
OLAP Dimension Constraints

Carlos A. Hurtado
University of Toronto

chl@cs.toronto.edu

Alberto O. Mendelzon
University of Toronto

mendel@cs.toronto.edu

ABSTRACT
In multidimensional data models intended for online ana-
lytic processing (OLAP), data are viewed as points in a
multidimensional space. Each dimension has structure, de-
scribed by a directed graph of categories, a set of members
for each category, and a child/parent relation between mem-
bers. An important application of this structure is to use it
to infer summarizability, that is, whether an aggregate view
defined for some category can be correctly derived from a set
of precomputed views defined for other categories. A dimen-
sion is called heterogeneous if two members in a given cate-
gory are allowed to have ancestors in different categories. In
previous work, we studied the problem of inferring summa-
rizability in a particular class of heterogeneous dimensions.
In this paper, we propose a class of integrity constraints
and schemas that allow us to reason about summarizabil-
ity in general heterogeneous dimensions. We introduce the
notion of frozen dimensions, which are minimal homoge-
neous dimension instances representing the different struc-
tures that are implicitly combined in a heterogeneous di-
mension. Frozen dimensions provide the basis for efficiently
testing implication of dimension constraints, and are useful
aid to understanding heterogeneous dimensions. We give a
sound and complete algorithm for solving the implication
of dimension constraints, that uses heuristics based on the
structure of the dimension and the constraints to speed up
its execution. We study the intrinsic complexity of the im-
plication problem, and the running time of our algorithm.

1. INTRODUCTION
In multidimensional data models intended for online ana-
lytic processing (OLAP), data are viewed as points in a
multidimensional space; for example, a sale of a particular
item in a particular store of a retail chain can be viewed as
a point in a space whose dimensions are items, stores, and
time, and this point is associated with one or more mea-
sures such as price or profit. Dimensions themselves have
structure; for example, along the store dimension, individ-
ual stores may be grouped into cities, which are grouped into

states or provinces, which are grouped into countries. The
relationship from elements at a finer granularity and those
at a coarser granularity is called rollup; thus we would say
that the city “Toronto” rolls up to the province “Ontario”
and, transitively, it also rolls up to the country “Canada.”

1.1 Heterogeneous Dimensions
The traditional approach to dimension modeling required
every pair of elements of a given category to have ancestors
in the same set of categories, a restriction referred to as ho-
mogeneity. For example, in a homogeneous dimension we
cannot have some cities that rollup to provinces and some
to states. A number of researchers and practitioners [11, 8,
13, 6] have dropped this restriction over the past few years,
yielding heterogeneous dimensions, which are needed to rep-
resent more naturally and cleanly many practical situations.
Moreover, heterogeneous dimensions permit more efficient
storage of data by having fewer categories. A smaller num-
ber of categories might exponentially decrease the number of
aggregate views we may need to handle and store in OLAP
systems.

Example 1. The dimension instance of Figure 1, called
location, represents the stores of a retailer. In our hypo-
thetical scenario, the retailer has stores in Canada, Mexico,
and USA. All the stores rollup to City, SaleRegion, and
Country. However, while the stores in Canada rollup to
Province, the stores in Mexico and USA rollup to State.
The city Washington is an exception to the latter, since it
rolls up directly to Country without passing through State.
On the other hand, the states of Mexico and the provinces
rollup to SaleRegion, while the states of USA do not neces-
sarily rollup to SaleRegion.

1.2 Summarizability
Cube views are simple aggregate queries that provide the
basis for OLAP query formulation. A single-dimension cube
view on a dimension d (e.g. the location dimension) is
specified by picking a category within the hierarchy for d
(e.g. the Province category) and a distributive 1 aggregate

1A distributive aggregate function af can be computed on
a set by partitioning the set into disjoint subsets, aggre-
gating each separately, and then computing the aggregation
of these partial results with another aggregate function we
will denote as afc. Among the SQL aggregate functions,
COUNT, SUM, MIN, and MAX are distributive. We have that
COUNTc = SUM; and for SUM, MIN, and MAX, afc = af.

Permission to make digital or hard copies of part or all of this work or
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee.
ACM PODS 2002 June 3-6, Madison, Wisconsin, USA
© 2002 ACM 1-58113-507-6/02/06...$5.00.

169

s1 s2 s3 s4 s5

all

USA Mexico Canada

Ontario

MonterreyNewYorkWashington Toronto

NvoLeonNYState

r1 r2 r3 r4 r5

(A) (B)

SaleRegion

City

Country

All

Store

State

Province

Figure 1: The dimension location: (A) hierarchy schema; (B) child/parent relation.

function (e.g. sum). This view, applied to a fact table,
aggregates the raw data in it to the level of aggregation
specified by the category; for example, it sums the sales of
all stores grouped by province.

A key strategy for speeding up cube view processing is to
reuse pre-computed cube views. In order to do this, the sys-
tem must rewrite a cube view as another query that refers
to pre-computed cube views. The process of finding such
rewritings is known in the OLAP world as aggregate navi-
gation [9]. The notion of summarizability was introduced to
study aggregate navigation in statistical objects and OLAP
dimensions [12, 11, 13, 6]. As originally stated, summariz-
ability refers to whether a simple aggregate query (usually
called summarization or consolidation) correctly computes a
single-category cube view from another precomputed single-
category cube view, in a particular database instance. In
previous work [6] we extended summarizability to allow the
combination of several cube views in the rewriting. The
notion we use in this paper is: a category c of dimension
d is summarizable from a set of categories {c1, . . . , cn} of
dimension d if, for every fact table and every distributive
aggregate function, the cube view for c can be computed
(by a simple relational algebra expression) from the cube
views on the ci’s. A formal definition is given in Section 3.

Just as database instances are modeled by database schemas,
dimension instances (like the one in Figure 1(B)) are mod-
eled by dimension schemas (basically the diagram in Figure
1(A)). Testing summarizability is the problem of deciding,
given a dimension schema ds, a category c, and a set of cate-
gories S, whether c is summarizable from S in all the dimen-
sion instances represented by ds. In most dimension models
in the literature, the dimension schema basically consists of
the hierarchy schema, the DAG shown in Figure 1(A). Such
models lack a language for describing integrity constraints
on the schema other than the ones that are inherent in the
hierarchy schema. This weakens the ability of OLAP sys-
tems to test summarizability.

Example 2. In the dimension location (depicted in Fig-
ure 1), we have that Country is summarizable from {City}.
Intuitively, this happens because (i) all the stores rollup to
Country passing through City. However, we cannot infer (i)
just by analyzing the hierarchy schema of Figure 1 (A). This

hierarchy schema may allow stores that rollup to Country
passing through SaleRegions, without going though the cat-
egory City.

A new class of constraints is needed to express integrity
constraints in OLAP dimensions, and to turn dimension
schemas into adequate abstractions to model heterogeneity
and to support the summarizability testing.

1.3 Related Work
Kimball [10] introduced the term heterogeneity to refer to the
situation where several dimensions representing the same
conceptual entity, but with different categories and attributes,
are modeled as a single dimension table. Lehner et al.
[11], and Pedersen and Jensen [13] account for heterogene-
ity, and propose different solutions to deal with summariz-
ability. Lehner et al. propose transforming heterogeneous
dimensions into homogeneous dimensions, which they say
to be in dimensional normal form (DNF). The transforma-
tion is done by treating categories causing heterogeneity as
attributes for tables outside the hierarchy. The proposed
transformation flattens the child/parent relation, limiting
summarizability in the dimension instance.

Pedersen and Jensen [14] model a particular class of hetero-
geneous dimensions, and propose transforming them into
homogeneous dimensions by adding null members to repre-
sent missing parents. This solution has several drawbacks.
First, the transformation algorithm proposed considers a
restricted class of heterogeneous dimensions, and does not
scale to general heterogeneous dimensions. In addition, null
members may cause considerable waste of memory and com-
putational effort due to the increased sparsity of the cube
views.

Although database researchers have done abundant work
on integrity constraints for a variety of data models, almost
nothing has been said about integrity constraints in the con-
text of OLAP dimension modeling. In previous work [6], we
introduce split constraints, which are statements about pos-
sible categories the members in a given category may rollup
to. Split constraints allow summarizability to be character-
ized only in a particular class of heterogeneous dimensions
that keep a notion of ordering between the granularities de-
fined by categories. Moreover, split constraints are insuffi-

170

cient for our problem because in the general case heterogene-
ity would be better captured by possible hierarchy paths,
rather than possible sets of categories to which members
rollup to. Goldstein [4] proposes to capture heterogeneity in
database relations by means of disjunctive existential con-
straints (dec’s). The main idea here is to model a relation
as a combination of objects, each one determined by a set
of non-null attributes that appear together. Dec’s represent
a particular class of split constraints. The constraints in-
troduced by Husemann et al. [7] are also a subclass of split
constraints. Path constraints [1, 2] seem to achieve the goal
of describing certain forms of heterogeneity in semistruc-
tured data. Path constraints characterize the existence of
paths associated with sequences of labels in semistructured
data. However, path constraints also lack the entire ex-
pressiveness needed to characterize summarizability, and do
not describe well the type of heterogeneity arising in OLAP
applications. In particular, we cannot characterize summa-
rizability with them. On the other hand, path constraints
are interpreted over data which have many fewer restric-
tions in their structure than OLAP dimensions, yielding to
a different treatment and complexity of their inference.

We refer the reader to the full version of this paper [5] for
a more detailed study of the related work mentioned in this
section.

1.4 Contributions and Outline
In this paper, we propose a class of constraints, dimen-
sion constraints, for the purpose of expressing integrity con-
straints in dimension schemas. We show that the hierar-
chy schema enriched with dimension constraints becomes
an adequate abstract model to infer summarizability. In
particular, we show that summarizability can be character-
ized using dimension constraints, turning the problem of
testing summarizability into an inference problem over di-
mension constraints. We give a sound and complete algo-
rithm for solving the implication of dimension constraints
based on the notion of frozen dimensions. Frozen dimen-
sions are minimal homogeneous dimension instances repre-
senting the different structures that are implicitly “mixed
up” in the schema. They are inferred from the dimension
schema, and provide a useful representation to understand
heterogeneous schemas. We propose an algorithm that uses
heuristics based on at the structure of the dimension schema
and the constraints to speed up its execution. Finally, we
study the intrinsic complexity of the implication problem,
as well as the running time of the algorithm proposed.

The remainder of this paper is organized as follows. In Sec-
tion 2 we review the main concepts related to heterogeneous
dimensions. Section 3 introduces dimension constraints, and
their relation with summarizability. The implication prob-
lem related to dimension constraints is studied in Section 4.
In Section 5 we present the algorithm for testing implication
of dimension constraints. Finally, in Section 6 we conclude
and outline some prospects for future work. The proofs are
presented in the full version of the paper [5].

2. MODELING HETEROGENEOUS DIMEN-
SIONS

In this section, we describe our framework for modeling
heterogeneous dimensions. In our approach, the dimension
schema consists of a hierarchy schema and a set of integrity
constraints.

2.1 Hierarchy Schema
The hierarchy schema provides the skeleton upon which di-
mension instances are defined. We extend the hierarchy
schema given in earlier dimension models to allow multi-
ple bottom categories, cycles, and shortcuts. Assume the
existence of a set of categories C.

Definition 1. A hierarchy schema is a tuple G = (C,↗
), where C ⊆ C is a finite set of categories with a distin-
guished category All; ↗ is a binary relation on C (↗∗ stands
for the transitive and reflexive closure of ↗). The following
conditions hold: (a) for each category c ∈ C, c ↗∗ All; (b)
for every category c ∈ C, it is not the case that c ↗ c.

A bottom category of a hierarchy schema G = (C,↗) is a
category cb such that there is no category c′ ∈ C where
c′ ↗ cb. A shortcut of a hierarchy schema G is a pair of
categories c and c′ of C such that c ↗ c′ and there is a path
from c to c′ in G passing through some third category c′′.

Example 3. The categories City and Country form a
shortcut in the dimension location of Figure 1.

Cycles are needed in certain schemas, as the following ex-
ample shows.

Example 4. Consider a dimension with the following cat-
egories: Store, SaleDistrict, City, and All. Suppose that
some cities have ancestors in SaleDistrict, while some sale
districts have ancestors in City. As we will see in the next
section, an edge (c1, c2) in the hierarchy schema allows the
members in c1 to have ancestors in c2. Therefore, in order
to model this dimension, we need the cycle

SaleDistrict City SaleDistrict

in the hierarchy schema.

2.2 Dimension Instance
An instance of a dimension is obtained by specifying a mem-
ber set for each category, a child/parent relation between
members, and a set of functions that assign values to cat-
egory attributes. For simplicity, we will associate a single
attribute, called Name, to every category of a dimension.
The attribute Name will contain names for members; we will
model Name as a function that maps members into a set of
values V. We assume the existence of a set of members M.

Definition 2. A dimension instance is a tuple d = (G,
MembSet, <, Name) where G = (C,↗) is a hierarchy schema;
MembSet : C → 2M assigns a set of members MembSetc to

171

each category c in C (we denote by MembSetd the union of
these sets); < ⊆ MembSetd × MembSetd is the child/parent
relation between members (where ¿ stands for the transi-
tive closure of <); and finally, Name : MembSetd → V is
a function that assigns values to members. The conditions
depicted in Figure 2 hold.

Condition (C1) says that the edges in the hierarchy schema
represent inter-category links, that must exist whenever we
have a child/parent relationship between some pair of mem-
bers in the categories. Condition (C2) states that each
member in a category reaches no more than one member in
any category above it. A dimension satisfying this restric-
tion is also referred to as being partitioned [6] or being strict
[13]. Condition (C2) appears as an inherent constraint in
most dimension models [3, 11]. Condition (C3) states that
the member sets are pairwise disjoint. This condition avoids
redundant aggregates in the datacube. Condition (C4) says
that all is the only member in MembSetAll. Condition (C5)
states that a member cannot be a parent and an indirect an-
cestor of another member at the same time; in other words,
we cannot have shortcuts in the dimension instance. Condi-
tion (C6) essentially says that categories do not straddle the
descendant/ancestor relation; this implies that < is acyclic.
Condition (C7) replaces the condition of homogeneity, and
states that any member rolls up to at least one category
directly above its category.

(C1) (Connectivity) For every pair of categories c, c′, and
for every pair of members x ∈ MembSetc, x

′ ∈
MembSetc′ , if x < x′, then c ↗ c′.

(C2) (Partitioning) For every pair of categories c and c′,
if there exists a member x ∈ MembSetc, and a pair of
members x1, x2 ∈ MembSetc′ such that x ¿ x1 and
x ¿ x2, then x1 = x2.

(C3) (Disjointness) The member sets are pairwise disjoint.

(C4) (Top Category Constraint) MembSetAll = {all}.
(C5) (Shortcuts) For every pair of members xa, xb such

that xa ∈ MembSetca , xb ∈ MembSetcb and xa < xb,
there are no members x1, . . . , xn ∈ MembSetd such that
xa < x1 < . . . xn < xb.

(C6) (Stratification) For every category c and every pair
of members x, x′ ∈ MembSetc it is not the case that
x ¿ x′.

(C7) (Up Connectivity) For every category c ∈ (C \ All),
and for every member x ∈ MembSetc, there exist a
category c′ ∈ C and a member x′ ∈ MembSetc′ such
that c′ ↗ c and x < x′.

Figure 2: Conditions that a dimension instance must
satisfy.

For simplicity, in the location dimension (Figure 1), the
function Name is the identity; so we do not show it in the
figure.

The child/parent relation induces a partial order relation ≤
between members defined as follows: x1 ≤ x2 iff x1 ¿ x2 or

x1 = x2. We say that a member x1 rolls up to a member x2

whenever x1 ≤ x2. Also, we say that a member x rolls up to
a category c whenever there exists a member x′ ∈ MembSetc

such that x ≤ x′. The rollup mapping from a category c1 to
a category c2 of a dimension d, denoted Γc2

c1d, is defined as
follows:

Γc2
c1d = {(x1, x2) | x1 ∈ MembSetc1 ∧ x2 ∈ MembSetc2 ∧ x1 ≤

x2}

Notice that Condition (C2) forces the rollup mappings to
be single-valued.

3. DIMENSION CONSTRAINTS
In this section we introduce a class of constraints, dimension
constraints, that will serve to augment hierarchy schemas to
model heterogeneous dimension instances. A dimension con-
straint is a Boolean combination of two sorts of atoms: path
atoms and equality atoms. All the path atoms of a dimen-
sion constraint start from a unique category called the root
of the constraint. Path atoms allow us to specify Boolean
conditions on the paths the ancestors of the members in the
root form.

Example 5. Consider the location dimension (Figure
1). The following dimension constraint states that all the
stores rollup to City:

Store City

The root of this constraint is the category Store. The con-
straint consists of the single path atom Store City.

Equality atoms specify the values in the attributes of the
ancestors of the members in the root. The combination of
equality and path atoms is required to describe dependencies
between paths that start from the root members and values
of attributes. For instance, we may want to express that
the existence of a path in the child/parent relation from a
member x is determined by the value in an attribute of an
ancestor of x.

Example 6. Consider the location dimension (Figure
1). The following dimension constraint asserts that for every
store x, if x rolls up to Canada, then x has a parent in City
which has a parent in Province:

Store.Country≈Canada ⊃ Store City Province.

In this constraint, Store City Province is a path atom that
asserts that there exist members xc ∈ MembSetCity and xp ∈
MembSetProvince such that x < xc and xc < xp. The expres-
sion Store.Country≈Canada is an equality atom which as-
serts that (a) there exists an ancestor y of x in
MembSetCountry, and (b) Name(y) = Canada.

172

3.1 Dimension Constraint Language
We now formalize the language of dimension constraints.
Assume the existence of a possibly infinite set of constants
K.

Definition 3. Given a hierarchy schema G = (C, ↗,
Name) and a category c ∈ C, the atoms over G with root c
are defined as follows:

• A path atom is an expression of the form c c1 . . . cn,
where cc1 . . . cn is a simple path (a path without cycles)
in G.

• An equality atom is an expression of the form c.ci≈k,
where ci ∈ C and k ∈ K.

A dimension constraint over G with root c, where c 6= All,
is a Boolean combination of atoms over G with root c.

We consider the usual connectives ¬,∧,∨,⊃,≡, and ⊕ for
exclusive disjunction. In addition, ⊥ and > will denote the
false and the true proposition, respectively. Finally,

⊙
A,

where A is a set of atoms, will express that there is exactly
one true atom in A.

In order to define the semantics of dimension constraints, we
introduce a function S that maps each dimension constraint
into a FOL formula that refers to the components of a di-
mension. Given a dimension constraint α, S(α) is defined
as follows:

• If α is a path atom of the form c c1 . . . cn, then S(α)
is the following FOL expression:
∃x1 . . . ∃xn(MembSetc1(x1) ∧ x < x1 ∧ MembSetc2(x2) ∧
x1 < x2 ∧ . . . ∧ MembSetcn(xn) ∧ xn−1 < xn).

• If α is an equality atom of the form c.ci≈k, then S(α)
is the following FOL expression:
∃xi(MembSetci(xi) ∧ x ≤ xi ∧ Name(xi) = k).

• If α is not an atom, then S(α) is obtained from α by
replacing every atom β with S(β).

Notice that x is the only free variable in S(α). We can
observe that an equality atom of the form c.c≈k basically
means Name(x) = k; we will abbreviate an atom of this form
as c≈k.

Definition 4. Given a dimension instance d = (G,
MembSet, <, Name) and a dimension constraint α with root c,
d satisfies α, denoted d |= α, if ∀x(x ∈ MembSetc ⊃ S(α)) is
true when the symbols <, MembSet, and Name that appear in
S(α), are interpreted as their corresponding elements in d.

A composed path atom is an expression of the form c.ci. A
composed path atom is a shorthand for the following expres-
sion:

• If c = ci, c.ci represents >;

• else, c.ci represents the disjunction of all the path
atoms with root c that end with ci.

Intuitively, the atom c.ci expresses that x rolls up to ci.

Example 7. Consider the dimension location (Figure
1). The dimension constraint Store.SaleRegion asserts that
all the stores rollup to SaleRegion.

Finally, a dimension schema is a tuple ds = (G, Σ) where G
is a hierarchy schema, and Σ is a set of dimension constraints
over G. A dimension instance d is over a dimension schema
ds = (G, Σ) if the hierarchy schema of d is G, and d |= Σ.
We denote by I(ds) the set of dimension instances over ds.
A dimension schema ds logically implies a dimension con-
straint α, written ds |= α, if every dimension instance d over
ds satisfies α. The implication problem for dimension con-
straints, is the problem of determining, given a dimension
schema ds and a dimension constraint α, whether ds |= α.

Example 8. The dimension schema locationSch, depict-
ed in Figure 3, models the location dimension (Figure 1).
Notice that locationSch makes use of equality atoms to
differentiate the structure of the stores in each country of
location. Moreover, locationSch models the shortcut caused
by Washington.

3.2 Frozen Dimensions
In essence, frozen dimensions are minimal homogeneous di-
mension instances conveyed by a dimension schema. The
notion of the frozen dimension is essential for the algorithm
we propose to test implication of dimension constraints.

Assume the existence of an injective function φ : C → M
that maps each category to a member. Moreover, given
a dimension schema ds = (G, Σ), Constds : C → K is a
function that assigns to each category c of ds the set of all
constants k such that Σ contains an equality atom of the
forms ci.c≈k or c≈k. We also assume the existence of a
constant nk which is not mentioned in Σ.

Definition 5. Given a dimension schema ds, and a cat-
egory c from it, a frozen dimension of ds with root c is a
dimension instance f = (G, MembSet, <, Name) ∈ I(ds), such
that the following hold: (a) MembSetc = {φ(c)}; (b) each cat-
egory c′ ∈ C has at most the member φ(c′) in MembSetc′ ; (c)
for every member x ∈ MembSetf such that x 6= φ(c), φ(c) ¿
x; and (d) for every category c′ such that MembSetc′ 6= ∅,
Name(φ(c′)) ∈ Const(c′) ∪ {nk}.

Intuitively, whenever nk appears in Name(φ(c)), it represents
the set of constants {k ∈ K | k 6∈ Const(c)}.

Frozen dimensions tell us a great deal about the semantics
of dimension schemas, as the following example shows.

173

SaleRegion

City

Country

All

Store

State

Province

(a) Store City
(b) Store.SaleRegion
(c) City≈Washington ≡ City Country
(d) City≈Washington ⊃ City.Country≈USA
(e) State.Country≈Mexico ∨ State.Country≈USA
(f) State.Country≈Mexico ≡ State SaleRegion
(g) Province.Country≈Canada

Figure 3: The dimension schema locationSch.

Example 9. Figure 4 depicts the frozen dimensions of
locationSch with root Store. Intuitively, this set illustrates
the different structures of the stores in Mexico, USA, and
Canada. The figure shows the subgraphs of the hierarchy
schema induced by the non-empty categories of each frozen
dimension. Also, we depict the value given by Name whenever
the category has associated some constant different than nk

in ConstlocationSch (categories City and Country).

3.3 Dimension Constraints and Summarizabil-
ity

In this section, we give a characterization of summarizabil-
ity in terms of dimension constraints. We thus reduce test-
ing summarizability to testing implication of dimension con-
straints.

A single-category cube view can be specified as CubeView(d,
F, c, af(m)), where d is a dimension; F is a fact table con-
taining facts at the base category cb of d (MembSetcb contains
the members in the bottom categories); c is a category of d;
af is an aggregate function; and m is a measure of F . The
cube view CubeView(d, F, c, af(m)) represents the following
aggregate view: Πc,af(m)(F ./ Γc

cb
d).

Definition 6. Given a dimension instance d, a set of
categories S = {c1, . . . , cn}, and a category c, c is summa-
rizable from S in d iff for every fact table F , and distributive
aggregate function af,we have: CubeView(F, d, c, af(m)) =
Πc,afc(m)(

⊎
i∈1...n(πc,mΓc

ci
d ./ CubeView(F, d, ci, af(m)))).

In order to characterize summarizability, we will use the
shorthand c.ci.cj , where c, ci, and cj are categories. For-
mally, c.ci.cj is defined as follows:

• If c 6= ci 6= cj then c.ci.cj represents the disjunction of
all the path atoms that start with c, end with cj , and
contain ci.

• If c = ci = cj then c.ci.cj represents >.

• If c = cj and c, cj 6= ci then c.ci.cj represents ⊥.

• If c = ci and c, ci 6= cj then c.ci.cj represents c1.cj .

• Finally, if c 6= ci, cj and ci = cj then c.ci.cj represents
c.ci.

Intuitively, c.ci.cj means that x rolls up to cj passing through
ci. Now, we present the main result of the section.

Theorem 1. A category c is summarizable from a set of
categories S in a dimension instance d iff for every bottom
category cb of d we have d |= cb.c ⊃ ⊙

ci∈S cb.ci.c.

The intuition behind Theorem 1 is that, in order for c to
be summarizable from S, we need that every base member
(i.e., a member in a bottom category) that rolls up to c, rolls
up to c passing trough one and only one of the categories
in S. Notice that Theorem 1 shows that summarizability
can be characterized as a property of dimension instances
themselves, avoiding the mention of fact tables.

Example 10. We have that Country is summarizable from
{City} in location (Figure 1) because

location |= Store.Country ⊃ Store.City.Country.

However, Country is not summarizable from {State, Province}
in location because

location 6|= Store.Country ⊃
(Store.State.Country ⊕ Store.Province.Country).

This is because the stores that belong to Washington rollup
directly to Country without passing through states or provinces.

4. IMPLICATION
Before tackling the implication problem, we will investigate
satisfiability in our setting. A dimension schema ds is satis-
fiable if I(ds) 6= ∅.

Proposition 1. Every dimension schema is satisfiable.

174

f3 f4f1 f2

SaleRegion

All

Store

State

Province

SaleRegion

All

Store

State

Province

SaleRegion

All

Store

State

Province

SaleRegion

All

Store

State

Province

Country:USACountry:USA

City:Washington

Country:Mexico

City:nk City:nk City:nk

Country:Canada

Figure 4: Frozen dimensions of locationSch with root Store.

Proposition 1 follows from the fact that there are no dimen-
sion constraints with root All. Therefore, given a dimension
schema ds, we can always build a dimension instance over
ds with a unique member all in the category All.

A category c is said to be satisfiable in a schema ds (we
assume that c is a category of ds) iff there exists a dimension
instance d ∈ I(ds) such that MembSetc 6= ∅.

Example 11. Suppose we add the constraint

¬SaleRegion Country

to locationSch. Then, SaleRegion would become unsat-
isfiable in the resulting schema, because condition (C7) of
Definition 2 requires SaleRegion Country.

The category satisfiability problem is the problem of deter-
mining, given a dimension schema ds and a category c of ds,
whether c is satisfiable in ds. Unsatisfiable categories can
be dropped from the schema, providing a cleaner represen-
tation of the data. However, the fundamental importance of
testing category satisfiability is its connection with testing
implication.

Theorem 2. Given a dimension schema ds = (G, Σ) and
a dimension constraint α with root c, ds |= α iff c is unsat-
isfiable in ds′ = (G, Σ ∪ {¬α}).

In view of Theorem 2, implication reduces to category satis-
fiability. Next, we show that frozen dimensions are minimal
models for testing category satisfiability.

Theorem 3. Given a dimension schema ds and a cate-
gory c belonging to it, c is satisfiable in ds iff there exists a
frozen dimension of ds with root c.

Given a dimension schema ds = (G, Σ) and a category c, a
candidate frozen dimension of ds with root c can be built
by first choosing a subgraph of G, and then selecting the
constants for Name using the function Const . The number of

candidate frozen dimensions generated in this way is finite,
and the test of whether one of them is a frozen dimension can
be done in polytime. Consequently, Theorem 3 establishes
an algorithm to solve category satisfiability.

Theorem 4. Category satisfiability is NP-Complete.

The NP-hardness of category satisfiability follows from a
straightforward reduction from SAT. The proof of member-
ship in NP uses Theorem 3. In addition, from Theorem 2
and Theorem 3, it follows that testing implication of dimen-
sion constraints is CoNP-complete.

5. THE DIMSAT ALGORITHM
In this section, we provide an algorithm, called DIMSAT, to
solve category satisfiability efficiently.

In order to describe the algorithm we need to introduce the
notion of subhierarchy.

Definition 7. Given a hierarchy schema G = (C,↗), a
subhierarchy of G with root c is a pair (C′,↗′) such that
(a) C′ ⊆ C and ↗′⊆↗; (b) c, All ∈ C′; and (c) for all
categories c′ ∈ C′, c↗′∗c′ and c′↗′∗All.

Given a dimension schema ds = (G, Σ), and a subhierarchy
g of G, we say that g induces a frozen dimension in ds iff
there exists a frozen dimension f of ds such that g is the
graph obtained from the child/parent relation < of f by
renaming every member x in MembSetf with φ−1(x).

The algorithm DIMSAT builds subhierarchies and tests whether
each of them induces at least one frozen dimension in the
dimension schema given. When a subhierarchy is built, each
path atom p in the constraints is replaced by a truth value
given by whether p appears in the subhierarchy; the equality
atoms over categories that do not appear in the subhierar-
chy are replaced by ⊥. In this form, Σ is reduced to a set
of constraints that do not mention path atoms. This set is
then tested over the candidate frozen dimensions induced by
the subhierarchy. In addition, the algorithm prunes the sub-
hierarchies to be explored by taking into account shortcuts,
cycles, and into constraints. Into constraints are dimension
constraints of the form c c′; intuitively, an into constraint

175

states that all the members of c have a parent in c′. We con-
jecture that this optimization should have a major impact
in practice, since we will frequently have heterogeneity aris-
ing as an exception, having most of the edges of the schema
associated with into constraints.

The following definition is useful, as we wish to discard the
constraints in Σ that are irrelevant when finding a frozen
dimension. Given a dimension schema ds = (G, Σ), and a
category c of ds, Σ(ds, c) is the set containing the dimension
constraints α of Σ such that the root c′ of α satisfies c ↗∗ c′.

The DIMSAT algorithm uses a procedure called CHECK, that
tests whether a subhierarchy induces a frozen dimension.
The main idea behind CHECK is as follows: when a subhier-
archy g is built, all the path atoms that appear in the dimen-
sion expression Σ(ds, c) are replaced by their truth values in
g. Doing this, Σ(ds, c) is turned into a dimension expression
that mentions only equality atoms that refer to the cate-
gories in the subhierarchy. In order to test whether a candi-
date frozen dimension f built over g is a frozen dimension,
we need only to test whether the assignment of constants to
categories in f satisfies Σ(ds, c). In this form, we evaluate
the path atoms (and some of the equality atoms as well)
only once for all the candidate frozen dimension built over
the same subhierarchy.

We next define the circle operator, that replaces the truth
value of each path atom p in a set of dimension constraints,
according to whether p exists in a given subhierarchy.

Definition 8. Given a set of dimension constraints Σ,
and a subhierarchy g of G, Σ ◦ g is the set of dimension
constraints resulting from Σ by: (a) renaming every path
atom p with > if p is a path in g, and with ⊥ otherwise; and
(b) renaming every equality atom ci.cj≈k, such that there is
no path from ci to cj in g, with ⊥.

Example 12. The dimension constraints Σ(locationSch,
Store) are depicted in Figure 5 (left). Now, let g be the
subhierarchy represented as f2 in Figure 3. The dimension
constraints Σ(locationSch, Store)◦g are depicted in Figure
5 (right).

Notice that the dimension constraints Σ(ds, c) ◦ g contain
only equality atoms. Now, given a dimension schema ds =
(G, Σ) and a subhierarchy g = (C′,↗′) of G, a c-assignment
for g is a injective function ca : C′ → K ∪ {nk} such that
for all c′ ∈ C′, ca(c′) = k implies that k ∈ Constds(c

′).
Intuitively, a c-assignment selects one constant in Const(c′)
for each category c′ in the subhierarchy. We say that a c-
assignment ca satisfies a set of dimension constraints Σ that
mention only equality atoms, denoted ca |= Σ, if Σ is true
when we replace each equality atom in Σ with its truth value
given by ca. For example, if an equality atom p is c.ci≈k,
and we have that ca(ci) = k then we replace p with >.

Proposition 2. Given a dimension schema ds = (G, Σ),
and a subhierarchy g of G with root c, g induces a frozen
dimension iff (a) g has no cycles or shortcuts, and (c) there
exists a c-assignment ca of g such that ca |= Σ(ds, c) ◦ g.

Algorithm DIMSAT(ds, c)
Input: A dimension schema ds = (G, Σ) and a category
c ∈ C.
Output: Whether c is satisfiable in ds.
(1) FIND := false, Pr := Σ(c, ds)
(2) g.C := {c}, g.Out(c) := ∅, g.Top := {c}, g.In∗(c) := ∅
(3) EXPAND(g, c, ∅)
(4) return(FIND)
end DIMSAT

Procedure CHECK(g)
Input: A subhierarchy g of G
Local Vars: Pr ′, ca
Global Vars: FIND

(1) Pr ′ := Pr ◦ g
(2) For every c-assignment ca of g do
(3) FIND := (ca |= Pr ′)
(4) If FIND then return()
(5) endFor
end CHECK

Procedure EXPAND(g, c, R)
Input: a category c, and a list of categories R
Local Vars: ctop, Ss, Sc, S, P , S′

Global Vars: G, FIND
(1) If R 6= ∅ then
(2) g.Top := (g.Top \ {c}) ∪ (R \ g.C)
(3) g.C := g.C ∪ R; g.Out(c) := R
(4) For every c′ ∈ R do g.In∗(c′) := g.In∗(c)
(5) EndIf
(6) If Top = {All} then
(7) CHECK(g)
(8) If FIND then exit() else return()
(9) EndIF
(10) Choose a category ctop 6= All ∈ g.Top
(11) Ss := {c′ ∈ G.Out(ctop) |

g.In(c′) ∩ g.In∗(ctop) 6= ∅}
(12) Sc := G.Out(ctop) ∩ g.In∗(ctop)
(13) S := G.Out(ctop) \ (Ss ∪ Sc))
(14) Into := {c′ ∈ G.Out(ctop) | ctop c′ ∈ Σ}
(15) If ((Into 6⊆ S) or (S = ∅)) then return()
(16) For every non-empty set S′ ⊆ (S \ Into) do
(17) EXPAND(g, ctop, S′ ∪ Into)
(18) endFor
end EXPAND

Figure 6: Algorithm DIMSAT.

176

Σ(locationSch, Store) Σ(locationSch, Store) ◦ g
(a) Store City (a) >
(b) Store.SaleRegion (b) >
(c) City≈Washington ≡ City Country (c) City≈Washington ≡ ⊥
(d) City≈Washington ⊃ City.Country≈USA (d) City≈Washington ⊃ City.Country≈USA
(e) State.Country≈Mexico ∨ State.Country≈USA (e) State.Country≈Mexico ∨ State.Country≈USA
(f) State.Country≈Mexico ≡ State SaleRegion (f) State.Country≈Mexico ≡ ⊥
(g) Province.Country≈Canada (g) Province.Country≈Canada

Figure 5: (Left) Σ(locationSch, Store). (Right) Σ(locationSch, Store) ◦ g.

We are now able to introduce the DIMSAT algorithm. DIMSAT,
depicted in Figure 6, is basically a backtracking algorithm
that explores subhierarchies. The procedure EXPAND con-
structs subhierarchies of G with root c, that have no cy-
cles or shortcuts and satisfy the into constraints given in
Σ. When one of such subhierarchies g is built, EXPAND calls
CHECK(g) to decide whether g induces a frozen dimension.
If so, CHECK makes FIND = true, and EXPAND exits, aborting
all previous calls to EXPAND, and returning the control of the
execution to DIMSAT. If not, EXPAND returns, and backtracks
to a previous state in the search; we assume that when this
occurs, g is restored to the form it had before EXPAND was
called.

Let us now explain some aspects of EXPAND. The subhierar-
chy being built is kept in the variable g, which has four com-
ponents: g.C, containing the categories of g; g.Out , which
contains for every category c′ ∈ g.C, the categories directly
above c′ in g; g.Top, which has the categories in g.C with no
edges from them in g; and g.In∗, which keeps for every cate-
gory c′ ∈ g.C, the categories that reach directly or indirectly
c′ in g. As we will see, g.In∗ is essential for recognizing short-
cuts. In each step in the recursion, EXPAND is called with pa-
rameters g, c, and R, where c is a category, and R is a set of
categories. Initially, EXPAND is called by DIMSAT with R = ∅;
in this case {c} is kept as g.Top. In an execution of EXPAND,
Line (6) detects whether g.Top = {All}. If so, CHECK(g) is
called. If not, EXPAND chooses a top category ctop ∈ g.Top,
and tries all possible calls EXPAND(g, c, R), where R is any
combination of categories directly above ctop in G such that
the following hold: R does not produce shortcuts or cycles
(note that the categories that potentially cause shortcuts
and cycles are computed in lines (11) and (12), respectively);
and R contains all categories c′ such that the into constraint
ctop c′ is in Σ. In this form, EXPAND takes into account the
into constraints in order to prune the subhierarchies to be
explored, and shortens the loop of Line (16).

Example 13. Consider the execution of

DIMSAT(locationSch, Store).

Figure 7 shows g in the successive instances of EXPAND. The
subhierarchy g with which EXPAND calls CHECK the first time is
delimited by a box. Notice that g.Top is the category written
with a large font in each subgraph.

Proposition 3. Every execution of DIMSAT(ds, c) termi-
nates, and correctly outputs whether c is satisfiable in ds.

We end this section by giving the asymptotic time complex-
ity of DIMSAT. Let N be the number of categories in ds, and
let NK be the maximum number of constant Constds may
assign to a category. In addition, NΣ stands for the size of
Σ.

Proposition 4. DIMSAT runs in time O(2N2+N log NK

N3NΣ).

Notice that if the dimension schema does not have equality

atoms, NK = 1, so DIMSAT runs in time O(2N2
N3NΣ).

6. CONCLUSION
Dimension constraints have a practical motivation, can ex-
press summarizability, and have a relatively efficient infer-
ence problem (CoNP-complete) compared with other classes
of path-like constraints that have been studied. Moreover,
from the study of the running time of DIMSAT given in the
full version of this paper [5], we conjecture that in most prac-
tical situations DIMSAT should yield execution times of the
order of a few seconds. We believe these properties should
make dimension constraints useful in a broad set of practical
settings.

Although the first and most direct motivation for introduc-
ing dimension constraints is to support aggregate naviga-
tion, they are also helpful in the design stage of data cubes.
As in traditional database systems, the design of dimen-
sions for OLAP should be driven by the semantic informa-
tion provided in the schema. Dimension constraints provide
the means to capture such semantic information. In addi-
tion, dimension constraints may play an important role in
the problem of selecting views to materialize in data cubes
by supplying meta-data to support the test of whether a se-
lected set of views is sufficient to compute all the required
queries.

Dimension constraints can be extended in several directions.
We could consider further built-in predicates over attributes,
such as an order relation, to extend equality atoms. We
would then be able to express dependences such as: “if the
value of the price of a product is less than a given amount,
the product rolls up to some particular path in the hierar-
chy schema”. In addition, if we relax the partitioning con-
straint, summarizability can no longer be characterized with
dimension constraints. Further extensions to dimension con-
straints are needed to support summarizability inference and
aggregate navigation in such dimensions.

177

SaleRegion

City

Country

All

State

Province

SaleRegion

City

Country

All

Store

State

SaleRegion

Country

All

Store

Province

SaleRegion

Country

All

Store

State

Province

SaleRegion

Country

All

Store

State

Province

SaleRegion

Country

All

Store

Province

SaleRegion

City

Country

All

Store

Province

City

Country

All

Store

State

Province

SaleRegion

City

All

Store

State

Province

City

Country

All

Store

Province

SaleRegion

City

Country

Store

State

Province

SaleRegion

City

All

Store

State

Province

Store

City

Province

City

State

City

State

State
SaleRegion

Country

All

State

City

SaleRegion

Country

Figure 7: The variable g in an execution of DIMSAT(locationSch, Store).

178

Acknowledgments
This research was supported by the Natural Science and En-
gineering Research Council and the Institute for Robotics
and Intelligent Systems of Canada. We thank Renée Miller,
Ken Sevcik, and the anonymous reviewers for their fruitful
suggestions.

7. REFERENCES
[1] S. Abiteboul and V. Vianu. Regular path queries with

path constraints. In Proceedings of the 16th ACM
Symposium on Principles of Database Systems,
Tucson, Arizona, USA, 1997.

[2] P. Buneman, W. Fan, and W. S. Path constraints on
semistructured and structured data. In Proceedings of
the 17th ACM Symposium on Principles of Database
Systems, Seattle, Washington, USA, 1998.

[3] L. Cabibbo and R. Torlone. Querying
multidimensional databases. In Proceedings of the 6th
International Workshop on Database Programming
Languages, East Park, Colorado, USA, 1997.

[4] B. A. Goldstein. Constraints on null values in
relational databases. In Proceedings of the 7th
International Conference on Very Large Data Bases,
Cannes, France, 1981.

[5] C. Hurtado and A. Mendelzon. OLAP dimension
constraints (extended version). In
ftp.db.toronto.edu/pub/papers/fullpods02.ps.gz.

[6] C. Hurtado and A. Mendelzon. Reasoning about
summarizability in heterogeneous multidimensional
schemas. In Proceedings of the 8th International
Conference on Database Theory, London, UK, 2001.

[7] B. Huseman, J. Lechtenborger, and G. Vossen.
Conceptual data warehouse design. In Proceedings of
the International Workshop on Design and
Management of Data Warehouses (DMDW),
Stockholm, Sweden, 2000.

[8] H. V. Jagadish, L. V. S. Lakshmanan, and
D. Srivastava. What can hierarchies do for data
warehouses? In Proc. of the 25th International
Conference on Very Large Data Bases, Edinburgh,
Scotland, UK, 1999.

[9] R. Kimball. The aggregate navigator. DBMS and
Internet Systems Magazine,
http://www.dbmsmag.com, November 1995.

[10] R. Kimball. The Data Warehouse Toolkit. J.Wiley and
Sons, Inc, 1996.

[11] W. Lehner, H. Albrecht, and H. Wedekind.
Multidimensional normal forms. In Proceedings of the
10th Statistical and Scientific Database Management
Conference, Capri, Italy., 1998.

[12] H. J. Lenz and A. Shoshani. Summarizability in
OLAP and statistical databases. In Proceedings of the
9th SSDBM Conference, Olympia, Washington, USA,
1997.

[13] T. B. Pedersen and C. S. Jensen. Multidimensional
data modeling for complex data. In Proceedings of the
15th IEEE International Conference on Data
Engineering, Sydney, Australia, 1999.

[14] T. B. Pedersen, C. S. Jensen, and D. C. E. Extending
practical pre-aggregation in on-line analytical
processing. In Proceedings of the 25th International
Conference on Very Large Data Bases, Edinburgh,
Scotland, 1999.

179

