
Exokernels, Protocol implementation and ErlangBj�orn Knutsson�(Bjorn.Knutsson@DoCS.UU.SE) Per Gunningberg�(Per.Gunningberg@DoCS.UU.SE)January, 1999Technical Report DoCS 103Uppsala University, Dept. of Computer Systems,Box 325, S-751 05 Uppsala, Sweden.AbstractIn this report, we will discuss how ideas in the experimental operating system architecturescalled exokernels can be used to improve performance of the Erlang systems and programswritten in Erlang, with an emphasis on protocol implementations written in Erlang. We willpresent experiences and conclusions.1 IntroductionThe current \breed" of traditional operating systems abstract and multiplex hardware resourcesin a way that will work for almost all possible applications. Often portability is the objective |they try to provide abstractions that are not speci�c to a certain implementation of e.g. harddisks or network cards. They typically do not stop there, they also implement additional generalabstractions such as �le systems, virtual memory systems and protocol stacks. The abstractionsprovided by an OS are often integrated with safe multiplexing of the hardware resources in a suchway that the abstractions cannot be circumvented without losing the safe multiplexing. Safety isan important issue for operating systems because we do not want one application to be able crashothers, or indeed the whole system.The generality of traditional OSs means that operating systems tend to abstract away the un-derlying hardware semantics, e�ectively hiding them from the applications. This has the greatadvantage that applications become portable across a wide array of di�erent hardware with dif-ferent underlying semantics. It does, however, also have the unfortunate disadvantage of makingperformance optimized implementations of applications hard and/or expensive to implement.The abstractions provided are also a package deal, we cannot pick and choose the parts we want orneed, instead we must either accept the whole package, or start from scratch with little or no helpfrom the kernel. Furthermore, the solutions that are open once we reject the abstraction packageoften have unwanted side e�ects.A new approach in operating systems architectures are the Exokernels[13, 25]. They attemptto solve the problems with abstractions hindering optimizations by reducing or eliminating OSabstractions not explicitly needed for safe multiplexing of the underlying hardware. An exokernelwill export all information that is safe to export to the application, and also allow applicationsto directly administer its own resources and tailor its own abstractions. This means that OSabstractions will be implemented in user space either as part of the application or, more commonly,as a separate library, a library operating system.Three implementations of exokernels are known at this time: Aegis[13], created for the MIPS R3000processor (Digital DECstation), Glaze[27], created for the Fugu multiprocessor (MIT research�Supported by Ericsson CSLAB/SARC 1

processor), and XOK[25], created for the Intel x86 processor family (Pentium, Pentium Pro andPentium II based PC-compatibles).It is our belief that for exokernels to be viable, it must be shown that exokernels will not incura penalty for non-specialized applications, will deliver on the promises of better performance forspecialized applications and �nally, and perhaps most important, it must be shown that is ispossible to improve the performance of existing applications without requiring a redesign andrewrite, i.e. to run on a library OS implementing the API of a traditional OS.The aim of our research is to determine to what extent exokernel ideas are useful in a few typ-ical and representative applications. Some applications have already been explored by the MITExokernel team | the Cheetah (see section 3.2) web server implementation have shown that ex-ploiting domain speci�c knowledge can substantially improve performance for a resource intensiveapplication.To investigate the e�ects of moving a large system to an exokernel, and also to get an interest-ing platform for further experiments, we have ported an implementation of the concurrent func-tional language Erlang[5] from UNIX to the library OS ExOS[13, 25, 33] running on the exokernelXOK[25]. We have focussed our e�orts on how to enable e�cient protocol implementations writtenin Erlang.Erlang combines the best and worst of scenarios for an exokernel: On one hand, any performancegain achieved on the Erlang system by exploiting exokernel features will bene�t all programswritten in Erlang. On the other hand, we should not make changes to the Erlang implementationthat are not easily back-ported or maintained in the mainstream version, neither can we modifythe semantics of the language to accommodate a more e�cient implementation.The organization of this report is as follows: In section 1 an introduction to the problems ispresented. In section 2, the basics of exokernels are presented. In section 3, some of the experimentsof the MIT exokernel team are presented. We discuss their results and draw some conclusions.We also present one of our early experiments and our conclusions. Section 4 presents how wecan exploit knowledge of resource utilization to improve applications, and speci�cally the Erlangsystem. We present a strategy for improvement, and some speci�c ideas for improvements that webelieve would be bene�cial for Erlang and protocol implementations written in Erlang. Finally,in section 5 we present our results and conclusions, and a road map how work to improve Erlangshould proceed.2 ExokernelsThe exokernel operating system architecture is based on the idea of not providing any abstractionsnot needed for safe multiplexing of hardware resources. All other abstractions must be implementedin user space.Basically, an exokernel can be said to provide low-level device drivers and low-level multiplexingof hardware resources, such as scheduling of the processor, low-level memory and disk allocation,network multiplexing etc. Along with multiplexing, it also provides access control for resources.The functionality provided by the exokernel can then be used to build traditional operating systemfunctionality such as communication protocol stacks, �le systems, virtual memory systems etc.Removing standard OS abstractions may seem like a step backwards to pre-OS days, but actu-ally the most useful part is kept: safe multiplexing. Just as applications today are linked withruntime libraries, they could also be linked with an operating system module. This will allowthe applications to retain the bene�ts of the traditional abstractions | wide source portabilityacross di�erent platforms, while still allowing exibility in modifying abstractions in the operatingsystems without a�ecting other applications.ExOS[13, 25, 33] is the default library operating system running on top of the exokernels Aegisand XOK. ExOS implements most of the functionality and API of a BSD 4.4 UNIX system. ManyUNIX applications can be compiled and linked with ExOS with no more changes than when movingthem between UNIX dialects.Linking operating system modules to the applications has the advantage of allowing the program-2

mer to modify or replace parts of the OS modules | the library operating system | withouta�ecting other applications. It also means that an application programmer can choose a pre-madelibrary operating system, like ExOS, which has implementations of OS abstraction that �ts herapplication. Functions in the library OS can then be modi�ed or overridden with specializedimplementations of performance critical abstractions.Many ideas of Exokernels can be traced to the micro kernel architectures such as Mach[19][36,Chapter 20]. Basically Exokernels are the micro kernels taken one step further towards less ab-stractions and more responsibility for user level code to manage the hardware resources.

Hardware

Exokernel

U
N

IX

V
M

T
C

P/
IP

W
eb

O
S

U
N

IX
T

hr
ea

ds

E
m

ac
s

W
in

32
W

or
d

C
on

su
m

er

Pr
od

uc
er

se
rv

er
W

W
W

Figure 1: Applications running on top of an exokernel. The libraryoperating systems provide di�erent abstractions to the di�erentapplications.In �gure 1, an exokernel based system is shown. It is running two standard applications, Emacs andWord, on top of two di�erent library operating systems that provides the API and functionality oftwo common operating system, UNIX and Win32. It runs a specially written WWW Server that isrunning on top of a custom made library operating system. Finally, a threaded Consumer/Producerapplication is running on top of a UNIX library OS that has been extended with customized threadsupport.All four applications have their own library operating system that implements the OS abstractionsneeded by the application. An application and a library operating system executes in user space,i.e. outside the kernels protection domain, in the context of the same process and protectiondomain1.Having most of the OS in user space has some interesting consequences with respect to performance.A call from an application to a OS service is no longer more expensive than a function call, becauseit is just a function call | no system context switch is necessary. Also, the parameters suppliedin an OS call need not to be checked as thoroughly, since an OS crash will only a�ect the callingapplication, not the whole machine. Also, any resource accessible to the OS can be assumed tobe accessible to the application, reducing the need for access controls. Once the resource has beenallocated to the application, the kernel is not involved in the management of the resource until itis deallocated.There is, however, a price to pay for this: Although some OS functions can be handled withoutneeding to call the exokernel, others may cause multiple calls to the kernel when the OS function1The exokernel papers sometimes discuss environments, the context in which a process executes, but will oftenuse the words environment and process interchangeably. 3

is made up of several primitive exokernel operations. Even though calls to the exokernel are moree�cient than kernel calls in traditional operating systems, this situation requires careful design inorder to minimize the number of exokernel calls needed.One strategy to minimize the number of exokernel calls required is to directly expose kernel struc-tures, e.g. by mapping them read-only into the applications address space, to avoid calls toexamining the status of a resource. This means that calls are only needed to modify the state.Keeping the exokernel access control management e�cient is also essential, and is achieved byusing a simple capability model. Capabilities to a resource is given at allocation time. Capabilitiesare thereafter shared and managed by the processes.3 Previous exokernel experimentsThe MIT exokernel team have explored possibilities o�ered by exploiting exokernel ideas. Belowwe will present some of their most important results concerning library OS and speci�c applicationsalong with a discussion about the results. We will �nish with one of our early experiments andsome conclusions from that experiment.3.1 ExOSExOS[13, 25, 33] is a library UNIX and it implements most of the functionality of an OpenBSD(BSD 4.4) system. Most UNIX applications can be compiled and run on ExOS.The primary goal of the �rst version of ExOS was to show that a library OS can run legacyapplications on top of an exokernel[33].It was designed to be simple, exible and give performance comparable to normal UNIX system.Speed of implementation was very important, so given a choice between a simple or a complex bute�cient algorithm, the simple algorithm was chosen.Flexibility and clean interfaces between modules was also important, since the code was meant tobe customized or replaced for speci�c applications. In the FLUX OSKit[17, 16], these ideas aretaken even further.Finally, performance was important, since if the functionality can only be provided at a noticeableperformance decrease, this would be a strong argument against an exokernel-based solution.The measured benchmarks of ExOS 1.0 is not quite on par with OpenBSD running on the samehardware. However, most of the cases where ExOS is lagging behind is believed to be due to thechoice of non-optimized algorithms and the lack of general optimization[33].ExOS 1.0 does not provide the full semantics of OpenBSD | parts of it has been sacri�ced toenhance exibility. Other parts have been left out to because the goal was not complete compati-bility | only the ability to run most common programs. Finally, some parts are implemented ina unsafe manner, both in terms of security and fault isolation, to simplify the implementation.The goals for version 2.0 of ExOS are to deal with those areas left open by version 1.0: Betterprotection and fault-isolation, better security, better performance and more compatibility withUNIX.3.2 CheetahCheetah is a HTTP-server that has been designed to take advantage of exokernels to provideperformance. The optimizations done in Cheetah are not dependent on the hardware architecture,Cheetah[26, 25] has been tested and benchmarked on both the Aegis[13] (DECstation/MIPS) andthe XOK[25] (PC/Intel x86) exokernels, with similar results.The Cheetah server running on an exokernel outperforms other comparable servers. For small (<=1KByte) requests it up to eight times faster than the best comparable performance on OpenBSD4

and for large requests, Cheetah is limited by available bandwidth rather than by the server hard-ware. Cheetah delivers over 29.3 MByte/s with the CPU idle over 30% of the time.Cheetah is an application on top of the library OS component XIO, an extensible I/O libraryfor implementation of fast servers. The purpose of XIO is to allow programmers of I/O intensiveapplications to exploit knowledge about I/O resource usage.Cheetah has been benchmarked against the Harvest[8] proxy cache, and systematically outperformsit on every test. The Harvest[8] proxy cache is a HTTP server which has been shown to outperformmany other contemporary HTTP servers on traditional operating systems.The Cheetah HTTP server is illustrative, because it achieves good performance via a fairly smallnumber of easily understood techniques:Co-location of related �les Files that are related are co-located on the disk. This means thatif an HTML-document consists of a base document and two pictures, these three �les will beplaced on adjacent blocks in the order they are most likely to be requested. For non-cachedpages, this is show to double the throughput of the disk subsystem[25].Packet merging The HTTP-server is integrated with the TCP stack, which means that if theserver knows that it will produce a response to a request, it can hold o� sending the ACK forthe packet containing the request until the server responds, and piggy-back the ACK on theresponse. For small documents, this alone can reduce the number of packets sent by 20%[25].Avoiding memory copies and CPU touching The HTML documents in Cheetah are storedas \canned" responses, complete with HTTP-response headers and pre-computed TCP check-sums. This means that only a few bytes in the TCP/IP header needs to be changed.The data is sent directly from the disk bu�ers, which eliminates the need to copy data fromthe disk bu�ers to the network bu�ers before sending them. Transmitted packets which arestill un-acknowledged are locked in the �le bu�er cache until they are acknowledged, whicheliminates the need for an explicit retransmission pool.3.3 C-FFSThe Co-locating Fast File System (C-FFS)[18] is a �le system implemented as a user level library.It provides all the protection and guarantees needed to implement UNIX �le semantics, while stillproviding signi�cant exibility to user level software.The C-FFS has been ported to OpenBSD, making it possible to compare the performance gaindue to the �le system design as well as to gains due to the underlying operating system.In a set of benchmarks using unmodi�ed UNIX programs such as cp, rm, diff, gzip, the bench-marks running on OpenBSD and C-FFS generally come out ahead of OpenBSD running with thestandard �le system. When the same benchmarks are run on the XOK[25] exokernel with C-FFSthe results are typically as fast or faster compared to the OpenBSD/C-FFS combination.The MIT exokernel team are keen to point out that while it is possible to realize similar improve-ments with traditional operating systems, as witnessed by the OpenBSD implementation of C-FFS,the porting of C-FFS to OpenBSD took more e�ort than it took to both design and implementit on XOK in the �rst place[25]. This should be considered as an indication that the exibil-ity of exokernels reduces the e�ort needed to implement new approaches compared to traditionalsystems.3.4 XCPThe standard UNIX cp program is a lot less e�cient than it could be. The MIT exokernel teamhas written an optimized �le copy programs called xcp that gives an indication of how seeminglysimple programs can be improved.Copying �les from one place to another should only be a matter of reading the data from the sourcelocation and then write it to the destination. The dominating factor a�ecting the performance of5

a copy should be the speed of the disks I/O operations when it is done properly. In practice, itturns out that xcp is three times faster than the standard UNIX cp command.

Disk1 Disk2

Disk buffer

DMA
DMA

XCP

Figure 2: XCP copies �les from one disk to another with DMAI/O, not requiring the CPU to ever touch the data being copied.The di�erence between the two is that xcp exploits the low-level disk interface available to it.Compared to cp it removes arti�cial ordering constraints, improves disk scheduling through largeschedules, eliminates data touching by the CPU and performs all disk operations asynchronously.In �gure 2, the idea is presented. xcp only issues read and write DMA operations.When operating on a set of �les, xcp will construct a read schedule by sorting the disk blocks of all�les and issue large, asynchronous disk reads using this schedule. While waiting for the �le dataread operations to complete, xcp will allocate inodes and disk blocks for the destination �les andcreate the �les. As the read operations complete, it issues write operations to write the blocks ofthe �les to the destination directly from the disk bu�ers it previously read them to. The CPU isonly involved in the creation of the inodes and the disk block allocations, the rest is just DMA.The normal cp program could gain some of the bene�ts of xcp by issuing parallel asynchronousreads and hope that the disk device driver will merge read the block reads from the di�erent �les.However, the big gain of eliminating memory copies cannot be realized.3.5 Binary emulationThe MIT exokernel team has written a partial OpenBSD binary emulator for XOK to allowOpenBSD binaries to be run directly on an exokernel.Binary emulation is gaining in popularity. SCO is claiming that their UNIX can run unmodi�edLinux binaries via the lxrun package[34]. The reverse, i.e. Linux running SCO UNIX binaries,has been true for many years via iBCS[11] support. In the same vein, Sun has announced Linuxbinary compatibility for their Solaris operating system[30].The XOK OpenBSD emulator is running side by side in user space with the application, whichmeans that it needs no special privileges or changes to the kernel. The emulator currently onlysupports 90 out of 155 OpenBSD system calls, but has successfully run big applications such asMosaic.The performance is comparable to running the program natively, and in some cases it is evenfaster, due to the mapping of OpenBSD system call to cheaper exokernel implementations of thesame functionality.
6

3.6 DiscussionWhen handling resources, the application programmer knows what he is trying to achieve. E.g.,in a web server like Cheetah, the programmer knows that he is reading a block of data that willimmediately be sent over the network to another machine. Typically, the OS will read data into akernel disk bu�er and then copy the contents to a user bu�er. The programmer will then proceedto direct the networking code to send the contents of this bu�er, which will probably be copiedto a kernel network bu�er and then sent by the network device. But the programmer know thatmoving the data to the user bu�er is unnecessary | it could have been sent directly from thekernel disk bu�er since the data did not need to be touched by the application.The work done on the optimized �le system C-FFS shows that by modifying just a single componentin a system, in this case the �le system, gains can be made for all I/O intensive applications usingthis library OS. This improved disk handling was achieved because exokernels export low-level diskresources and allow programmers to implement her own �le system abstraction within the libraryOS.Some things should however be noted with the examples that are discussed above:� Cheetah has been designed speci�cally with an Exokernel in mind. It gives very good per-formance, but the question we should ask ourselves at this moment is if this is a typicalapplication that will bene�t from exokernels? Which applications can be improved like this?We believe that the answer is \no" and that Cheetah is an extreme case where exokernelshave an edge and that are di�cult to duplicate on traditional systems.Also, if a complete rewrite of an application is required to realize these improvements, howmuch of these improvements are just due to the application code being rewritten? Cheetahrunning on a traditional OS performs as well, or better, than the best traditional web serverit is compared with.� The C-FFS �le system can and has been implemented on a traditional operating system.Even on a traditional OS, it performs better than the �le systems it is compared to. Again,how much is due to a better design, and how much is due to exokernel features?But as pointed out, what's interesting with C-FFS is that implementing it does not requirespecial privileges in an exokernel.3.7 Incremental changesThe application and library OS base from the MIT exokernel team is quite large. Their ambitionhave been to design new applications that speci�cally exploit exokernel features.We believe redesigning and re-implementing is too expensive. Incremental tweaking can, however,be motivated if the gain is su�cient to motivate the e�ort. We have experimented with some suchminor modi�cations, not so much for the actual gains, but rather to see how much e�ort is neededto realize the gains. It turns out that many of the really major improvements would require thatthe design of the involved programs are changed.It is a broadly accepted fact that applications often are designed based on the operating systemand hardware they were �rst implemented on. This is typically most noticeable when porting aprogram from one platform, e.g. UNIX, to another that has a dissimilar architecture, e.g. MSWindows. Since most traditional operating systems have a fairly similar approach to abstraction,i.e. they will hide as much as possible of the underlying hardware semantics, it is not surprising thatmost applications originally written for a traditional OS will ignore most low-level details. Whenmoving such an application to an exokernel architecture, it is hard to suddenly start exploiting thenew features, because the necessary low-level knowledge that the applications programmer mayhave had, has not been incorporated in the application, since it could not be used on the system itwas originally written for. The work needed to afterwards track this information and exploit maybe on par with redesigning and re-implementing the application.In one of the �rst experiments we2 performed on an exokernel, we changed the semantics of NFS2This experiment was done in collaboration with Thomas Pinckney and H�ector Brice~no of the MIT exokernelteam. It was done more as an exercise in modifying the library OS, than for the actual performance optimization.7

writes to allow caching of writes. We took this slightly altered NFS and linked it with an applicationA which is used in a pair with a second application B that reads the �le resulting from the �rst.By using the modi�ed version of A, the execution time of application B is reduced by almost50%. The real solution to the above problem would be to alter applications A and B so that theycommunicated via a pipe instead, however it may be the case that we do not have the source toapplication B, and then this example may be slightly more realistic.This is a change that could and should not go into the mainstream version of the NFS code, sincewe basically violate the NFS semantics. It is safe for us to do this in this speci�c case, since weexploit the knowledge that the �le has no signi�cance except as input to the next program, andthat any writes performed to this �le by other processes should be ignored.4 Exploiting knowledge of resource utilization to improveErlangOne of the main reason for experimenting with new operating systems is performance. We wantour programs to run faster on the existing hardware. This can be achieved both by improving theimplementations of the features used, but also, and often leading to more dramatic improvements,by better exploiting knowledge of how resources are used. The two forces working against manyperformance optimizations are lack of portability and the extra e�ort needed.In this section we will �rst examine why it is hard to use knowledge based improvements whenprogramming for traditional operating systems using the Erlang system as an example. Then wewill look speci�cally at the implementation of the Erlang system to see what kind of improvementscan be done to it within the exokernel paradigm. Finally, we will list speci�c areas of improvementsrelevant to Erlang that the exokernel paradigm allow us to exploit.4.1 Erlang and some de�nitionsWe are looking at Erlang[5] from the outside, mostly from the perspective of the components\beneath" the Erlang system. This will a�ect the terminology, and may cause some confusion.We have worked primarily with the JAM[4] version of the Erlang system, which is based on a bytecode compiler and an abstract machine that interprets the byte code. There are other versionslike the BEAM[20] version that compiles Erlang to C code, as well as HIPE[24], the JAM-basedJIT-compiling Erlang implementation. We believe that most of what is said in this report is alsoapplicable on the BEAM and HIPE versions.For our discussions we identify three parts of a running Erlang program:1. The application written in Erlang.2. The Erlang interpreter3. The run-time system (RTS). The RTS serves as the interface for the Erlang interpreter tothe underlying OS, and will vary from OS to OS since it bridges di�erences between di�erentOSs. The RTS also provides any OS-like functionality needed by the Erlang interpreter.The actual distinction between the Erlang interpreter and runtime system may vary from oneErlang implementation to another. However, this does not a�ect the conclusions from this work.4.2 Exploiting knowledgeIn a typical multitasking OS, e.g a UNIX system, if a programmer wants to make use of knowledgeof the underlying hardware architecture, she must do one of:� allocate a whole hardware device (e.g a whole disk partition)8

� modify the kernel� give the application privileges to directly access hardwareIn the �rst and last cases, the application will be given exclusive access to the resource becausethere is no low-level multiplexing mechanism. In the last case also means that privileges outsideof the needed may be granted, because the operating system privileges cannot be con�ned to aspeci�c hardware. E.g direct access to hardware under UNIX and similar operating systems meansthat all OS protection can be circumvented, both intentionally or unintentionally.The middle alternative, modifying the kernel, has the unfortunate side e�ect of changing the be-havior not only for the speci�c application, but for all applications. Also, it can only be undertakenif the source code of the OS is available. Finally, it means that the kernel will grow for each ap-plication users want to be able to optimize performance for. Some OS's provide a loadable kernelmodule functionality, but this will not solve the main problems. Since a kernel module will executein kernel context, any malicious code or programming error in it can bring the whole machinedown.All in all, this means that, programmers are left with either the general abstractions, or has tocreate a dedicated system running directly on top of the hardware. With exokernels, a middleground between these two choices is created.
Erlang

OS

Erlang
OS

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
���

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

Exokernel

Hardware

ExOS
UNIX

Application Application

Erlang RTS Erlang RTS

ApplicationApplication

Erlang Erlang Erlang
interpreter

Erlang
interpreterinterpreterinterpreter

Figure 3: Four di�erent approaches for an Erlang application: Dedicated sys-tem, dedicated library OS on exokernel, standard library OS on exokernel andtraditional OS (UNIX) solution.In �gure 3 four alternatives are illustrated with Erlang running on di�erent software platforms onthe same hardware. From left to right we have:1. A dedicated system. On such a system the implementor has full freedom to implement allnecessary abstractions to perfectly �t the Erlang system, but at a very high labor cost sincehe has to do all the work for each new hardware platform.Correctly done, this should result in the most e�cient system possible.2. A dedicated Erlang library OS. With this system, we retain most of the exibility of theprevious case, but still a substantial amount of work needs to be done to to write a dedicatedlibrary OS. The exokernel will, however, provide all the low-level hardware interfaces.3. A standard Erlang system running on top of the UNIX look-alike library OS, i.e. ExOS[33].4. The standard Erlang system running on a UNIX system.9

The two last systems should be virtually identical | it is the same code, compiled for two di�erentUNIX-systems. The only di�erence is that on an exokernel, the Erlang implementor can start witha library operating system mimicking a standard UNIX and incrementally modify the library OSand Erlang runtime system until they are merged and specialized into an Erlang OS. A nice featureis that two versions of the Erlang system, one modi�ed an one unmodi�ed, can be run in parallel,allowing their behavior to be compared to determine if the change changed semantics and to seehow much di�erence the change made. With a dedicated system, two sets of identical hardwarewould be needed to do this.4.2.1 The trade-o�sLooking at �gure 3, the interfaces between di�erent parts of systems has been illustrated as a thindotted line. All four systems have the same hardware API. Similarly, all systems running on top ofan exokernel has the same exokernel API, e.g. XOK or Aegis. ExOS is a 4.4 BSD UNIX look-alike,and thus an application running on a normal UNIX system and on top of ExOS share the same4.4 BSD API.We have tried to illustrate the fact that we do not wish to modify the Erlang interpreter or thelanguage, by showing all four implementations alternatives of Erlang to use the same API fromthe interpreter and upwards. Or put in another way: The white boxes in the �gure are the oneswhere we can make changes with impunity. The darker striped boxes we consider impossible orimpractical to change. While changes are possible in the plain dark boxes, any changes we makehere must not change semantics and must be simple to maintain across di�erent operating systems.We believe changes here should be kept to a minimum to avoid forking the development into anexokernel version and a mainstream OS version.4.2.2 Performance, e�ort and visible modi�cationsWe believe that three factors determine if, how and when performance optimizations should bedone to an existing portable application:1. The performance gain.2. The e�ort needed to realize it.3. The visible modi�cations necessary.The improvements we can show in an application is the motivation for the extra e�ort and thevisible modi�cations of the common code base3 necessary. If improvements are small, they maynot be worth the e�ort at all, and if they are very big, can motivate a complete rewrite.The e�ort needed to realize an improvement can be hard to estimate beforehand, but regardless,we can expect there to be a non-zero e�ort needed to improve the code, even if the change onlyinvolves linking with a special library OS component.The �nal factor, the visible modi�cations, is probably the one needing the most explanation. Withvisible modi�cations, we are not necessarily talking about changes that are noticeable when runningthe program, but rather changes visible in the common source code. Any improvement that canbe done without requiring a change in the sources common to all platforms that the program isrunning on, is essentially \for free". That is, it can be done without regard to its implications forother platforms.Changes that a�ect the common code base will cause portability problems every time the it isupdated. If the changes are merged in with the common code base, and conditionally compiled,then this alternative code may slip behind the baseline version. If the code bases are not merged,then updating the code will require manual intervention every time a new version of the commoncode base is released.3By the common code base we mean the machine/OS independent parts of the code.10

4.3 Improving ErlangErlang is a general programming language, which means that we cannot transparently improveresource use for all application written in Erlang. The resource use of programs written in Erlangis up to the programmer and cannot be predicted a priori.We can, however, improve the Erlang system itself. Since the most commonly used Erlang imple-mentation is interpreted, this opens a new way to improve performance | improving the inter-preter by utilizing knowledge about the interpreter's resource usage, rather than the interpretedprogram's. Attempt can also be made to improve the function library and runtime system. Theruntime system (RTS) is also attractive because it provides the interface for Erlang to underlyingoperating systems abstractions and thus allows us to remove redundant abstractions.Generally, a runtime system is a layer that serves to hide the underlying OS from the application,to make the application OS independent. The application routes all OS-type requests throughthe RTS, e�ectively making the RTS the OS for the application. If the abstractions provided bythe RTS is very similar to the underlying OS, the RTS can be made very thin. This leads us toconclude that the only OS functionality needed is the one used by the runtime system.Therefore, in an exokernel based system, we can eliminate the distinction between RTS and OS, orrather merge them into one system. Having a merged RTS/OS would mean that we could retainmost, or all, of the API used by the interpreter intact, while having full freedom to modify theactual implementation of the RTS/OS.The resulting system should give most of the advantages of a dedicated system in terms of freedomof implementation and tuning, while retaining all of the bene�ts of a traditional operating system.In fact we could implement complementary sets of RTS/OS functionality that can be run side-by-side in the system.4.3.1 Speci�c classes of applicationsIf we allow ourself to limit us to a smaller class of programs than \all programs that can be writtenin Erlang", we thereby gain more domain speci�c knowledge of resource usage. As discussedabove, this allows us to make a domain speci�c implementation that is more e�cient than ageneral purpose implementation.The situation is analogous to traditional operating systems | if we know beforehand what typesof applications an OS will run, we can include support to optimize performance for these speci�ctypes. In a similar way, we can export functionality to programmers that is optimized for the kindof programs we know that they will be writing.Protocol implementations is an important area for Erlang and we will discuss how performancecan be improved for this subclass of Erlang programs.An interesting question that we do not address is how to provide support for protocol implementa-tion | should this be done by modifying existing language abstractions, or by providing functionlibraries that implements enhanced functionality? We are focusing on the means to improve per-formance, but at some point, the way we integrate these improvements with Erlang will a�ect howthey can be used.Our recommendation is to chose one of two possible ways:� Create an annex containing speci�c function for the speci�c task. There are plenty of prece-dents in the Erlang function libraries[32] for this.� Create a library OS speci�cally tuned for the type of problems you want to optimize for, andbuild a dedicated Erlang system linked with this library OS.In a compiling Erlang system[20], the latter could be used to chose the library OS componentsthat best �t the program being compiled.
11

4.4 Speci�csWe have looked at Erlang and exokernels from two di�erent viewpoints: General speedups andoptimizing for protocol implementation. In in table 1 we present the operating system areas webelieve can be exploited. The areas listed are discussed and summarized in the following sections.We include areas where we believe that changes would violate our objective of not changing thecommon code base or change semantics of the language.Area Erlang Runtime Protocol implementationVirtual memory for tagged addresses XXPhysical addresses and cache behavior XX XX XVirtual memory and page handling XXMemory mapping and copying XX XX XXCPU scheduling XXDisk management XMemory management XXInterprocess communication XX XXDownloaded code XX XXInterrupt handling X XXPacket �lters X XXXWake-up predicates XX XXSymbol MeaningX Minor gainXX GainXXX Big gainTable 1: Areas we have identi�ed as possible candidates for optimizations, which components theya�ect and the gain we estimate.Our estimation of the usefulness of di�erent features is based on our own experiments as well asother published research. Where relevant, we give references to published papers in the summaries.4.5 The a�ected componentsFor the interpreter, we believe that it is mostly in the area of memory management we can improveperformance, since this is the primary resource used by the interpreter.While some memory management features, especially the cache-related features, can also be usedin the runtime system, we believe that most of the features useful to the runtime is with otherresources than memory.The Erlang interpreter and runtime system are components that will be used by all programswritten in Erlang. When we narrow our focus on protocol implementation, we also gain speci�cknowledge about resource use. We know that we will have to deal with protocol data units (PDUs),and can implement handling optimized for delivering PDUs between applications and networkinghardware.4.6 Areas that can be used for improvementsHere follows a short description of the di�erent areas of exokernels which can be used to enhanceperformance.4.6.1 Tagged addressesErlang uses tagged addresses (see �gure 4) to identify the type of the data structures pointed toby an address. This is done by using a few bits of the address as a tag. Doing so will, however,have a performance penalty, since it requires several instructions to dereference a pointer as wellas reducing the amount of memory addressable by Erlang.12

Tag PointerFigure 4: A tagged address | part of the actual address is a tagidentifying the type of address.The advantage of using part of the address as a tag rather than a structure consisting of an addressand a tag is that it will use less memory, and that the standard pointer type can be used whenhandling tagged pointers. Special handling is only required when dereferencing the pointer.The downside of this strategy is that we must remove the tag and restore the original pattern inthe tag bits every time we want to dereference the pointer, i.e. we must \wash" pointers beforeusing them, see �gure 5. Washing a pointer can be done by an AND-operation to remove the tag,and an OR-operation to restore the original contents of the tag bits. Thus dereferencing, whichnormally takes one instruction, would instead take three instructions, adding to memory and cachefootprint as well as execution time.
Tag Pointer

����
����
����
����
����
����

����
����
����
����
����
����

Pointer

Pointer0110

a)

b)

c)Figure 5: Washing the pointer. a) The original tagged pointer. b)The tag part of the address is discarded. c) The original patternis restored.Using part of the address as tag also means that we cannot the whole memory space. For every bitwe use, we halve the usable address space. For small tags and limited applications this may not benoticeable: In many operating systems, parts of the address space is used by the kernel, and thusnot mappable by applications anyway, because the operating system reserves it[15, 13, 29]. Also,if the size of the objects pointed to by tagged pointers are known to always be a multiple of bytesand always placed on aligned addresses, then the low order bits of the address are redundant andcould be used as tag bits without losing information.The main problem is thus the processing of addresses needed, rather than the reduced addressspace. If the tagged pointer could be used directly, this would eliminate the need to wash thepointer as well as allowing Erlang to use a larger part of the virtual address space.In theory this should be a fairly simple thing to do if we have full control over the memory systemas we are supposed to have in an exokernel. For XOK[25], however, it turns out that this solutionis not feasible because kernel structures are mapped into parts of memory that we would want tobe able to use for Erlang structures, in e�ect XOK have the same limitations as other operatingsystems in this area, i.e. part of the virtual address space is reserved by the kernel.The second best solution would then be to at least reduce the number of operations needed todereference a tagged pointer. As seen above, two operations are needed to wash the pointer.However, if data is mapped to addresses for which all the tag bits should be zero, then we couldskip the OR-operation, and only require an AND to clear the tag bits, reducing the instructionsneeded for dereferencing a tagged pointer to two instructions.The tags of the Erlang version we have been working with are four bits wide. Unfortunately, thenormal mappings of ExOS/XOK (see �gure 6) place the application heap on an address that wouldrequire us to both clear the tag and restore the original pattern. By moving the starting point ofthe heap to a lower address, we can get the desired properties and can eliminate the OR-operation.Moving around the heap and modifying the layout of memory would on a traditional operating13

Physical Memory

Kernel Viritual Page Table

Global VM for ASH’s

Kernel Stack/Ash Dev Mem

Invalid memory

User (read-only) VPT

Read-only Ppage structs

Read-only Sysinfo/Env struct

Read-only Buffer Cach

Read-only Vpage structs

Read-only XN registry

Read-only Disk freemap

Uenv aka uarea, udot struct

User interupt table

Unmapped page to prot uarea

2 Gig

4 Gig

USTACKTOP

Kernel memory
(Partialy readable by applications)

(0xffff ffff)

(0x8000 0000)

Application VM

Localy accesiable ASH VM
UTEXT

0

0x80 0000

0x1000 0000

UTOP

ExOS & dynamc libs

Application

Heap User memory
(Per application)Figure 6: Normal memory layout of ExOS/XOK.system be a major undertaking, and we would probably want to instrument the Erlang code todetermine if dereferencing is such a common operation that changing the operating system tooptimize it would be motivated. Since we're working on an exokernel where operating systemchanges are relatively simple, we can use a di�erent experimental methodology: The time neededto actually make the change to the operating system is comparable to the time needed to instrumentthe program, so instead of instrumenting to determine feasibility, we can implement the changeand benchmark the two versions.The bad news is that in this particular case, it turns out that for all our test cases, the di�erencebetween the three and two instruction washing is negligible.4.6.2 Cache behavior and memory speedsCache lookups are typically performed by the CPU using physical addresses. Most operatingsystems hide the physical addresses from applications, and exports virtual addresses. This makesit impossible for an application to predict and control cache behavior to get higher and moreconsistent performance. With an exokernel, a process can explicitly ask for speci�c physical pagesto be mapped at speci�c virtual addresses, thus enabling the application to chose physical addressesso as to be able to layout addresses so that cache conicts are avoided. E.g. if two chunks of datais used simultaneously, performance will su�er if the chunks are placed on conicting cache lines.A �nal consideration is that some systems cannot cache all addresses in their physical addressspace, for example the Intel Pentium II 233-333MHz processors can address 64GB of memory, butonly the �rst 512MB can be cached[23]. In some systems, parts of the physical address space havean access speed penalty compared to other parts. Most operating system do not have a mechanismto indicate the characteristics of di�erent types of memory, which means that addresses from theseslower memory areas are not available at all to applications, or addresses from these areas will behanded to the application with no indication of the speed penalty.If the application and compiler know about the characteristics of di�erent physical memory ad-dresses, they can avoid this slower memory for time critical parts. The application could alsoknowingly use the slower memory for storage of infrequently accessed data.In an exokernel, an application can request that speci�c physical pages be used to a virtual address,which means that in an exokernel, the library OS can be designed to provide �ne grain control overwhat types of memory it o�ers to an application. It also means that the application can requestmemory that will not cause cache conicts with existing memory areas.14

4.6.3 Virtual memory and page handlingA virtual memory system has typically a global strategy for handling page replacement. The LeastRecently Used (LRU) algorithm is often used[37]. It evicts the page least recently used when thesystem runs out of physical memory.While LRU is a reasonable strategy in most cases, it can give rise to unwanted behavior in somecircumstances, i.e. when touching a page is actually not a good indication that it in most caseswill soon be needed again. This mismatch happens e.g. during a garbage collection (GC). For GCwe have two unfortunate scenarios: a) Pages will be brought in from disk that will not be neededagain anytime soon. This will cause other pages, that may be needed again soon, to be written outto disk. b) GC will touch pages that are in reality good candidates for paging out to disk, causingother, more useful, pages to be paged out instead.Exokernels allows full control over paging and the algorithm controlling page replacement. Byallowing the application to control page replacement, it can modify the page replacement algorithmto take these unwanted e�ects on paging into account. The normal page replacement algorithmcan be suspended, and another strategy can be used during operations that have unwanted e�ects.For a garbage collect, a small set of physical pages could be allocated as a page pool for the GC.The GC can page in any pages it desires, but when its pool of pages is used up, it has to page outa physical page from its own pool, not the physical memory of the whole application.4.6.4 Memory mapping to avoid copyingModern operating systems have support for shared memory between processes. Exokernels add a�ner control over memory mappings, as well as a kernel infrastructure that gives the applicationmore exibility in exploiting memory mapping.Many OS operations involve moving data between bu�ers, either between kernel and user space,or between kernel internal bu�ers. There are also operations performed by applications thatinvolve copying. When copying small amounts of data, or when copies are infrequent, the e�ecton performance is often negligible. If copies of large memory blocks are done frequently, then theywill have a serious impact on performance.In these cases, the destination virtual addresses can be mapped to the same physical memorypages as the source addresses. This is an e�cient solution for the cases where the copied data isnot altered or when changes are tolerated in both copies. In the cases where changes may not bepropagated between copy and original, remapping can still be pro�table. The addresses of sourceand destination will be mapped to the same physical pages, as before, but the mappings of bothcopy and original will be marked copy-on-write. If an attempt is made to modify a page that ismapped copy-on-write, then the page will be copied, the virtual mapping will be changed to mapto the copy, and only then the modi�cation is done. The result is that only those pages that aremodi�ed will be copied, the rest will just be remapped.The cost of remapping must be considered. For small amounts of data, a copy can be cheaperthan remapping memory. On the other hand, if we can replace several copy operations by oneremapping, the cost of remapping can be amortized over all copy operations. The actual cost ofremapping vs copying data varies between di�erent hardware architectures, so the exact trade o�vary from system to system.An example of an operation that involves a bulk copy of data that will be partially modi�ed is theUNIX fork() call. In most systems this call is implemented as a copy-on-write remapping of thepages from the parent process to the child process[29] rather than as an actual copy.In an exokernel based system, most operating system functionality will be implemented outsidethe kernel. This means that to achieve the same performance as on traditional systems, memorymapping must be available to applications in exokernel systems. The decision to use copy-on-writemappings rather than a copy is a \gamble" that relies on knowledge that most pages will not bewritten to. The application writer is in a position to know if that is the case, and can instruct theexokernel to map these pages copy-on-write rather than copying their contents.Device I/O is another area where remapping strategies can be used. By mapping the device bu�ers15

into the virtual address space of the application, data do not need to be copied from the devicebu�er to the application. For a device bu�er mapping scheme, the best strategy would probablybe to reuse mapped bu�ers for several I/O operations in order to amortize the cost of mappingthe page over several uses of the bu�er. Doing so will require cooperation from the application (orlibrary OS) to avoid that pages currently used for I/O are used by the application[2].For hardware supporting scatter/gather I/O[29, 10] for devices such as network cards, memorymapping schemes are very attractive, since scatter/gather allow the kernel or library operatingsystem to place the header in private memory while placing data in application readable bu�ers[1].Other uses of memory mapping is when exposing kernel data structures to the application andlibrary OS. We could map the kernel page containing the structures read-only into the applicationsaddress space rather than providing a system call to copy the information from the kernel to theapplication. This mapping would have to be done only once for the whole life time of the process.Exokernels use this technique to expose kernel information to the application and library OS[13].4.6.5 CPU schedulingIn most operating systems, control over CPU scheduling for an application is a question of assigninga priority to the process. In some operating system, the application can additionally a�ect howit is scheduled by choosing a scheduling class that �ts its pro�le. No control over how to handlere-scheduling is given to processes, and this means that critical sections must be implemented viasystem wide semaphores, since the process can be de-scheduled at any time.Threads can either be available as kernel controlled objects, or implemented by the user levelprocess. Kernel threads means that the kernel is aware that a process can have several threads ofcontrol running simultaneously, and will schedule them pre-emptively and ensure that the threadsare handled as �rst class operating system objects.User level threads, on the other hand, allow an application more control over how threads areimplemented. The application can impose its own thread semantics and chose an implementationthat better �t the applications needs. The down side is that the OS only expects a single thread ofcontrol in a process. This will manifest itself in di�erent ways, but typically it means that one userthread calling a blocking OS function will cause all other user threads within then same process toblock as well. Hence, pre-emptive scheduling of user level threads cannot be done, and some typeof cooperative scheduling must be done instead.The process model of exokernels is very simplistic. Most functionality has to be implemented bythe application, not only control over threads but also over process activation. The exokernelwill generate an up-call (much like an exception) when a process' time slice starts and when itends. The process has to handle context restoring and saving by itself, which has the advantageof allowing scheduler activations[3]. The process is also free to chose what context to restore onactivation, i.e. the process can implement pre-emptive scheduling of sub-processes (threads) as itsees �t.When an up-call to end the time slice has been received, it is up to the process to decide whatparts of the context it must save. E.g. if the programmer knows that the process does not to usethe FPU, then he may chose not to save the FPU state.If a process overruns its time slice, e.g. it wants to �nish a critical section before relinquishingcontrol and does not release control within its time slice, the overrun will be deducted from theprocess' subsequent time slices until it has forfeited an amount equal to its overrun. If the overrunis too big, the process will be terminated by the exokernel. The downside of allowing overruns isthat it will make real-time scheduling hard. As long as all running processes cooperate, it shouldwork, but no hard scheduling guarantees can be given by the exokernel.Scheduling of processes is not done by an algorithm. Instead it is done by letting the applicationallocate time slices in a time vector. This means that the scheduling policy of a process is aquestion of how many and which time slices are allocated in the vector to the process. In �gure7 an example time vector is shown. Big CPU-bound jobs tries to allocate as many adjacent slotsas possible, to reduce context switching overhead, while interactive and real-time processes wouldtry to allocate evenly spaced slots for fast response times. A small program needing CPU onlyfor occasional updates, would only allocate a single slot, big enough to let it �nish the update.16

��
��
��
��
��

��
��
��
��
��

Interactive program

Clock program

��
��
��

��
��
��

Real time process

Batch process

CPU intensive calculation

���
���
���

���
���
���

������
������
������

������
������
������

��
��
��
��
��

��
��
��
��
��

CPU time vector

Legend

Figure 7: The CPU time vector. In this example, �ve processes haveallocated all available time slots in accordance to their scheduling pref-erences. The length of the vector is determined by the implementation.Background batch programs, �nally, allocates any time slots available.Since all processes allocate their own slices, a greedy application could lock out all other processes.A global scheduling can be implemented by letting the �rst process that starts to allocate all timeslices, and then implement a global scheduler using the yield primitive that donates the rest of atime slice to a named process. It could schedule other processes by successively yielding time slicesto them according to its scheduling mechanism. This �rst process could also could also serve asa priority based manager for the time vector, overriding allocations based on the priority of theallocating process. In �gure 7, this would mean that even if the batch process had allocated allavailable slots, it would lose them if a higher priority process wants slots.The MIT exokernel team have implemented and tested a stride scheduler[39] to demonstrate thata user level scheduler can be implemented given the primitives provided in the exokernel.For Erlang, these mechanisms could be used to implement Erlang processes. This could combine theadvantages of the current implementation with the advantages of mapping the on OS threads[21].4.6.6 Disk managementA traditional OS normally o�ers two di�erent ways of using disks: As structured �le systems, or asraw disk. In the raw form, the unit of multiplexing is typically a disk partition of a static size |i.e. we can assign a partition to an application. Databases often have their own disk handling usinga dedicated partition in order to increase performance and get better control over data placement.If we want to share disk with a �ner grain granularity than a partition, we have to use the �lesystems available. But in doing so, we also delegate control over placement and format of data onthe disk to the �le system.In exokernels the unit of multiplexing is individual blocks, rather than �les or partitions[25]. Anapplication can implement its own �le system using the blocks. An application �le system canexist side by side with a standard �le system.The main di�erence between implementing a �le system on top of a raw disk and in an exokernelis that under an exokernel, physical disk blocks must be allocated from a common pool sharedwith other applications. I.e., if an application wants a speci�c disk blocks, it may already havebeen allocated by another application. Also, the exokernel requires that the application providesa mechanism to identify allocated blocks. This is done via a Untrusted Deterministic Function(UDF) that allows the exokernel to interpret the user �le systems own metadata. I.e. the blocksused by a user �le system will not be tracked and stored by both the kernel and the �le system,instead the exokernel will use the �le systems metadata via the UDFs.The disk system also provides a user controlled bu�er cache mechanism to handle cached diskblocks without actually imposing a speci�c disk caching scheme. Cached blocks are handled bythe user application, the disk system only provides a way for �le systems to register cached diskblocks.For casual disk use, the standard �le systems will probably by su�cient. The type of applicationsthat will bene�t are those where disk I/O is a bottleneck, and have disk seek patterns which canbe predicted or where disk block data should not be touched as in Cheetah (see section 3.2) and17

XCP (see section 3.4).4.6.7 Memory managementIt can be assumed that any given application will need memory. For simple applications, onlymemory for statically allocated variables and perhaps a few variables on the stack will be needed.Applications that have more dynamic memory needs will allocate and deallocate memory dynam-ically during the execution. But why should we stop there? We have already discussed how anapplication could a�ect its cache behavior and also seen how an application could increase itsperformance by modifying the page replacement algorithm.Applications can use knowledge about the contents of pages for more e�cient memory handling.E.g., if an application knows that it is no longer using a page, the application can unmap thepage and release the physical page to the common pool of free pages. Doing this means both thatapplications will utilize resources better (they are only holding pages they really need), but alsothat the overall performance will be better since when a process that needs memory for a page,it can get one immediately from the pool, instead of �rst having to write out a page to disk. If agarbage page has been written out and we want to reuse the same virtual address for new data,we will have to read the page back from disk, even though the application already knows that thecurrent contents of the page is garbage.There are a few options available when a physical page is needed. If the application has structuresin memory that can be recalculated, it might be more e�cient to release the memory used by thosestructures rather than page out other code/data. If the application uses speculative caching orpre-fetching to increase its performance, then it could elect to release a cached or pre-fetched pagerather than lose a page containing code/data. Speculative caching and pre-fetching is often a goodstrategy to use otherwise unused memory, but if the caches push out code or data, this may endup hurting performance. In fact, if the infrastructure to selectively release pages does not exist,the application programmer may hesitate to add caching and pre-fetching.The most recent exokernel implementation, XOK, does not support much in the way of paging.The idea presented in the exokernel papers[13, 25] is that the exokernel will ask, via an up call, anapplication to release a physical page. The application then has a certain time to comply to theup call, and if it does not release a page within the set time, a page will forcibly be removed bythe exokernel and the application will be noti�ed that the page was reclaimed.4To lessen the impact of such a drastic action a repossession vector is proposed[13]. The applicationputs pointers to pages it does not mind that the exokernel revokes into this vector. The applicationsshould also provide the exokernel with capabilities for backing store resources for storing thecontents of reclaimed pages.4.6.8 Interprocess communicationInterprocess communication (IPC) is used to allow processes on the same machine to communicatewith each other to exchange data or to synchronize with each other. The mechanisms used toimplement IPC varies, but ultimately it is a question of transferring control and a bu�er of datafrom one process to another. The simplest form would be to use a shared memory bu�er, and topoll a pre-de�ned part of the bu�er to determine if a call has been made by the other process.Another possibility would be to use a messaging mechanism in the kernel that signals the receivingprocess when a message is available[36].An important performance factor is the latency IPC has, i.e. how long time does it take from thetime process A sends a message until it is received by process B? Latency is especially important ifIPC is used to call functions in another process i.e. Remote Procedure Calls (RPC), since if callsbetween processes are much more expensive than calls within a process, then it may make moresense not to split functionality into multiple processes, regardless of other advantages.Exokernels provides mechanisms to transfer the thread of control between two processes as well asthe possibility to share memory, and by using these mechanisms the application programmer can4A small set of guaranteed mappings should always be provided to the application, so that it can store itsmanagement routines (pager etc). 18

build his or her own IPC abstractions. The actual transfer of control is simply done by changingthe program counter to an previously agreed address in the callee and donating the rest of thecurrent time slice to the callee. Protection is managed by the callee, i.e. it is up to the calledprocess to determine if should accept the call or not.The transfer of control can be done asynchronously or synchronously. The former only donatesthe current time slice, whereas the second donates the current and all future time slices until thecallee returns control to the caller. The latency of a synchronous transfer of control in the Aegisexokernel is 30 instructions[13].All process visible registers are left intact during the transfer, which means that the registers canbe used as message bu�er[9]. If this is not su�cient, then a permanently shared memory bu�ercan be used instead.The IPC building blocks provided by exokernels can be used to build many di�erent avors ofIPC and RPC abstractions. An untrusted RPC mechanism would not trust the callee to save thecontents of registers during the RPC, but if server and client trust each other, then the responsibilitycan be migrated to the callee, which can save only those registers used by the RPC call. This willfurther reduce the latency of RPC calls[22].4.6.9 Downloaded codeA problem in an exokernel operating system architecture is that the kernel does not know anythingabout the resources handled by the application and library operating system. Since the kernel doesnot know how to react to di�erent events such as I/O completion, packet arrivals etc, it must relyon the application to handle the event. This, however, is expensive since it requires the applicationto be scheduled.The idea of downloadable code is that the application provides code that identi�es or transformsin-kernel data for the kernel. The code is checked by the kernel to ensure that all memory accessesare legitimate, e�ectively con�ning the code to a sandbox[38], and that the tests performed doesnot overlap with previously downloaded tests. Once the code has been checked, the kernel cancompile it to machine code and install it. It can then call this code to perform the relevant testsand transformations and then interpret the results, without actually having to know what is beingtested or what the format of the original data was[12].The real power of downloaded code is, however, not speed, but the ability to delegate managementfrom the kernel to application code even in situations where the kernel cannot trust the application:Downloaded code can be checked and execution times and access be bounded at download time.This is for example true of the exokernel disk support in which ownership of blocks is resolved bya downloaded piece of code, a UDF, or the packet �lters and wake-up predicates discussed below.Other operating systems that allow user programs to download code include the SPIN[7] micro-kernel and Vino[35].4.6.10 Interrupt handlingBy hiding interrupts, traditional operating systems simplify for the programmer, but at the sametime this will restrict the exibility. By exporting interrupts to an application, it can directlymanage hardware devices associated with the interrupts. Also, to implement e�cient criticalsections, control over interrupts must be delegated to the application so that incoming interruptswill not break the sections.For some interrupts, the latency involved in a calling the application to serve an interrupt is notacceptable. For these it would be bene�cial to download interrupt handling code into the kernel.The exokernel implementation Aegis[13] provide the application with an interface to interruptsas well a method to download interrupt handlers into the kernel. While downloadable interrupthandlers o�er elimination of kernel crossings, the low cost of kernel crossings in exokernels rendersthis advantage very small. By providing a fast up-call to the application, most of the bene�tsof downloadable code will be retained. For mainstream operating system with expensive contextswitches, downloadable interrupt handlers may still be a good solution[25].19

4.6.11 Packet �ltersThe multiplexing of network resources normally done in traditional operating system is to usea shared protocol abstractions that allows applications to establish connections and send/receivepackets. This, however, limits applications to use the protocols provided by the operating systemand the network interface.For the outgoing direction this is not a problem, but for the incoming direction the underlying fun-damental problem for the kernel is how to de-multiplex incoming packets and establish ownershipof them. If the OS does not know about the protocols used or connection to process id, it cannotdetermine what process should get an incoming packet.A solution is downloading code, a packet �lter[31], into the kernel that the kernel can run todetermine ownership of a packet. The packet �lter allows the application to describe to thekernel the packets belonging to it. Once identi�ed, the packet can be dispatched to the properprocess, which then is free to implement the actual protocol, i.e. there is no need to use a sharedprotocol abstraction. In the Cheetah HTTP-server, this is used to allow a custom TCP/IP protocolimplementation that in turn allows Cheetah to do intelligent packet merging (see section 3.2).As the code is downloaded, the kernel will test to see if this packet �lter conicts with any previouslydownloaded packet �lters. If not, it will be merged with the previous packet �lters.The implementation of packet �lters, Dynamic Packet Filters (DPF)[14], used in the Aegis andXOK exokernels di�ers from most other implementations[31, 6, 28, 40] in that it compiles thepacket �lters to machine code, rather than using an interpreter. This makes installation of packet�lters slower than in other systems, but the demultiplexing performance is reported to be on theorder of 10-20 times faster than the other systems[14, 13].Fortunately, packet �lter installation is only needed at connection setup and closing time. If aprogrammer knows beforehand that he will need multiple connection during the lifetime of theapplication, a �lter that matches the packets of all connections can be downloaded at startup,rather than installing several more restrictive �lters. In this case, the �ne grain �ltering is doneby the application.The packet �ltering mechanisms can be exported directly to a Erlang program via an annex. Thiswould allow the Erlang programmer to describe PDUs and then, using zero-copy mechanisms,allow the Erlang application to directly operate on data from the network bu�ers.4.6.12 Wake-up predicatesOne of the big di�erences between an exokernel and a monolithic kernel design is that the monolithickernel has access to all OS structures, which means that it is fairly straight forward to constructmechanisms to let processes sleep while they are waiting for events such as I/O completion, expiringtimers etc.If such abstractions are removed from the kernel and all those structures and mechanisms aredelegated to the user level OS, this means that if a process is waiting for an event, it must bewoken up regularly to let it check for the event. Unless we are prepared to accept signi�cantlatency between events happening and the process reacting to them, this means busy-waiting forevents.To avoid this situation, exokernels provide kernel wake-up predicates. These predicates are down-loaded into the kernel by the process, much in the same way packet �lters are, and speci�es a set ofevents that should cause the kernel to wake this process up. The events are essentially just patternsin memory at locations accessible to the process. The memory locations could hold anything | amemory mapped timer register, a bu�er structure or any exported exokernel structure.A wake-up predicate may involve multiple sub-predicates. For example to allow for several eventsto generate a wake-up, while waiting for I/O to complete, the application wants to handle bothI/O completion, as well as error indications or timeouts.Since the downloaded wake-up predicate is compiled to machine code, they should be comparableto the cost in a traditional kernel. 20

void cat_test(void){ LOOP(5) {fork_and_run_function_in_child(do_cat_test)}wait_for_children_to_return();}void do_cat_test(void){ spawn("cat", fd_in, fd_out);LOOP(4800) {write(fd_out, buffer, 200);select(fd_in);read(fd_in, buffer, 200);}LOOP(4800) {write(fd_out, buffer, 5);select(fd_in);read(fd_in, buffer, 5);}return(0);}Figure 8: Pseudo-code for a simple test program runs multiple processes that\ping-pongs" data via an external process.Wake-up predicates are executed in the context of the kernel. This means that they could be usedto let one process to snoop on other processes private data. To guard against this, all addressesreferences are checked for access rights before the predicate is compiled to machine code andinstalled.Our practical experiences with wake-up predicates in ExOS/XOK[33, 25] for Erlang show an unan-ticipated performance loss. The reason is the cost of installing the wake-up predicate. It cannotbe amortized over multiple uses in the same way as for a long-lived communication connections.A wake-up predicate is likely to be discarded after its �rst positive match. If the time betweeninstalling a predicate and wake-up is long, then it will of course still be a gain to have installed it.We have experimented with the select() call in ExOS, which basically installs a simple wake-uppredicate that will wake the process up when data is available for a speci�c �le descriptor. Thisexperiment was prompted by the fact the Port I/O demo benchmark for Erlang on ExOS/XOKran signi�cantly slower than on OpenBSD or Linux (see section 5.1).We have two versions of a simple test program that captures the essence of the Erlang Port I/Odemo. The program forks o� a number of processes that ping-pong data to and from an externalprogram. Version A (see �gure 8) waits for data using select() before reading, and version B,which is identical to A except for the select() calls, just tries to read data immediately.We expected that version A, which uses the select() call, would be slower on all platforms since itdoes more work. Running the test programs under OpenBSD and Linux, we found that the versionA indeed is about 20% slower than version B. Performing the same test under ExOS/XOK, we�nd that version A is more than 500% slower than version B.Instrumenting the code, we �nd, as we suspected, that it is indeed inside the select() call mostof the time is spent in version A.The ExOS select() call basically consists of four parts:1. Check if wake-up conditions are already met, and return immediately if they are.2. Construct a wake-up predicate.3. Install the wake-up predicate.4. Sleep until the wake-up condition is met. 21

Further instrumentation of the select() call reveals that just constructing and installing thepredicates in the call consumes twice as much time as is spent in the read() and write() calls.The conclusion here is that while everything seems to indicate that while wake-up predicates isa powerful mechanism that has the potential to improve overall system performance, it must beused with care.If the kernel could cache predicates, it seems that the program in �gure 8 could be run with only asingle installation of a wake-up predicate, but just caching will not solve the problem in the generalcase, only the case where identical wake-up predicates are repeatedly installed.It would be interesting to build an alternate mechanism that do not compile the wake-up predicatesto machine code, and compare the performance to the current implementation. This experimenthas, however, not yet been performed.A di�erent approach that would probably not require changing the exokernel would be to re-designthe way the mechanism is used. The current implementation will compile hard coded tests. Thiscan be changed to allow the values tested for to be changed, without requiring the predicates to berecompiled and reinstalled. The test for a given resource, e.g. �le, pipe or timer, would be installedthe �rst time the resource was used as a wake-up condition. Subsequently, only the parameterswould have to be changed.A parameter could be used to toggle a certain test on and o�, allowing previously used wake-uppredicates to remain installed, but dormant, when testing for another condition. This would makethe wake-up predicates run slightly slower, but o�set against the cost of installing a predicate, thisis very likely to be a win.If predictability is important, the wake-up predicate could be installed ahead of time, i.e. whenopening a �le, rather than when �rst used, to make the time of activating a test equal regardlessif it is the �rst or subsequent time a speci�c test is used.The biggest downside of a scheme like the one outlined above is that it would require the libraryOS to keep track of what wake-up predicates it has installed, and make sure they are removedwhen the resource is no longer used.5 Conclusions and resultsIn this section we will present measurements and our conclusions from the work we have done sofar. In section 5.1 we discuss the port of the Erlang system, and in section 5.2 we present ourconclusions.5.1 The Erlang system on an exokernelWe have ported the Erlang system (JAM 4.6.3) to the XOK exokernel, running it on top ofExOS, the 4.4BSD UNIX-compatibility library OS. The e�ort needed to port the system wascomparable to what would be needed to the system to a previously unsupported UNIX version.The performance of the Erlang system running on XOK is comparable to the performance we getfrom running it on OpenBSD and Linux. As can be seen in table 2, the di�erence between theOpenBSD and Linux system is greater than the di�erence between the XOK/ExOS version andOpenBSD. System EstonesLinux 2.0.33 6376OpenBSD 2.2.0 5557XOK/ExOS 1.0.2 5153Table 2: Results from the Estone Erlang benchmark suite, running Erlang 4.6.3 system on aPentium II/233 system. Higher Estone value is better.The Linux and OpenBSD implementations of UNIX abstractions are more re�ned than the ones22

in ExOS, as was discussed in section 3.1 and is discussed in paper [33]. Table 3 show a detailedcomparison between the OpenBSD and XOK/ExOS benchmarks. As can be seen, the results varybetween favoring OpenBSD and XOK/ExOS, or being equal. The one major discrepancy is forthe Port I/O benchmark, where XOK/ExOS has less than half the performance of OpenBSD. Infact, had the results for XOK/ExOS of this benchmark been equal to OpenBSD, the XOK/ExOSbenchmark result had been superior to that of OpenBSD.Benchmark OpenBSD XOK/ExOS Di�erenceList manipulation 335 324 3.3%Small messages 549 546 0.5%Medium messages 514 529 -2.9%Huge messages 138 143 -3.5%Pattern matching 204 200 2.0%Traverse 154 150 2.6%Port I/O 944 432 118.5%Work with large dataset 129 124 4.0%Work with large local dataset 137 131 4.5%Alloc and dealloc 117 118 -0.9%BIF dispatch 583 590 -1.2%Binary handling 230 254 -9.5%Ets datadictionary 594 644 -7.8%Generic server (with timeout) 327 376 -13.1%Small Integer arithmetics 165 164 0.6%Float arithmetics 38 38 0.0%Function calls 236 236 0.0%Timers 124 115 7.8%Links 39 39 0.0%Table 3: Detailed comparison between the benchmarks of the OpenBSD and XOK/ExOS versionsof the Erlang system. The unit is Estones, and the di�erence column indicates how much fasterthan the XOK/ExOS version the OpenBSD version is.The discrepancy for the Port I/O benchmark inspired the detailed analysis in section 4.6.12, inwhich the reason for the bad performance of the XOK/ExOS version of Erlang is explained.5.2 Conclusions from the port of Erlang to XOK/ExOSThe fact that Erlang could be moved to an exokernel with a reasonable e�ort, and without anysigni�cant performance loss, tells us that the exibility we buy does not cost us very much in termsof work or performance. Thus, the �rst step to an optimized version, moving the program to anexokernel based system, can be taken at a low cost. Subsequent steps may require a larger e�ort,but those steps should be considered in terms of the expected performance gains only | the costof moving moving the program does not need to be amortized over many enhancements.5.3 Suggestions for Erlang improvementsAs a �rst step towards increased performance of the Erlang system on XOK/ExOS, the ExOS UNIXemulation library OS should be improved until it is on par with existing UNIX implementations.This work has already started at MIT. One of the goals of work on ExOS version 2.0[33] is tomatch and surpass the performance of contemporary UNIX implementations.Further improvements should be done bottom up. While there are some opportunities for improve-ments that would require changes in the Erlang interpreter, these should be put o� until thoseimprovements that do not require changes in the interpreter have been implemented. The furtherfrom the Erlang system changes are made, the better, since this will reduce the number and scopeof the changes made to the Erlang system. The changes we suggest below have been put into fourcategories, depending on how visible they will be, and are as follows:23

5.3.1 Transparent changesThe exact OS semantics needed by the Erlang runtime system should be examined, and the im-plementation of these semantics in ExOS should be tuned to provide maximum performance forthe Erlang system.Typical changes here include streamlined implementations of I/O using packet �lters and zero-copymechanisms to get packet data into Erlang memory space directly as outlined in section 4.6.11,light weight IPC mechanism as outlined in section 4.6.8, things like the changes of the memorymap outlined in section 4.6.1 and choosing algorithms that best �t the execution pro�le of Erlang.These changes stand a good chance of signi�cantly boosting the performance of the system, usingmainly the ability in an exokernel to tune implementations of OS functionality, rather than makinguse of \tricks".The changes outlined here are all in the library OS and will not a�ect the API or perceivedsemantics of the operations, and will thus be completely transparent to the Erlang implementation.5.3.2 Semi-transparent changesThere are many changes we can do that will for the most part be hidden to the Erlang system, butwill require information and hints from the Erlang system to enable. These hints will mainly consistof a call from the Erlang system to inform the library OS what the Erlang system is currently upto, so that the library OS can adapt its behavior.Changes here include changes in the virtual memory system to account for di�erent memory usagepatters, as outlined in section 4.6.3. E.g. we need some kind of hints from the Erlang system toinform the library OS that we are now inside a garbage collect, and should turn LRU o� and switchto another page replacement scheme. It could also include other memory management techniques,such as dropping empty pages, but again this would require some cooperation from the Erlangsystem.It may also include an improved thread implementation, but this will depend very much on theexact nature of the current Erlang internal threads. For the Erlang versions that use OS threads[21],using a exokernel thread implementation should be completely transparent.All in all, these changes can be performed with a minimal impact on the Erlang system. There willbe a few extra calls from the Erlang interpreter to the library OS, but these can be conditionallycompiled in for only the exokernel version of Erlang.5.3.3 Opaque changesFinally, we have changes that will require more or less substantial changes to the Erlang system.In some cases, the information needed to optimize is not kept, and retaining it would require aredesign of part of the Erlang system.Using memory mapping instead of copying, handling cache alignment of data and code, dealingwith what to page out when we need to release physical memory are all examples of strategiesthat could increase performance, but are likely to require a major overhaul of the Erlang systemto exploit.Attempting this type of changes may give additional performance, but at the very probable costof splitting the development into a \standard" OS version and an exokernel version.5.4 Suggestions for Erlang annexesA second strategy to exploit exokernel features is to provide annexes. An annex is an extensionto Erlang so that low-level features can be exported directly to an Erlang program. An excellentexample of this would be protocol implementation features. Erlang programs could be given directaccess to the packet �lter mechanism and receive/send calls that will place network packets intothe Erlang bu�ers without requiring copies and send network packets directly from Erlang bu�ers.This will allow Erlang programmers to implement fast and e�cient protocols.24

Annexes can be provided for other low-level functionality such as direct disk access, interrupthandling and memory management.These annexes can, from an Erlang perspective, be seen as an extension to the already wide arrayof function libraries. The small di�erence is that such an extension will not only link new functionsto the Erlang program, but will also link new kernel functionality to the library OS.5.5 Exokernels and traditional operating systemsThe suggestions and strategies presented are possible to realize on non-exokernel systems. The C-FFS �le system and the packet �ltering mechanisms have been used on traditional operating system.However, doing this involves modifying the operating system to provide the new abstractions. Theadvantage of working on an exokernel system is that it gives an environment where it is simpler toexperiment with new abstractions. Their very architecture encourages experimentation.Open source operating systems such as Linux and the many BSD versions have become morewidely accepted in the last years, and the availability of the source to these operating systemenables programmers a fairly simple way to implement new kernel features without having to relyon an experimental operating system architecture.References[1] Bengt Ahlgren, Mats Bj�orkman, and Per Gunningberg. Towards predictable ILP performance| controlling bu�er cache e�ects. The Australian Computer Journal, 28(2):66{71, May 1996.[2] Bengt Ahlgren, Mats Bj�orkman, and Kjersti Moldeklev. The performance of a no-copy APIfor communication. In IEEE Workshop on the Architecture and Implementation of HighPerformance Communication Subsystems, August 1995.[3] T.E. Anderson, B.N. Bershad, E.D. Lazowska, and H.M. Levy. Scheduler activations: E�ectivekernel support for the user level management of parallelism. In Proceedings of the ThirteenthACM Symposium on Operating Systems Principles, pages 95{109, October 1991.[4] J.L. Armstrong, B.O. D�acker, S.R. Virding, and M.C. Williams. Implementing a functionallanguage for highly parallel realtime applications. In Proc. Software Engineering for Telecom-munication Switching Systems, 1992.[5] Joe Armstrong, Robert Virding, Claes Wikstr�om, and Mike Williams. Concurrent Program-ming in Erlang. Prentice Hall, 1993.[6] M. L. Bailey, B. Gopal, M. A. Pagels, L. L. Peterson, and P. Sarkar. PATHFINDER: Apattern-based packet classi�er. In Proceedings of the First Symposium on Operating SystemsDesign and Implementation, pages 115{123, November 1994.[7] B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. Fiuczynski, D. Becker, S. Eggers,and C. Chambers. Extensibility, safety and performance in the SPIN operating system. InProceedings of the Fifteenth ACM Symposium on Operating Systems Principles, December1995.[8] A. Chankhunthod, P.B. Danzig, C. Neerdaels, M.F. Schwartz, and K.J. Worrell. A hierarchicalinternet object cache. In Proceedings of 1996 USENIX Technical Conference, pages 153{163,January 1996.[9] D. R. Cheriton. An experiment using registers for fast message-based interprocess communi-cation. Operating Systems Review, October 1984.[10] Douglas E. Comer and David L. Stevens. Internetworking with TCP/IP: Design, Implemen-tation, and Internals, volume II. Prentice-Hall, second edition, 1991. ISBN 0-13-472242-6.[11] Intel Corporation. Intel386 Family Binary Compatibility Speci�cation 2. McGraw-Hill, March1992. ISBN 0-07-031219-2. 25

[12] D. R. Engler, M. F. Kaashoek, and J. O'Toole. The operating system kernel as a secureprogrammable machine. In Proceedings of the Sixth SIGOPS European Workshop, pages 62{67, September 1994.[13] Dawson R. Engler, M. Frans Kaashoek, and James W. O'Toole Jr. Exokernel: An operatingsystem architecture for application-level resource managerment. In Proceedings of the FifteenthSymposium on Operating System Principles, pages 251{266, December 1995.[14] D.R. Engler and M.F. Kaashoek. DPF: Fast, exible message demultiplexing using dynamiccode generation. In Proceedings of ACM SIGCOMM 1996, pages 53{59, August 1996.[15] Linus Torvalds et al. The linux kernel. http://www.kernel.org/.[16] Bryan Ford, Godmar Back, Greg Benson, Jay Leprau, Albert Lin, and Olin Shivers. TheFlux OSKit: A substrate for kernel and language research. In Proceedings of the SixteenthSymposium on Operating System Principles, October 1997.[17] Bryan Ford, K. Van Maren, Jay Lepreau, S. Clawson, B. Robinson, and Je� Turner. TheFLUX OS toolkit: Reusable components for OS implementation. In Proc. of Sixth Workshopon Hot Topics in Operating Systems, pages 14{19, May 1997.[18] G. Ganger and M.F. Kaashoek. Embedded inodes and explicit grouping: Exploiting diskbandwidth for small �les. In Proceedings of the 1997 USENIX Technical Conference, pages1{18, 1997.[19] D. Goloub, R. Dean, A. Forin, and R. Rashid. UNIX as an application program. In USENIX1990 Summer Conference, pages 87{95, June 1990.[20] Bogdan Hausman. Turbo erlang: Approaching the speed of C. In Implementations of LogicProgramming Systems, pages 119{135. Kluwer Academic Publishers, 1994.[21] Pekka Hedqvist. A parallel and multithreaded Erlang implementation. Master's thesis, Upp-sala University, Computing Science Department, June 1998.[22] W.C. Hsieh, M.F. Kaashoek, and W.E. Weihl. The persistent relevance of IPC performance:New techniques for reducing the IPC penalty. In Proceedings of the Fourth Workshop onWorkstation Operating Systems, pages 186{190, October 1993.[23] Intel Corporation. Pentium II Processor at 233 MHz, 266 MHz, 300 MHz, and 333 MHz,January 1998. Order number 243335-003.[24] Erik Johansson, Christer Jonsson, Thomas Lindgren, Johan Bevemyr, and H�akan Millroth.A pragmatic approach to compilation of Erlang. UPMAIL Technical Report 136, ComputingScience Department, Uppsala University, July 1997. ISSN 1100{0686.[25] M. Frans Kaashoek, Dawson R. Engler, Gregory R. Ganger, H�ector M. Brice~no, Russell Hunt,David Mazi�eres, Thomas Pinckney, Robert Grimm, John Jannotti, and Kenneth Mackenzie.Application Performance and Flexibility on Exokernel Systems. In Proceedings of the SixteenthSymposium on Operating System Principles, October 1997.[26] M.F. Kaashoek, D.R. Engler, D.H. Wallach, and G. Ganger. Server operating systems. InSIGOPS European Workshop, pages 141{148. ACM, September 1996.[27] K. Mackenzie, J. Kubiatowicz, M. Frank, W. Lee, V. Lee, A. Agarwal, and M.F.Kaashoek. UDM: User direct messaging for general-purpose multiprocessing. Technical memoMIT/LCS/TM-556, Massachusetts Institute of Technology, March 1996.[28] S. McCanne and V. Jacobson. The BSD packet �lter: A new architecture for user-level packetcapture. In USENIX Technical Conference Proceedings, pages 259{269, 1993.[29] Marshall Kirk McKusic, Keith Bostic, Michael J. Karels, and John S. Quarterman. TheDesign and Implementation of the 4.4 BSD Operating System. Addison-Wesley, 1996. ISBN0-201-54979-4.[30] Sun Microsystems. Sun collaborates with Linux community to make Linux available forUltraSPARC systems. Press release, December 1998.26

[31] J.C. Mogul, R.F. Rashid, and M.J. Accetta. The packet �lter: An e�cient mechanism for user-level network code. In Proceedings of the Eleventh ACM Symposium on Operating SystemsPrinciples, pages 39{51, November 1987.[32] The Open Telecom Platform Project. Erlang System/OTP 4.5: Development EnvironmentReference Manual. Ericsson Software Technology AB, Erlang Systems, second edition, 1997.EN/LZ 151 248 R2.[33] H�ector Manuel Brice~no Pulido. Decentralizing UNIX abstractions in the exokernel architec-ture. Master's thesis, Massachusetts Institute of Technology, February 1997.[34] Ronald Joe Record, Michael Hopkirk, and Steve Ginzburg. Linux emulation for SCO. InProceedings of the 1998 USENIX Annual Technical Conference, June 1998.[35] M. Seltzer, Y. Endo, C. Small, and K. Smith. Dealing with disaster: Surviving misbehavedkernel extensions. In Proceedings of the Second Symposium on Operating Systems Design andImplementation, pages 213{228, October 1996.[36] Abraham Silberschatz and Peter B. Galvin. Operating System Concepts. Addison-Wesley,fourth edition, 1994. ISBN 0-201-59292-4.[37] William Stallings. Operating Systems: Internals and Design Principles. Prentice-Hall, thirdedition, 1998.[38] R. Wahbe, S. Lucco, T. Anderson, and S. Graham. E�cient software-based fault isolation.In Proceedings of the Fourteenth ACM Symposium on Operating Systems Principles, pages203{216, December 1993.[39] C. A. Waldspurger and W. E. Weihl. Stride scheduling: deterministic proportional-shareresource management. Technical Memorandum MIT/LCS/TM528, Massachusetts Instituteof Technology, June 1995.[40] M. Yahara, B. Bershad, C. Maeda, and E. Moss. E�cient packet demultiplexing for multipleendpoints and large messages. In Proceedings of the Winter 1994 USENIX Conference, 1994.

27

