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PrefaceIn this lecture we will present a tiny functional language and graduallyenrich its type system. We shall cover the basic Curry-Hindley systemand Wand's constraint-based algorithm for monomorphic type inference;briey observe the Curry-Howard isomorphism and notice that logical for-malism may serve as the inspiration for new type rules; present the poly-morphic Milner system and the Damas-Milner algorithm for polymorphictype inference; see the Milner-Mycroft system for polymorphic recursion;and sketch the development of higher type systems. We will touch uponthe relationship between types and logic and show how rules from logicmay give inspiration for new type rules. En route we shall encounter thecurious discovery that two algorithmic problems for type systems, whichhave been implemented in popular programming languages, have turnedout to be respectively complete for exponential time and undecidable.
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1 Type Checking and Type InferenceTwo main reasons for introducing types into a programming language aresafety and readability.Let us �rst consider the safety aspect. Not all expressions in an untypedlanguage are thought to be sensible. For example, computing the quotientof a text and a function or the square root of a banana is plain nonsense.Let us agree upon the existence of a subset of bad expressions, the run-time behaviors of which are undesirable or unde�ned. Any non-trivialchoice of badness leads to an uncomputable subset. Thus, the compilercannot distinguish the good from the bad.To ensure safety of programs we introduce a type system and reluctantlysacri�ce some good expressions. This happens because we require our typesystem to ensure that only good expressions are typable. However, sincetype checking must be decidable, it is clear that some good expressions arenot typable. The following diagram illustrates this situation.................................................��.............................................QQTT̀̀��....................................................................................................................((....................PP  cc.........................SS ��............................................................................................,,����������:���� XXXXXXXXy slackXXXXXXXytypable expressions bad expressions
The slack in a type system is the set of good expressions that it unfairlyrejects. The desire to minimize this slack is a driving force in the develop-ment of type systems, which leads towards ever more complex type rules.This trend is curbed by the fact that the type discipline should not en-cumber the actual programming too much. This last concern is the reasonwhy arithmetical errors such as index out of range and division by zero arenot prevented by most type systems.The issue of readability wishes for the types to be succinct hints tothe semantics of expressions. For example, when trying to understand theworkings of a function, it is quite nice to know in advance that it computesbooleans from lists of integers. This leads towards more expressive andintuitive types|limited by the need for decidability of type checking.The ideal situation seems to arise when our type system admits au-tomatic inference of types. Then we obtain all the advantages describedabove, without the need to bother with the type rules ourselves.2



In the following sections we study the basic development of type systemsfor functional languages.2 A Tiny Functional LanguageWe de�ne a tiny vanilla-avored functional language to serve as the basisfor this presentation. It is designed to resemble the core of languages suchas Scheme, Miranda, or ML.Exp ::= 0 j true j false j x jpred(Exp) j succ(Exp) j iszero(Exp) jcons(Exp,Exp) j car(Exp) j cdr(Exp) j nil j null(Exp) jif Exp then Exp else Exp � jfun(x) Exp end j Exp(Exp) jlet f = Exp in Exp endThus, we have integers, booleans, lists and functions. The let-construct de-�nes a local scope and at the same time permits us to give simple recursivede�nitions.The semantics of this language is entirely standard and will not beformalized. Note, though, that there are various expressions that we intu-itively recognize as meaningless, such as: succ(true), false(0), and car(fun(x)x end). These are the bad expressions that our type system must exclude.Exercise 2.1 Program a length function on lists. 23 A Simple Type SystemWe choose a language of types that describes the di�erent values of ourexpressions: integers, booleans, lists and functions.Type ::= Int j Bool j list(Type) j Type ! TypeWe must now decide on the rules for assigning types to expressions. Someare very easy; for example, true is of type Bool and fun(x) succ(x) end is oftype Int! Int. Bad expressions are excluded by imposing type restrictions;for example, cdr only works on lists, the two branches of an if-expressionmust have the same type, and in function calls the formal and actualarguments types must be equal. 3



It would not be hard to write down a few manual pages describing thistype system. However, we choose an extremely compact notation that isinspired by a connection between types and logic that we shall explorefurther in a later section. A type judgment is of the form:A ` e : �Here A is a symbol table, i.e., a mapping from identi�ers to types; e is anexpression; and � is a type. Its meaning is simply: relatively to the symboltable A, the expression e has type � . Type judgments are combined intotype rules of the form: J1; J2; . . . ; JnJIts meaning is: if the judgments Ji all hold, then so does the judgment J .Using these notational conventions, we can express all aspects of our typesystem in the following manner.A ` 0 : Int A ` true : BoolA ` false : Bool A ` e : IntA ` pred(e) : IntA ` e : IntA ` succ(e) : Int A ` e : IntA ` iszero(e) : BoolA ` e1 : � ; A ` e2 : list(�)A ` cons(e1,e2) : list(�) A ` e : list(�)A ` car(e) : �A ` e : list(�)A ` cdr(e) : list(�) A ` nil : list(�)A ` e : list(�)A ` null(e) : Bool A ` e1 : Bool; A ` e2 : � ; A ` e3 : �A ` if e1 then e2 else e3 � : �A,x : � ` e : �A ` fun(x) e end : � ! � A ` e1 : � ! � ; A ` e2 : �A ` e1(e2) : �. . . , x : �, . . .` x : � A,f : � ` e1 : �; A,f : � ` e2 : �A ` let f = e1 in e2 end : �4



This is the Curry-Hindley type system dating back to the 1960s.Exercise 3.1 What is the rôle of the rule in the lower left-hand corner?2Exercise 3.2 How can we tell that the let-construct allows recursive de�-nitions? 2The claim that a given expression has a particular type can be veri�edby a systematic (and seemingly pedantic) application of the above rules.Consider for example the function:fun(g)fun(x)succ(g(x))endendWe wish to show that it has type (Bool ! Int) ! (Bool ! Int). A formalderivation looks as follows.g : Bool ! Int, x : Bool ` g : Bool ! Int g : Bool ! Int, x : Bool ` x : Boolg : Bool ! Int, x : Bool ` g(x) : Intg : Bool ! Int, x : Bool ` succ(g(x)) : Intg : Bool ! Int ` fun(x) succ(g(x)) end : Bool ! Int` fun(g) fun(x) succ(g(x)) end end : (Bool ! Int) ! (Bool ! Int)Exercise 3.3 Go through the above derivation bottom-up and explain whichtype rules are used. 2It is quite easy to implement a top-down type checker based on such deriva-tions, since the outermost type constructor and expression operator alwaysdetermine the type rule that must be applied.At this point we should pause to consider whether our type systemis sound, in the sense that only good expressions are typable. To sayanything about this, we would need a formal semantics of our languageand a speci�cation of goodness. The usual strategy is then to show aproperty called subject reduction: an expression of type � can only evaluateto a value of type � . Soundness then follows, since bad expressions do notevaluate to values of any type. 5



4 Simple Type InferenceAs explained, we do not want to provide the types explicitly. Rather, wewish for the compiler to �nd appropriate typings of our expressions orto inform us if none exists. This spares us the trouble of writing downcomplicated type expression that often only clutter up our nice programs.Another often cited advantage is the hope that a clever type inferencealgorithm may come up with more general types than we ourselves could,thus keeping the slack to an absolute minimum.An obvious idea is to use a bottom-up procedure that traverses theparse tree and computes the type of every subexpression. But this onlyworks for constant expressions without variables. As a trivial counter-example consider the term: succ(x). In a strict bottom-up procedure wemust �rst choose a type for x. But unless we happen to select Int, we willmistakenly conclude that the expression is not typable.We can still use a bottom-up procedure, but we should collect all types,rather than just a single specimen. However, we must somehow deal withthe possibility that expressions may have in�nitely many types. For exam-ple, the function:fun(g)fun(x)succ(g(x))endendfor which we earlier derived the type (Bool! Int) ! (Bool! Int), has infact every possible type of the form (� ! Int) ! (� ! Int). But by thisexample we have already given the solution to our problem: an in�nite setof types sometimes has a �nite symbolic representation.We de�ne a type scheme to be a type that may contain occurrences oftype variables. Formally, the syntax is as follows.Types ::= Int j Bool j list(Types) j Types!Types j VarVar ::= � j � j . . .A type scheme de�nes a set of types: those that can be obtained by sub-stituting types for variables in a consistent manner. For example, the type
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scheme (�! �)! list(�) de�nes the following in�nite set:(Int!Int) ! list(Int)(Bool!Int) ! list(Bool)(Bool!Bool) ! list(Bool)(Int!Bool) ! list(Int)...((Int!Bool)!list(Bool)) ! list(Int!Bool)...The only requirement is that both occurrences of � must be substitutedwith the same type. If we also allow variables to be substituted with othertype schemes, then we obtain a preorder � � � on type schemes, whichholds exactly when � is obtained from � through a substitution.Exercise 4.1 What is a preorder? 2Exercise 4.2 Which pairs among the following type schemes are ordered?���! ��! �(�! �)! list(�)2Exercise 4.3 Argue that when � � � , then the set of types determined by� is a superset of that determined by � . 2The key to an e�cient type inference algorithm is the following fundamen-tal observation: for every typable expression e there is a type scheme � thatexactly de�nes all possible types of e. We call � the principal type schemefor e. The task of type inference is then to construct the principal typescheme (for every subexpression) or to fail if the expression is untypable.We present the algorithm in the style of Wand [11] from 1987. For everyparse tree node n we introduce a type variable [[n]] which denotes the (asyet) unknown type scheme for the subexpression rooted in n. To capturescope rules correctly, we require that all parse tree nodes correspondingto occurrences of the same identi�er in a scope must share the same typevariable. In examples below, we use the slightly ambiguous notation [[e]]7



for the type variable corresponding to the subexpression e.Exercise 4.4 Why is this notation ambiguous? 2Every kind of expression imposes its own kind of constraints on type vari-ables. Consider the case of a function application e1(e2). We know fromthe type rule for application that the following equation must hold.[[e1]] = [[e2]]! [[e1(e2)]]That is, e1 must be a function that accepts arguments of the same type ase2. The full collection of constraints is as follows.0 : [[0]] = Inttrue : [[true]] = Boolfalse : [[false]] = Boolpred(e) : [[pred(e)]] = [[e]] = Intsucc(e) : [[succ(e)]] = [[e]] = Intiszero(e) : [[iszero(e)]] = Bool; [[e]] = Intcons(e1,e2) : [[cons(e1,e2)]] = [[e2]] = list([[e1]])car(e) : [[e]] = list([[car(e)]])cdr(e) : [[cdr(e)]] = [[e]] = list(�)nil : [[nil]] = list(�)null(e) : [[null(e)]] = Bool; [[e]] = list(�)if e1 then e2 else e3 � : [[if e1 then e2 else e3 �]] = [[e2]] = [[e3]]; [[e1]] = Boolfun(x) e end : [[fun(x) e end]] = [[x]]! [[e]]e1(e2) : [[e1]] = [[e2]]! [[e1(e2)]]let f = e1 in e2 end : [[let f = e1 in e2 end]] = [[e2]]; [[f]] = [[e1]]In the above, we assume that each � is a fresh variable distinct from allothers. We now know how to generate the constraints for any expression.For example, the expression:fun(g)fun(x)succ(g(x))endend
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yields the following constraints.[[fun(g) fun(x) succ(g(x)) end end]] = [[g]]! [[fun(x) succ(g(x)) end]][[fun(x) succ(g(x)) end]] = [[x]]! [[succ(g(x))]][[succ(g(x))]] = [[g(x)]] = Int[[g]] = [[x]]! [[g(x)]]Exercise 4.5 Explain the origin of each of the above constraints. 2We are then left with the problem of solving these constraints. We mustassign to each type variable a type scheme such that all constraints aresatis�ed. Fortunately, this is exactly the well-known uni�cation problem.It has an e�cient linear-time algorithm that even computes a solutionconsisting of unique principal type schemes. The above example has thefollowing solution.[[fun(g) fun(x) succ(g(x)) end end]] = ([[x]]! Int)! ([[x]]! Int)[[fun(x) succ(g(x)) end]] = [[x]]! Int[[succ(g(x))]] = Int[[g(x)]] = Int[[g]] = [[x]]! Int[[x]] = [[x]]Exercise 4.6 Verify that the above is indeed a solution. 2We now present a simple algorithm for solving constraints. The constraintsystem is given as xi = �i. The solution S is a function from type variablesto type schemes. We use the notation S(�) to indicate the type schemeobtained from � by substituting every type variable with its value in S. If� and � are type schemes, then �(�,�) is the set of two subtrees on whichthey �rst di�er in a preorder traversal.let S(xi) = xi;while S is not a solution dolet fs,tg = �(S(xi),S(�i)), where S(xi)6=S(�i);if s and t are both type constructors then fail �;Assume s=xj;if xj occurs in t then fail �;let S(xi) = fxj 7! tg(S(xi))end 9



This algorithm, which was presented by Robinson [10] in 1965, runs inexponential time. The linear time algorithm is from 1978 by Paterson andWegman [9].Exercise 4.7 Generate and solve the type constraints for the followingexpression.fun(x)fun(y)x((car(y))(x))endend2When an expression is untypable, then we obtain an unsolvable collectionof constraints. Consider the suspect expression: cons(succ(x),car(x)). Itgenerates these constraints.[[cons(succ(x),car(x))]] = list([[succ(x)]])[[car(x)]] = list([[succ(x)]])[[x]] = list([[car(x)]])[[succ(x)]] = Int[[x]] = IntExercise 4.8 Argue that the above constraints are unsolvable. 25 Types and LogicEarlier, the peculiar notation for type rules was blamed on their connectionwith logic. For very pure type systems, this connection is known as theCurry-Howard isomorphism. It is so famous that we shall frame it.Types are formulas, and expressions are proofs.The isomorphism between types and formulas is simply syntactic: Int andBool correspond to facts, and the type constructor ! corresponds to thelogical connective). The relationship between expressions and proofs is a10



bit more subtle, but we only need to know its main consequence: a formulais valid if and only if the corresponding type is not empty.Furthermore, our type rules mirror exactly the inference rules fromlogic. For example, there are two rules involving the function type:A,x : � ` e : �A ` fun(x) e end : � ! � A ` e1 : � ! � ; A ` e2 : �A ` e1(e2) : �If we ignore the expressions and apply the isomorphism, then we immedi-ately recognize two familiar rules from logic:A,� ` �A ` � ) � A ` � ) � ; A ` �A ` �These are respectively deduction and modus ponens. For example, considerthe formula (A) B)) ((C ) A)) (C ) B)). Is this a tautology? Yes,because the expression:fun(x)fun(y)fun(z)x(y(z))endendendhas the principal type scheme (�! �)! (( ! �)! ( ! �)).Exercise 5.1 Why must a type scheme inferred for an expression neces-sarily be a tautology? 2Exercise 5.2 Complete the proof that (A)B) ) ((C)A) ) (C)B))is a tautology. 2In contrast, common sense tells us that the formula (A) B)) (B ) A)is not a tautology, which means that no expression has principal typescheme (�! �)! (� ! �).Exercise 5.3 Argue that no expression has the principal type scheme(� ! �) ! (� ! �). Reconcile this with the fact that e.g. the expres-sion:
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fun(x)fun(y)0endendhas type (Int ! Bool) ! (Bool ! Int). 2Notice that, from a logical perspective, type inference is a rather bizarreactivity: we have a proof and are looking for the corresponding formula.Our tiny functional language so far excludes product and sum types.Using the Curry-Howard isomorphism, we can easily �gure out how toadd them. The usual rules from logic for conjunction give us the rules forproducts:A ` e1 : �1; A ` e2 : �2A ` pair(e1,e2) : �1 � �2 A ` e : �1 � �2A ` fst(e) : �1; A ` snd(e) : �2There are certainly no surprises here. Similarly, we have an isomorphismbetween sums and disjunction:A ` e1 : �1A ` left(e1) : �1 + �2 A ` e2 : �2A ` right(e2) : �1 + �2A ` e : �1 + �2; A ` e1 : �1 ! �; A ` e2 : �2 ! �A ` decide(e,e1,e2) : �This should be rather familiar from a programming language point of view.However, closer scrutiny reveals that we have obtained some unusual logi-cal rules: a proof of a disjunction must necessarily disclose which disjunctis being proved. This is not true for standard logic, which allows proofsto be considerably more indirect. The somewhat weaker logic that corre-sponds exactly to type theory is known as intuitionistic logic and has infact been proposed by logicians for purely philosophical reasons.Exercise 5.4 What are the type inference constraints for these new ex-pressions? 2Exercise 5.5 Find a type whose translation into logic is a classical tau-tology but which do not have any expressions and thus does not yield anintuitionistic tautology. 2It is harder to see how the type rules for lists resemble logic in any way. But12



this is only because we have chosen the wrong operators. In the followingversion we see clearly the logical origins of lists.A ` e1 : � ; A ` e2 : list(�)A ` cons(e1,e2) : list(�)A ` base : �; A ` step : � � � ! �A ` induct(base,step) : list(�)! �Thus, lists are all about counting and induction. The induct operator isvastly more general than car and cdr. For example, the length operator iseasily de�ned as: induct(0,fun(x) succ(fst(x)) end).Exercise 5.6 Use induct to de�ne the operators car and cdr. 2Still, the practical advantage of the connection between types and logicis that we have a source of inspiration for missing type rules. Considera novel type constructor stream(�) which de�nes in�nite lists of � -values.Such streams are in a certain formal sense the dual concept of lists. Cor-respondingly, the dual concept of induction is called coinduction. Lookingup its de�nition, we magically get the following type rules for streams.A ` base : �; A ` step : � ! � � �A ` coinduct(base,step) : stream(�)A ` e : stream(�)A ` car(e) : � ; A ` cdr(e) : stream(�)The coinduct operator constructs streams|not inductively, but coinduc-tively. And we might as well use the term cocounting to describe the actionsof car and cdr.Similar (co)induction principles are de�ned for arbitrary (monotone)recursive types.Exercise 5.7 Use coinduct to construct the stream (0,1,2,3,4,. . . ). 2Exercise 5.8 De�ne the type rules for �nite and in�nite binary trees. 26 Polymorphic TypesThe expression below seems at a �rst glance quite reasonable, but it is nottypable. It is in fact an example of slack in our type system.13



let f = fun(x)cons(x,nil)endin pair(f(0),f(true))The problem is of course that we must assign a single type to the functionf. We need instead the usual notion of polymorphism. For this purpose weextend our type schemes as follows.Types ::= Int j Bool j list(Types) j Types ! Types j VarVar ::= � j � j . . .Poly ::= 8 Var.Poly j TypesThe polymorphic type 8�:�! list(�) describes a function that will acceptan argument of any type and yield as result a list of values of that giventype. This is exactly the type we want for the function f above. We willonly allow polymorphism in connection with let-de�nitions.The use of a universal quanti�er hints at another connection with logic.Indeed, the types rules for polymorphic functions are those from logic,except that the layer of syntax is rather thicker this time.A,f : � ` e1 : �; A,f : 8��:� ` e2 : �A ` let f = e1 in e2 end : � �� 62 AA ` f : 8��:�A ` f : � � � �Here �� indicates several type variables. The requirement �� 62 Ameans thatA must not contain any assumptions about ��. The requirement � � �means that � is a specialization of �, as described in Section 4 (exceptthat only variables from �� may be substituted). This type system wasintroduced by Milner [7] in 1978.Exercise 6.1 What is the connection with logic? 2Here is a formal derivation showing that the earlier example expression istypable. Unfortunately it is so large that we must cut it into several pieces.
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Af:�!list(�) ` fun(x). . . end : �!list(�) Bf:8�.�!list(�) ` pair(. . . ) : list(Int)�list(Bool)` let f = fun(x) cons(x,nil) end in pair(f(0),f(true)) : list(Int) � list(Bool)The A -piece is concerned with typing the function f.f : �!list(�), x : � ` x : � f : �!list(�), x : � ` nil : list(�)f : �!list(�), x : � ` cons(x,nil) : list(�)The B -piece is concerned with typing the pair-expression.f : 8�.�!list(�) ` f : 8�.�!list(�)f : 8�.�!list(�) ` f : Int!list(Int) f : 8�.�!list(�) ` 0:Intf : 8�.�!list(�) ` f(0) : list(Int) CExercise 6.2 Complete the C -piece and verify each step in the abovederivation. 2Why is the requirement �� 62 A necessary? If we remove it, the function:fun(x)let f = x in fendcan be shown to have type scheme � ! Int. This is manifestly false, sincethe function acts as the identity. The purported derivation is as follows.x : �, f : � ` x : � x : �, f : 8�:� ` f : 8�:�x : �, f : 8�:� ` f : Intx : � ` let f = x in f : Int` fun(x) let f = x in f end : � ! IntExercise 6.3 Catch the error in the above derivation. 2Exercise 6.4 What is the corresponding logical fallacy? 2
15



7 Polymorphic Type InferenceThe task of type inference seems to become vastly more complex with theintroduction of the polymorphic let-construct. However, there is certainly avery na��ve idea that we can fall back on. Using a simple syntactic transfor-mation that unfolds let-de�nitions, we can expand a polymorphic programinto an equivalent monomorphic version. For the expression:let f = fun(x)cons(x,nil)endin pair(f(0),f(true))we obtain the equivalent version:pair0BBBBBB@ let f = fun(x)cons(x,nil)endin f(0) ; let f = fun(x)cons(x,nil)endin f(true)
1CCCCCCAwhich certainly is typable in the monomorphic type system. The onlydisadvantage is that the expanded version of an expression may be expo-nentially larger than the original.Exercise 7.1 Find an example where a program of size O(n) expands toone of size 
(2n). 2Exercise 7.2 Argue that the expanded version is typable in the monomor-phic system if and only if the original version is typable in the polymorphicsystem. 2Can we do better than this exponential algorithm? An obvious idea is touse a form of dynamic programming where the principal type schemes oflet-de�nitions are saved, so that they need only be computed once. This isessentially the Damas-Milner [1] algorithm from 1982 which is implementedin the ML system. For almost ten years it was folklore that this algorithmhad low polynomial time complexity. This also corresponded well with thepractical experiences of ML programmers.This belief was thorougly shattered when Kfoury, Tiuryn, and Urzyczyn[4] and Mairson [6] in 1989 simultaneously proved that the polymorphictype inference problem is complete for exponential time. This means thatany correct implementation must use an exponential amount of time on16



in�nitely many inputs. His proof is an awesome construction of an MLprogram that directly simulates a given deterministic Turing machine run-ning in exponential time, and where typability of the program coincideswith acceptance by the machine. PSPACE-hardness alone was proved byKanellakis and Mitchell [3] earlier in 1989.In spite of this nasty result, implementations of the ML language seemto be running very well in everyday life. But danger lurks beneath thesurface. As a concrete example, regard the following ML program.fun pair x y = fn z => z x y;let val x1=fn y => pair y y inlet val x2=fn y => x1(x1(y)) inlet val x3=fn y => x2(x2(y)) inlet val x4=fn y => x3(x3(y)) inx4(fn z=>z)endendendend;Its principal type scheme is:(((((((((((((((('a -> 'a) -> ('a -> 'a) -> 'b) -> 'b) -> ((('a -> 'a) ->('a -> 'a) -> 'b) -> 'b) -> 'c) -> 'c) -> ((((('a -> 'a) -> ('a -> 'a)-> 'b) -> 'b) -> ((('a -> 'a) -> ('a -> 'a) -> 'b) -> 'b) -> 'c) -> 'c)-> 'd) -> 'd) -> ((((((('a -> 'a) -> ('a -> 'a) -> 'b) -> 'b) -> ((('a-> 'a) -> ('a -> 'a) -> 'b) -> 'b) -> 'c) -> 'c) -> ((((('a -> 'a) ->('a -> 'a) -> 'b) -> 'b) -> ((('a -> 'a) -> ('a -> 'a) -> 'b) -> 'b) ->'c) -> 'c) -> 'd) -> 'd) -> 'e) -> 'e) -> ((((((((('a -> 'a) -> ('a ->'a) -> 'b) -> 'b) -> ((('a -> 'a) -> ('a -> 'a) -> 'b) -> 'b) -> 'c) ->'c) -> ((((('a -> 'a) -> ('a -> 'a) -> 'b) -> 'b) -> ((('a -> 'a) -> ('a-> 'a) -> 'b) -> 'b) -> 'c) -> 'c) -> 'd) -> 'd) -> ((((((('a -> 'a) ->('a -> 'a) -> 'b) -> 'b) -> ((('a -> 'a) -> ('a -> 'a) -> 'b) -> 'b) ->'c) -> 'c) -> ((((('a -> 'a) -> ('a -> 'a) -> 'b) -> 'b) -> ((('a -> 'a)-> ('a -> 'a) -> 'b) -> 'b) -> 'c) -> 'c) -> 'd) -> 'd) -> 'e) -> 'e) ->'f) -> 'f) -> ((((((((((('a -> 'a) -> ('a -> 'a) -> 'b) -> 'b) -> ((('a-> 'a) -> ('a -> 'a) -> 'b) -> 'b) -> 'c) -> 'c) -> ((((('a -> 'a) ->('a -> 'a) -> 'b) -> 'b) -> ((('a -> 'a) -> ('a -> 'a) -> 'b) -> 'b) ->'c) -> 'c) -> 'd) -> 'd) -> ((((((('a -> 'a) -> ('a -> 'a) -> 'b) -> 'b)-> ((('a -> 'a) -> ('a -> 'a) -> 'b) -> 'b) -> 'c) -> 'c) -> ((((('a ->'a) -> ('a -> 'a) -> 'b) -> 'b) -> ((('a -> 'a) -> ('a -> 'a) -> 'b) ->'b) -> 'c) -> 'c) -> 'd) -> 'd) -> 'e) -> 'e) -> ((((((((('a -> 'a) ->('a -> 'a) -> 'b) -> 'b) -> ((('a -> 'a) -> ('a -> 'a) -> 'b) -> 'b) ->17
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8 Polymorphism and RecursionWe have only allowed polymorphism in let-de�nitions, and even there wehave some limitations. For example, the following reasonable expression isnot typable|we have some slack in the polymorphic type system.let f = fun(i)fun(x)if iszero(i) then xelse f(pred(i))(pair(x,x))�endendin f(87)(true)Exercise 8.1 Argue that the above expression is not typable in the poly-morphic system. 2Exercise 8.2 What is the result of the above expression? 2There are also less contrived examples showing that this restriction is apractical nuisance. The general problem is that a function is only poly-morphic from the outside, so to speak. However, this can be remedied bya minor change in our type rule.A,f : 8��:� ` e1 : �; A,f : 8��:� ` e2 : �A ` let f = e1 in e2 end : � �� 62 AExercise 8.3 What has been changed in the type rule? 2This is the Milner-Mycroft [8] type system from 1984. A correspondingtype inference algorithm must necessarily be more obscure than the earlierone, since the na��ve expansion of let-de�nitions may now yield in�nitemonomorphic versions. Yet, implementations did exist for versions of theML language. Thus it caused some concern when Henglein [2] and Kfoury,Tiuryn, and Urzyczyn [5] in 1990 simultaneously proved that the typeinference problem is in fact undecidable.The problem seems to obey the laws of cartoon physics, since peoplewere perfectly happy with the proposed implementations before the unde-cidability was known. The reason is that the semi-algorithm terminates for20



all typable expressions and only fails to terminate for a very small fractionof untypable expressions.9 Higher Type SystemsBy no means does the development of type systems stop here. There areat least three good reasons to push on.Firstly, there is always more slack to pick up. Many interesting typerules have been motivated by annoying examples of unfairly rejected ex-pressions. One example is the conjunctive type written ` e : � ^ � , whichmeans that e simultaneously has types � and � .Exercise 9.1 Suggest rules for conjunctive types. How do they di�er fromproducts? 2Polymorphism may also be included as an orthogonal feature in the typesystem. Thus types may look like: 8�:� ! (8�:� ! � ! �) ! � Thisis the system F2 studied by Girard and Reynolds. Such extensions arenaturally beyond the reach of type inference.Exercise 9.2 Suggest an expression that could have the polymorphic type8�:�! (8�:� ! � ! �)! �. 2Secondly, we might stray from a purely functional language. Many e�ortshave been directed towards incorporating non-functional features into ML-style type systems. For example, the mixture of polymorphism and pointersis very complicated and often requires subtle type rules.Exercise 9.3 What is wrong with these simple rules for pointers (assumethe obvious semantics for the expressions)?A ` e : �A ` ref(e) : pointer(�) A ` e: pointer(�)A ` deref(e) : �A ` x : pointer(�); A ` e : pointer(�)A ` x:=e : pointer(�)2Thirdly, it is possible to have types that capture more of the semanticsof expressions. This is done by emphasizing the logical connection andbuilding type systems so rich that one can de�ne e.g. a type whose valuesare just the sorting functions on integer lists. At this point type checking21



is equivalent to program veri�cation and, hence, undecidable. This meansthat each programmust include a hand-written but compiler-checked proofof its type-correctness.References[1] Luis Damas and Robin Milner. Principal type schemes for functionalprogramming. In 9th Symposium on Principles of Programming Lan-guages, 1982.[2] F. Henglein. Type inference with polymorphic recursion. ACM Trans-actions on Programming Languages and Systems, 15, 1993.[3] P. Kanellakis and J. Mitchell. Polymorphic uni�cation and ML typing.In 16th Symposium on Principles of Programming Languages. ACMPress, January 1989.[4] A. J. Kfoury, J. Tiuryn, and P. Urzyczyn. Ml typability isDEXPTIME-complete. In 15th Colloquium on Trees in Algebra andProgramming. Springer-Verlag, May 1990.[5] A. J. Kfoury, J. Tiuryn, and P. Urzyczyn. Type reconstruction in thepresence of polymorphic recursion. ACM Transactions on Program-ming Languages and Systems, 15, 1993.[6] Harry G. Mairson. Decidability of ML typing is complete for de-terministic exponential time. In 17th Symposium on Principles ofProgramming Languages. ACM Press, January 1990.[7] Robin Milner. A theory of type polymorphism in programming. Jour-nal of Computer and System Sciences, 17, 1978.[8] A. Mycroft. Polymorphic type schemes and recursive de�nitions. In6th International Conference on Programming. Springer-Verlag, 1984.[9] M. S. Paterson and M. N. Wegman. Linear uni�cation. Journal ofComputer and System Sciences, 16, 1978.[10] J. A. Robinson. A machine-oriented logic based on the resolutionprinciple. Journal of the ACM, 12, 1965.[11] M. Wand. A simple algorithm and proof for type inference. Funda-mentae Informaticae, X, 1987. 22



10 ProblemsProblem 10.1 Give a formal derivation showing that the expression:let Double = fun(x)if iszero(x) then 0else succ(succ(Double(pred(x))))�endin Double(succ(0))has type Int.Problem 10.2 Infer the principal type scheme for this expression:fun(x)fun(y)cons(car(x),y(true))endendProblem 10.3 List all constant expressions having these polymorphictypes. 8�:�8�:list(�)8�:�! �! �8�:8�:(�! �)! (�! �)! �! �Problem 10.4 Oyster of the week. Here are the rules for the existentialquanti�er in logic.A ` �[� � ]A ` 9�:� A ` 9�:�; A,� ` �A ` � � 62 A;� 62 �The notation �[�  � ] means � with all occurrences of � substitutedwith � . Explain the logical content of these rules. Introduce an existentialquanti�er into our type system, along with a reasonable set of expressions,and recognize an important concept from programming languages.
23



A Selection of SolutionsExercise 3.1 It allows the type checker to perform lookups in the symboltable. 2Exercise 3.2 In the judgment for the expression being let-de�ned, weinclude f in the symbol table: A,f : � ` e1 : �. 2Exercise 4.1 It is a relation that is reexive and transitive, but fails tobe anti-symmetric, e.g. � � � and � � � but � 6= �. 2Exercise 4.2 � � f�; �; �! �; �! �; (�! �)! list(�)g� � f�; �; �! �; �! �; (�! �)! list(�)g�! � � f�! �; �! �; (�! �)! list(�)g2Exercise 4.3 Simply compose the substitutions. 2Exercise 4.4 Two subexpressions with identical syntax may yield di�erenttype variables, such as e.g. [[nil]]. However, from the context of each typeconstraint it is clear to which subexpression a type variable corresponds.2Exercise 4.8 The two constraints [[x]] = Int and [[x]] = list([[car(x)]]) arecontradictory. 2Exercise 5.1 The rules for inferring types correspond to valid inferencerules of logic. 2Exercise 5.3 A function with type scheme (�! �)! (� ! �) must looklike: fun(x)fun(y)eendendwhere e has type �. An exhaustive search through the type rules convincesus that we cannot �nd such an expression. The fact that an expression hastype (Int ! Bool) ! (Bool ! Int) is not a problem, since this is merelyone instance of the type scheme. 224



Exercise 5.4 pair(e1,e2) : [[pair(e1,e2)]] = [[e1]]� [[e2]]fst(e) : [[e]] = [[fst(e)]]� �snd(e) : [[e]] = � � [[snd(e)]]left(e1) : [[left(e1)]] = [[e1]] + �right(e2) : [[right(e2)]] = � + [[e2]]decide(e,e1,e2) : [[ei]] = [[e]]! [[decide(e,e1,e2)]][[e]] = � + �[[e1]] = �! [[decide(e,e1,e2)]][[e2]] = � ! [[decide(e,e1,e2)]]2Exercise 5.5 The formula ((A ) B) ) A) ) A is a classical tautologybut translates into an empty type. 2Exercise 5.6 We can only solve this problem, if we allow an expressionerror that generates a run-time error. Then we havecar = induct(error,fun(x) snd(x) end)cdr = induct(error,fun(x) fst(x) end)2Exercise 5.7 (0,1,2,3,4,. . . ) = coinduct(0,fun(x) pair(succ(x),x) end. 2Exercise 5.8 Let �nbin(�) be the type of �nite binary trees with � -valuesat all nodes. We then have:A ` e : � ; A ` e1 : �nbin(�); A ` e2 : �nbin(�)A ` bin(e,e1,e2) : �nbin(�)A ` base : �; step : � � � � � ! �A ` induct(base,step) : �nbin(�) ! �Let infbin(�) be the type of in�nite binary trees with � -values at all nodes.We then have: A ` base : �; step : � ! � � � � �A ` coinduct(base,step) : infbin(�)A ` e : infbin(�)A ` root(e) : � ; A ` leftson(e) : infbin(�); A ` rightson(e) : infbin(�)2 25



Exercise 6.1 The logical rules for universal quanti�cation are:A ` �A ` 8�:� � 62 A A ` 8�:�A ` �[� � ]2Exercise 6.3 It is not legal to make f polymorphic in � since we have theassumption x : �. 2Exercise 7.1 The ML program on page 17 is like this (with n = 4). 2Exercise 7.2 In both approaches we are allowed to choose fresh typevariables for the types of the let-de�ned expressions. 2Exercise 8.1 The type variable [[x]] must satisfy [[x]] = [[x]]� [[x]], which isnot possible. 2Exercise 8.2 It computes a complete binary tree of height 87 with thevalue true at each leaf. 2Exercise 8.3 We have universally quanti�ed the type of f in the judgmentof e1. 2Exercise 9.3 The type rules allow the typing of bad expressions, such as:let r = ref(fun(x) x end)inlet x = r:=ref(fun(x) succ(x) end)inderef(r)(true)This is type correct, since r is given type 8�:pointer(�! �) and thus canbe instantiated to both pointer(Int!Int) and pointer(Bool!Bool). How-ever, its computation leads to succ(true). 2Problem 10.3 There are no constant expressions of type 8�:�; for 8�:list(�)there is only nil; for 8�:� ! � ! � we have two functions: fun(x) fun(y)x end end and fun(x) fun(y) y end end; �nally, for 8�:8�:(� ! �)! (� !�)! �! � there are in�nitely many functions of the form: fun(f) fun(g)fun(x) f(gi(x)) end end end for i > 0. 2
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Problem 10.4 If we can prove � with any speci�c value � in place of thevariable �, then � is a witness to the truth of 9�:�. Conversely, if thisexistential quanti�cation holds and we can prove � using � but withoutany assumptions on �, then we can conclude � .This corresponds to abstract data types, where the implementationtype is hidden. We only need to know that is exists! The type rules are asfollows:A ` e : �[� � ]A ` abs(e) : 9�:� A ` e1 : 9�:�; A,x : � ` e2 : �A ` use x = e1 in e2 : � � 62 A;� 62 �The side conditions exactly state that the implementation type is hiddenduring use. The type of an abstract implementation of a stack of booleanscould be:9�:(Int! �)� (�! Bool)� (�� Bool! �)� (�! �� Bool)corresponding to the stack operations Init, Empty, Push, and Pop. In aconcrete implementation the hidden type � could be list(Bool).A polymorphic, abstract stack would then have the type:8�:9�:(Int! �)� (�! Bool)� (� � � ! �)� (�! � � �)2
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