP

TCP/UDP
IP

MAC

HTTP/VoIP/etc.

Scepter-Client

AP

Remote Host

Logically Collocated

Scepter
Proxy

OS Network Stack

OS Network Stack

Scepter PKT

Normal PKT

Scepter Optimizes
HTTP/VoIP/etc.

TCP/UDP
IP

MAC

Fig. 1. Scepter Infrastructure. This figure shows the overall Scepter in-
frastructure (note that the Scepter proxy does not have to be collocated
on the AP). The Scepter proxy is the entity that is communicating with
the remote host and can be viewed as the entity that is acting on behalf
of the Scepter client. The “SCEP” in the packet is the 1 byte of overhead
that Scepter uses for control information. The Scepter protocol is used
in communications between the Scepter client and the Scepter proxy.

Scepter achieves its gains by placing a stateful proxy in
the network infrastructure, close to the base station, and
assisting the mobile device in reducing the number of bits
required to transmit given amount of data. This reduction
spans both control messages of existing protocols and data
payloads carried in wireless frames. We have developed a
system specifically for the popular WiFi technology, which is
known to be particularly energy inefficient for mobile devices.
For example, in our measurements using multiple mobile
phones, we found that the battery drained more than twice
as fast when the device is actively transmitting using its WiFi
interface, compared to when it is idle.

A. Scepter: Novelty and approach

Scepter is based on the observation that a reduction in
the number of bytes transmitted over a wireless interface
directly correlates to a reduction in the power consumed
by the wireless interface. Scepter reduces the number of
bits to communicate the same information between mobile
devices and the network infrastructure. While many of the
techniques used in Scepter can be beneficial to any wireless978-1-4244-8953-4/11/$26.00 c© 2011 IEEE

communication scenario, we believe that its greatest value
lies in mitigating energy consumption when a mobile client
is communicating with the network infrastructure. This is
because, in Scepter, we introduce a stateful proxy in the
network infrastructure, and offload various communication
functions from the mobile client into the proxy. We have
created a asymmetric relationship between the mobile client
and proxy such that the proxy carries a much greater commu-
nication and computation burden. The mobile client will thus
offload certain communication tasks to the proxy requiring
the proxy to consume more energy on behalf of the mobile
client. With this asymmetric relationship we have built upon
compression techniques to develop cross-layer optimizations
that reduce the number of bits needed to communicate a
given amount information between the mobile client and the
network infrastructure. These compression techniques, which
were not designed with energy efficiency in mind, have been
extended and optimized to for vast energy savings. For further
energy savings Scepter was designed to be complementary to
other energy efficient design techniques such as “Power-Save
Mode” where the radio is put in a low power state when not
actively transmitting [1], [2], [3], [4].

Figure 1 illustrates the simple energy efficiency architecture
of Scepter. The figure shows the logical interaction between
a Scepter-capable mobile device and the way it interacts with
a remote host through a stateful proxy. In general, the proxy
can be placed at different points within the infrastructure.
In the context of WiFi, the most convenient point is within
the same broadcast LAN such as the Access Point (AP). In
our implementation, we actually implement the Scepter proxy
within the AP itself.

The Scepter proxy is stateful and is aware of various
protocol layers at the mobile device. In particular, we design
the proxy to understand the protocol semantics of the IP
and the TCP/UDP layers. In addition, it can also help elimi-
nate redundant content in the payload of various application
layer protocols, e.g., HTTP, VoIP, etc., in an application-
independent way. An implementation of Scepter, therefore,
requires kernel level modifications in the mobile device and in
the Scepter proxy. The Scepter-capable mobile device estab-
lishes state with the proxy for each of its network connections.
To manage this state among other things, Scepter adds a very
short (1 byte) header for all messages between the mobile
device and the proxy. The TCP/IP header fields are completely
subsumed in the Scepter header using an enhanced form of
Robust Header Compression (RoHC).

B. Key contributions

Our work has the following important contributions:

• Leverage infrastructure support: We demonstrate that
through infrastructure support we can not only reduce
the number of bytes sent per packet but also are able
to reduce the total number of packets sent by the
elimination of redundant control traffic across multiple
layers of the protocol stack.

• Leveraging asymmetry: This work also points out that
communication tasks can intentionally be designed to be
asymmetric, such that the burden falls more on the AP,
which has no power constraints, and less on the mobile
device. Asymmetry is also used in Scepter to optimize
the system for the asymmetric nature of up-link versus
down-link network traffic.

• Complete software implementation with user- and
kernel-level modules: We have implemented a full pro-
totype version of Scepter for Linux-based systems. This
implementation involves various cross-layer optimiza-
tions ranging from the session layer all the way down to
the network layer. We further quantify the energy savings
of our system in our evaluation.

In the following sections we discuss the motivation and
design of Scepter, and evaluate its performance through
detailed experiments, comment on related work, and conclude
various advantages and disadvantages of our proposal.

II. MOTIVATION — NON-UNIFORM BIT ERRORS AND
SHORT PACKETS

The design goal of Scepter is to reduce the energy costs of
active communication by reducing the number of transmitted
bits. While it is natural to expect that fewer transmitted bits
lead to lower energy costs, there are specific properties of
wireless bit error distributions that significantly enhance the
advantage of using smaller packets, as shown in Section II-B.

To better present the intuition behind some of the design
choices made in Scepter we first discuss the various factors
that affect energy consumption in a mobile device during such
active communication phases. In particular, we performed
controlled power measurements of a WiFi interface during its
active and idle phases to create an effective model of energy
consumption to expose the bit-specific error and energy
footprint.

A. Power measurement and energy profile

The measurements were collected on both a laptop and a
Netgear SPH101 WiFi phone. In the case of the phone, the
setup constitutes of a 0.1 Ohm sense resistor, R, connected
in series to the phone’s power source allowing measurement
of the being current supplied to the device. For accurate
measurements on the phone we removed the battery and
reconnected power via external wires. In the case of the
laptop, we used the Sycard 140A cardbus adapter [5], to
expose the current supplied to the interface. A Data Acqui-
sition Card, DS1M12 Stingray Oscilloscope [6], samples the
current through R at a high rate, thereby giving us energy
consumption information on a very fine-grained manner.

The instantaneous power consumption, Pi can be written
as Pi = Vd × VR/R where Vd is the voltage provided to the
802.11 device and VR is the voltage drop across R at a given
moment. The energy consumed, E over a given time period,
T , can then be computed using the formula, E =

∑n
i=1 Pi×

ts, where we take n samples of instantaneous power Pi during
time T (one sample every ts seconds).

Fig. 2. Instantaneous power consumption during the transmission of a
1064 byte packet using a Cisco wireless interface in 802.11g band.

To better understand exactly what really goes on during
packet transmission consider Figure 2, which shows the
instantaneous power consumption of a packet of total size
1064 bytes (in air), transmitted at 6 Mbps in 802.11g band
at a transmit power of 63 mW for a Linksys interface. The
power consumption during packet transmission can be divided
into three parts: rise in power when the card performs some
preprocessing to prepare the data for transmission and then the
packet transmission starts (about 200 µs), stable period when
power consumption has reached a steady state and fall in the
power consumption after packet transmission terminates (<
400 µs).

The rounded nature of the curve can be explained as
follows. The rise and fall occurs due to some capacitance in
the transceiver circuit — the rise corresponds to the discharge
of the capacitance to release initial current and the fall
corresponds to a gradual drop in current as the transceiver
goes back to idle state.

The instantaneous transmit power Pc during a packet trans-
mission can then be represented by (verified in our analysis):

Pc =

Pt.(1− e

−t
RC1) t < max(c ·RC1, tp)

Pt tr < t < tp

Pt.(e
−t

RC2) t < c ·RC2

.

Where Pt = Pa − Pi is the power consumed only by the
transmission circuit and does not include idle power Pi. RC1

and RC2 are the RC components for the rise and fall of
current respectively, c is a constant and tp is the packet
transmission time.

From our empirical results, Pa serves as a good approxi-
mation to be used directly to calculate energy consumption,
E = Pa × tp, for a packet of arbitrary size and data rate.

Using this information, we build an energy profile detailing
the energy consumption patterns at various modulation rates
for a specific WiFi interface. To compute the energy cost of
transmitting a packet, the energy profile would need a lookup
table indicating the power consumption, Pi for different
transmit power levels i for every 802.11 mode that a given
card supports. When the energy profile is queried for the
energy cost for a given packet transmitted at rate r at transmit
power level i it would make use of the following two steps.

Fig. 3. Distribution of bit-error probability within a packet computed
over the set of packets received in error during the experiment. The
packets were modulated at 54 Mbps.

First we compute the packet transmission time, t, using the
formula t = tp + l/r, where tp is the time taken to transmit
the preamble for the particular 802.11 mode i.e. a, b or g,
l/r given the time taken to transmit the payload of length l
at rate r. Second we would reference the lookup table T to
get Pi for the transmit power level i used and use formula,
E = Pa × tp, to compute the total power consumed by the
wireless transceiver and from it obtain the total energy. During
regular operations, this can be further augmented to factor in
observed packet error rates (that depend on packet sizes) in
a manner similar to the ETX and ETT metrics [7].

This model suggests that the energy consumed to transmit
a packet is proportional to its size. Hence, for a given
packet, reducing its size by half would reduce the energy
consumption in half as well. However, there is a critical factor
that significantly enhances the advantages of shorter packets:
non-uniformity in bit errors across the packet, as shown in
Section V.

B. Leveraging non-uniform bit errors

If a packet is S bits long, and if p is the uniform bit
error rate of all bits, then the probability of a packet loss is
1− (1−p)S . Once a packet is lost, in typical implementation
the entire packet would need to be re-transmitted. This mech-
anism is implemented in the 802.11 MAC. Hence, if E(S) is
the energy cost of transmitting the packet once, then the total
energy costs of successfully transmitting the packet, including
loss recovery (under independent packet loss assumptions) is
E(S)/(1− p)S , which grows super-linearly with the size of
the packet.

However, bit errors are not distributed uniformly within the
frame. This observation implies the packet size has an even
greater impact on energy costs.

We show this through our collected measurements in Fig-
ure 3. The figure shows the likelihood of errors in different bit
positions of a 4096-bit packet, among all packets received in
error. The key observation in this plot is that the first 704 bits
(88 bytes) of a packet have a lower likelihood of error than
the remaining bits. This is because the PLCP header of the
physical layer includes a training sequence to synchronize
the transmitter and receiver interfaces, prior to sending the
remaining physical layer payload. The first few bytes of the

packet are, therefore, decoded when the communicating ends
are better synchronized and have lesser errors. In contrast,
the synchronicity between the two ends worsens with time
and the accuracy of the receiver in decoding the later bytes
diminish.

This result suggests that shorter packets gain even further
energy efficiency. Bits in shorter packets stay synchronized at
the receiver as they follow the PLCP header. It implies that
even the average bit error rate of shorter packets is lower
than longer packets which further separates the error rates of
packets of different sizes. To take an example, if the bit error
rate of all packets, independent of packet size, was uniformly
1 × 10−4, then a 128-byte packet will have a packet error
rate of 0.09, while a 256-byte packet will have a packet error
rate of 0.17. However, in practice the average bit error rate
of the longer packet is lower, say 2 × 10−4, then the 256-
byte has a packet error rate of 0.31, i.e., about 2 times more,
incurring about 35% more re-transmission overheads. Overall,
it suggests that use of smaller packets on the wireless link is
particularly critical in reducing re-transmission overheads and
in turn saving energy.

III. SCEPTER DESIGN

In Scepter, we based our design on the observation that
every bit transmitted or received by a mobile device has
an energy cost associated with it. While the infrastructure
also pays an equivalent cost, its access to unlimited power
supply makes this cost irrelevant in this scenario. Hence,
in Scepter we increase the communication and computation
burden of the infrastructure-based entity (the proxy) to reduce
the burden on the mobile device. We call this proxy the
Scepter proxy and we call a client that uses a Scepter proxy
a Scepter client. By offloading redundant transmissions and
processing to the Scepter proxy, the Scepter client is able to
send fewer bits and thus conserve energy. In this work, we
have assumed that the Proxy’s functionality is within the same
broadcast domain as the WiFi AP.

The interaction between the Scepter client and the
Scepter proxy is specifically designed to remove any redun-
dant traffic that might be seen, whether within the control
information or in the data payload. Eliminating redundant
control information is possible, because the link between the
Scepter client and the Scepter proxy is predictable. Such
knowledge is leveraged at the proxy to remove signaling
messages and other information that does not need to be ex-
plicitly transmitted by the Scepter client, but can be correctly
predicted at the Scepter proxy.

In addition, all user generated content (carried as data
payloads) tend to have various forms of redundancies as well.
To eliminate all such forms of redundancies, we use a toolbox
available from a range of prior efforts, including Robust
Header Compression (RoHC) [8], Huffman encoding [9],
Split TCP [10], and strategies to eliminate redundancies
across a sequence of packets [11], [12], none of which were
design for energy efficiency.

In this section, we explain how we use each of these prior
techniques in the context of energy efficiency in Scepter. We
first describe our approach to reducing redundant payloads.

A. Redundant Payloads

Reducing the redundancies found the in payloads of packets
may provide significant savings when the payload dominates
the size of the packet, such is the case with HTTP, which
was designed to be simple and human-readable having many
redundancies.

Elimination of redundant payload content within a
single packet: Since HTTP is a text-based protocol, one
simple approach would be to take each packet and compress
it with a zip tool [13] that uses a combination of Huffman
encoding [9] and the LZ77 algorithm [13]. This would
effectively remove patterns found in the textual payload of the
given packet. We call this approach of payload redundancy
elimination, per-packet redundancy elimination and is used
in most web browsers. However, web browsers use compres-
sion to improve bandwidth efficiencies and not for energy
reasons. We build upon this approach to quantify the energy
savings from such techniques. Further discussion of using
compression techniques and their computational overhead are
in Section VI.

Recent work [14], has shown that many such compression
algorithms have an asymmetric nature where decompression
is often much faster and less resource intensive as com-
pared to compression. During compression the algorithm
must search for redundancies and as the algorithm removes
these redundancies it must also create a mapping between
the original content and the compressed content. During
decompression the algorithm simply uses the mapping that
was created by the compression step to return the content back
to its original state. This asymmetry is additionally beneficial
to Scepter since the network traffic of mobile devices is
heavily weighted in the down-link direction.

Elimination of redundant payload content across mul-
tiple packets: In addition, we also consider the case where
redundancy exists across a sequence of packets exchanged
between the mobile client and the proxy. For example, con-
sider two different IP packets (say, corresponding to content
of different websites) carrying the following text-based sub-
strings “energy efficient 802.11” and “energy efficient laptop.”
Between these two packets, the substring “energy efficient” is
redundant, while the rest of the packet’s content are not. It is
well known that various forms of such redundancies exist in
the Internet traffic [11]. In recent work, Anand et. al. [12]
showed how to implement some redundancy elimination
primitives, using Rabin fingerprints [15] within core Internet
routers to reduce the total traffic carried by an individual
ISP. The basic idea of this technique is to cache various
fragments of a packet locally and remove redundancies when
these fragments are observed in future packets. In Scepter,
we tailor this technique for use within the mobile device and
the Scepter proxy.

MAC ACK

MAC ACK

DATA

DATA

TCP ACKTCP ACK

Fig. 4. MAC to TCP acknowledgments. With our infrastructure the MAC
layer acknowledgment provides the same information as a traditional
TCP acknowledgment making the TCP ACK completely redundant.

Since we apply this technique over multiple traffic flows
we call this technique multi-flow redundancy elimination.

B. Reducing Redundant Control Messages

We next examine how the infrastructure-based proxy can
use cross-layer optimizations to reduce certain control mes-
sages through its knowledge of redundancies between mul-
tiple layers of the protocol stack. We do this through the
following example.

Elimination of redundant control messages. When a TCP
source sends a data segment the receiver will reply with a
TCP ACK. If this ACK is not received before a set period
of time TCP will retransmit the packet. Similarly, when an
802.11 source sends a packet and the receiver responds with
a MAC layer ACK. If this ACK is not received before some
set period of time the MAC layer will retransmit the packet.
Within a single hop, wireless link between the Scepter client
and the Scepter proxy, a MAC layer ACK provides the same
information that a TCP ACK provides. As shown in Figure 4,
both the MAC layer ACK and TCP ACK are transmitted from
the mobile client. When using Scepter, the proxy can translate
the MAC layer ACK into a TCP ACK eliminating the need
for the client to transmit the TCP ACK and also eliminate the
need to receive the subsequent MAC layer ACK.

In practice Scepter must provide cross-layer guarantees
over the data so that the end-to-end semantics are not violated.
We claim this optimization is an acceptable due to three
reasons. First, it is very unlikely that the wireless NIC is able
to correctly decode the original data packet and send a MAC
layer ACK, but is unable to pass the packet up to the higher
network layers. Second, the Scepter proxy is sending the TCP
acknowledgment only after it receives the MAC layer ACK
from the mobile device and hence, is certain the mobile device
has received the original data packet. Finally, if the MAC
layer fails to transmit the packet, our kernel implementation
will receive notification of such a failure and Scepter can
simply retransmit the packet, as detailed in Section IV.

C. Reducing Other Redundancies

The first approach to reducing control overheads is to
reduce the number of header bits within a packet. Header
reduction is critical to energy efficiency for small packets
— ones in which headers form a significant overhead. For
example, with the usual voice aggregation delay of 20-30

milliseconds, popular voice codecs such as G.711, G.723,
etc., create packets sized 20 to 160 bytes. Hence the 28-byte
UDP/IP header can be a significant fraction of a VoIP packet.
Based on this motivation from our measurements, we describe
techniques used in Scepter to reduce and eliminate avoidable
header fields. We start with techniques seen in RoHC for
removing static header fields [8]. Once RoHC compression
is in place we implement further compression techniques to
build a system that extends far beyond RoHC.

Elimination of dynamic header fields, moving beyond
RoHC. We also remove some of the dynamic header fields
due to redundancies across multiple layers. For example, the
UDP checksum field can be removed in Scepter, since the
802.11 MAC frame also contains a CRC field that protects
the entire MAC payload. Similarly, the UDP length field can
also be eliminated as the same information can be gleaned
from the 802.11 MAC headers. However, in order for this
packet to be correctly received at the remote destination,
the proxy is now made responsible for creating and placing
both the UDP checksum and the UDP length, before sending
the packet onwards. This adds additional computation and
processing burden on the proxy, but relieves these burdens
from the client.

In case of TCP, we also introduce some header optimiza-
tions. An example of this is the 32-bit sequence and ACK
number fields of TCP. The advantage of a large sequence
number field is that multiple unacknowledged segments may
be left in transit increasing throughput achieved on the end-
to-end connection. However, the 802.11 MAC operates in a
stop-and-go manner, i.e., it sends a packet and obtains its
ACK before sending the next packet. Therefore, we consider
a split-like design to leverage the design differences between
the 802.11 protocol and higher layer protocols.

We split some of the header construction functions between
the mobile device and the proxy. The first part of this split
is the link between the mobile device and the proxy, which
uses a smaller sequence number space. In our current im-
plementation we need only to reliably disambiguate between
two consecutive packets, which only requires the use of a
single bit sequence number. Thus, the link operates like a
stop-and-go protocol, matching the 802.11 MAC’s underlying
behavior. The rest of the path between the proxy and the
remote destination uses the full 32-bit TCP sequence number
space. Specifically, when the proxy receives a TCP segment
from the mobile device it expands the sequence number into
a regular TCP sequence number by inferring the correct value
in the 32-bit space. Thus, we further reduce the number of
bits sent over-the-air by shifting the computation burden from
the client to the proxy.

By using a stateful proxy, we are able to replace all fields of
the IP, UDP, and TCP headers in regular packets with a total
of 3 bytes of Scepter header. Two of these bytes are embedded
within the 802.11 MAC header, allowing us to reduce regular
TCP/IP and UDP/IP headers to a single byte.

Call Type Number of Calls Total Percentage
Recv() 23228 93.1%
Send() 811 3.3%
Connect() 534 2.1%
Getsockopt() 215 0.9%
Other 164 0.6%
Bind() 1 <0.1%

TABLE I
This table contains the number of socket type system calls made

during a 10 minute period of time browsing the Internet with the
firefox web-browser. General browsing, web-email, and streaming

video were all performed during this period of time. Counters were
incremented from within the kernel each time a socket type system

call was made by an application.

IV. IN KERNEL IMPLEMENTATION

In this section we present implementation details and
design considerations for Scepter. We implemented Scepter as
a kernel module, which provides us the vantage point needed
for many of our cross-layer optimizations. The kernel also
provides us the opportunity to conduct a side-by-side com-
parison with the traditional Linux network stack.

The protocol was implemented using Remote Procedure
Call (RPC) style messages. The choice of RPC style messag-
ing provides a layer of abstraction that other implementation
methods could not provide. This layer of abstraction produces
a clean implementation allowing the current socket API
to go unchanged and provides an accurate comparison to
the traditional Linux network stack. The goal of an RPC
messaging system is to send a message to a remote host
requesting that a particular action be execute on the remote
host. In our system the Scepter client sends messages to the
Scepter proxy requesting a system call be executed on behalf
of the Scepter client, e.g., connect() or send().

The protocol begins when the Scepter client program makes
a socket() function call. Instead of going to the traditional
network stack of the Linux kernel, the call goes to the
Scepter stack. In the routine, the Scepter client sends a packet
to the Scepter proxy to execute the call on the Scepter proxy.
The Scepter proxy then allocates a Scepter identifier which
is returned to the Scepter client and used for all subsequent
communications. It is important to note that our implementa-
tion was designed to allow side-by-side comparisons with the
traditional network stack. However, by implementing a com-
pletely separate network stack we would require applications
to choose between the traditional stack and the Scepter stack.
For our research purposes this was the desired functionality,
however, in practice integration of the Scepter network stack
into the traditional network stack would allow the kernel
to use the Scepter functionality only if support from within
the network existed. This would not require any changes to
application code. A discussion on bootstrapping methods will
be deferred to Section VI.

A naive approach would send messages to the
Scepter proxy for every socket call. However, socket
calls such as getsockopt() change socket options that
are applicable to the Scepter client and not the Scepter proxy.

Flags
Source
MAC Identifier

Destn
MAC

Data

6 bytes 6 bytes 2 bytes 1 byte

b4

More
Flags

Seq
Num

b0 b1 b2 b7b3

Arg
Func Func

Arg
socket call identifier

Variable length

 Scepter

Fig. 5. Scepter client to proxy Ethernet frame used to communicate with
the Scepter proxy. The type field in Ethernet frame is replaced by the
Scepter identifier

Flags
Source
MAC Identifier

Destn
MAC

Data

6 bytes 6 bytes 2 bytes 1 byte

b7

socket call identifier

Variable length

b0 b3 b4

Flags/Sequence number

 Scepter

Fig. 6. Scepter proxy to client Ethernet frame used to communicate with
the Scepter client. The type field in Ethernet frame is replaced by the
Scepter identifier.

Thus, we execute only the socket calls which modify the
connection state on the Scepter proxy to optimize the control
overhead of our system. Furthermore, we have focused on
optimizing send() and recv() calls since other socket
calls such as socket() or getsockopt() constitute
<5% of total socket calls in a typical network application,
as shown in Table I. Table I further demonstrates that
there is a highly asymmetric nature between the number of
recv() calls and all other socket calls. Scepter leverages
this asymmetry to optimize the recv() call. When the
Scepter client issues a recv() call a RPC message is not
sent to the Scepter proxy, unlike the behavior of all the
other socket calls. Instead the Scepter proxy will proactively
forward packets destined for the Scepter client. On reception
of these packets, the Scepter client enqueues them to the
appropriate socket queue. Later, when the application on the
Scepter client requests a packet, it is fetched from the local
socket queue.

A. Scepter Packet Structure

Figures 5 and 6 show the structure of packets used for com-
munication between the Scepter client and the Scepter proxy.
All packets are Ethernet frames. To minimize packet header
length, we have reused the 2-byte Ethernet type field of the
802.11 MAC header as the Scepter identifier. However, we
make sure that the Scepter identifier that we use does not
conflict with any of the types (e.g., IP, ARP, RARP) used on
the given network. This 2-byte type field can simply be passed
to the Ethernet driver requiring no changes to the driver code
at all.

The following byte (byte 15) is an extensible flags field
present both in Scepter proxy and Scepter client pack-
ets which behave differently based on whether it is a
Scepter client packet or Scepter proxy packet. The last
4 bits (b4 to b7) of the flags field are common to

 0

 50

 100

 150

 200

TC
P

TC
P over

Septer-C
E

U
D

P
U

D
P over

Septer-C
E

E
n

er
g

y
 u

sa
g

e
(i

n
 m

J) 24%
savings

 15%
savings

Fig. 7. VoIP or interactive messaging traffic (consisting of small packets)
over a good quality link. Scepter-CE is well suited for such traffic, since
it focuses on header elimination.

both client and proxy and represent the socket call (e.g.
bind(), sendmsg(), recvmsg()) to be executed at the
Scepter proxy.

Scepter client flags field. The first 4 bits (b0 to b3)
are used for socket call specific options. For example when
sendmsg() is called with MSG DONTWAIT flag set, it is
set in bit position b2. Bit b3 (MORE FLAGS INDICATOR)
if set implies that the following byte can be used to for setting
more flags. Bit b1 is used as a sequence number.

Scepter proxy flags field. The first 4 bits, b0 to b3, of the
flags field are used for sendmsg() calls and for forwarding
packets to Scepter client. For sendmsg() calls, the bits
are used to send control information to Scepter clients. For
example when the Scepter client sends a UDP packet, the
first packet contains the receiver’s IP and port numbers, the
Scepter proxy creates an entry for the receiver and sends
a new Scepter identifier back to the Scepter client which
represents the given IP and port and sets a bit in the flags
field to reflect that. For subsequent packets, the Scepter client
can use the identifier instead of IP and port information.

When forwarding TCP packets, the Scepter proxy uses bits
b0 to b3, for sequence numbers. Our stop-and-go protocol
only requires the use of a 1 bit sequence number, which is
sufficient to differentiate subsequent packets, but we imple-
mented a 4 bit sequence in packets from the proxy to the
client to allow for block aggregation. Block aggregation is
used in protocols such as 802.11n and allow the sender to
combine multiple packets that would otherwise be transmitted
separately into a single transmission. Our 4 bit sequence
number provides support for such optimizations.

V. EVALUATION

In this section we present a detailed evaluation of
Scepter obtained through a wide range of experiments under
different scenarios.

For each packet there is a preamble, MAC header,
TCP/UDP/IP or Scepter header, and payload. For all ex-
periments at least 25,000 packets were sent for the given
traffic type. We used two different types of traffic load to
demonstrate the benefits of Scepter. We emulate both VoIP
traffic (operates on UDP) and live interactive messaging

Battery Life (min)
Idle 121
w/o Scepter 52
w/ Scepter 72

TABLE II
Battery drain test. VoIP style traffic was continuously transmitted

from the laptop until the battery of the device was exhausted.
Scepter provides a 38% improvement in the battery lifetime.

services (operates on TCP) which have small packets (order of
20 bytes) and can be encrypted for data privacy. We generate
similar sized packets and account for encryption by randomly
generating payloads. The other type of traffic is web traffic
which is dominated by packets 1KB or greater.

We have implemented Scepter within a Linux kernel ver-
sion 2.6.19.6 running on a 1.66 GHz laptop. We compare
the energy savings of Scepter to the default TCP/IP im-
plementation running on the laptop. We consider different
variations of Scepter: (i) Scepter-CE: includes elimination of
redundant header fields and control messages (Sections III-C
and III-B), (ii) Scepter-RE (per-packet): includes elimination
of redundant payload as applied to an individual packet
through a combination of Huffman encoding and LZ77 algo-
rithms for data compression within a packet (Section III-A),
and (iii) Scepter-RE (multi-flow): includes elimination of
redundant payload as applied across a sequence of packets
between a single mobile device and the proxy (also Sec-
tion III-A). The term Scepter-CE-RE (multi-flow) implies that
both Scepter-CE and Scepter-RE (multi-flow) have been ap-
plied together. Similarly, Scepter-CE-RE (per-packet) implies
that both Scepter-CE and Scepter-RE (per-packet) are being
utilized. Scepter-RE (per-packet) and Scepter-RE (multi-flow)
are never combined since the CPU and memory consumed
during the second phase of redundancy elimination outweigh
the minimal additional reductions in packets sizes.

For our experiments, we conducted measurements for the
WiFi interface of a laptop. Thus most of our numbers repre-
sent the energy savings across the WiFi interface alone. To
transmit a fix amount of data across such a WiFi link we
define “energy savings” as follows:

energy savings = EnergyLegacy−EnergyScepter(in mJ)

where

EnergyLegacy = energy to transmit the data without
Scepter
EnergyScepter = energy to transmit the data with Scepter

We then compute the percent difference between
EnergyLegacy and EnergyScepter and present this number
throughout this section.

Overall energy gains: The relative impact of the battery
lifetime of a mobile device would also depend on the regular
power drawn by the rest of the mobile device. A comparison
of this battery lifetime metric on the laptop will certainly be
biased by the power drawn by the large screen. For this reason

 0

 100

 200

 300

 400

 500

 600

N
orm

al

Scepter-C
E

Scepter-C
E+R

E

(m
ulti-flow

)

Scepter-C
E+R

E

(per-packet)

E
n

er
g

y
 u

sa
g

e
(i

n
 m

J)
 54%
savings

Fig. 8. Web style traffic over a good quality link. Scepter-RE is well
suited for web style traffic as can be seen. The energy savings for Scepter-
RE(per-packet) stems from high compressibility of web traffic.

the measurements were conducted with the screen turned off.
As seen in Table II, Scepter improves the battery lifetime by
38%. The battery was continuously probed and the remaining
battery charge was logged while sending VoIP style traffic
over the link.

In the following experiments, we describe the performance
of different schemes in terms of both energy consumed and
throughputs achieved. Note that the comparison in energy is
based on the same amount of data successfully transmitted,
i.e., mechanisms with lower throughputs operate longer to
carry all the data.

Good quality link, small packets: Figure 7 compares the
performance of different schemes when operating on a link of
good signal quality and carrying VoIP style traffic. This is the
scenario where Scepter-CE provides significant advantages by
eliminating the TCP/IP or UDP/IP header. This is also shown
in the figure where Scepter-CE provides 24% savings over
TCP and 15% over UDP. The gains of Scepter-CE is higher
in TCP due to the larger size of TCP headers that can be
eliminated.

Figure 8 shows the comparative performance of the
schemes with good link quality for large packets. The packets
were collected from web traffic consisting mostly of full
1500 byte payloads and had observable textual redundancies.
This is the case where Scepter-RE provides more gains than
Scepter-CE, as can be seen in the additional gains of Scepter-
CE-RE over Scepter-CE. In addition, the per-packet Scepter-
RE scheme outperforms the multi-flow scheme since the
former uses a more effective compression algorithm that
is computationally expensive and can thus achieve greater
payload reduction. Even though the multi-flow approach has
greater opportunities of redundancy elimination, it was de-
signed to be computationally efficient. It only probabilistically
identifies redundant content, missing various opportunities.

Impact on Throughput: Most components of Scepter have
no perceptible impact on end-to-end throughput, barring one
in its current implementation — Scepter-RE (per-packet),
which performs computation-intensive tasks of data compres-
sion. In our experiments the data compression techniques
within a single packet includes a combination of Huffman en-

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

N
orm

al

Scepter-C
E

Scepter-C
E+R

E

(m
ulti-flow

)

Scepter-C
E+R

E

(per-packet)

E
n

er
g

y
 u

sa
g

e
(i

n
 m

J)

 48%
savings

Fig. 9. VoIP style traffic over poor quality link. High gains of Scepter-CE
due to drop in re-transmission requirements in this case, when compared
to other schemes.

coding and the LZ77 algorithm. The ensuing delays impacted
achievable throughput (TCP or UDP) by up to 25%, e.g., in
some moderate channel conditions we achieved a throughput
of 1.5 Mbps with Scepter-RE (per-packet) and a throughput of
2 Mbps without it. Note however, that this loss in throughput
always comes with energy savings when comparing the
transfer of the same number of data bits as already reported
in this section. We believe that some of the inefficiency lies
in our user level implementation of this component, while
others are inherent to the compression algorithm itself. In
either case we feel this is a reasonable trade-off a mobile
user applying Scepter-RE (per-packet) should make, i.e., they
can choose to be more energy conserving and at the expense
of some throughput, or they can consume more energy and
to maintain full throughput.

Other Scepter variants which include the implementation of
Scepter-RE (multi-flow) do not have a significant computation
overhead. This observation is also validated by the absence
of any throughput degradation in our experiments.

Bad quality link, small packets: We repeated all the
experiments in a location which exhibits consistently poor
wireless signal between the mobile device and the AP. As
seen in Figure 9, Scepter-CE reduces energy consumption by
48% as is expected with small packet sizes, while Scepter-RE
provides almost no additional gains. Again, this is due to the
lack of redundancy in randomly generated content, emulating
data compression and encryption of many VoIP codecs.

Bad quality link, large packets: Our final set of energy
measurements consisted of large packets (web traffic) over
the same poor quality link. As seen in Figure 10, Scepter-RE
reduces energy consumption by 39%. Again we notice that
Scepter-RE performs better than Scepter-CE because of the
larger packet sizes.

A. Understanding Scepter-RE

The performance of Scepter-RE to some extent is depen-
dent on the amount of redundancy present in the traffic. To
understand what kind of redundancy may be present in regular
user traffic we collected large traces of data from our on-
campus wireless network. The data was collected on a busy

 0

 100

 200

 300

 400

 500

 600

 700

N
orm

al

Scepter-C
E

Scepter-C
E+R

E

(m
ulti-flow

)

Scepter-C
E+R

E

(per-packet)

E
n

er
g

y
 u

sa
g

e
(i

n
 m

J)

 39%
savings

Fig. 10. Web style traffic over poor quality link. Scepter-RE provides
the best gains.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

00:00 06:00 12:00 18:00 23:59

F
ra

ct
io

n
 o

f
re

d
u

n
d

an
cy

Time (hour)

Fig. 11. Scepter-RE (multi-flow) redundancies seen over a 24 hour period
from actual traces collected from a busy university library. Each point
corresponds to the percentage of redundant bytes computed using the
Scepter-RE (multi-flow) algorithms over all user traffic in grouped into
10 minute bin.

day in our university library across an entire period of 24
hours. The total amount of traffic collected in this experiment
amounted to about 110 GB.

We calculated the degree of exploitable redundancy present
in the traffic trace by running the multi-flow Scepter-RE
algorithm over the traces, binning the entire trace into 10
minute durations. This emulates the effect of identifying
redundancies available in 10 minute bins throughput the day.
We chose a small bin size, e.g., 10 minutes, so that would
not retain very old traffic as it would require the proxy or the
mobile device to store a large volume of old data. Figure 11
plots the available redundancy as it varied throughout the day.
We observed the maximum amount of redundancy was during
the time segment between 1:00pm and 1:10pm where there
was on the order of 25% redundancy. The spike in the graph
likely corresponds to a large number of students visiting the
library during the lunch hour. On average there was 8.8%
redundancies on this particular day.

An interesting aspect of the above result is the fact that it
is computed over traffic transmitted by multiple users. Since
this entire traffic is observable from a set of close-by vantage
points, many of these users are actually within communication
range of each other, i.e., they can hear each others packets to

some extent. This can allow for an interesting design point
where payload can be eliminated between packets of different
mobile devices, by requiring each to retain observed content
of others. We have avoided the complexity of such a design
in our current work, and will explore this concept as part of
our future direction.

VI. DISCUSSION

In this section we will discuss additional enhancements
to the Scepter system that will improve both usability and
integration into current mobile devices and network infras-
tructure.

Web Browser Compression. Most modern web browsers
support the compression of the HTTP payload. Two common
compression algorithms used by browsers are the gzip and
deflate algorithms. It is important to note that even if both the
server and web browser support payload compression, this
does not guarantee that compression will be used. Further
the compression is only performed by the server and if
compression is performed, the server only compresses the
HTTP payload and not the highly compressible HTTP header
itself. However, if the HTTP payload is already compressed
it would be a waste of time and energy to try to compress
it again with Scepter. Therefore Scepter would need to track
the state of HTTP traffic to avoid compressing data that has
already been compressed.

Scepter could track the compression ratios achieved on
a per-flow bias to detect if the ratios are consistently low,
which would be the case if the payload was already com-
pressed. If the ratios are consistently low for a particular
flow, Scepter would then decide to turn off Scepter-RE for
that particular flow.

Computation overheads. As mentioned most web
browsers support the gzip and deflate compression algorithms.
We have based our measurements on the deflate algorithm
since the CPU and memory requirements are significantly
smaller for the deflate algorithm [14]. Barr and Asanovic [14]
further show that when the compression algorithm is properly
tuned that the CPU and memory consumption is minimal.

The computational overheads also add additional latency
to network traffic. Only one variant of Scepter, specifically
Scepter-RE (per-packet), has such computation overheads that
leads to loss in throughput performance, when this scheme is
applied. We believe that this overhead provides device users
with a trade-off between greater energy efficiency and better
throughput, a choice that can depend on the battery level of
the device. Further optimizing the computation overheads will
continue to be part of our future work.

VII. RELATED WORK

As discussed in Section I, there has been multiple com-
plementary approaches to energy efficiency. Hardware-based
approaches attempt to optimize the circuitry to improve power
efficiency of these devices [16], [17]. Similarly, a large num-
ber of software-based approaches have also been proposed.
They include: (i) those that attempt to put the wireless NIC

in a “power-save” mode [18], [19], [20]. (ii) those that power-
down the primary wireless NIC but keep an additional low-
power interface awake to quickly revive communication [3],
[4], and (iii) those that use transmit power control [21].
Scepter uses a fourth alternative, in that it reduces the number
of control and data bits to achieve the same communication,
thereby reducing the costs of active transmissions when they
have.

Various design components of Scepter are built upon prior
work. For example, there has been significant prior work on
bandwidth efficiency which overlaps with some of the princi-
ples on which Scepter is based. Robust Header Compression
(RoHC)[8] originally proposed by Van Jacobson attempts to
reduce the header size of packets between a sender and a
receiver connected by a point-to-point link by having extra
state at the receiver. RoHC is a good method to improve
throughput efficiency. In contrast, Scepter is optimized for
energy efficiency and goes beyond the compression methods
used in RoHC.

Part of the Scepter design builds upon ideas from the split
connection protocols such as iTCP[22] and split-TCP[10].
Such prior split connection, split-TCP in particular, suggests
the use of a separate TCP connection between the mobile
host and a proxy for better differentiating the causes of
losses on the end-to-end Internet path. In our split design,
we completely eliminate the TCP header in the wireless link,
and use a stop-and-go protocol for flow control across this
link.

Our work in removing redundancies in the payload lever-
ages similar approaches applied in the Internet to reduce
the traffic load on core routers or other such wide-area
entities [11], [12]. We focus on using such an approach
for energy efficiencies. An in-depth study of compression
algorithms and their CPU and memory consumption can be
found in prior work [14]. Using this work, we selected an
algorithm with low CPU and memory need such that our
focus could remain on the energy consumed by the wireless
hardware itself.

Finally, there has also been some work that aims to leverage
the infrastructure in a way that would allow the entire client
machine to go into a sleep state [23], [24]. The network
would queue up traffic until a significant amount of traffic was
waiting to be processed by the client machine. The network
would then wake the machine up and forward the traffic for
processing.

VIII. CONCLUSION

We have designed and fully implemented Scepter to
achieve large energy gains. These gains are realized
through the use of an asymmetric relationship between the
Scepter client and the Scepter proxy. Further gains are
achieved from our cross-layer optimization. Our kernel im-
plementation not only provided an ideal vantage point to
implement these cross-layer optimization but also provided
an ideal comparison to the traditional Linux network stack.

The energy savings observed by Scepter are very en-
couraging. Coupled with a design that is complementary to
prior approaches makes Scepter a very attractive method for
reducing energy consumption of mobile devices. As mobile
device continue to require faster processing, larger screens,
and faster connectivity we feel that Scepter will prove to be
very valuable for users who enjoy long battery lifetimes.

REFERENCES

[1] R. Zheng and R. Kravets, “On-demand power management for ad hoc
networks,” vol. 1, 2003, pp. 481–491 vol.1.

[2] “Ieee 802.11 standard,” http://standards.ieee.org/getieee802/802.11.html.
[3] E. Shih, P. Bahl, and M. Sinclair, “Wake on wireless: An event driven

energy saving strategy for battery operated devices,” in ACM Mobicom,
2002.

[4] T. Pering, Y. Agarwal, R. Gupta, and R. Want, “Coolspots: Reducing
the power consumption of wireless mobile devices with multiple radio
interfaces,” in ACM MobiSys, 2006.

[5] “Sycard cardbus adapter,” http://www.sycard.com/ext140.html.
[6] “Stingray digital oscilloscope,” http://www.usb-

instruments.com/data ds1m12.html.
[7] R. Draves, J. Padhye, and B. Zill, “Routing in multi-radio, multi-hop

wireless mesh networks,” in MobiCom ’04. New York, NY, USA:
ACM, 2004, pp. 114–128.

[8] IETF RoHC Charter, “Robust Header Compression (RoHC) IETF
Charter ,” http://www.ietf.org/html.charters/rohc-charter.html, 2001.

[9] D. Huffman, “A method for the construction of minimum-redundancy
codes,” Proceedings of the IRE, vol. 40, no. 9, pp. 1098 –1101, sept.
1952.

[10] H. Balakrishnan, V. N. Padmanabhan, S. Seshan, and R. H. Katz,
“A comparison of mechanisms for improving TCP performance over
wireless links,” IEEE/ACM Transactions on Networking, vol. 5, no. 6,
pp. 756–769, 1997. [Online]. Available: citeseer.ist.psu.edu/article/
hari96comparison.html

[11] N. T. Spring and D. Wetherall, “A protocol-independent technique for
eliminating redundant network traffic,” in SIGCOMM ’00. New York,
NY, USA: ACM, 2000, pp. 87–95.

[12] A. Anand, A. Gupta, A. Akella, S. Seshan, and S. Shenker, “Packet
caches on routers: the implications of universal redundant traffic
elimination,” in SIGCOMM ’08. New York, NY, USA: ACM, 2008,
pp. 219–230.

[13] “Deflate compressed data format specification,”
http://www.ietf.org/rfc/rfc1951.txt.

[14] K. C. Barr and K. Asanović, “Energy-aware lossless data compression,”
ACM Trans. Comput. Syst., vol. 24, no. 3, pp. 250–291, 2006.

[15] M. Rabin, “Fingerprinting by random polynomials,” in Technical Re-
port. TR-15-81, 1981.

[16] “Ultra-low-power wifi chip targets windows mobile devices,”
http://www.windowsfordevices.com/news/NS3141723896.html.

[17] “Broadcom introduces ultra-low power wi-fi chips optimized for mobile
devices,” http://www.broadcom.com/press/release.php?id=919562.

[18] M. Anand, E. Nightingale, and J. Flinn, “Self-tuning wireless network
power management,” in ACM Mobicom, 2003.

[19] M. C. Rosu, C. M. Olsen, C. Narayanaswami, and L. Luo, “Pawp: A
power aware web proxy for wireless lan clients,” in WMCSA ’04, 2004.

[20] F. R. Dogar, P. Steenkiste, and K. Papagiannaki, “Catnap: exploiting
high bandwidth wireless interfaces to save energy for mobile devices,”
in MobiSys ’10, 2010.

[21] S. Banerjee and A. Mishra, “Minimum energy paths for reliable
communication in multi-hop wireless networks,” in MobiHoc, 2002.

[22] A. Bakre and B. Badrinath, “I-tcp: Indirect tcp for mobile hosts,” in
Technical Report DCS-TR-314, Rutgers University, 1995.

[23] S. Nedevschi, J. Chandrashekar, J. Liu, B. Nordman, S. Ratnasamy,
and N. Taft, “Skilled in the art of being idle: reducing energy waste in
networked systems,” in NSDI’09: Proceedings of the 6th USENIX sym-
posium on Networked systems design and implementation. Berkeley,
CA, USA: USENIX Association, 2009, pp. 381–394.

[24] Y. Agarwal, S. Hodges, R. Chandra, J. Scott, P. Bahl, and R. Gupta,
“Somniloquy: augmenting network interfaces to reduce pc energy
usage,” in NSDI’09: Proceedings of the 6th USENIX symposium on
Networked systems design and implementation. Berkeley, CA, USA:
USENIX Association, 2009, pp. 365–380.

