
Dataow Networks are FibrationsEugene W. Stark�Department of Computer ScienceState University of New York at Stony BrookStony Brook, NY 11794 USA(stark@cs.sunysb.edu)AbstractDataow networks are a paradigm for concurrent computation in which a collec-tion of concurrently and asynchronously executing processes communicate by send-ing messages over FIFO message channels. In a previous paper, we showed thatdataow networks could be represented as certain spans in a category of automata,or more abstractly, in a category of domains, and we identi�ed some universalproperties of various operations for building networks from components. Not allspans corresponded to dataow processes, and we raised the question of what mightbe an appropriate categorical characterization of those spans that are \dataow-like." In this paper, we answer this question by obtaining a characterization of thedataow-like spans as split right �brations, either in a 2-category of automata ora 2-category of domains. This characterization makes use of the theory of �bra-tions in a 2-category developed by Street. In that theory, the split right �brationsare the algebras of a certain doctrine (or 2-monad) R on a category of spans. Forthe 2-categories we consider, R has a simple interpretation as an \input bu�ering"construction.1 IntroductionDataow networks [4, 5] are a paradigm for concurrent computation in which a collectionof concurrently and asynchronously executing processes communicate by sending messagesover FIFO message channels. Determinate dataow networks compute continuous func-tions from input message histories to output message histories, and have a well-understoodtheory. Less developed is the theory of indeterminate or non-functional networks. Thesemore general networks are especially interesting because they exhibit both concurrencyand indeterminacy, and insight gained from their study will likely contribute to a betteroverall understanding of these two concepts.This paper is part of a research program aimed at �nding the correct algebraic settingfor the study of indeterminate dataow networks. We wish to view dataow networksas the elements of an algebra whose operations represent ways to build networks from�Research supported in part by NSF Grant CCR-8902215.

components, and we would like to understand fully the notions of behavioral equivalencethat are appropriate in this context. For some time, we have been studying a particularautomata-theoretic model for dataow networks, in an attempt to identify whatever usefulalgebraic structure might be present. Based on the progress we have made so far [8, 9, 10,13], a general structure appears to be emerging. However, all is not yet completely clear,and it continues to be di�cult to identify and separate the important structure from theincidental artifacts of the model.In a previous paper [9] we showed that a dataow network with input \ports" Xand output ports Y could be represented as a span from FX to FY (i.e. a diagramFY g �A f�!FX) in a �nitely complete category Auto of concurrent automata. Here Fis a suitable functor that associates \objects of inputs" FX and FY in Auto with �nitesets of ports X and Y . We showed that various constructions, corresponding intuitivelyto ways of composing smaller networks into larger ones, could be de�ned in terms of limitsin Auto. In particular, the operation of \feeding back" outputs to inputs was de�nedin terms of equalizers. We also showed that dataow networks could be modeled moreabstractly as spans in a category of EvDom of \conict event domains," and that thismodel is related to the more concrete automaton model by a coreection. Consequently,operations de�ned in terms of limits are preserved in the passage from the more concretemodel to the more abstract version.At the end of the previous paper, we noted several interesting properties, valid in thedomain-theoretic model, of spans corresponding to dataow processes, and we raised thequestion of what might be the correct categorical characterization of the \dataow-like"spans. A proper answer to this question would be prerequisite to the construction of a fullycategorical theory of dataow networks. In the present paper, we obtain a characterizationof dataow-like spans as split right �brations, either in a 2-category of automata, or in a2-category of domains. The fact that essentially the same characterization holds in bothcases lends credence to the idea that it is in fact the correct categorical notion. Furthersupport comes from an intuitive interpretation of the de�nition of �bration. Fibrationsin a 2-category are de�ned to be the algebras of a certain \doctrine," or 2-monad. In thepresent situation, this doctrine corresponds to the construction \compose with an inputbu�er." Thus, the dataow-like spans are those spans that are algebras of the inputbu�ering doctrine.The theory of �brations was �rst developed in terms of concrete constructions oncategories [3]. Then, Street [14, 15], building on work of Gray [2], showed that this theoryhas a bicategorical formulation, which can be applied not only to the 2-category Cat, butto any bicategory with su�cient completeness properties. Here, we examine how the the-ory applies to the category Auto of automata and the category EvOrd of \conict eventorderings," which is equivalent to the category EvDom of our previous paper. Thesecategories have 2-categorical structure we have not exploited until now. As a technicalmatter, the 2-categories Auto and EvOrd do not quite have the necessary complete-ness properties (existence of comma objects and certain 2-pullbacks), so our results arecomplicated somewhat by the necessity of enlarging them to 2-categories AutoWk, of\automata and weak morphisms," and EvOrdWk, of \conict event orderings and sup-preserving maps." We determine the structure of the split right �brations in each of the

2-categories AutoWk and EvOrdWk. Our main results are: (1) the dataow-like spansin Auto are exactly those that are split right �brations in AutoWk with an Auto-morphism as cleavage, and (2) the dataow-like spans in EvOrd are exactly those thatare split right �brations in EvOrdWk with an EvDom-morphism as cleavage.Some further comments are in order concerning the general directions envisioned forthis research. We would like very much to be able to de�ne a notion of \dataow model,"which would permit both the study of the algebra of network-forming operations, and thecomparison of di�erent dataow models by means of homomorphisms. In the author'sopinion, the evidence at present suggests quite strongly that a dataow model ought tobe a certain kind of bicategory, whose objects are \types," whose arrows are \processes,"and whose 2-cells are morphisms of processes. Composition of arrows would correspondto \sequential composition" of processes, in which the output of one process becomes theinput of another. The bicategory would also be equipped with a functorial tensor product
, which would provide a way to form the \parallel composition" p
 p0 : X
 X 0 !Y
 Y 0 of processes p : X ! Y and p0 : X 0 ! Y 0. It ought to be possible to de�neother operations on processes using bicategorical constructions, although in some cases(in particular the feedback operation) this remains problematic. At present, we haveseveral examples of this type of bicategorical model for dataow networks, but the correctgeneral formulation seems elusive. The \bicategories of spans" of Carboni and Walters[1] represent an example of the structure we might hope to �nd.We hope that the organization chosen for the rest of this paper will make the motiva-tions from the intended application area clear both to category theorists and to computerscientists, and will hold the attention, at least for a little while, of computer scientistsunfamiliar with 2-categories. To this end, we have kept Section 2 of the paper almost com-pletely free of 2-categories. Instead, we de�ne the ordinary categories Auto of automataand AutoWk of automata and weak morphisms, ignoring their 2-categorical structure,and we show how certain spans in these categories model processes that consume inputsand produce outputs. We show that these \monotone automata" are in fact the algebrasof an \input bu�ering monad" on a category of spans in AutoWk. This result preparesthe connection, made in Section 3, with �brations in AutoWk. For this, the use of 2-categories is necessary, and the reader is referred to [6, 14, 15] for the basic terminologyand notations. In Section 4, we apply the theory to the 2-category EvOrdWk of domainsand obtain a similar characterization of the dataow-like spans in EvOrdWk.Finally, a comment on notation. In this paper, fx or f(x) denotes the application ofa mapping f to its argument x. Compositions are written in reverse diagrammatic order,so that gf denotes f followed by g. We extend this convention to all types of composition.For example, if e1; e2; . . . ; en are elements of a set E, then the string \e1 followed by e2followed by . . . followed by en" will be denoted en . . . e2e1.2 Trace AutomataIn this section, we review the automata-theoretic model for dataow networks presentedin [9], along with its associated intuition. The objects of this model are certain spans ina category Auto of \trace automata." We develop various properties of these spans, to

motivate the idea that they ought to be examples of �brations.2.1 Concurrent Alphabets and TracesA concurrent alphabet is a pair (E; k), where E is a set, and k is a symmetric, irreexiverelation on E, called the concurrency relation. If eke0, then we say that e and e0 areconcurrent or that they commute. A set U � E is called commuting if eke0 for all e; e0 2 Uwith e 6= e0, and we use Comm(E) to denote the set of all �nite commuting subsets ofE. Intuitively, if E is the set of basic observable actions of interest for some system, thenComm(E) is the set of all possible instantaneous occurrences that might be observedduring an execution of that system. If U; V 2 Comm(E), then U and V are calledorthogonal, and we write U ? V , if U [V 2 Comm(E) and U \ V = ;.A morphism from a concurrent alphabet E to a concurrent alphabet E 0 is a functionh : Comm(E)! Comm(E 0), such that1. h(;) = ;.2. If U [V 2 Comm(E), then h(U)[h(V) 2 Comm(E 0), and h(U nV) = h(U)nh(V).The symbol n denotes set di�erence. It can be shown [9] that if U [V 2 Comm(E),then h(U [V) = h(U) [h(V), so that a morphism of concurrent alphabets is uniquelydetermined by its action on singleton sets. We often use this fact in de�ning particularmorphisms. It can also be shown U ? V implies f(U) ? f(V) | as a special case wesee that eke0 implies f(feg) \ f(fe0g) = ;. Let Alph denote the category of concurrentalphabets and their morphisms. The identity morphism on E is just the identity functionfrom Comm(E) to Comm(E). Composition of morphisms is function composition.The product E
 E 0 of concurrent alphabets E and E 0 is the concurrent alphabetwhose set of elements is the disjoint union of the sets of elements of E and E 0, and whoseconcurrency relation extends those of E and E 0 by making each element of E concurrentwith each element of E 0. Equipping E
E 0 with the restriction maps- \ E : E
 E 0! E- \ E 0 : E
 E 0! E 0makes E
 E 0 into a categorical product.Suppose E is a concurrent alphabet. The free partially commutative monoid gen-erated by E is obtained by factoring the monoid of �nite sequences of elements of E bythe least congruence that relates ee0 and e0e whenever eke0. We use E� to denote thismonoid, whose elements are called traces [7]. We shall �nd it convenient in the sequel toidentify a set U = fe1; . . . ; eng 2 Comm(E) with the corresponding trace en . . . e1 2 E�.In this way we give meaning to expressions such as UmUm�1 . . .U1, where Ui 2 Comm(E)for 1 � i � m.2.2 Trace Automata\Trace automata" are transition systems whose transition labels are drawn from a concur-rent alphabet. To capture the idea that \concurrent transitions commute," the de�nition

of trace automata includes the requirement that if two transitions with concurrent labelsare enabled in the same state, then they can be executed in either order with the samee�ect.Formally a trace automaton (or more simply, an automaton) is a four-tupleA = (E;Q; T; qi);where� E is a concurrent alphabet of actions.� Q is a set of states, with qi 2 Q a distinguished initial state.� T : Q�E ! Q is a partial function, called the transition map, such that whenevereke0, T (q; e) = r, and T (q; e0) = r0, then there exists s 2 Q with T (r; e0) = s =T (r0; e).We often write e : q ! r or q e�!r to assert that T (q; e) = r, and call the triples (q; e; r)such that q e�!r the transitions of A. Condition (3) in the above de�nition embodies theintuitive idea that the order of occurrence of concurrent actions is immaterial.A computation sequence for a trace automaton A is a �nite sequence of transitionsof the form: q0 e1�!q1 e2�! . . . en�!qn:Each computation sequence determines a corresponding trace tr() = enen�1 . . . e1 2 E�.Two computation sequences are equivalent if they have the same trace, and the equivalenceclasses of computation sequences are called the computations of A.A morphism from a trace automaton A to a trace automaton A0 is a pair of mapsh = (ha; hs), where ha : E ! E 0 is a morphism of concurrent alphabets, and hs : Q! Q0is a function, such that:� hs(qi) = q0i.� For all q, r 2 Q and e 2 E, if e : q ! r in A and ha(e) = fe1; e2; . . . ; eng, thenT 0(hs(q); ei) is de�ned for all i with 1 � i � n, and A0 has a computation sequenceq0 e1�!q1 e2�! . . . en�!qn:with q0 = hs(q) and qn = hs(r).The above notion of morphism was introduced in [9], where it was also shown thatthe resulting category Auto has reasonable properties. (In particular, Auto has �nitelimits, which are created by the forgetful functor from Auto to the product of Alphand the category Set� of pointed sets.) The intuition behind the de�nition is that �nitecommuting sets of transitions are what a trace automaton can do in a single instantaneousstep, and these are the things that ought to be preserved by their morphisms. Thereason why �nite commuting sets of transitions, rather than single transitions, are whatcorrespond to instantaneous steps, can be seen by considering a �nite product A = A1 �. . . � An of automata. We wish to think of A as representing a system fA1; . . . ; Ang,

executing concurrently and independently. In such a system, there is the possibility ofthe simultaneous occurrence of a transition from each of the Ai. Formally, this is reectedin the requirement that a collection of morphisms hi : B ! Ai (1 � i � n) induce aunique morphism h : B ! A. In order for h to be a morphism, we must allow morphismsto map single transitions of B to �nite commuting sets of transitions of A.The category Alph is isomorphic to a full reective subcategory of Auto via thefunctor that takes each concurrent alphabet E to the one-state automaton with alphabetE, having a transition for each of its actions. Since the embedding of Alph in Auto isright-adjoint to the forgetful functor fromAuto toAlph, it preserves limits. In the sequel,it will be convenient for us to identify a concurrent alphabet E with the correspondingone-state automaton.2.3 Monotone AutomataWe wish to discuss automata that consume inputs and produce outputs. Therefore, ifX and Y are concurrent alphabets, we de�ne an automaton from X to Y to be a spanY g �A f�!X from X to Y in Auto. Intuitively, if Y g �A f�!X is an automaton fromX to Y , then we think of X as an \object of inputs," whose transitions represent thepossible inputs that A might consume. Similarly, we regard Y as an \object of outputs,"whose transitions represent the possible outputs that A might produce. If Y g �A f�!Xand Y g0 �A0 f 0�!X are automata from X to Y , then an arrow of spans from A to A0 isa morphism h : A ! A0 such that g0h = g and f 0h = f . Let Auto(X;Y) denote thecategory of automata from X to Y , with arrows of spans as morphisms.We wish to single out automata with the following properties:1. They are always prepared to consume arbitrary input.2. The act of consuming input can never cause enabled output transitions to becomedisabled, although it may cause more output transitions to become enabled.In previous papers, we have formalized such automata using variants of the followingde�nition: an automaton A from X to Y is monotone i� the alphabet E of A is (up toisomorphism) of the form Z
X, with fa : E ! X the restriction to X, with gae = ; forall e 2 X, and in addition with the following condition satis�ed:(Receptivity) For all states q of A, and all actions e 2 X, there exists a transition q e�!rof A.The \port automata" de�ned in [9], are special cases of monotone automata, in which Xand Y are concurrent alphabets whose elements represent the transmission of data valuesover �nite sets of \ports," and E is required to be of the form Y
 Z
 X, with g therestriction to Y . We use the more general monotone automata here because they have aclean characterization in terms of �brations.The next result, easily proved from the de�nitions, gives the essential properties ofmonotone automata. Statement (1) is a generalization of receptivity to arbitrary traces,rather than single actions. Statement (2) states that under certain conditions, a transitionof A in state q can be \pushed out" along an input computation sequence, to yield atransition of A from the �nal state of that computation sequence.

Proposition 2.1 Suppose A is a monotone automaton from X to Y . Then1. For all states q of A and all traces x in X�, there exists a computation sequence ofA, starting from state q and having trace x. Moreover, any two such computationsequences arrive in the same �nal state, which we denote by q � x.2. Suppose q e�!r is a transition of A, and x and x0 are traces in X�, such that x0e = ex.Then A also has a transition q � x e�!q � x0.2.4 The Input Bu�ering MonadSuppose Y g �A f�!X is an automaton from X to Y . The input bu�ering construction isa way to obtain a monotone automaton Y g0 �BA f 0�!X by \composing A with an inputbu�er." Formally, if A = (E;Q; T; qi), then BA = (E 0; Q0; T 0; q0i), where:� E 0 = E
X.� Q0 = Q � X�. That is, the states of BA are pairs (q; x), where q is a state of A,and x is a trace in X�. The initial state q0i of BA is the pair (qi; �), where � is theempty trace.� The transition map T 0 : Q0 �E 0 ! Q0 of BA is de�ned as follows:1. If e 2 X, then T 0((q; x); e) = (q; ex).2. If e 2 E, then T 0((q; x); e) is de�ned i� A has a transition q e�!r and thereexists x0 with x = x0(fe), in which case T 0((q; x); e) = (r; x0).Intuitively, a state of BA is a pair (q; x) consisting of a state q of A and an \input bu�er" x.There are two types of transitions of BA: input transitions (case (1) above), in which inpute 2 X arrives and is appended to the tail of the input bu�er, and noninput transitions(case (2) above), in which A performs a transition q e�!r, absorbing any necessary inputfe from the head of the input bu�er.De�ne f 0 : BA ! X to take (q; x) to the unique state of X, and to take e 2 X tofeg and e 2 E to ;. De�ne g0 : BA! Y to take (q; x) to the unique state of Y , to takee 2 X to ;, and e 2 E to ge. It is straightforward to verify that f 0 and g0 are morphismsof automata. We have the following result:Proposition 2.2 For any automaton A from X to Y , the automaton BA from X to Yis a monotone automaton. Moreover, the map taking A to BA extends in an obvious wayto a functor B : Auto(X;Y)! Auto(X;Y).In fact, more can be shown. For each automaton A fromX to Y , there is a morphism�A : BBA! BA. Intuitively, �A is the morphism that collapses two tandem input bu�ersinto one, hiding actions corresponding to the transfer of input between the two bu�ers.Formally, the map �A takes a state ((q; x); x0) of BBA to the state (q; x0x) of BA. Tode�ne the behavior of �A on actions, observe that the alphabet of BBA is of the form(E
X)
X, and the alphabet of BA is of the form E
X. The map �A takes e 2 Eto feg, it takes e in the \outer copy" of X to feg, and it takes e in the \inner copy" of Xto ;.

Proposition 2.3 The maps �A : BBA ! BA are morphisms of automata, which arethe components of a natural transformation � : BB ! B that satis�es the associative law� � (B�) = � � (�B).If A is a monotone automaton from X to Y , then we may also obtain a morphismhA : BA! A. To see this, note that the alphabet E of A has the form Z
X, and thealphabet of BA has the form (Z
X)
X. Let hA : BA ! A take each state (q; x) ofBA to the state q � x of A (see Proposition 2.1), each action e in Z to feg, each action ein the \outer copy" of X to feg, and each action e in the \inner copy" of X to ;.Proposition 2.4 If A is a monotone automaton from X to Y , then the map hA : BA!A is an arrow of spans. Moreover, hA � �A = hA �BhA.Proof { If hA is a morphism of automata, then the fact that it is an arrow of spansis immediate from the de�nitions. To see that hA is a morphism of automata, suppose(q; x) e�!(q0; x0) is a transition of BA. If e is an input action (i.e. it is in the outer copy ofX), then x0 = ex and q0 = q. In this case, A has a transition q � x e�!q � ex, which is thenthe image of (q; x) e�!(q0; x0) under hA. If e is a noninput action in the inner copy of X,then x0e = x and A has a transition q e�!q0. By Proposition 2.1, A also has a transitionq � x0e e�!q0 � x0 which is then the image of (q; x) e�!(q0; x0) under hA. Finally, if e 2 Z,then x0 = x and A has a transition q e�!q0. By Proposition 2.1, A also has a transitionq � x e�!q0 � x0, which is the image of (q; x) e�!(q0; x0) under hA.Proposition 2.3 states that B is almost the underlying functor of a monad, with thenatural transformation � as multiplication. Proposition 2.4 states that every monotoneautomaton from X to Y almost carries a structure of B-algebra. What is missing to makeB an actual monad, and the monotone automata its actual algebras, is the monad unit,which would be a natural transformation � : 1 ! B. The components �A : A ! BA ofsuch a natural transformation almost exist. More precisely, the map �A would have totake a state q of A to the state (q; �) of BA, and an action e 2 E to the disjoint sumfeg + fe 2 Comm(E
 X). The only problem is that such a map �A need not be amorphism.One can see what goes wrong by considering the caseA = Z
X, with f : A! X therestriction to X and g : A! Y the zero map. In this case, A has just one state �, so up toisomorphism BA has as its states the traces in X�, and the alphabet of BA is (Z
X)
X.The map �A would have to take the unique state � of A to the empty trace �, and eachaction a 2 X to the set fa; a0g 2 Comm((Z
X)
X), where a0 is in the \inner copy" ofX and a is in the \outer copy." Since A has a transition a : � ! � whenever a 2 X, for�A to be a morphism, BA would have to have transitions from state � for both actions aand a0. In fact, BA has transitions � a�!a a0�!�, but no transition for action a0 in state �.Intuitively, BA has the capability of accepting input a in one step and then processing iton the next step, but not of doing both in a single step. There are two ways around thisproblem: we can enlarge the class of objects of Auto to include automata capable of thebehavior required of BA, or we can weaken the properties required of morphisms Auto,so as to include all the maps �A. Ultimately, the �rst approach is probably the correctway to proceed, but the de�nition of a suitably general class of automata (such as the

\concurrent transition systems" of [11, 12]) introduces an additional layer of abstractionthat would tend to obscure the ideas we wish to convey here. We therefore follow thesecond approach in this paper.Thus, a weak morphism from a trace automaton A to a trace automaton A0 is a pairof maps h = (ha; hs), where ha : E ! E 0 is a morphism of concurrent alphabets, andhs : Q! Q0 is a function, such that:� hs(qi) = q0i.� For all q, r 2 Q and e 2 E, if e : q ! r in A, then for some enumerationfe1; e2; . . . ; eng of ha(e), the automaton A0 has a computation sequenceq0 e1�!q1 e2�! . . . en�!qn:with q0 = hs(q) and qn = hs(r).The change is that we have deleted the requirement that T 0(hs(q); ei) be de�ned for all iwith 1 � i � n.Let AutoWk denote the category of trace automata and weak morphisms. Thiscategory is not as nice as the category Auto: although AutoWk does have �nite prod-ucts, which are constructed the same way as in Auto, it fails to have all equalizers. Inaddition, there is no way to extend the coreection between Auto and EvDom, exhib-ited in [9], to a coreection betweenAutoWk and some expansion of EvDom. For thesereasons, we shall have to work with both categories Auto and AutoWk.Proposition 2.5 The functor B extends to an endofunctor of AutoWk(X;Y). Themaps �A : A ! BA are weak morphisms of trace automata, which are the componentsof a natural transformation � : 1 ! B that satis�es the unit laws � � B� = 1 = � � �B.Thus, the triple (B; �; �) is a monad in AutoWk(X;Y).We now arrive at the main result of this section.Theorem 1 Suppose A is an automaton from X to Y . Then A is a monotone automatoni� there is a Auto-morphism hA : BA! A enriching A with a structure of B-algebra.Proof { Suppose Y g �A f�!X is a monotone automaton from X to Y . Let the maphA : BA ! A be as in Proposition 2.4. It is a straightforward use of the de�nitions tocheck that hA � �A = 1 and hA � �A = hA � (BhA), so that hA is a B-algebra structure onA. Conversely, suppose hA : BA ! A is an Auto-morphism enriching the spanY g �A f�!X with a structure of B-algebra. Now, the alphabet of BA is of the formE
X, with f the restriction to X. Suppose e 2 X. Because fhA = f 0 : BA ! A, wemust have fhAe = f 0e = feg. There must therefore exist some particular e0 2 hAe withfe0 = feg. So, for each e 2 X, there exists e0 2 E with fe0 = feg. Moreover, if e1ke2, thenhAe1 ? hAe2, so we must have e01ke02. Conversely, if e01ke02, then fe1g = fe01 ? fe02 = fe2g,so e1ke2. Thus, E ' (E nfe0 : e 2 Xg)
fe0 : e 2 Xg, with f the restriction on the secondfactor. Since the second factor is isomorphic to X, we have shown that the alphabet E of

A has the form required of a monotone automaton. To prove that A has the receptivityproperty, observe that given e0 corresponding to e 2 X, applying hA to the transition(q; �) e�!(q; e) of BA gives a computation hAe : q! r of A. Using the fact that e0 2 hAeand the assumption that hA is a morphism, not just a weak morphism, we see that e0 isenabled for A in state q, yielding the required transition q e0�!q � e of A.3 Fibrations between AutomataThe de�nition of monotone automaton given in Section 2, although successful at capturingour intuition, and having a number of interesting consequences as well, is not categorical,and is therefore unsuitable as a basis for a category-theoretic study of the properties ofdataow-like networks, viewed as spans in a category of automata. The purpose of thissection is to show that monotone automata can be characterized categorically as certainsplit right �brations in a suitable 2-category of automata.In the theory of �brations in a 2-category developed by Street [14, 15], the (two-sided) split �brations from X to Y in a 2-category K are de�ned to be the algebrasof a certain \doctrine" (or \2-monad") M on the 2-category of spans from X to Y inK. The structure map for an M -algebra is called a \cleavage" for the underlying span.The one-sided \left" and \right" �brations (essentially corresponding to what were earliercalled split �brations and split op-�brations) are also algebras of doctrines L and R, whichcompose according to certain distributive laws to form M .The connection between the abstract theory of �brations and the concrete de�nitionswe have given so far is made when one realizes that in the automata-theoretic case, thefunctor R is essentially the input bu�ering construction B, de�ned concretely for traceautomata in the previous section, which takes an automaton A fromX to Y and composesit with an input bu�er to yield a \free X-input-bu�ered automaton" BA from X to Y .It then follows from Theorem 1 that the monotone automata from X to Y are exactlythose automata from X to Y that are split right �brations in AutoWk having an Auto-morphism as cleavage. Dually, it is possible to identify the doctrine L as an \outputbu�ering construction," however we do not develop that idea further in this paper.3.1 AutoWk as a 2-CategorySuppose A is an automaton. Let A� be the category whose objects are the states of A,and whose arrows are its computations (computation sequences modulo trace equivalence).Empty computations serve as identities and computations are composed by concatenation.We call A� the computation category of A. It can be shown [12] that: (1) A� has nonontrivial isomorphisms, (2) every arrow of A� is both epi and mono, (3) every spans g �q f�!r that can be completed to a commuting square has a pushout. Moreover,if f : A ! B is a morphism of AutoWk, then f determines a pushout-preservingfunctor f� : A� ! B�, in such a way that the map taking A to A� becomes a functor(-)� : AutoWk! Cat. Speci�cally, f� takes each state q of A� (which is nothing morethan a state q of A) to the state fq of B�. The action of f� on arrows of A� (that is, oncomputations of A) is determined by the fact that it is to be a functor from A� to B�

(hence it must preserve empty computations and concatenation of computations), andthat it takes each single-transition computation : q e�!r of A to its image f in B.The category AutoWk can be made into a 2-category in such a way that (-)� :AutoWk ! Cat becomes a 2-functor. Speci�cally, if f , g : A ! B in AutoWk, thena 2-cell from f to g is a natural transformation � : f�) g�. Identity 2-cells, alongwith vertical and horizontal composition, are inherited from Cat, and the interchangelaw holds because it does in Cat. The subcategory Auto becomes a 2-category in thesame way.It should be emphasized here that although Auto is �nitely complete as a 1-category,it is not the case that all limits are 2-limits. In particular, it is not the case that everypullback is a 2-pullback. Similarly, even for the cases in which ordinary limits exist inAutoWk, these need not be 2-limits. We shall see, though, that enough 2-pullbacks doexist in AutoWk to satisfy our needs.3.2 Comma ObjectsA comma object [14] for an opspan Y g�!A f �X from X to Y in a 2-category K is a spanY d0 �g=f d1�!X from X to Y , together with a 2-cell � : gd0) fd1, such that compositionwith � yields a 2-natural isomorphismK(- ; g=f) ' K(- ; g)=K(- ; f):Here for each objectX the expressionK(X; g)=K(X; f) denotes the usual comma categoryof the functors K(X; g), K(X; f). An equivalent elementary description of this situtationis that, for each span Y u0 �B u1�!X from X to Y in K, we have the following properties:1. For every 2-cell � : gu0) fu1, there exists a unique h : B ! g=f , such that � = �h.2. Given 2-cells � : d0h) d0h0 and � : d1h) d1h0 such that �h0 � g� = f� � �h, thenthere exists a unique 2-cell � : h) h0 such that � = d0�, � = d1�.Lemma 3.1 The 2-category AutoWk has a comma object for every opspan.Proof { Given an opspan Y g�!A f �X from X to Y in AutoWk, de�ne an automatong=f as follows:� The alphabet of actions of g=f is the product Y
X.� The states of g=f are arrows gr �!fq of A�, or more precisely, triples (r; ; q) withr a state of Y , q a state of X, and : gr! fq an arrow of A�. The initial state ofg=f is the identity computation on the initial state qi of A.� Suppose gr �!fq and gr0 0�!fq0 are states of g=f . There are two cases in whichthere are transitions of g=f from to 0:1. In case q0 = q, then the transitions from to 0 are the transitions r e�!r0 ofY such that 0(ge) = in A�:

? -- ? 0ge 1gr0gr fqfq02. In case r0 = r, then the transitions from to 0 are the transitions q e�!q0 ofX such that 0 = (fe): ? -- ? 01 fegr0gr fqfq0These are the only types of transitions that g=f has. One may verify that g=f satis�esthe commutativity condition required of an automaton.De�ne maps d0 : g=f ! Y and d1 : g=f ! X as follows:� d0 takes a state gr �!fq of g=f to the state r of Y , and restricts the alphabet ofg=f to the Y component.� d1 takes a state gr �!fq of g=f to the state q of X, and restricts the alphabet ofg=f to the X component.It is easily seen that d0 and d1 are morphisms of trace automata. The automaton g=f isalso equipped with a 2-cell � : gd0) fd1, which associates with each state gr �!fq ofg=f the computation of A.We claim that g=f , equipped with the maps d0 and d1 and the 2-cell �, is a commaobject in AutoWk for the opspan Y g�!A f �X. To see this, suppose Y u0 �B u1�!X is aspan in AutoWk.1. Suppose we are given a 2-cell � : gu0) fu1. With each state q of D, this 2-cell (which is actually a natural transformation from (gu0)� to (fu1)�) associatesa computation q : gu0q ! fu1q of A, in other words with each state q of D isassociated a state of g=f .De�ne the map h : B ! g=f to take each state q of B to the corresponding state qof g=f , and each action e of B to the disjoint sum ge+ fe, which is a commutingset of actions of g=f . Clearly, if h is a weak morphism of automata, then it is theunique such morphism such that � = �h.To see that h is a weak morphism of automata, suppose we are given a transitionq e�!r of B. This transition determines the following commuting diagram in A�:

6 - 6-gu0efu1eq rgu0qfu1q fu1rgu0rwhich factors as follows: 6 - 6-1fu1eqgu0qfu1q fu1rgu0q - 6-gu0rfu1rr1gu0eSince the left and right squares clearly determine computations of g=f , their com-posite does too. This composite computation is the image of the transition q e�!runder h. (A map h behaving in this way is in general not a morphism of automata,but rather only a weak morphism.)2. Suppose we are given 2-cells � : d0h) d0h0 and � : d1h) d1h0, such that �h0 � g� =f� � �h. For each state q of B, let �q denote the computation of g=f correspondingto the following commuting square in A�:6 - 6-g�qf�q�hq �h0qd0hqd1hq d1h0qd0h0qTo see that this square does in fact determine a computation of g=f , use the samefactoring trick as in (1) above. The map � that assigns to each state q of B thecorresponding computation �q of g=f , is now easily seen to be the unique 2-cell� : h) h0 such that � = d0�, � = d1�.The alphabet of actions of a comma object g=f of an opspan from X to Y is theproduct Y
X. Let us call the actions in the Y component output actions, and those inthe X component input actions. This terminology suggests an intuitive interpretation ofg=f as kind of \nondeterministic X to Y transducer," which accepts as input a sequenceof actions of X, records some information about these actions internally in the form ofa computation of automaton A, and then outputs this information, perhaps after somedelay, in the form of a sequence of actions of Y . Of special interest is the comma object�A for the opspan A 1�!A 1 �A from A to A. We interpret �A as an \A-bu�er."

The factoring trick used in the proof above represents an important property ofcomma objects in AutoWk, which can be formalized as follows:Lemma 3.2 Every 2-cell between morphisms from B to g=f has a unique input/outputfactorization; that is, factors uniquely as �� with d0� and d1� both identity 2-cells.As noted above, AutoWk does not even have all ordinary pullbacks, let alone all2-pullbacks. Fortunately, though, the 2-pullbacks that we need for the notion of �brationto make sense actually do exist:Lemma 3.3 Suppose f : A! C, and g : B ! C in AutoWk. Then all three indicated2-pullbacks exist in AutoWk.
@@@@@R �����	 @@@@@R �����	�����	 @@@@@R �����	 @@@@@R�����	 @@@@@R

C CB �C Ag� � �C �C � fg� � �C � f
d0 d1g fThe proof of this result relies heavily on the input/output factorization property ofcomputations of �C.3.3 The Input Bu�ering DoctrineWe are now in a position to apply the theory of �brations to AutoWk. Given concurrentalphabets X and Y , let Span(X;Y) denote the 2-category of spans in AutoWk from Xto Y . Suppose Z g �A f�!X is a span from X to Z and Y k �B h�!Z is a span from Zto Y . If the following diagram is a 2-pullback,? -- ?hh0g0 gBB �A AZ

then the span Y kg0 �B �A fh0�!X from X to Y is called the composite of B and A. Com-position on the right with the comma object �X, viewed as a span from X to X, yieldsan endo-2-functor R : Span(X;Y)! Span(X;Y):Explicitly, if A is a span from X to Y , then RA is the span A��X from X to Y . In viewof our intuitive interpretation of �X as an \X-bu�er," we may interpret R as an \inputbu�ering construction," which takes a span from X to Y and places it in tandem with aninput bu�er, producing an \input-bu�ered" span from X to Y .The 2-functor R comes equipped with 2-natural transformations � : 1 ! R and� : RR ! R making (R; �; �) a monad in 2Cat (also called a 2-monad or a doctrine).The component �A of � at a span Y g �A f�!X from X to Y is the unique arrow of spansA ! RA whose composition with the projection RA ! A is 1A and whose compositionwith the projection RA ! �X is the map if : A ! �X corresponding to the identity2-cell on f : A! X. The component �A of � at the span A is the unique arrow of spans1A � c : RRA ! RA induced by the map 1A : A! A and the map c : �X � �X ! �Xcorresponding to the composite 2-cell:@@@@@R �����	�����	 @@@@@R- �?X�X �X�X � �XX d0d1 pr0pr1d0 d1(=�(=� 1The existence of R, �, and �, and the fact that they form a doctrine, follows au-tomatically from general properties of comma objects and 2-pullbacks (see [14]). Theconcrete form taken by these data in the 2-category AutoWk is given by the followingresult, which is easily proved by working through the de�nitions.Lemma 3.4 Suppose X and Y are one-state trace automata. Then the doctrine (R; �; �),regarded as an ordinary monad on the category Span(X;Y), is nothing but the inputbu�ering monad (B; �; �) de�ned in Section 2.A span A from X to Y is called a split right �bration if it admits a structure ofalgebra for the doctrine R. This means that there exists an arrow of spans hA : RA! Asuch that hA � (�A) = 1 and hA � (RhA) = hA � (�A). The structure map hA is calleda right cleavage for A. It is a consequence of the general theory that if a span A is asplit right �bration, then the cleavage hA is left-adjoint to the map �A : A! RA, henceis determined uniquely up to an invertible 2-cell. In the case of AutoWk, there are noinvertible 2-cells other than identities, so hA is unique. Street also de�nes a more generalnotion of right �bration, which is a span A that bears a structure of pseudo-R algebra. For

a pseudo R-algebra, the above diagrams are required to commute only up to invertible2-cell, rather than exactly. Again, since AutoWk has no nontrivial invertible 2-cells,there is no di�erence between a right �bration and a split right �bration.The following is the main result of this section. It is a direct consequence of Theorem1 and Lemma 3.4.Theorem 2 Suppose X and Y are one-state automata. Then an automaton from X toY is monotone i� it is a split right �bration in AutoWk having an Auto-morphism ascleavage.4 Fibrations between DomainsAlthough the fact that the monotone automata coincide exactly with the split right �-brations in AutoWk provides some evidence that the latter is the correct categoricalnotion, stronger evidence comes from the fact that essentially the same coincidence oc-curs for domains of computations of monotone automata and split right �brations in asuitably de�ned 2-category of domains. The purpose of this section is to develop theseresults.4.1 Conict Event OrderingsWe begin by recalling some de�nitions from [9]. Suppose D = (D;v) is a partially orderedset. An interval of D is a pair (d; d0) 2 D�D with d v d0. A prime (or covering) intervalis an interval (d; d0) with d @ d0 and such that for no d00 2 D do we have d @ d00 @ d0.We say that an interval I = (d; d0) is t-prime if there exists a �nite set of prime intervalsf(d; d1); . . . ; (d; dn)g such that d0 = Ffd1; . . . ; dng. Call two intervals I = (d0; d1) andJ = (d00; d01) coinitial if d0 = d00. Coinitial intervals I = (d0; d1) and J = (d0; d01) are calledconsistent if the set fd1; d01g has an upper bound. Call coinitial t-prime intervals I andJ orthogonal if they are consistent, and there is no prime interval (d0; d001) with d001 v d1and d001 v d01. We say that D is �nitely consistently complete if every �nite subset U of Dhaving an upper bound, has a supremum FU . If D is �nitely consistently complete, andif intervals I = (d0; d1) and J = (d0; d01) are consistent, then let I n J denote the interval(d01; d1 t d01).Suppose D is a nonempty, �nitely consistently complete poset with the followingadditional property:1. I n J is a prime interval whenever I and J are distinct, consistent prime intervals.We may then de�ne � to be the least equivalence relation on prime intervals of D, suchthat I � I n J whenever I and J are distinct and consistent.A conict event ordering is a nonempty, �nitely consistently complete posetD havingproperty (1) above and in addition having the properties:2. I � J implies I = J , whenever I and J are coinitial prime intervals.3. If I, I 0, J , J 0 are prime intervals such that I � I 0, J � J 0, I and J are coinitial, andI 0 and J 0 are coinitial, then I and I 0 are consistent i� J and J 0 are consistent.

A weak morphism from a conict event ordering D to a conict event ordering D0 isa function f : D ! D0 that preserves all �nite suprema existing in D. A morphism fromD to D0 is a weak morphism f : D! D0 with the additional properties:1. If I is a t-prime interval of D, then f(I) is a t-prime interval of D0.2. If t-prime intervals I, J are orthogonal in D, then f(I) and f(J) are orthogonal inD0.Let EvOrd denote the category of conict event orderings and morphisms, and letEvOrdWk denote the category of conict event orderings and weak morphisms. Notethat the map taking a poset to its ideal completion determines an equivalence of categoriesbetween EvOrd and the category EvDom of conict event domains de�ned in [9]. Theadjoint maps a conict event domain to its �nite basis. Since we shall have no need formorphisms that map �nite elements to in�nite elements, we prefer here to dispense within�nite elements entirely, and work with the category EvOrd instead of EvDom.We showed in [9] that the category EvOrd is �nitely complete. We also showed thefollowing:Proposition 4.1 If A is an automaton, then the set HA of (�nite) computations of Afrom its initial state, partially ordered by pre�x, is a conict event ordering. Moreover,the map taking A to HA extends to a functor H : Auto! EvOrd, which is right-adjointto a full and faithful embedding, with unit an isomorphism.We add that although the functor H extends to a functor from AutoWk toEvOrdWk, the adjunction does not.4.2 EvOrdWk as a 2-CategoryThe categories EvOrd and EvOrdWk have partially ordered homs, with strict, mono-tone composition. Hence they are actually 2-categories. Although EvOrd is �nitelycomplete as a 1-category, it is not �nitely 2-categorically complete, for essentially thesame reasons as for Auto.Proposition 4.2 The 2-category EvOrdWk has a comma object for every opspan.Proof { A comma object g=f for an opspan Y g�!D f �X in EvOrdWk is g=f = f(b; a) :gb v fag, ordered componentwise, and equipped with the evident projections and 2-cell.It is necessary to verify that g=f is a conict event ordering|this can be done by a directcheck of the axioms, using the fact that f and g preserve �nite suprema.The same result concerning 2-pullbacks holds for EvOrdWk as for AutoWk:Proposition 4.3 Lemma 3.3 holds for EvOrdWk.

Next, we describe the doctrine R on spans in EvOrdWk and obtain a characteri-zation of its algebras, the split right �brations in EvOrdWk. The object map of R takesa span Y g �D f�!X to the span Y g0 �RD f 0�!X, whereRD ' f(d; x) 2 D �X : fd v xg;the map f 0 takes (d; x) to x 2 X, and g0 takes (d; x) to gd 2 Y . The unit � : 1! R hascomponents �D : D ! RD that take d to (d; fd). The multiplication � : RR ! R hascomponents �D : RRD ! RD that take ((d; x); x0) to (d; x0).Theorem 3 A span Y g �D f�!X in EvOrdWk is a split right �bration i� the followingcondition holds:� For all d 2 D and all x � fd, there exists an element d t x of D, which is the leastd0 � d with fd0 � x. Moreover, f(d t x) = x and g(d t x) = gd.Proof { Suppose the condition. Let h : RD ! D be the map taking (d; x) 2 RD todt x 2 D. It is easy to check that h preserves �nite suprema, hence is a weak morphism.Since f(d t x) = x and g(d t x) = gd, it follows that h is an arrow of spans. Also, iffd v x v x0 then dtx0 = (dtx)tx0, so h��D = h�Rh. Finally, h(�D(d)) = h(d; fd) = d,so h is a right cleavage for D.Conversely, suppose h : RD ! D is a right cleavage for D. Then h is left-adjoint to�D : D ! RD, with counit the identity. It follows by properties of adjunctions that forall (d; x) 2 RD, the element h(d; x) of D is the least d0 � d with fd0 � x. Since h is anarrow of spans, we have also f(h(d; x)) = x and g(h(d; x)) = gd.4.3 Connection with AutomataIn this section, we show that the \unwinding functor" H, which takes each automatonA to the poset HA of its computations from the initial state, preserves and reects splitright �brations. This gives a connection, as in [9], between an \operational" semanticsof dataow networks, de�ned in terms of automata, and a more \denotational," order-theoretic semantics. The proofs of the results in this section involve a detailed examinationof the structure of the posets of computations of monotone automata. It ought to bepossible to prove at least some of these results categorically, though at present it is notclear to the author what satisfactory categorical versions of the proofs would look like.For the techniques to prove the following result, the reader is referred to [12]:Lemma 4.4 Suppose Y g �A f�!X is a monotone automaton. For each computation : qi ! r of A and trace x 2 X� with Hf v x, there exists a least computation t xsuch that v t x and x v Hf(t x). Moreover, Hf(t x) = x, Hg(t x) = Hg,and the map taking (; x) to t x is an EvOrd-morphism from R(HA) to HA.The following result makes use of technical properties of conict event orderings. Acomplete proof would be rather lengthy, so we just sketch the main ideas.

Lemma 4.5 Let X and Y be concurrent alphabets. Suppose HY g �D f�!HX is a spanin EvOrd, and suppose hD : RD ! D is an EvOrd-morphism that is also an R-algebrastructure on D. Then there exists a monotone automaton Y g0 �A f 0�!X, and an order-isomorphism � : HA! D, such that g� = Hg0 and f� = Hf 0.Proof { (Sketch) We �rst observe the following facts about the poset D:1. Every prime interval (d; d0) in D satis�es exactly one of the following two conditions:(a) d0 = hD(d; fd0), with (fd; fd0) a prime interval of HX.(b) fd = fd0.Call intervals of type (a) input intervals, and those of type (b) noninput intervals.2. If I is an input interval (d; hD(d; x)) and J is a noninput interval (d; d0), then I ? J .Moreover, I n J = (d0; hD(d0; x)) and J n I = (hD(d; x); hD(d0; x)).3. If I = (d; d0) is a noninput prime interval, and fd0 v x, then (hD(d; x); hD(d0; x)) isalso a noninput prime interval.The automaton A is then constructed as follows:� The alphabet of A is E
 X, where E is the set of all �-equivalence classes ofnoninput intervals of D and [I]k[J] in E i� there exist I 0 = (d; d0) 2 [I] and J 0 =(d; d00) 2 [J] such that I 0 ? J 0.� The states of A are the elements of RD, with (?; �) as the initial state.� The transitions of A are of two types:1. If e 2 X, then for all states (d; x) of A there is a transition(d; x) e�!(hD(d; ex); ex) of A.2. If [I] 2 E, then A has a transition (d; x) [I]�!(d0; x) whenever (d; d0) 2 [I].Veri�cation that A satis�es the commutativity condition, hence is an automaton, requiresa case analysis on the various ways in which actions of A can be concurrent. Thesearguments make use of the properties of D stated above, plus the hypothesis that hD isan R-algebra structure on D.Let the map f 0 : A! X take each state of A to the unique state ofX, and on actions,let f 0 be the restriction to X. Let the map g0 : A! Y take each state of A to the uniquestate of Y . On actions, let g0 be the map that takes e 2 X to ; and takes each [I] 2 E,where I = (d; d0), to the trace gd0 n gd 2 Y �, which must be in Comm(Y) because theEvOrd-morphism g preserves t-prime intervals. It then follows from the de�nitions thatA has the receptivity property, hence the span Y g0 �A f 0�!X is a monotone automaton.To complete the proof, one may check that the map � : HA ! D that takes eachcomputation : (?; �)! (d; x) of A to d 2 D, is an isomorphism of spans in EvOrdWk,from the span HA to the span D. The veri�cation of this fact involves the observation

that prime intervals (d; d0) in D correspond exactly to transitions of A from (d; fd) to(d0; fd0), and thus the computation sequences of A from state (?; �) correspond to coveringchains from ? in D. Moreover, prime intervals (d; d0) and (d; d00) in D are orthogonal i�the corresponding transitions of A are for commuting actions. These facts allow us toprove that the map � is in fact an arrow of spans in EvOrdWk, with an inverse that isalso an arrow of spans in EvOrdWk.We can now answer the question raised at the end of our previous paper [9], con-cerning a characterization of the dataow-like spans in EvOrd.Theorem 4 Suppose X and Y are concurrent alphabets. A span D from HX to HYin EvOrd is HA for some monotone automaton A i� D is a split right �bration inEvOrdWk, having an EvOrd-morphism as cleavage.5 ConclusionWe have shown that spans arising as behaviors of dataow networks can be characterizedin terms of split right �brations, both in a 2-category of automata and a 2-category ofdomains. This characterization should make it possible to give categorical proofs that thisclass of spans is closed under network-forming operations, such as parallel and sequen-tial composition, and feedback. We hope also that it will facilitate the continuity proofsrequired in the development of a semantics for recursively de�ned networks. There re-mains, however, the problem of understanding the correct way to formulate the universalproperties satis�ed by the feedback operation.It is a bit annoying that our characterizations had to be stated in terms of the 2-categories AutoWk and EvOrdWk and their sub-2-categories Auto and EvOrd. Forintuitive reasons, though, it seems necessary that the results be stated in this way. In thispaper, we tried to make the simplest extensions to the 2-categories Auto and EvOrdthat would show the connection with �brations. Perhaps a cleaner (though less con-crete) formulation of the results might be achieved by making AutoWk and EvOrdWkmuch larger, and then giving categorical characterizations of Auto and EvOrd as sub-2-categories. For example, we expect that the 2-category Cts of \concurrent transitionsystems" [11, 12] would be a suitable replacement for AutoWk.References[1] A. Carboni and R. F. C. Walters. Cartesian bicategories I. Journal of Pure andApplied Algebra, 49:11{32, 1987.[2] J. W. Gray. Fibred and co�bred categories. In Proc. Conference on CategoricalAlgebra at La Jolla, pages 21{83, Springer-Verlag, 1966.[3] A. Grothendieck. Cat�egories �br�ees et descente. In S�eminaire de G�eom�etrieAlg�ebrique de l'Institute des Hautes �Etudes Scienti�ques, Paris 1960/61 (SGA 1),pages 145{194, Springer-Verlag, 1971.

[4] G. Kahn. The semantics of a simple language for parallel programming. In J. L.Rosenfeld, editor, Information Processing 74, pages 471{475, North-Holland, 1974.[5] G. Kahn and D. B. MacQueen. Coroutines and networks of parallel processes. In B.Gilchrist, editor, Information Processing 77, pages 993{998, North-Holland, 1977.[6] G. M. Kelly and R. H. Street. Review of the elements of 2-categories. In LectureNotes in Mathematics 420, pages 75{103, Springer-Verlag, 1974.[7] A. Mazurkiewicz. Trace theory. In Advanced Course on Petri Nets, GMD, BadHonnef, September 1986.[8] P. Panangaden and E. W. Stark. Computations, residuals, and the power of indeter-minacy. In T. Lepisto and A. Salomaa, editors, Automata, Languages, and Program-ming, pages 439{454, Springer-Verlag. Volume 317 of Lecture Notes in ComputerScience, 1988.[9] E. W. Stark. Compositional relational semantics for indeterminate dataow networks.In Category Theory and Computer Science, pages 52{74, Springer-Verlag. Volume 389of Lecture Notes in Computer Science, Manchester, U. K., 1989.[10] E. W. Stark. Concurrent transition system semantics of process networks. In Four-teenth ACM Symposium on Principles of Programming Languages, pages 199{210,January 1987.[11] E. W. Stark. Concurrent transition systems. Theoretical Computer Science, 64:221{269, 1989.[12] E. W. Stark. Connections between a concrete and abstract model of concurrentsystems. In Fifth Conference on the Mathematical Foundations of Programming Se-mantics, Springer-Verlag. Lecture Notes in Computer Science, New Orleans, LA,1990. (to appear).[13] E. W. Stark. A simple generalization of Kahn's principle to indeterminate dataownetworks. In M. Z. Kwiatkowska, M. W. Shields, and R. M. Thomas, editors, Se-mantics for Concurrency, Leicester 1990, pages 157{176, Springer-Verlag, 1990.[14] R. H. Street. Fibrations and Yoneda's lemma in a 2-category. In Lecture Notes inMathematics 420, pages 104{133, Springer-Verlag, 1974.[15] R. H. Street. Fibrations in bicategories. Cahier de Topologie et G�eometrieDi��erentielle, XXI-2:111{159, 1980.

