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Abstract

Endogenous formation of nitric oxide (NO) and related nitrogen oxides in the 

vascular system is critical to regulation of multiple physiological functions.  An 

imbalance in the production or availability of these species can result in progression of 

disease.  Nitrogen oxide research in the cardiovascular system has primarily focused on 

the effects of NO and higher oxidation products.  However, nitroxyl (HNO), the one 

electron reduced product of NO, has recently been shown to have unique and potentially 

beneficial pharmacological properties.  HNO and NO often induce discrete biological 

responses, providing an interesting redox system.  This review discusses the emerging 

aspects of HNO chemistry and attempts to provide a framework for the distinct effects of 

NO and HNO in vivo.  
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Introduction

The surprising discovery in the mid 1980s that vascular tone is modulated by the 

interaction of endogenous nitric oxide (NO) with soluble guanylyl cyclase (sGC) (60, 93)

has stimulated a substantial number of studies attempting to elucidate the role of NO in 

physiology, particularly in the cardiovascular system.  To date, NO has been shown to 

regulate numerous processes including vascular tone, platelet function, leukocyte 

recruitment, mitochondrial respiration and cardiac function (7, 23, 42, 58, 92). 

The most important determinant of the biological activity of NO is the cellular 

redox environment.  Although NO is a free radical, it is remarkably unreactive toward 

most biomolecules and primary interacts with other free radicals or with metal complexes 

such as heme proteins.  The redox environment can both modulate these direct reactions 

and activate NO through generation of reactive nitrogen oxide species (RNOS) that are 

capable of modifying a wider range of biomolecules than NO itself through oxidative and 

nitrosative mechanisms (138).  

Superoxide (O2
-) has been shown to attenuate vascular relaxation mediated by NO 

(37, 45, 61), suggesting that reactive oxygen species (ROS) and NO regulate function in 

discrete ways.  Since these initial observations, the literature addressing the chemistry 

associated with ROS and NO has been substantial.  Early on, autoxidation of NO was 

proposed to have deleterious consequences through formation of RNOS that could 

nitrosate, oxidize or nitrate macromolecules such as proteins and DNA (55, 141).  These 

modifications were predicted to exacerbate pathophysiological conditions.  However, 

later kinetic determinations demonstrated that the low concentrations of NO found under 

in vivo conditions limits the extent to which NO undergoes autoxidation (134).  
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Conversely, the interaction of NO with O2
- does not have the kinetic constraints of 

NO autoxidation.  This reaction has been proposed to not simply result in scavenging of 

NO but to convert it to the deleterious RNOS peroxynitrite (ONOO-).  This intermediate 

can both oxidize and nitrate macromolecules (12, 109) and has been suggested to increase 

oxidative stress resulting in tissue injury (11).  However, further evaluation of the 

chemistry elicited by the NO/O2
- reaction showed that high oxidative yields were limited 

to specific ratios of the two radicals (84, 108, 125).  

Biosynthesis of NO is now known to not enhance oxidative stress but rather 

establishes an antioxidant environment (137), protecting cells from oxidative damage by 

abating lipid peroxidation, DNA strand cleavage and process involved in peroxide-

mediated cytotoxicity (41, 56, 99, 136).  Vascular homeostasis is regulated by a critical 

balance between oxidative species and NO with NO shielding against damage to 

macromolecules by ROS, and ROS in turn restricting the effects of NO.  

For example, shear stress in endothelial cells leads to a burst of ROS from 

NADPH oxidase, which activates a variety of signal transduction pathways including 

MAP kinase and NFκB (21, 91).  This ultimately results in expression of leukocyte 

adhesion molecules such as MCP-1 (22, 143).  Biosynthesis of NO during shear stress 

down regulates these signal cascades by scavenging ROS whereas consumption of NO by 

ROS impairs NO-mediated pathways, for instance vasodilation via stimulation of sGC or 

down regulation of NFκB activity (91).  

Complete abatement of both the ROS and NO pathways would in general require 

the presence of nearly equimolar concentrations of both reactants.  Under conditions of 

excess NO, the oxidative chemistry that leads both directly and indirectly to cellular 
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injury through modifications of critical biomolecules or activation of certain signal 

transduction mechanisms will be diminished.  However, regulation of cellular 

metabolism by NO, such as enhanced blood flow and prevention of leukocyte adhesion 

and neutrophil proliferation during shear stress (72), may still be significant.  These 

interactions between NO and ROS provide a substantially more subtle means to maintain 

homeostasis than macromolecular interactions, since this binary system functions on the 

millisecond rather than minute or hour timescale.  

Evaluation of the biological properties of NO has primarily focused on species 

with higher valance states of nitrogen than NO, such as NO2, N2O3 and ONOO-.  

Reduced valence species such as nitroxyl (HNO/NO-; nitrosyl hydride/nitroxyl anion), 

the one-electron reduction product of NO, have been largely ignored.  Nitroxyl was 

initially a candidate for the endothelial-derived relaxing factor (EDRF) (35), however, 

when NO was clearly established as the EDRF (32, 59, 60), enthusiasm for investigation 

of nitroxyl waned.  Interest in the biological properties of nitroxyl was revived when NO 

synthase (NOS) was shown to produce nitroxyl rather than NO under certain conditions, 

particularly at low substrate or cofactor concentrations (1, 54, 110, 113, 115).  Nitroxyl 

may also be formed through other biochemical pathways including decomposition of S-

nitrosothiols and oxidation of the decoupled intermediate of NOS catalysis, NG-hydroxy-

L-arginine (NOHA) or of hydroxyurea by peroxidase/catalase-like reactions (4, 35, 67, 

113, 132).  

The availability of NO donor compounds has been invaluable to the elucidation of 

the biological properties of NO (126).  The rate of NO production by NOS is cell-

dependent, and NO donors with controlled decomposition rates have been used 
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extensively to simulate NO biosynthesis (79).  At present, Angeli’s salt (Na2N2O3; 

sodium trioxodinitrate), which was originally synthesized in the late 1800s (3), is the only 

compound available that spontaneously releases HNO under physiological conditions 

(31).  Sulfohydroxamic acid derivatives, such as Piloty’s acid, also spontaneously release 

nitroxyl, but only under basic conditions and are subject to rapid oxidation yielding NO 

rather than HNO (31, 36, 145).  

The half-life of HNO release from decomposition of Angeli’s salt is 2.5 min 

under physiological conditions (79).  

N2O3
2- + H+ →  HNO  +  NO2

- (1)

The diethylamine/NO adduct, DEA/NO (sodium salt), releases NO with well established, 

nearly identical kinetics to Angeli’s salt (79), 

Et2NN(O)NO- + H+ →  Et2NH  +  2NO (2)

allowing direct comparison of the biological properties of NO and HNO.  For instance, 

the cytotoxicity of Angeli’s salt, assessed by clonogenic assay (2 logs of kill at 2 mM), is 

several orders of magnitude greater than that of other RNOS and is comparable to 

alkylhydroperoxides (135).  DEA/NO is not appreciably toxic at a similar concentration 

(1 mM since decomposition of DEA/NO releases 2 NO; Eq. 2).  Further, while DEA/NO 

protects against oxidative stress, Angeli’s salt (0.1 mM) increases the toxicity of ROS 

such as H2O2 and O2
- (133), suggesting that HNO formation in vivo could have 

deleterious consequences.  

The cytotoxicity of Angeli’s salt is abated under hypoxic conditions (135), 

indicating that the toxic species is a product of the interaction of HNO with O2.  The 

resulting oxidant cleaves purified and cellular DNA (89, 98), while HNO itself inhibits 
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DNA repair protein activity (120).  The oxidative properties of the HNO/O2 product are 

similar to synthetic ONOO-, however, the overall chemical profiles are sufficiently 

distinct to suggest that the reactive intermediate is not ONOO- (86, 89).  For instance, the 

radical chemistry of ONOO- such as oxidation of phenols does not appear to be a 

component of HNO/O2 chemistry.  An important difference between these reactions is 

that while the flux of NO relative to O2
- is critical for the oxidation or nitrosation 

chemistry of ONOO- (84, 125), reaction of HNO with O2 results in oxidation at any ratio 

(89).  Although the reactant stoichiometry is 1:1 (86), the structure of the oxidant derived 

from the HNO/O2 interaction remains to be determined.  

Many studies have utilized alternate NO donors such as sodium nitroprusside 

(SNP), nitrates, for instance nitroglycerine (NTG), or nitrosothiols, allowing indirect 

comparisons of the pharmacological properties of NO and HNO in a number of different 

systems.  These in vitro, in vivo and ex vivo analyses have revealed that NO and HNO in 

general elicit distinct responses (for example (30, 38, 78, 105, 135)), which are highly 

dependent upon experimental conditions.

NO and HNO in myocardial ischemia/reperfusion and preconditioning.  

Ischemia/reperfusion.  There is long-standing debate as to whether NO plays a 

beneficial or detrimental role in ischemia/reperfusion (I/R) injury.  The ambiguity is in 

part a result of extrapolation of in vivo pathogenic conditions from in vitro toxicological 

experiments.  A retrospective analysis of 92 studies evaluating the modulatory effects of 

NO in the severity of I/R injury in non-preconditioned myocardium showed beneficial 

effects of exogenous or endogenous NO in the majority of the contributions (67%; (14)).  
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In the early 1990s NO donors were determined to decrease myocardial necrosis and 

reperfusion-induced endothelial dysfunction (121).  Similar observations were made 

concomitantly in the gut mesentery (71).  Protective effects of NO were also later 

demonstrated during brain and liver ischemia (74, 80).  In the ischemic heart, NO can 

provide protection through several mechanisms including inhibition of platelet 

aggregation (83) and neutrophil activity and adhesion (72) in a cGMP-dependent manner.  

The effect of NO, either through exposure to NO donors or L-arginine, is 

proposed to be dependent upon the stage of I/R with maximal protection against 

myocardial injury occurring with drug administered either immediately prior to or during 

onset of reperfusion (14).  Furthermore, infarct size and post-ischemic myocardial 

functional recovery are worse in endothelial NOS knockouts compared to wild-type mice 

(46, 63, 124).  In addition, endothelial NOS deficient hearts demonstrate a transient (<1 

h) heightened contractile response in the early periods of reperfusion.  In this setting, 

bolus administration of NO donors prior to the ischemic period prevents the early

hypercontractile response during reperfusion while significantly reducing myocardial 

damage (65).  

Protection is due to the antioxidant properties of NO, which not only safeguards 

against chemical insult from ROS (or RNOS) (138, 140) but also exerts other beneficial 

effects.  For example, NO is a powerful vasodilator and may improve blood flow during 

reperfusion (80).  NO also inhibits inositol-1,4,5-triphosphate signaling, thereby reducing 

calcium overload (90), and mediates protein kinase C translocation at reperfusion, thus 

protecting contractile function in isolated rat heart (144).  Although the reaction of NO 

with O2
- produces ONOO- (12, 109), which is considered to be cytotoxic (131), NO 
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donors confer vascular protection against exogenously applied ONOO- (130) via 

secondary reactions (44).  This multiple protective functionality renders NO an ideal 

substance to protect against I/R-induced tissue injury.  

In striking contrast, HNO from Angeli’s salt dramatically increased infarct area, 

tissue injury and myocardial creatine kinase release in the same cardiac I/R model while 

aggravating myocardial performance, as suggested by elevated left ventricular end-

diastolic pressure (LV dP/dtmax) (78).  These observations reinforced the perception 

originating from the initial cytotoxicity studies that HNO enhances oxidative stress while 

NO is an antioxidant.  Although it would be attractive to invoke a mechanism that 

directly relates I/R injury to cell death, it is worth noting that the Angeli’s salt 

concentration (~1 µM) used in the in vivo model was three orders of magnitude lower 

than that used in the cytotoxicity studies (2 mM; (135)).  This suggests that the 

mechanism of tissue damage is due to modification of a physiological response rather 

than to massive cell death.  In the cardiac I/R model, Angeli’s salt increased neutrophil 

infiltration into the infarcted area by approximately threefold, indicating that HNO 

enhances the induction of adhesion proteins in endothelial cells (78).  Thus, HNO at 

relatively low concentrations in vivo appears to modulate leukocyte trafficking at 

reperfusion in an opposite manner to NO, in agreement with previous in vitro 

observations demonstrating that Angeli’s salt enhances human neutrophil migration 

under both aerobic and anaerobic conditions (127).  

Preconditioning.  There is no doubt that pharmacological tools able to improve 

myocardial function during and after I/R as well as to prevent the incidence of 

arrhythmias and/or to reduce the extent of the necrotic mass in the reperfused 
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myocardium are of immense clinical relevance.  At present, however, clinically available 

drugs do not fully mitigate the consequences of myocardial I/R injury.  However, hearts 

exposed to brief, sublethal ischemic insults are more resistant against subsequent, 

prolonged ischemia (68, 95).  This phenomenon of preconditioning (PC) was originally 

described as an immediate adaptation to brief coronary occlusion (ischemic PC), but was 

later recognized to be a biphasic phenomenon.  Ischemic PC consists of an early phase of 

protection, which is typically manifested within a few minutes of the initial ischemic 

episode and lasts 2-3 h, and a late phase, which is characterized by a slower onset (12-24 

h) and longer duration (3-4 d) (14).  The main difference in terms of functional outcome 

is that the early phase confers protection only against myocardial infarction whereas the 

late phase is also effective against myocardial stunning.  

NO, RNOS and ROS have been extensively investigated both as triggers and 

modulators of PC.  The role of NO is now fully recognized in PC, and its effects are well 

defined, particularly in the late phase (25).  Recently, a comparative study with Angeli’s 

salt and DEA/NO determined that equimolar HNO (1 µM) appeared to be a more 

effective preconditioning agent than NO (101).  In fact, postischemic (2 h) contractility 

was similarly improved with ischemic PC or pre-exposure to Angeli’s salt, as opposed to 

control or DEA/NO-treated hearts.  Infarct size and LDH release were also significantly 

reduced in IPC and Angeli’s salt groups, whereas DEA/NO was less effective in limiting 

necrosis.  Moreover, the preconditioning features of Angeli’s salt appeared to be specific 

to HNO signaling since the HNO scavenger, N-acetyl-L-cysteine (NAC; 4 mM) 

completely reversed the beneficial effects of Angeli’s salt.  Thus, exposure to HNO 
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during reperfusion increases myocardial damage but imparts protection if present prior to 

reperfusion.  

The precise mechanism by which Angeli’s salt provides myocardial protection, 

including if HNO per se or its oxidative product is responsible for preconditioning, 

remain to be elucidated as does whether the isolated heart model extrapolates to in vivo

conditions and to a more sustained response (i.e. late PC).  Nevertheless, these studies 

suggest that the physiological properties of NO and HNO are orthogonal (i.e. of the same 

origin but not overlapping) and that the biological response to either species is highly 

condition dependent.  

In vivo effects of NO and HNO on normal and failing myocardial contractility.  

NO donors.  The modulatory role of NO and its donors on myocardial 

contractility (inotropy) is still controversial since conflicting results showing positive, 

negative or neutral inotropic effects for NO have been presented (5).  This variability 

may result from the donor compounds utilized, the amounts of NO generated (129), the 

redox status of the myocardium (18, 103), the target tissue (e.g. atrial versus ventricular 

cells) (20) and/or the concurrence of stimuli deriving from the activation of the immune 

or the autonomic nervous systems (6, 48).  Moreover, the majority of these studies were 

performed in vitro, precluding assessment of the effects of NO (or its donors) in a more 

integrative context.  

On the other hand, in vivo studies, including those performed in humans, often 

rely only upon load-dependent parameters, such as changes in LV dP/dtmax, which vary 

greatly with alterations in heart rate, loading (e.g. modifications in preload and afterload) 
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or myocardial perfusion conditions (e.g. changes in coronary flow).  This approach may 

sometimes contribute to drawing incorrect conclusions, for example, attributing direct 

primary effects on the myocardium to NO and its related species that in reality are 

secondary to changes in arterial resistance (afterload), venous capacitance and return 

(preload) or to coronary perfusion (102).  Despite these potential limitations, the effects 

of NO donors have been explored extensively in humans as well as in experimental 

preparations under both normal and disease conditions.  

In healthy humans, Paulus and colleagues reported that intracoronary infusion of 

SNP significantly dropped estimated LV end-systolic elastance (Ees), which is a load-

independent index of myocardial contractility, while LV dP/dtmax remained unchanged 

(107).  Similar results were obtained with substance P, which causes endothelial release 

of NO, in patients affected by dilated cardiomyopathy (53) or following cardiac 

transplantation (10).  In contrast, use of NOS inhibitors revealed a small baseline 

inotropic effect in the normal human heart that was not apparent in heart failure patients 

(24).  This observation is in agreement with other studies using L-NMMA as an inhibitor 

of endogenous NO formation (49, 50).  However, whether the effect is positive or 

negative, both exogenous and endogenous NO appears to have a rather small effect on 

basal non-stimulated myocardial contractility both in normal and failing hearts.  

Unlike the inotropic effects, other cardiovascular features of NO seem to be 

firmly established and less controversial.  For instance, both endogenously produced or 

exogenously administered NO favorably impact diastolic dysfunction.  In particular, 

intracoronary infusion of substance P induced LV hastening effects, which were 

accompanied by decreased LV dP/dtmax.  These effects where even more pronounced in 
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dilated non-ischemic cardiomyopathy subjects (53).  Moreover, NO-induced relaxation in 

these patients was potentiated by pretreatment with the β-agonist dobutamine (10).  

These finding are in agreement with a later demonstration that NO production declines in 

a canine heart failure (HF) model after 4 weeks of pacing.  This decrease was 

accompanied by a significant increase in LV dP/dtmax and a reduction in LV stroke work 

(112).  Thus, it appears that NO is beneficial to congestive heart failure patients and 

particularly for subjects whose cardiac output is largely dependent upon the LV Frank-

Starling response (106).  

On the other hand, NO donors or nitrates are first-line drugs for acute or chronic 

treatment of several cardiac diseases conditions.  Nitrates and similar agents are used to 

reduce elevated filling pressures and unload failing hearts by reducing pre- and afterload, 

thereby enhancing cardiac output (34).  However, there is a large body of evidence 

suggesting that NO and nitrates can themselves blunt adrenergic signaling.  This has been 

indirectly supported by the observation of enhanced dobutamine or isoproterenol-

stimulated function in control animals and in humans following NOS inhibition (47, 49, 

51).  The negative impact of NO on the β-adrenergic response appears to be enhanced in 

failing myocardium.  This effect has been attributed to several factors including altered 

inducible NOS activity (19), down regulated cGMP catabolism (116) and enhanced 

oxidant stress (114, 122).  β-adrenergic stimulation further increases NO release (64) and 

can amplify its depressant modulation.  Importantly, this negative synergy seems 

exacerbated in failing myocardium, and this phenomenon has been ascribed to altered 

inducible NOS.  However, the outcome of this interaction might also be a dose-dependent 

effect of NO, since low doses appear to enhance β-adrenergic stimulation (see (118)).
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HNO donors. Recently, the cardiovascular properties of Angeli’s salt were 

examined in a conscious canine model (104, 105).  Analysis of pressure-volume (PVA) 

relationships provided a load-independent approach to dissect the primary effects of NO 

and HNO on myocardial contractility from changes inherent to loading conditions (e.g. 

alterations in pre- and after-load).  Administration of Angeli’s salt to normal chronically 

instrumented dogs, at a similar dose to the I/R study by Ma et al. (78), led to rapid 

enhancement of left ventricular contractility (positive inotropy) with concomitant 

lowering of cardiac preload and diastolic pressure (venodilation) without altering arterial 

resistance (105)).  In contrast an equidilatative dose (-14-16% in end-systolic pressure) of 

DEA/NO and NTG triggered vasodilatation on both the arterial and venous side of the 

circulation, which is typically accompanied by an increase in heart rate while lacking a 

significant inotropic response.  

A comparable increase in inotropy was observed following administration of 

Angeli’s salt to failing canine preparations obtained after rapid pacing (116) (Figure 1).  

The reduced pressure through venous dilation and the increased inotropy are similar to 

the effects obtained with NTG and β-agonists, respectively, in subjects suffering from 

heart failure.  However, inotropy was enhanced additively with coinfusion of Angeli’s 

salt and the β-agonist dobutamine, in stark contrast to the NO donors DEA/NO and NTG, 

which had a negative or zero impact on dobutamine response, respectively (104).  Thus, 

the unique ability of Angeli’s salt to increase myocardial performance without altering 

heart rate may have therapeutic potential for treatment of cardiovascular diseases that are 

associated with cardiac depression and elevated venous filling pressures, including 

congestive heart failure.  
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The inotropic effect of Angeli’s salt was further examined and linked to release of 

calcitonin gene related peptide (CGRP).  In fact, administration of anti-CGRP to normal 

conscious dogs resulted in abatement of the inotropic effect induced by Angeli’s salt 

(105).  Further, infusion of Angeli’s salt into normal and failing dogs resulted in elevated 

plasma levels of CGRP, whereas neither DEA/NO nor NTG had an appreciable effect on 

basal levels (104).  Conversely, plasma cGMP was increased by infusion of DEA/NO or 

NTG, presumably through activation of sGC, but was unaffected by Angeli’s salt.  

Whether these changes in vasculature CGRP and cGMP levels reflect myocardial level 

alterations remains to be established.   

These results suggest the existence of two mutually exclusive response pathways 

that involve stimulated release of discrete signaling agents by HNO and NO.  

Nonadrenergic/noncholinergic (NANC) neurons contain CGRP, which is released upon 

stimulation by calcium.  We propose that HNO mediates release of CGRP, which is 

responsible, at least in part, for the inotropic effects of Angeli’s salt and other HNO 

donors.  

CGRP per se has positive inotropic activity involving augmented calcium release 

(57) and is effective in failing human hearts (39).  However, there are dissimilarities 

between HNO and CGRP signaling.  Angeli’s salt was equally effective in the presence 

or absence of β-receptor blockade, yet CGRP-positive inotropy is thought to be coupled 

to protein kinase A stimulation via increased cAMP (57), and thus, would likely be 

blunted in heart failure.  Hence, it is possible to speculate that NANC peptides are 

involved in HNO signaling or, alternatively, that there may be other direct effects of 
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HNO on cardiomyocytes that influence contractility or enhance sensitivity to CGRP 

signaling.  

Chemical Properties of HNO Revisited

The discrete modulation by HNO and NO donors is surprising since NO- and NO 

differ by a single electron much like O2
- and O2.  From this perspective, interconversion 

between the NO-/NO couple would be anticipated to be facile since there are a number of 

biological agents that can interact with either redox sibling through outer-sphere electron 

transfer (36, 54, 76, 94, 115, 119).  However, the orthogonal effects of Angeli’s salt and 

DEA/NO in the cardiovascular system, the I/R injury model and the cytotoxicity studies 

(101, 104, 105, 135) imply that this causal redox chemistry does not occur in vivo.  

The pKa for deprotonation of HNO was originally reported as 4.7 (43), indicating 

that NO- was the predominant species at biological pH.  Recently, the acid-base equilibria 

of nitroxyl have been reevaluated (8), and the pKa for HNO is suggested to exceed 11 (9, 

117).  Therefore, HNO is now implicated as not only a significant, but likely the 

exclusive species present in the acid/base equilibrium of HNO/NO– in biological systems.  

This is an important distinction since the chemistry of the protonated and unprotonated 

forms of nitroxyl varies substantially.  The chemistry of the acid is primarily electrophilic 

in nature while the conjugate base is principally involved in redox chemistry by outer-

sphere electron transfer (e.g. simple electron transfer with the electron in essence jumping 

from the oxidant to the reductant without covalent association of the reactants).  

The reduction potential of NO was recently determined to be lower than -0.7 V 

versus normal hydrogen electrode (NHE) (9, 117).  This potential lies at the high end of 
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the biological redox scale for eukaryotic cells, indicating that direct reduction of NO to 

NO- by simple electron transfer is unlikely to occur in vivo.  Rather, reduction 

mechanisms in mammalian biology will reduce O2 to O2
- due to a substantially more 

positive reduction potential (-0.33 V versus NHE) and higher concentration.  However, 

the reverse reaction, oxidation of NO- to NO, with a potential of higher than +0.7 V, 

should be quite facile (9).  This suggests that infusion of Angeli’s salt should increase 

cGMP in plasma.  Yet, as discussed above, plasma cGMP is unaffected by Angeli’s salt 

(104).  

The explanation originates from the pKa of HNO.  Decomposition of Angeli’s salt 

(Eq. 1) at physiological pH produces HNO rather then NO-.  The high pKa and the 

necessity of a spin flip (from 1HNO to 3NO-) severely limits deprotonation such that NO-

would be expected to have little or no role in the biological chemistry of HNO (88).  

Reduction of ferricytochrome c by Angeli’s salt (k ~ 104 M-1 s-1; (88)) is 

approximately two orders of magnitude slower than by O2
- (k = 4 × 106 M-1 s-1; (13)).  

Assuming these reactions proceed through outer-sphere electron transfer, this suggests 

that the oxidation potential of HNO is considerably less than that of O2
- (+0.33 V versus 

NHE).  Thus, unlike NO-, HNO is a relatively poor reductant (9), which will thus 

participate in vivo in other faster reactions than outer-sphere electron transfer (88).  The 

redox potentials for NO and HNO indicate that the chemistry of these two species will be 

entirely discrete (Figure 2).  Thus, elevated CGRP levels may be a specific marker for 

HNO in vivo.  

Recently, two concurrent studies determined for the first time the approximate 

rate constants for HNO with common biomolecules.  Liochev and Fridovich (75)
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evaluated the relative rate constants for reaction of HNO with ferricytochrome c, Cu,Zn 

SOD, O2 and GSH by competitive studies.  Similar techniques were utilized by Miranda 

et al. (88) to ascertain the relatively reactivity of HNO with an expanded number of 

biomolecules including metmyoglobin (metMb) and peroxidases. In anaerobic aqueous 

solution, HNO will dimerize to form N2O after dehydration.  

2HNO → N2O + H2O (3)

The rate constant for dimerization has been measured as 8 × 106 M-1 s-1 (117), unlocking 

a quantitative determination of the rate constants for HNO chemistry from the relative 

reactivates.  The derived rate constants are presented in Table I and exhibit considerable 

similarities between the two studies (75, 88).  

Kinetic evaluation can provide insight into the independent mechanisms of HNO 

and NO.  For instance, the activity of sGC, which has a ferrous resting state (17), is 

enhanced by NO and unaffected by HNO (26).  NO generally associates quite rapidly 

with both ferric and ferrous hemes (e.g., k = 2 × 105 and 2 × 107 M-1 s-1 for metMb and 

Mb, respectively; (73, 100))

Fe(III)  +  NO  →  Fe(III)NO (4)

Fe(II)  +  NO  →  Fe(II)NO (5)

In contrast, the extra electron in HNO results in reductive nitrosylation of the ferric center 

(87), and reaction with a ferrous complex would be expected to be transitory.

Fe(III)  +  HNO  →  Fe(II)NO  +  H+ (6)

The general tendency for ferrous-nitrosyl complexes to exhibit substantially 

higher stability than the corresponding ferric species is well established (e.g., K = 103 and 

1011 for metMb and Mb, respectively; (73, 100)), although exceptions exist (for review 
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see (33)).  The relative reversibility of ferric-nitrosyl complexes suggests that biological 

response is likely a result only of ferrous-nitrosyl formation for most iron proteins.  Thus, 

the differential physiological effects of NO and HNO may be in part a result of respective 

complexation with ferrous (Eq. 5) or ferric (Eq. 6) proteins to generate the same stable 

ferrous-nitrosyl product.  

The derived rate constants in Table I can now provide additional insight into 

kinetic viability, which is dependent upon both the rate constant, which is a function of 

the molecular target, and the concentrations of reactants.  For instance, the cytoplasm is 

rich in GSH (1-10 mM; (82)), which reacts with HNO with a high rate constant ((88); 

Table 1).  Conversely, NO only reacts with thiols after conversion to an RNOS (139).  

Thus, direct stimulation of sGC by HNO will be inhibited by the kinetic restraints 

imposed by the relative rate constants for and the relative concentrations of GSH and 

sGC.  These kinetic parameters for NO, however, cause reaction with sGC to be quite 

favorable under the same conditions (17).  Thus, molecular targeting at the protein level, 

by valence state in this case, and the location in the cell dictate reactivity such that 

elevated cGMP production is only consequent to NO exposure.  

Compartmentalization of molecular targets is an important factor in unraveling 

the basis for the orthogonal behavior of NO and HNO in the cardiovascular system and 

perhaps elsewhere.  Although the rate constants for reaction of HNO with GSH and 

Cu,Zn SOD are similar (Table I), the relative concentrations of both species in the cytosol 

(1-10 mM GSH, (82); 10 µM Cu,Zn SOD, (69, 96)) indicate that HNO will preferentially 

react with GSH.  Thus, although interconversion of HNO and NO does occur in situ, by 

for example oxidation of HNO by purified Cu,Zn SOD
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Cu(II)  +  HNO → Cu(I)  +  NO  +  H+ (7)

it can be argued that these reactions are likely to be of little relevance in the cytoplasm 

and other cellular compartments rich in GSH and other biological redox-active 

biomolecules due to kinetic constraints.  

As stated above, ferrous-nitrosyl complexes commonly exhibit relatively high 

stability under biological conditions.  For example the half life of nitrosylated 

hemoglobin in red blood cells is approximately 30 min (85).  Cyt c is an exception to this 

generality, and free NO is released from the heme (29, 76)

Fe(III)  +  HNO → Fe(II)  +  NO  +  H+ (8)

However, the low rate constant for reaction of HNO with ferricyt c (104 M-1 s-1; (75, 88)

likely precludes significant oxidation of HNO to NO by this protein in vivo.  

One the other hand, reductive nitrosylation of metMb (Eq. 6) may have significant 

kinetic relevance (Table 1).  However, the ferrous-nitrosyl complex in the globins decays 

in the aerobic environment of the cell to nitrate rather than free NO (2)

Fe(II)NO  +  O2 →  Fe(III)  +  NO3
- (9)

This reaction is similar to that of NO by oxyHb or oxyMb (27)

Fe(II)O2  +  NO →  Fe(III)  +  NO3
- (10)

which is considered to be a major pathway for consumption of NO.  HNO also reacts 

with oxyMb although with different stoichiometry and an as yet undetermined nitrogen 

product (28, 29)

2Fe(II)O2  +  HNO  →  2Fe(III) (11)

Thus, HNO diffusion is also likely to be significantly controlled by oxygen-binding 

proteins such as Hb and Mb.  Production of an identical end-product following reaction 
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with NO or HNO would also conveniently require only a single mechanism to return to 

the ferrous state.  Whether reaction with oxyHb or oxyMb completely inactivates HNO, 

as it does for NO, will depend upon the uncharacterized nitrogen product.  However, the 

concentration of HNO itself will be highly controlled both by Eq. 11 and reaction with 

GSH as well as other scavengers.  

Recent studies indicate that unlike NO donors, HNO induces preferential venous 

dilation (105).  Baroreflex blockers balance arterial and venous relaxation by HNO, 

suggesting that the observed selectivity is due to enhancement of the compensatory 

neuronal response by HNO (104).  The observed dilation of blood vessels, as previously 

shown (62), indicates either that mechanisms exist in the cardiovascular system to 

convert HNO to NO or that HNO mediates dilation through a separate mechanism.  

Early reports indicated that Angeli’s salt induces relaxation of isolated vasculature 

tissue (36).  Later, HNO was found to be reduced to NO by free metals found in common 

buffers and media (36, 76, 94), and the prior results were assumed to be a function of this 

reaction.  However, recent studies have shown that induced relaxation by Angeli’s salt in 

isolated tissue models is not affected by addition of the NO scavenger PTIO (a nitroxide 

that converts NO to NO2 via O atom transfer) (62).  Therefore, casual metal-catalyzed 

conversion of HNO to NO does not entirely account for the observed effects.  The 

sensitivity of potassium channels in resistance arteries to Angeli’s salt was also not 

affected by PTIO, unlike the response to NO donors.  Furthermore, a small fraction of 

relaxation resulted from stimulation of sGC.  Since HNO does not stimulate sGC (26), 

intercellular conversion to NO was concluded to occur.  
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In these cases, selective reduction of HNO may take place near the activation site 

by specific catalytic conversion rather than random redox reactions.  Covalent addition of 

HNO to transition metal complexes such as in peroxidases, metHb or metMb will result 

in reductive nitrosylation (Eq. 6).  Release of NO from the resulting ferrous-nitrosyl 

complex, which will be highly dependent upon the protein, will have then resulted from 

inner-sphere electron transfer to HNO.  A similar mechanism may be important to the 

oxidation of L-arginine to NO by NOS.  Stuehr et al. have shown the HNO is produced 

by NOS under low cofactor conditions (1).  In solution, HNO may back react to convert 

the ferric heme to ferrous nitrosyl, which could then eliminate NO and return NOS to the 

ferrous resting state.  

These studies suggest that the reactions of HNO that may be generally restricted 

in the cell may be kinetically viable in specific cellular regions or when HNO is produced 

directly adjacent to a particular target.  For instance, although the reaction of HNO with 

O2 proceeds with a relatively slow rate constant, this reaction may become significant in 

cell membranes, in which nitrogen oxides and O2 have enhanced solubilities (77) while 

the concentration of GSH is substantially lower compared to the cytosol.  In fact, in vitro

studies with the fluorophore diaminofluorescein (DAF) have suggested that HNO 

chemistry primarily occurs in cell membranes (30).  

The differential physiological properties of HNO and NO are ultimately a result 

of the unique molecular targets for each species (Figure 3).  Iron complexes, for example, 

are nitrosylated by NO and reductively nitrosylated by HNO (Eqs. 5 and 6).  Thus, NO 

will favor ferrous iron while HNO will preferentially react with ferric iron in accordance 

with the extra electron in HNO.  Further, NO will not react directly with thiols and must 
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first be activated to an RNOS such as the NO+ donor N2O3.  Conversely, HNO has a high 

affinity for thiols.  Metal complexation may account for the rapid, reversible 

physiological effects while thiol oxidation/modification might be irreversible, requiring 

enzymatic regeneration within the cell.  Other biological motifs unique to HNO have yet 

to be identified.

In vitro effects of NO and HNO on calcium channel function.

Exocytosis of CGRP from NANC neurons is regulated by calcium influx through 

voltage gated channels (70, 97).  HNO may stimulate neuropeptide release by interacting 

directly with the channel, perhaps through binding to a metal or thiol.  This is an 

attractive proposition since the chemical modification would occur in the membrane 

where HNO scavengers such as GSH are low.  The effects of HNO and NO donors on the 

NMDA calcium channel have been examined (38, 66, 128), and the observed responses 

have revealed several important aspects to the relationship of NO and HNO. 

Under aerobic conditions, long term exposure to high micromolar and low 

millimolar NO donors attenuated glutamate-stimulated calcium influx (128), possibly 

through S-nitrosation of a thiol residue.  The high concentration of NO required suggests 

that this mechanism would only be mediated by stimulated inducible NOS.  Interestingly, 

short term, pulsed, aerobic infusion of NO donors potentiated calcium influx, and this 

effect was enhanced under hypoxia (38).  Substitution of the NO donor with Angeli’s salt 

produced similar augmentation aerobically, however, channel response was attenuated by 

HNO under hypoxia.  
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These condition-dependent responses to nitrogen oxides can be envisioned to be 

vital to cell physiology.  Under normal conditions, low levels of NO would promote 

calcium influx, thus regulating normal metabolism.  Conversely, high fluxes of NO from 

activated leukocytes would signal channel closure, potentially reducing damage from the 

immune response.  Peroxides stimulate a similar response, indicating that both ROS and 

NO redox chemistry can protect the neuron from immunological or pathological 

conditions.  

Tissues initially experiencing hypoxia often produce a burst of NO from 

endothelial NOS in an attempt to reestablish normal blood flow by vasodilation (80).  

Whether this burst is sufficient for calcium channel closure is unknown.  However, if the 

ischemic event continues, the cofactors and substrates for NOS will diminish.  Under 

these conditions in vitro, neuronal NOS converts to an HNO synthase (1).  This alteration 

could be critical for cell survival since NO under hypoxia enhances calcium influx, which 

upon reperfusion would aggravate deleterious processes.  Channel closure by HNO 

would instead be protective toward these pathways.  Return of O2 during reperfusion 

would initially open the channel while enhanced cofactor concentration would reestablish 

NO synthesis, again promoting normal function.  

Since neuronal NOS may be attached to the NMDA receptor in certain neurons 

(15), the differential response to NO and HNO observed in vitro offers intriguing 

possibilities for regulation of neuronal responses by NOS under varied conditions.  HNO 

appears to modulate channel function in parallel with O2 concentration.  Thus, HNO may 

be able to reinforce the initial signal in an O2-dependent manner as described above and 

thus provide a protective response to regional fluctuations in blood flow.  Additionally, 



25

the pharmacological properties of HNO donors may originate from modification of 

calcium channels.  

The responses of the NMDA channel to nitrogen oxide exposure are rapid and 

readily reversible (38), thus indicating interaction with a channel-associated metal rather 

than covalent modification of channel proteins.  The hypoxia data suggest a reduced 

metal such as a ferrous iron.  It is therefore likely that the distinct effects of NO and HNO 

again are a function of differential reactivity with the target.  

Production of HNO in vivo.

The pharmacological and toxicological properties of HNO are slowly being 

elucidated.  However, whether HNO is an endogenous mediator is still questionable.  The 

properties of HNO described above provide circumstantial evidence for a role as an 

endogenous agent in the cardiovascular system.  The unique biological signatures of 

HNO and NO, which are often opposing, renders these redox siblings ideal for control of 

a variety of physiological processes.  Since casual redox conversion between these 

species is kinetically improbable, specific changes in redox states of proteins containing 

critical metal or thiol sites provide an intriguing scenario for regulation.  

The primary candidate as an endogenous source of HNO is NO synthase.  

Production of HNO by NOS has been both speculated and demonstrated under specific in 

vitro conditions (1, 54, 110, 113, 115).  The major shortcoming to this mechanism is 

escape of HNO from the protein pocket if the resultant valence state of the heme is ferric, 

unless rapid electron transfer from the cofactors reduces the iron prior to complexation of 
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HNO.  If this highly regulated enzyme does in fact produce HNO, it is likely that the 

molecular target would have to be proximal to the enzyme due to consumptive pathways.  

Another attractive possibility for HNO production is oxidation of the decoupled

intermediate of NOS catalysis, NG-hydroxy-L-arginine (NOHA).  This molecule can 

constitute as much as 50% of the metabolism of NOS (16), and in this respect is likely an 

underappreciated metabolite, possessing its own unique properties.  NOHA is an 

antioxidant and modulates metabolism and transport of L-arginine (16, 52).  Catalyzed 

oxidation of NOHA by peroxidases has been proposed to produce HNO (110).  

Hydroxyurea can be similarly oxidized to HNO (67), possibly providing a novel class of 

HNO donors.  

Decomposition of S-nitrosothiols may also provide a mechanism for in vivo

generation of HNO (4).  S-Nitrosothiols have been proposed as intermediates in the 

biology of NO (81, 123), although the physiological roles and concentrations are a matter 

of current debate (40, 111).  The reaction of S-nitrosothiols with excess reduced thiol 

produces HNO and disulfide (142).   

RSNO  +  RSH  →  HNO  +  RSSR (12)

This reaction is an intriguing mechanism to convert NO chemistry to HNO chemistry but 

would require limited thiol concentration to avoid scavenging of HNO.  Further, the tight 

regulation of NOS suggests that casual production of nitrogen oxides, perhaps including 

HNO, is both unlikely and undesirable.  
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Summary

Although nitroxyl production by NOS in vivo remains speculative, the potential 

therapeutic avenues for HNO donors are intriguing.  As with NO, location and 

concentration will ultimately determine the biological effects of HNO and whether the 

response will be advantageous or deleterious.  The chemistry of HNO is more diverse 

than that of NO allowing both a wider array of modifications and tighter control through 

multiple consumption pathways, such that diffusion will be restricted to an even greater 

extent than for NO.  Further, the differential behavior of the redox siblings HNO and NO 

is to a great extent a function of their specific chemistry toward distinct molecular targets, 

providing discrete regulatory mechanisms under a variety of conditions.
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Table I.  Derived Rate Constants for Reaction of HNO with Biomolecules.

k (M-1s-1) 

biomolecule

Miranda et al. 

(37°C) (88)

Liochev/Fridovich

(23°C) (75)

ferricyt c 4 × 104 2 × 104 a

O2 3 × 103 1 × 104

Cu,Zn SOD 1 × 106 8 × 104 a

MnSOD 7 × 105 ND

GSH 2 × 106 >>1 × 105

NAC 5 × 105 ND

catalase 3 × 105 ND

metMb 8 × 105 ND

oxyMb 1 × 107 ND

HRP 2 × 106 ND

Tempol 8 × 104 ND

aalso in reference (76)
      ND = not determined



48

Figure 1.  Cardiovascular effects of Angeli’s salt, DEA/NO and NTG in congestive heart 
failure.  Ees, end-systolic elastance; D-edd, preload-normalized maximal dP/dt; Pes, end-
systolic pressure; RT, total resistance; EDD, end-diastolic dimension. * P<0.005 versus 
baseline; ** P<0.01 versus. baseline; *** P<0.05 versus. baseline; † P<0.005 between 
groups; † † P<0.05 between groups.
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Figure 2.  Relative Redox Potentials of NO and HNO/NO- under Physiological 
Conditions.  This diagram is a qualitative description of the calculated redox potentials 
for NO, HNO and NO- and illustrates that the orthogonality observed in biological 
systems can be explained by the high barrier to either NO reduction or HNO oxidation 
through the intermediacy of NO-.  However, interconversion between NO and HNO can 
by achieved through specific metal-catalyzed inner-sphere electron transfer.    
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Figure 3. Differentiation of HNO and NO Chemistry by Cellular Compartmentalization.  
This diagram illustrates the likely biological targets of HNO and NO from a kinetic 
viewpoint.  The orthogonal responses observed with HNO and NO are suggested to result 
from both the non-facile interconversion (red arrows) and the differential reactivity 
toward thiols and metal centers.  Further, the reactivity of HNO with different 
biomolecules indicates that specific cellular compartments will foster either scavenging 
or activation/deactivation reactions.  For instance, ferrous sGC, which is surrounded by 
large concentrations of GSH is expected to only be activated by NO.  Modification of 
critical biomolecules by HNO is likely to only occur in membranes or other regions 
devoid of common scavengers such as GSH.
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