
Achieving Fair or Differentiated Cache Sharing in Power-Constrained Chip

Multiprocessors

Xiaorui Wang, Kai Ma, and Yefu Wang

Department of Electrical Engineering and Computer Science

University of Tennessee, Knoxville, TN 37996

{xwang, kma3, ywang38}@eecs.utk.edu

Abstract

Limiting the peak power consumption of chip multipro-

cessors (CMPs) has recently received a lot of attention. In

order to enable chip-level power capping, the peak power

consumption of on-chip L2 caches in a CMP often needs to

be constrained by dynamically transitioning selected cache

banks into low-power modes. However, dynamic cache re-

sizing for power capping may cause undesired long cache

access latencies, and even thread starving and thrashing,

for the applications running on the CMP. In this paper, we

propose a novel cache management strategy that can limit

the peak power consumption of L2 caches and provide fair-

ness guarantees, such that the cache access latencies of

the application threads co-scheduled on the CMP are im-

pacted more uniformly. Our strategy is also extended to pro-

vide differentiated cache latency guarantees that can help

the OS to enforce the desired thread priorities at the archi-

tectural level and achieve desired rates of thread progress

for co-scheduled applications. Our solution features a two-

tier control architecture rigorously designed based on ad-

vanced feedback control theory for guaranteed control ac-

curacy and system stability. Extensive experimental results

demonstrate that our solution can achieve the desired cache

power capping, fair or differentiated cache sharing, and

power-performance tradeoffs for many applications.

1 Introduction

In recent years, limiting the peak power consumption of

chip multiprocessors (CMPs) has received a lot of attention

[11, 27, 16, 30]. With the increased levels of core integration

and transistor density, the gap between the peak and aver-

age power consumption of a CMP widens and leads to un-

necessarily more expensive cooling, packaging, and power

supplies in the CMP design. To effectively reduce the costs

while allowing higher computing densities with more cores

and caches integrated on a single die, power capping can be

enforced at different levels of a CMP for maximized perfor-

mance under given power constraints. In addition, to en-

able chip-level power capping, it is preferable that power

can be flexibly shifted among the CPU cores and the shared

on-chip L2 caches within a CMP for performance optimiza-

tion. Therefore, the peak power consumption of on-chip L2

caches in a CMP often needs to be constrained below a bud-

get that is determined at runtime.

An effective way of controlling the power of L2 caches

is to dynamically switch selected cache units (e.g., ways,

banks, or lines) between high- and low-power modes [7, 17].

For example, recent work [3] has proposed power-efficient

management schemes for the non-uniform cache architec-

ture (NUCA) designed to reduce wire delays. However, as

a tradeoff, putting cache units into low-power modes may

cause undesired long cache access latencies for the applica-

tions running on the CMP. As cache access latencies con-

tribute significantly to the number of CPU stall cycles and

thus are directly related to application performance such as

IPC (instructions per cycle), how to select cache units for

power capping is challenging. Simplistic solutions may al-

locate too few cache units to some applications, resulting in

undesired thread starving and thrashing. Therefore, it is im-

portant to provide desired latency guarantees for the applica-

tion threads running on the cores in a CMP, even when the

active L2 cache size is being dynamically changed to enforce

a runtime power budget.

There can be different ways to provide cache access

latency guarantees in a power-constrained CMP. First, a

straightforward way is to provide absolute latency guaran-

tees for some applications based on their performance needs

(e.g., IPC requirements). However, since the active L2 cache

size can be significantly reduced at runtime to enforce a low

power budget in scenarios such as thermal emergencies, the

available active cache size can become too small to guaran-

tee the absolute latencies for any applications. Therefore, it

may not be feasible to provide absolute latency guarantees

in power-constrained CMPs. The second and a more rea-

sonable way is to provide fairness guarantees such that the

cache access latencies of the applications are impacted more

uniformly by cache resizing. As a result, execution time fair-

ness, i.e., how uniform the execution times of co-scheduled

threads are changed, can be better achieved. While existing

work addresses fairness in terms of cache miss rate [14], we

choose to control the average access latencies because the la-

tency of each single access can vary significantly in NUCA

caches due to wire delays. As a result, miss rate may not

accurately indicate the impact on application performance.

Fair latency guarantees can also be extended to provide

differentiated cache access latencies, since the applications

co-scheduled on different cores in a CMP may have different

performance needs or priorities. Differentiated latency guar-

antees can allow higher priority applications to have shorter



latencies and so less performance degradation under the im-

pacts of cache resizing. Differentiated cache sharing is im-

portant because it can help the OS to enforce the desired

thread priorities. The OS normally enforces thread priori-

ties by assigning more time slices to higher priority threads,

with the assumption that more time slices can lead to higher

rates of progress among all the co-scheduled threads. How-

ever, as cache implementation is traditionally thread-blind

and priority-blind, a novel scheme is needed to help higher

priority threads to achieve shorter cache latencies and so

higher rates of progress at the architectural level. Differ-

entiated latency guarantees can also be useful in accelerat-

ing critical threads to reduce load imbalance. Existing work

on thread criticality relies mainly on per-core dynamic volt-

age and frequency scaling (DVFS) and task stealing [4, 6].

However, some applications are not suitable for task stealing

while some memory-intensive applications cannot be accel-

erated by per-core DVFS alone. In addition, per-core DVFS

is not supported by most existing CMPs and can be expen-

sive for future CMPs [23]. In this paper, we demonstrate that

differentiated latency guarantees can provide another way to

achieve desired rates of progress for application threads. As

cache latencies may have small impacts on the performance

of some applications, differentiated latency control should

be combined with per-core DVFS and task stealing to accel-

erate threads based on application characteristics.

In this paper, we propose a novel L2 cache manage-

ment strategy that can enforce the desired power budget for

on-chip L2 caches in a power-constrained CMP by cache re-

sizing. In order to achieve fair or differentiated cache sharing

under the impacts of power capping, our strategy dynam-

ically partitions the available active cache size among the

threads on the cores for fair or differentiated cache access

latencies. A key challenge in implementing fair or differ-

entiated cache sharing in a power-constrained CMP is that

the cache partition to achieve the desired degree of fairness

or differentiation depends on two uncertain factors: work-

loads that are unknown a priori and the total cache size that

is dynamically varying. A main contribution of this paper is

the introduction of a coordinated feedback control architec-

ture for adapting cache partitioning and resizing such that the

desired latency fairness or differentiation among threads on

different cores can be achieved, while the cache power con-

sumption can be controlled. Specifically, this paper makes

the following major contributions:

• We propose a novel L2 cache management strategy that

provides fair or differentiated cache sharing for threads

running on a CMP whose power consumption must be

constrained. While prior research in this field focuses

primarily on reducing the power consumption of L2

caches, to our best knowledge, this paper presents the

first study to limit the peak power consumption of L2

caches.

• We design a two-tier coordinated feedback control ar-

chitecture to simultaneously limit the peak cache power

consumption and achieve the desired latency differen-

tiation/fairness among different threads by dynamically

conducting cache resizing and partitioning.

• We use advanced feedback control theory as a theoreti-

cal foundation to design and coordinate the two control

loops for theoretically guaranteed control accuracy and

system stability.

The rest of this paper is organized as follows. Section 2

introduces the proposed two-tier control architecture. Sec-

tion 3 presents the modeling, design, and analysis of the

latency fairness controller. Section 4 discusses the cache

power controller. Section 5 provides the implementation de-

tails of our control solution. Section 6 presents our experi-

mental results. Section 7 reviews the related work. Finally,

Section 8 summarizes the paper.

2 Two-tier Cache Control Architecture

In this section, we provide a high-level description of

our cache control system architecture, which features a two-

tier controller design.

As shown in Figure 1, the primary control loop, i.e.,

the L2 cache power control loop, limits the peak L2 cache

power consumption under the desired budget (e.g., 90% of

the peak power consumption) by manipulating the total num-

ber of active L2 cache banks. Note that we use cache banks

in NUCA caches as our actuation unit, but our controller can

work with finer actuation granularities, such as cache lines

or blocks, with only minor changes and slightly more hard-

ware overhead. The key components in the cache power con-

trol loop include a power controller, a power monitor, and a

cache resizing modulator. The control loop is invoked peri-

odically. In each control period of the cache power control

loop, the controller receives the total power consumption of

the L2 caches from the power monitor. Note that although

the power consumption of L2 caches cannot be directly mea-

sured in today’s CMPs, it can already be precisely estimated

with on-chip programmable event counters for control pur-

pose [12]. The cache power is the controlled variable of

this loop. Based on the difference between the measured

power value and the desired power budget, the controller

then computes the number of cache banks in the chip that

should stay active in the next control period, which is the

manipulated variable. The controller then sends the number

to the cache resizing modulator. The modulator changes the

power modes of selected cache banks accordingly. There is

only one cache power control loop in a CMP.

The secondary control loop, i.e., the latency fairness/d-

ifferentiation control loop, achieves the desired latency fair-

ness or differentiation for the threads on the cores by con-

ducting cache partitioning at runtime on a smaller timescale.

As shown in Figure 1, in a CMP with N CPU cores, we

have N − 1 latency fairness/differentiation control loops.

There are two ways to implement the latency control loops.

The first way is that we select a reference thread on a core

and then control the latencies of other threads relative to the

latency of this reference thread. The second way is that



������ ��� 	��� ������� 
�� 	��� 

������ ��� 	��� � ������ ��� 	��� � 	�
�� ������� �������	�
�� ������� �������	�
�� ������� ������
	�
�� ������� ����������
����
�
�� ����������������� �����	���������
�����
� �������

�������� �����
� 	���������
�����
� �������

�����
� ������� �����
� �������
�������� �����
� 	����������������� �����
� 	���������	�
�� ����������� ������������

������ �
 	�
�� �����
�
������ ��� �����
������ ��� �����!"����
Figure 1. Two-tier L2 cache control architecture for power capping and fair/differentiated sharing.

we can have a control loop to control the latency ratio be-

tween the two active threads on every two adjacent cores.

Since the controlled variable is the relative latencies among

threads, the two implementations accomplish the same con-

trol functions. We plot the second way in Figure 1 for eas-

ier illustration. Specifically, to achieve fairness, we try to

achieve approximately the same cache access latency for the

active threads running on all the cores, despite the dynam-

ically varying total cache size. Likewise, to achieve differ-

entiation, we maintain the cache latency of a higher-priority

thread shorter than that of a lower-priority thread. Note that

previous fair cache sharing solutions [14, 34] try to man-

age the performance impacts of co-scheduling relative to the

case when the applications are running alone on a CMP. As

a result, they need to precisely know which applications are

currently running on the CMP and then use corresponding

off-line profiled performance measurements as references.

A key advantage of our solution is that we do not assume

such a prior knowledge and is thus more realistic. To han-

dle multi-threaded applications, we can put cores running the

same applications into groups and then conduct dynamic L2

cache partitioning among the groups.

The key components in a latency fairness/differentia-

tion control loop for two cores include a latency fairness/dif-

ferentiation controller, two latency monitors for the threads

on the two cores, and a shared cache partitioning modulator.

The control loop is also invoked periodically and its period

is selected such that multiple cache access requests can be

received during a control period and the actuation overhead

is small compared with the period. The following steps are

invoked at the end of every control period: 1) The latency

monitors of the two cores measure the average absolute la-

tencies of the two threads in the last control period and send

the values to the controller through the feedback lane; 2) The

controller calculates the relative latency of the two threads,

which is the controlled variable of the control loop. The dif-

ference between the actual relative latency of the two threads

and the desired value is the control error; 3) The controller

then relies on control theory to compute the ratio between the

numbers of cache banks to be allocated to the two threads,

which is the manipulated variable of the control loop. The

absolute number of cache banks can be calculated based on

the total number of active banks determined by the power

control loop; 4) The cache partitioning modulator then al-

locates the desired number of cache banks to each thread.

Note that we assume a cache bank is not shared by multiple

threads in this prototype design, but this assumption can be

easily relaxed in a real implementation by using finer actua-

tion granularities with more hardware overhead.

Clearly, the two control loops need to be coordinated

based on advanced control theory, because every invocation

of the cache power control loop may change the total number

of active cache banks of the CMP, and thus affect the stability

of the latency control loops. Therefore, in order to achieve

stability for the two-tier control architecture, we adopt the

method recently proposed in [31] to configure the period of

the power control loop to be longer than the settling time of

the latency fairness/differentiation control loops. This guar-

antees that the latency loop can always enter its steady state

within one control period of the power control loop, so that

the two control loops are decoupled and can be designed in-

dependently. As long as the two control loops are stable in-

dividually, the coordinated control system is stable.

Since the core of each control loop is its controller, we

introduce the design and analysis of the two controllers in

the next two sections, respectively. The details of cache re-

sizing and partitioning in NUCA caches and the implemen-

tation details of other components in the control loops are

discussed in Section 5.

3 Latency Fairness/Differentiation Controller

In this section, we present the modeling, design and

analysis of the cache latency controller.

Given a CMP with N cores, as an example, we present

the design process of the cache latency fairness/differentia-

tion controller between Core i and Core j. The controller

design between other pairs of cores is the same. We first in-

troduce the following notation. li(k) is the absolute access

latency of the thread running on Core i in the kth control pe-



riod. l(k) is the relative latency ratio between the two threads

on Core i and Core j. Specifically l(k) = li(k)/lj(k). L is

the reference latency ratio between the two threads on Core

i and Core j for the desired fairness (if L = 1). To achieve

differentiation, the ratio L can be set (e.g., by the OS) pro-

portionally to the thread priorities or progress rates. It is

important to note that L is not necessarily a constant and can

be changed at runtime based on thread progress rates. For

example, the thread criticality predictor in [4] can be used

to predict how critical each of the co-scheduled threads is,

such that proper reference ratios can be assigned to accel-

erate critical threads at different times. The focus of this

paper is on providing a control scheme that can achieve the

desired differentiation specified by the OS. We plan to inves-

tigate advanced algorithms for the OS to dynamically deter-

mine the reference ratio based on the desired thread priorities

and/or progress rates in our future work. e(k) is the differ-

ence between the reference ratio and the actual latency ratio.

Specifically e(k) = L − l(k). ci(k) is the number of active

cache banks allocated to the thread on Core i in the kth con-

trol period. c(k) is the ratio between the numbers of cache

banks partitioned to the two threads on Core j and Core i,
specifically c(k) = cj(k)/ci(k).

In the kth control period, given the current access la-

tency ratio l(k), the control goal is to dynamically choose

cache partition ratio c(k) such that l(k + 1) can converge to

the set point L after a finite number of control periods.

3.1 System Modeling

In order to have an effective controller design, it is

important to model the dynamics of the controlled system,

namely the relationship between the controlled variable (i.e.,

l(k)) and the manipulated variable (i.e., c(k)). However, a

well-established physical equation is unavailable to capture

the relationship between the latency ratio of two threads and

the ratio of cache banks partitioned to them, due to the com-

plexity of cache systems in today’s computers. Therefore,

we use a standard approach called system identification [8]

to this problem. Based on control theory, we use the fol-

lowing standard difference equation to model the controlled

system:

l(k) =

n1∑

j=1

aj l(k − j) +

n2∑

j=1

bjc(k − j) (1)

where n1 and n2 are the orders of the system output (i.e.,

l(k)) and system input (i.e., c(k)), respectively. aj and bj

are system parameters whose values need to be determined

by system identification.

The model can be generally explained from the systems

perspective. The current latency ratio between two threads

on two cores, l(k), is mainly determined by three factors: 1)

the ratio l(k − j) in the previous n1 control periods, 2) the

cache partitioning actions c(k − j) happened in the previous

n2 control periods, and 3) the cache latency properties of the

workloads, which are captured by the system parameters aj

and bj through system identification. The system parameters

may change for two reasons: 1) workloads may have phase

changes at runtime, resulting in different latency properties

and 2) the system may run different workloads. The vari-

ations of the system parameters must be theoretically ana-

lyzed to guarantee system stability.

For system identification, we need to first determine the

right orders for the system, i.e., the values of n1 and n2 in

the difference equation (1). The order values are normally a

compromise between model simplicity and modeling accu-

racy. In this paper, we test different typical system orders.

For each combination of n1 and n2, we use white noise to

generate a series of system inputs in a random fashion to

stimulate the system and then measure the system output in

each period. Based on the collected data, we use the Least

Squares Method (LSM) to iteratively estimate the values of

parameters ai and bi. Based on the method introduced in

[22], we select four typical applications (mcf, gap, ammp,

and crafty) in the SPEC CPU2000 benchmark suite as our

workloads. mcf represents a workload with a data set larger

than the available cache size. gap has a large number of com-

pulsory misses. ammp continuously benefits as the cache

size is being increased. crafty has a small working set but

needs to frequently request data from L2 caches. We com-

bine the four applications in 10 groups to conduct the system

identification experiments. Based on our results, we choose

to have the orders of n1 = 1 and n2 = 1 because this combi-

nation has a reasonably small error while keeping the model

orders low. Therefore, the nominal system model resulted

from our system identification is:

l(k) = a1l(k − 1) + b1c(k − 1) (2)

where a1 = 0.595 and b1 = 0.954 are system parameters

resulted from our experiments with the 10 groups of appli-

cations. To verify the accuracy of the model, we change

the seed of the white noise signal to generate a different se-

quence of system inputs and then rerun the experiments to

validate the results of system identification by comparing the

actual system outputs and the estimated outputs based on the

nominal model (2). Our results show that differences are

sufficiently small.

Note that the real model of the system may be different

from the nominal model (2) at runtime due to workload dif-

ferences or parameter variations. To quantitatively analyze

the impact of workload variations on the controller perfor-

mance, in an extended version of this paper [29], we model

the variations caused by different workloads and prove that

the system controlled by the controller designed based on the

nominal model can remain stable as long as the variation of

a1 is within the range of [−0.69a1, 1.18a1].

3.2 Controller Design and Analysis

The goal of controller design is to achieve system stabil-

ity, zero steady-state error, and short settling time. Follow-

ing standard control theory [8], we design a Proportional-

Integral (PI) controller to achieve the desired control per-

formance. An important advantage of PI control is that it

can provide robust control performance despite considerable

modeling errors. In addition, PI control has a small compu-

tational overhead and is thus suitable to be implemented in



the cache system. A more sophisticated PID (Proportional-

Integral-Derivative) controller is not used because it is de-

termined by the system model (2) that a derivative (D) term

is not needed for the desired control performance. Having

a derivative term unnecessarily might amplify the noise in

the cache latency ratio. The designed PI controller in the

Z-domain is:

F (z) =
Kp(z − Ki)

z − 1
(3)

where Kp = 0.49 and Ki = 0.37 are control parameters

that are analytically chosen using the standard Root Locus

design method [8]. The corresponding closed-loop poles

are 0.5638 ± 0.3247i. Since both the poles are inside the

unit circle in the complex plane, the system is guaranteed

to be stable when the nominal system model (2) is accu-

rate. Control performance such as system stability can be

quantitatively analyzed when the system model varies due to

workload variations, as discussed in Section 3.1. We have

proven that the closed-loop system can precisely converge

to the desired set point with a zero steady state error. The

worst-case settling time of the closed-loop system is theoret-

ically derived to be 7 control periods. The detailed proofs

are skipped due to space limitations. The time-domain form

of the designed PI controller is:

c(k) = c(k − 1) + Kpe(k) − KpKie(k − 1) (4)

Therefore, the computational overhead of the designed con-

troller is just several multiplications and additions.

4 Cache Power Controller

In this section, we present the modeling, design, and

analysis of the cache power controller.

We first introduce some notation. P is the desired

power budget for the L2 caches in the CMP. p(k) is the ac-

tual power consumption of the L2 caches in the kth control

period. r(k) is the difference between the power budget and

the actual power, specifically r(k) = P − p(k). s(k) is the

total number of active cache banks in the kth control period.

∆s(k) = s(k) − s(k − 1) is the number difference of to-

tal active cache banks between the kth and k − 1th control

periods.

4.1 System Modeling

According to the investigation in previous work [26],

cache leakage power has a linear relation with active cache

size. The total power consumption of L2 caches is the sum

of the leakage power and the dynamic power, with the leak-

age power as the predominant part. For example, recent re-

search suggests using only leakage power to model the ef-

fect of cache resizing [16]. Another study also reports that

dynamic cache power part contributes only a small portion

to the total cache power consumption in a 4M uni-processor

system [10]. Based on these observations, we analytically

model the L2 cache power consumption as:

p(k) = c ∗ s(k) + d (5)

where c is a model parameter determined by the workload

and d represents the dynamic power part. Similar to the

system identification experiments in Section 3.1, we select

four typical benchmarks (mcf, gap, ammp, and crafty) as our

workloads to perform the experiments. In particular, we gen-

erate a series of system inputs (i.e., s(k)) to stimulate the sys-

tem and then measure the system output (i.e., p(k)) in each

control period. Based on the collected data, we use the Least

Squares Method (LSM) to iteratively estimate the values of

parameters c and d. Our results show that c = 0.24 on av-

erage for all the selected workloads. The value of d varies

within a small range from 0.02 (with application ammp) to

0.58 (with application mcf ). The results confirm the obser-

vation in [26, 10, 18] that leakage power dominates the total

cache power consumption. d can be approximated as a con-

stant because it is small compared to the leakage power part.

The dynamic system model as a difference equation is:

p(k) = p(k − 1) + c∆s(k) (6)

Note that the real power model of the L2 caches may

be different from the nominal model (6) at runtime due to

several factors. For example, the leakage power of a cache

bank can be sensitive to the system temperature. In the next

subsection, we show that the closed-loop system controlled

by a controller designed based on the nominal model (6) can

remain stable as long as c varies within a certain range.

4.2 Controller Design and Analysis

The goal of the controller design is to achieve sys-

tem stability, zero steady-state error, and short settling time

when the nominal system model (6) is accurate. Similar

to the design of the relative latency controller, we design a

Proportional-Integral (PI) controller to achieve the desired

control performance because of the robustness and negligi-

ble overhead of PI control. The time-domain form of the

designed PI controller is

s(k) = s(k − 1) + K1r(k) − K1K2r(k − 1) (7)

where K1 = 3 and K2 = 0.73 are control parameters that

are analytically determined using the standard Root Locus

design method. The corresponding closed-loop poles are

0.7349 ± 0.2033i. Since both the poles are inside the unit

circle, the system is stable. We have also proven that the

closed-loop system can precisely converge to the desired set

point with a zero steady state error. The worst-case settling

time of the system is 12 control periods.

Although the controlled system is guaranteed to be sta-

ble when the system model (6) is accurate, stability has to be

reevaluated when the model parameter c changes. Follow-

ing the three stability proof steps presented in [29], we have

proven that the system can remain stable and achieve zero

steady-state error when c < −0.76 or c > 0.

5 Implementation

In this section, we introduce our simulation environ-

ment and the implementation details of the control loops.



5.1 Simulation Environment

We extend the SimpleScalar simulator with static-

NUCA cache configuration [19] as our simulation environ-

ment. In our simulations, we configure the CMP floor plan

to have 4 Alpha 21264-like cores (65nm) with a frequency

of 5GHz. We calculate the leakage power using HotLeak-

age [33] and calculate dynamic power using Wattch (built

on CACTI) [5]. In all our experiments, we use the SPEC

CPU2000 benchmark suite (V1.0) to test our two-tier cache

control solution. The working temperature of the L2 cache

is set to 80◦C to simulate a typical real CMP setting based

on the study in [9]. The L2 cache is configured to be 16MB

(8-way set associative). The main memory latency is 300

cycles. The L2 cache replacement algorithm is LRU (Least

Recently Used). The L1 i-cache and d-cache are both 32KB

(2-way, 64 byte block size) with a 3-cycle hit latency. The

detailed simulation configuration parameters are provided in

the extended version of this paper [29].

5.2 Implementation of Control Loops

We now introduce the implementation details of each

component in the two control loops.

Cache Access Latency Monitor. We add two counters

for each core: one counter counts the number of stall cycles

induced by cache accesses while the other counts the total

number of cache accesses. We use the average access la-

tencies in one control period to calculate the relative latency

between the threads on two cores.

Cache Power Monitor. We use HotLeakage to calcu-

late the leakage power consumption of the L2 caches and

Wattch to calculate the dynamic power. We then use the sum

of the two parts as our cache power reading. Note that the

power consumption of L2 caches can be precisely estimated

based on measurements feasible on physical chips [12].

Controllers. As introduced in Sections 3 and 4, both

the latency controllers and cache power controller are PI con-

trollers. Each controller is invoked once in one of its control

period to receive the measured value of its controlled vari-

able (i.e., relative latency or cache power) from the moni-

tor, and then conduct its control algorithm to compute the

corresponding control output. As shown in the controller

functions (4) and (7), each invocation of the controller only

executes a couple of multiplications and additions. There-

fore, the computational overhead of the controllers is small

enough to be implemented in a real cache system. The con-

trol period of the latency control loop is set to 1M CPU cy-

cles as a compromise between the system response speed

and actuation overhead. A longer control period may fail to

promptly react to some system dynamics while a shorter pe-

riod may lead to increased actuation overhead. Based on our

stability analysis, the control period of the cache power con-

trol loop is set to 10 times that of the latency control loop,

i.e., 10M cycles, in order to decouple the two controllers for

global system stability.

In a real system, there can be two ways to implement

our controllers. First, as discussed in Section 3, the compu-

tational overhead of the two designed controllers is negligi-

ble. As a result, the controllers can be implemented on chip

(as in Intel ItaniumII) to allow cache managment on a fine

timescale. Second, our controllers can also be implemented

in service processor firmware (as in IBM POWER7) and so

their power and computational overheads will not directly

affect the main CMP. This implementation is more flexible

since the firmware is programmable but the control periods

cannot be too small due to the communication delay between

the service processor and the main CMP.

Cache Resizing and Partitioning Modulator. In or-

der to implement cache resizing and partitioning for NUCA

caches in a CMP with N cores, we add lg(N+1) flag bits for

each cache bank, which have only negligible gate overhead

to be implemented in real CMP chips. If a cache bank is al-

located to Core i, we set the flag to the value i. A non-zero

value indicates that the bank should be active. If the cache

bank is not allocated to any core, we switch the cache bank

to a low-power mode (i.e., inactive). We use the Gated-Vdd

technology [21] to implement the power mode switch of a

cache bank. We assume that a cache bank is not shared by

multiple threads in this prototype design, but a finer actua-

tion granularity (e.g., cache lines or blocks) is also available

[13] and can be used in our control solution for even better

control accuracy with a slightly higher hardware overhead.

Since the NUCA caches have non-uniform cache access

latency related to the wire length, we have a cache resizing

policy to ensure that the active cache banks of each core are

always the ones that are closest to the cache I/O port of the

core. We adopt this policy for three reasons. First, in NUCA

caches, a cache bank that is farther away from the core nor-

mally has a longer access latency due to the longer wire. Sec-

ond, a longer routing distance from the core may also lead

to more routing hops, an increased probability of more con-

tention, and thus reduced on-chip network routing capability.

Third, if the dynamic data migration policy is enforced in the

NUCA caches, cache banks that are far away from cores may

get much less frequently accessed [2]. Therefore, switching

those cache banks to the low-power mode will lead to con-

siderable power savings with only slight impacts on cache

performance.

After receiving the desired total active cache size from

the power controller and the desired cache size ratios among

threads on different cores from the latency controllers, the

resizing and partitioning modulator calculates the number of

active cache banks to be allocated to each thread. The modu-

lator then uses the cache resizing policy to enforce the cache

allocation. To implement the resizing policy, we maintain a

table for each thread that records the cache banks allocated

to the thread. In addition, in order to ensure that the active

cache banks of a thread on a core are the ones that have the

shortest distances to the core, the active cache area around

the core needs to expand or shrink in both dimensions of

the cache bank array. Therefore, we keep track of the cache

row and column that are farthest from the core. Each core

will expand or shrink in the farthest row and column alter-

natively to enforce the desired cache bank allocation. Af-

ter the modulator allocates the active banks to the thread on



0

10

20

30

40

50

60

70

0 250 500 750 1000 1250

C
a
c
h

e
 P

o
w

e
r 

(W
)

Time (Sampling Point)

Budget

PI

0

10

20

30

40

50

60

70

0 250 500 750 1000 1250

C
a
c
h

e
 P

o
w

e
r 

(W
)

Time (Sampling Point)

Budget

Ad hoc (3)

0

10

20

30

40

50

60

70

0 250 500 750 1000 1250

C
a
c
h

e
 P

o
w

e
r 

(W
)

Time (Sampling Point)

Budget

Ad hoc (25)

(a) PI cache power controller (b) Ad Hoc with 3 banks (b) Ad Hoc with 25 banks

Figure 2. Typical runs of the PI cache power controller and a baseline under a power budget reduction.

0

10

20

30

40

50

60

70

80

ar
t

fm
a3

d

lu
ca

s
m

cf

sw
im vp

r

fm
a3

d+
vp

r

fm
a3

d+
gc

c

ar
t+

m
es

a

lu
ca

s+
w
up

w
is
e

C
a
c
h

e
 P

o
w

e
r 

(W
) Budget: 20W Budget: 35W Budget: 50W

Figure 3. Control accuracy under different work-
loads and budgets.

each core, all the unallocated banks are switched to the low-

power mode for power management. All the dirty cache lines

in those banks are written back to the memory during the

mode transition. Note that we assume static-NUCA instead

of dynamic-NUCA (i.e., D-NUCA) in this paper. The ad-

dress mapping is modified according to the available cache

size allocated to each core. The cache coherence is main-

tained by a snoopy bus protocol. We plan to evaluate our

control solution with D-NUCA L2 cache in our future work.

6 Experimental Results

In this section, we present the results of our experiments

conducted using the SimpleScalar simulator. We first exam-

ine the cache power controller to compare it with a heuristic-

based baseline. We then test the two-tier cache control so-

lution for fair and differentiated cache sharing in power-

constrained CMPs. We randomly select a SPEC CPU2000

benchmark, crafty, as the default application in our experi-

ments unless otherwise noted.

6.1 Cache Power Control

In this section, we examine the cache power controller

without enabling the latency controllers. All the cache banks

are initially active in this set of experiments.

We first test the power controller in a common scenario

where the power budget of the L2 caches needs to be reduced

from 60 W to 40 W at the 500th sampling point due to vari-

ous reasons (e.g., thermal emergency). The power budget is

then raised back to 60 W at the 1000th sampling point after

the emergency is resolved. This scenario is interesting be-

cause the power consumption of a CMP often needs to be

capped and reduced at runtime [11, 30]. Reducing the power

of L2 caches is an important way to maintain load balanc-

ing between CPU cores and L2 caches for optimized pro-

cessor performance under the reduced budget. Figure 2(a)

shows that the proposed PI power controller effectively con-

trols the cache power to the desired budget by adjusting the

active cache size. This experiment demonstrates that adjust-

ing active cache size (and thus leakage power) is a promising

way to conduct cache power management because leakage

power contributes significantly to overall power consump-

tion in large cache systems [18].

One may easily think that simplistic control solutions

may also work well to control the cache power or achieve

the desired fair or differentiated cache sharing. For exam-

ple, a typical ad hoc power control solution (denoted as Ad

hoc) would be to turn off M cache banks if the cache power

violates its budget. However, without a theoretical founda-

tion, it is commonly difficult to find a good value of M that

would achieve the desired control performance in different

cases. As shown in Figure 2(b), if M is too small (e.g.,

3 banks), Ad hoc may take an unnecessarily long settling

time for power to converge back to the budget, resulting in

overheating and even undesired processor shutdown. On the

other hand, as shown in Figure 2(b), if the step size M is too

large (e.g., 25), Ad hoc may have large oscillations and over-

shoots. Therefore, it is undesirable to use Ad hoc in practice,

which is consistent with the observations in [28, 30]. A fun-

damental benefit of the control-theoretic approach is that it

provides standard ways to choose the right control parame-

ters and gives us confidence for system stability and control

accuracy. In addition, naive control solutions may also cause

different control loops to conflict with each other.

The cache power controller is designed based on a sys-

tem model whose parameters are the results of system iden-

tification. Therefore, in order to test the robustness of the

power controller when it is used in a system that is running

a different workload, we conduct a set of experiments with

different workload combinations under different power bud-

gets: 20W, 35W, and 50W. Figure 3 shows that the aver-

age power of the L2 caches can be precisely controlled to

the desired budget (with the maximum standard deviation

smaller than 2% of the budget). The experimental results

demonstrate that the power controller can precisely control

the power consumption of the L2 caches for different work-

loads and power budgets with only small deviations.

6.2 Power-Performance Tradeoffs

In the previous sections, we have demonstrated that the

cache power controller achieves the desired control function



100

150

200

250

300

e
n

c
y
 (

c
y
c

le
s

)
0

50

100

20 25 30 35 40 45 50 55

L
a
te

Power budget (W)

Core0 Core1 Core2 Core3

0.2

0.3

0.4

0.5

IP
C

0

0.1

20 25 30 35 40 45 50 55

Power budget (W)

Core0 Core1 Core2 Core3

(a) Cache access latencies (b) IPC values

Figure 4. Cache access latencies and IPC values of the four threads (running crafty) on the four cores of

the CMP. When power budget varies from 20W to 55W, all the threads have reduced cache latencies and
increased IPCs, while the desired latency differentiations and fairness are maintained.

individually. In this section, we enable all the controllers

to demonstrate that our two-tier control solution can achieve

desired power-performance tradeoffs. For each benchmark,

we first run 2 billion instructions and then start to measure

the cache access latency and IPC values for the next 100 con-

trol periods of the power control loop (i.e., 1 billion cycles).

In the first experiment, we run application crafty on

all the 4 cores. To investigate the impacts of power con-

straint on fair and differentiated cache sharing, we increase

the power budget from 20W to 55W with an increment of

5W. The cache sharing priority of Cores 0, 1, and 3 is set to

high, medium, and low, respectively, to test the differentiated

cache latency guarantees, while the priority of Core 2 is also

set to medium to test fair cache sharing in terms of cache la-

tency. Figure 4(a) shows that all the four threads on the four

cores have reduced cache latencies when the power budget

increases from 20W to 55W, due to increased number of total

active cache banks. As a result, Figure 4(b) shows that all the

threads have increased IPC values. In the meantime, the de-

sired cache latency priorities have been strictly enforced, al-

lowing the OS to achieve the desired rates of progress among

the co-scheduled applications, despite that all the threads

have improved performance with the increased power bud-

get. In particular, by setting the same priority for Cores 1

and 2 for fairness, the latency differences between Core0 and

Core1 are less than 5 cycles and the IPC differences are less

than 0.01 under all the power budgets. This demonstrates

that fair sharing, as a special case of differentiated sharing,

can be guaranteed by our control solution. As discussed in

Section 1, differentiated sharing can help the OS to enforce

the desired thread priorities at the architectural level.

The benchmark used in this experiment, crafty, is a

chess game playing application and is one of the SPEC in-

teger benchmarks. crafty represents applications with a sig-

nificant number of logical operations that are relatively sim-

ple but need to frequently request data from the caches. As

a cache-sensitive application whose execution is dominated

by cache accesses [20], crafty achieves an almost reverse

linear relationship between cache latency and IPC, i.e., the

decrease rate of the cache latency is approximately propor-

tional to the increase rate of the IPC. While this experiment

demonstrates the effectiveness of our control solution with

cache-intensive benchmarks, it is important to investigate

other benchmarks with different cache-access properties.

In the second set of experiments, we conduct the same

experiment with different benchmarks for three power bud-

gets: 20W, 35W, and 50W. Our workloads include memory-

intensive benchmarks such as apsi, art, bzip2, and swim, as

well as randomly selected benchmarks. We test two kinds

of workload combinations: 1) four copies of a single bench-

mark running on the 4 cores and, 2) one benchmark run-

ning on Cores 0 and 2 while the other benchmark running on

Cores 1 and 3.

To save space, we only present the results of the two

threads on Cores 0 and 1. Cores 0 is configured to have

a higher cache sharing priority than Core 1. As shown in

Figure 5(a), when the power budget increases from 20W to

50W, the cache latencies of the two threads on Cores 0 and

1 decrease for all the benchmark combinations and decrease

in an approximately linear way for many benchmark com-

binations, such as bzip2+art, twolf, and gap+galgel. Fig-

ure 5(b) shows that the IPC values of the two cores increase

as the power budget increases for all the benchmark com-

binations. In addition, the Core0 thread has a higher IPC

value than the Core1 thread for most benchmark combina-

tions, except mgrid+mesa. Since mgrid and mesa have sig-

nificantly different cache-access properties, the Core1 thread

(running mesa) has a higher IPC than the Core0 thread (run-

ning mgrid) though it has a longer latency. Note that in some

mixed benchmark cases similar to mgrid+mesa, a higher IPC

may still be achieved for the Core0 thread by allowing the

OS to dynamically adjust the reference set point at runtime

based on the measured thread progress or combining per-

core DVFS or task stealing. The experiments demonstrate

that our two-tier control solution can be used to achieve the

desired power-performance tradeoffs and maintain perfor-

mance differentiations at the same time.

It is important to note that the controllers may saturate

for some benchmark combinations. For example, although

the two-tier control solution can precisely achieve the de-

sired latency priorities for most benchmark combinations,

the latency controller saturates for some benchmarks, such

as mesa when the power budget is 20W. Note that it is eas-

ier for the latency controller to saturate under small power

budget, because when the power budget is small, the number

of active cache banks is small, resulting a limited range for

the latency controller to conduct dynamic cache partitioning.

Consequently, it may become infeasible for the latency con-

troller to achieve the desired priorities. Figure 5(a) shows

that the Core0 thread only has a slightly shorter cache la-



tency than the Core1 thread for mesa due to saturation when

the power budget is 20W. As a result, the IPC values of the

two threads are close in this case. However, when the power

budget increases to 35W and 50W, the latency controller has

more active cache banks for partitioning and thus can achieve

the desired latency priorities by allocating more cache to the

high-priority thread (i.e., the Core0 thread). Consequently,

the Core0 thread can have a much shorter cache latency and

thus a much higher IPC value than the Core1 thread.

We acknowledge that cache latencies may have small

impacts on the performance of some applications (e.g., CPU-

intensive ones). The goal of our paper is to demonstrate

that differentiated latency control can provide another way

to achieve desired rates of progress for some co-scheduled

application threads (e.g., cache-intensive ones). In a real sys-

tem, differentiated latency control should be combined with

per-core DVFS and task stealing to accelerate threads based

on application characteristics, which is our future work.

7 Related Work

Power has become an important design constraint for

CMPs. Some recent work has studied power capping for

CMPs. For example, Intel’s Foxton technology [24] has suc-

cessfully controlled the power and temperature of a proces-

sor by using chip-wide DVFS. Isci et al. [11] proposed both

a closed-loop algorithm and a prediction based algorithm to

control the power of a CMP to stay below a power budget.

Meng et al. [16] presented heuristic-based algorithms to use

both per-core DVFS and cache resizing as actuators to con-

trol power. Teodorescu et al. [27] developed an optimization

algorithm based on linear programming to provide power

management for a CMP based on both DVFS and thread

mapping. Wang et al. [30] developed a control-theoretic

power controller for improved system performance. While

the related work mainly focuses on adapting the dynamic

power of the CPU cores in a CMP, we use cache resizing to

control the cache power and provide performance differenti-

ations. Our scheme can be combined with those CPU core

power control solutions for chip-level power management.

Adaptive cache partitioning for CMPs has recently re-

ceived a lot of attention. This paper is different because

we use cache partitioning to achieve performance differen-

tiation in NUCA caches for threads with different perfor-

mance needs and priorities in a CMP with power constraints.

Some recent work has been proposed to dynamically adapt

the cache size for power savings. For example, Albonesi

et al. proposed to turn off cache ways for reduced dynamic

power [1]. Bardine et al. explored the possibility of applying

this technique to NUCA caches [3]. Kobayashi et al. pre-

sented a heuristic-based control algorithm based on locality

metrics [15]. Our paper is different because 1) we provide

differentiated performance guarantees in addition to power

management, and 2) we rely on control theory as a theoreti-

cal foundation for theoretically guaranteed control accuracy

and system stability.

Feedback control theory has been successfully applied

to control temperature, power, and performance in computer

architecture research. For example, Skadron et al. [25] used

control theory to dynamically manage the temperature of mi-

croprocessors. Likewise, Wu et al. [32] managed power

using dynamic voltage scaling by controlling the synchro-

nizing queues in multi-clock-domain processors. In contrast

to their work that relies on basic control theory to design a

single control loop, we coordinate two control loops in a hi-

erarchical way for guaranteed stability.

Our work is also related to thread criticality research.

Bhattacharjee et al. [4] proposed a novel way to predict

thread criticality. Cai et al. [6] used DVFS to slow down

non-critical threads for power savings. In our work, we

provide cache latency differentiations to accelerate critical

threads. Our scheme can also be used to guarantee cache

sharing fairness. While Kim et al. proposed partitioning

policies with five fairness metrics defined based on cache

miss rates [14], we address average latencies because the

latency of each single access can vary significantly in the

NUCA caches. As a result, miss rate may not accurately in-

dicate the impact on application performance. Zhou et al.

[34] also proposed fair cache sharing to have the same im-

pacts on execution times. However, similar to [14], they need

to precisely know which applications are currently running

on the CMP such that they can use corresponding off-line

profiled execution times as references.

8 Conclusions and Future Work

In order to enable chip-level power capping, the peak

power consumption of on-chip L2 caches in a CMP often

needs to be constrained by dynamically transitioning se-

lected cache banks into low-power modes. While prior re-

search in this field focuses primarily on reducing the power

consumption of L2 caches, this paper aims at limiting the

peak power consumption of L2 caches. To avoid undesired

thread starving and thrashing caused by dynamic cache re-

sizing for power capping, our strategy can provide fairness

guarantees such that the cache access latencies of the appli-

cation threads co-scheduled on the CMP are impacted more

uniformly. Furthermore, our strategy is also extended to pro-

vide differentiated cache latency guarantees that can help the

OS to enforce the desired thread priorities at the architec-

tural level and achieve differentiated rates of thread progress

for co-scheduled applications. Our solution features a two-

tier control architecture rigorously designed based on ad-

vanced feedback control theory for guaranteed control ac-

curacy and system stability. Extensive experimental results

demonstrate that our solution can achieve the desired cache

power capping, fair or differentiated cache sharing, and

power-performance tradeoffs for many applications. Our re-

sults also demonstrate that differentiated latency guarantees

can provide another effective way to achieve desired rates

of progress for application threads. As cache latencies may

have small impacts on the performance of some applications,

differentiated latency control should be combined with per-

core DVFS and task stealing to accelerate threads based on

application characteristics, which is our future work.



0

50

100

150

200

250

300

350

gcc bzip2 apsi crafty+bzip2 art bzip2+art

L
a
te

n
c
y
 (

c
y
c
le

s
)

Core0 20W Core1 20W Core0 35W
Core1 35W Core0 50W Core1 50W

0

50

100

150

200

250

300

350

mesa galgel twolf mgrid+mesa twolf+swim gap+galgel

L
a
te

n
c
y
 (

c
y
c
le

s
)

Core0 20W Core1 20W Core0 35W
Core1 35W Core0 50W Core1 50W

(a) Cache access latencies. Reduced latencies and desired latency differentiations are achieved with increased power budget.

0.4

0.5

0.6

0.7

C

0

0.1

0.2

0.3

0.4

gcc bzip2 apsi crafty+bzip2 art bzip2+art

IP
C

Core0 20W Core1 20W Core0 35W

Core1 35W Core0 50W Core1 50W

2

2.5

3

3.5

C

0

0.5

1

1.5

2

mesa galgel twolf mgrid+mesa twolf+swim gap+galgel

IP
C

Core0 20W Core1 20W Core0 35W

Core1 35W Core0 50W Core1 50W

(b) IPC values. Increased IPC values and desired progress differentiations are achieved with increased power budget.

Figure 5. Cache access latencies and IPC values of the higher-priority thread on Core 0 and the lower-

priority thread on Core 1 under different benchmarks, when the power budget increases from 20W to 50W.

Acknowledgements

We thank Naveen Muralimanohar at HP Labs for pro-

viding the source code of SimpleScalar S-NUCA cache im-

plementation and anonymous reviewers for their valuable

comments. This work is funded in part by NSF under

grants CNS-0720663, CNS-0845390, CNS-0915959, and

CCF-1017336, and by ONR under N00014-09-1-0750.

References

[1] D. H. Albonesi. Selective cache ways: on-demand cache resource

allocation. In MICRO, 1999.
[2] A. Bardine, M. Comparetti, P. Foglia, G. Gabrielli, C. A. Prete, and

P. Stenström. Leveraging data promotion for low power D-NUCA

caches. In DSD, 2008.
[3] A. Bardine, P. Foglia, G. Gabrielli, C. A. Prete, and P. Stenström.

Improving power efficiency of D-NUCA caches. SIGARCH Comput.

Archit. News, 35(4), 2007.
[4] A. Bhattacharjee and M. Martonosi. Thread criticality predictors for

dynamic performance, power, and resource management in chip mul-

tiprocessors. SIGARCH Comput. Archit. News, 37(3), 2009.
[5] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: a framework for

architectural-level power analysis and optimizations. In ISCA, 2000.
[6] Q. Cai, J. González, R. Rakvic, G. Magklis, P. Chaparro, and

A. González. Meeting points: using thread criticality to adapt mul-

ticore hardware to parallel regions. In PACT, 2008.
[7] K. Flautner, N. S. Kim, S. Martin, D. Blaauw, and T. Mudge. Drowsy

caches: Simple techniques for reducing leakage power. In ISCA, 2002.
[8] G. F. Franklin, D. J. Powell, and M. Workman. Digital Control of

Dynamic Systems, 3rd edition. Addition-Wesley, 1997.
[9] A. Greenhill. Power Saving in the UltraSPARC T1 Processor. Sun

Microsystem Whitepaper, 2005.
[10] H. Homayoun and A. Veidenbaum. Reducing leakage power in pe-

ripheral circuits of L2 caches. In ICCD, 2007.
[11] C. Isci, A. Buyuktosunoglu, C.-Y. Cher, P. Bose, and M. Martonosi.

An analysis of efficient multi-core global power management policies:

Maximizing performance for a given power budget. In MICRO, 2006.
[12] C. Isci and M. Martonosi. Runtime power monitoring in high-end

processors: Methodology and empirical data. In MICRO, 2003.
[13] S. Kaxiras, Z. Hu, G. J. Narlikar, and R. McLellan. Cache-line decay:

A mechanism to reduce cache leakage power. In PACS, 2001.
[14] S. Kim, D. Chandra, and Y. Solihin. Fair cache sharing and partition-

ing in a chip multiprocessor architecture. In PACT, 2004.
[15] H. Kobayashi, I. Kotera, and H. Takizawa. Locality analysis to control

dynamically way-adaptable caches. SIGARCH Comput. Archit. News,

33(3), 2005.

[16] K. Meng, R. Joseph, R. P. Dick, and L. Shang. Multi-optimization

power management for chip multiprocessors. In PACT, 2008.
[17] Y. Meng, T. Sherwood, and R. Kastner. Exploring the limits of leakage

power reduction in caches. ACM Trans. Archit. Code Optim., 2(3),

2005.
[18] Y. Meng, T. Sherwood, and R. Kastner. On the limits of leakage power

reduction in caches. In HPCA, 2005.
[19] N. Muralimanohar and R. Balasubramonian. Interconnect design con-

siderations for large NUCA caches. In ISCA, 2007.
[20] N. Muralimanohar, R. Balasubramonian, and N. Jouppi. Optimiz-

ing NUCA organizations and wiring alternatives for large caches with

CACTI 6.0. In MICRO, 2007.
[21] M. Powell, S.-H. Yang, B. Falsafi, K. Roy, and T. N. Vijaykumar.

Gated-Vdd: a circuit technique to reduce leakage in deep-submicron

cache memories. In ISLPED, 2000.
[22] M. K. Qureshi and Y. N. Patt. Utility-based cache partitioning: A low-

overhead, high-performance, runtime mechanism to partition shared

caches. In MICRO, 2006.
[23] K. R. Rangan, G.-Y. Wei, and D. Brooks. Thread motion: Fine-

grained power management for multi-core systems. In ISCA, 2009.
[24] M. Rich, P. Christopher, C. Bostak, J. Ignowski, M. Millican, W. H.

Parks, and S. Naffziger. Power and temperature control on a 90-nm

itanium family processor. IEEE Journal of Solid-State Circuits, 41(1),

2006.
[25] K. Skadron, T. Abdelzaher, and M. R. Stan. Control-theoretic tech-

niques and thermal-RC modeling for accurate and localized dynamic

thermal management. In HPCA, 2002.
[26] K. Skadron, M. R. Stan, et al. Temperature-aware microarchitecture:

Modeling and implementation. ACM Trans. Archit. Code Optim., 1(1),

2004.
[27] R. Teodorescu and J. Torrellas. Variation-aware application schedul-

ing and power management for chip multiprocessors. In ISCA, 2008.
[28] X. Wang and M. Chen. Cluster-level feedback power control for per-

formance optimization. In HPCA, 2008.
[29] X. Wang, K. Ma, and Y. Wang. Achieving Fair or Differ-

entiated Cache Sharing in Power-Constrained Chip Multiproces-

sors, Tech Report, EECS Department, University of Tennessee.

http://pacs.ece.utk.edu/techreports/tech1018.pdf, 2010.
[30] Y. Wang, K. Ma, and X. Wang. Temperature-constrained power con-

trol for chip multiprocessors with online model estimation. In ISCA,

2009.
[31] Y. Wang, X. Wang, M. Chen, and X. Zhu. Power-efficient response

time guarantees for virtualized enterprise servers. In RTSS, 2008.
[32] Q. Wu, P. Juang, M. Martonosi, L.-S. Peh, and D. W. Clark. Formal

control techniques for power-performance management. IEEE Micro,

25(5), 2005.
[33] Y. Zhang, D. Parikh, K. Sankaranarayanan, K. Skadron, and M. Stan.

Hotleakage: A temperature-aware model of subthreshold and gate

leakage for architects. Tech Report, Univ. of Virginia, 2003.
[34] X. Zhou, W. Chen, and W. Zheng. Cache sharing management for

performance fairness in chip multiprocessors. In PACT, 2009.


