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Abstract

In this report, we will discuss how ideas in the experimental operating system architectures
called exokernels can be used to improve performance of the Erlang systems and programs
written in Erlang, with an emphasis on protocol implementations written in Erlang. We will
present experiences and conclusions.

1 Introduction

The current “breed” of traditional operating systems abstract and multiplex hardware resources
in a way that will work for almost all possible applications. Often portability is the objective —
they try to provide abstractions that are not specific to a certain implementation of e.g. hard
disks or network cards. They typically do not stop there, they also implement additional general
abstractions such as file systems, virtual memory systems and protocol stacks. The abstractions
provided by an OS are often integrated with safe multiplexing of the hardware resources in a such
way that the abstractions cannot be circumvented without losing the safe multiplexing. Safety is
an important issue for operating systems because we do not want one application to be able crash
others, or indeed the whole system.

The generality of traditional OSs means that operating systems tend to abstract away the un-
derlying hardware semantics, effectively hiding them from the applications. This has the great
advantage that applications become portable across a wide array of different hardware with dif-
ferent underlying semantics. It does, however, also have the unfortunate disadvantage of making
performance optimized implementations of applications hard and/or expensive to implement.

The abstractions provided are also a package deal, we cannot pick and choose the parts we want or
need, instead we must either accept the whole package, or start from scratch with little or no help
from the kernel. Furthermore, the solutions that are open once we reject the abstraction package
often have unwanted side effects.

A new approach in operating systems architectures are the Exokernels[13, 25]. They attempt
to solve the problems with abstractions hindering optimizations by reducing or eliminating OS
abstractions not explicitly needed for safe multiplexing of the underlying hardware. An exokernel
will export all information that is safe to export to the application, and also allow applications
to directly administer its own resources and tailor its own abstractions. This means that OS
abstractions will be implemented in user space either as part of the application or, more commonly,
as a separate library, a library operating system.

Three implementations of exokernels are known at this time: Aegis[13], created for the MIPS R3000
processor (Digital DECstation), Glaze[27], created for the Fugu multiprocessor (MIT research
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processor), and XOK]25], created for the Intel x86 processor family (Pentium, Pentium Pro and
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Pentium IT based PC-compatibles).

It is our belief that for exokernels to be viable, it must be shown that exokernels will not incur
a penalty for non-specialized applications, will deliver on the promises of better performance for
specialized applications and finally, and perhaps most important, it must be shown that is is
possible to improve the performance of existing applications without requiring a redesign and
rewrite, i.e. to run on a library OS implementing the APIT of a traditional OS.

The aim of our research is to determine to what extent exokernel ideas are useful in a few typ-
ical and representative applications. Some applications have already been explored by the MIT
Exokernel team  the Cheetah (see section 3.2) web server implementation have shown that ex-
ploiting domain specific knowledge can substantially improve performance for a resource intensive
application.

To investigate the effects of moving a large system to an exokernel, and also to get an interest-
ing platform for further experiments, we have ported an implementation of the concurrent func-
tional language Erlang[5] from UNIX to the library OS ExOS[13, 25, 33] running on the exokernel
XOK]J25]. We have focussed our efforts on how to enable efficient protocol implementations written
in Erlang.

Erlang combines the best and worst of scenarios for an exokernel: On one hand, any performance
gain achieved on the Erlang system by exploiting exokernel features will benefit all programs
written in Erlang. On the other hand, we should not make changes to the Erlang implementation
that are not easily back-ported or maintained in the mainstream version, neither can we modify
the semantics of the language to accommodate a more efficient implementation.

The organization of this report is as follows: In section 1 an introduction to the problems is
presented. In section 2, the basics of exokernels are presented. In section 3, some of the experiments
of the MIT exokernel team are presented. We discuss their results and draw some conclusions.
We also present one of our early experiments and our conclusions. Section 4 presents how we
can exploit knowledge of resource utilization to improve applications, and specifically the Erlang
system. We present a strategy for improvement, and some specific ideas for improvements that we
believe would be beneficial for Erlang and protocol implementations written in Erlang. Finally,
in section 5 we present our results and conclusions, and a road map how work to improve Erlang
should proceed.

2 Exokernels

The exokernel operating system architecture is based on the idea of not providing any abstractions
not needed for safe multiplexing of hardware resources. All other abstractions must be implemented
in user space.

Basically, an exokernel can be said to provide low-level device drivers and low-level multiplexing
of hardware resources, such as scheduling of the processor, low-level memory and disk allocation,
network multiplexing etc. Along with multiplexing, it also provides access control for resources.
The functionality provided by the exokernel can then be used to build traditional operating system
functionality such as communication protocol stacks, file systems, virtual memory systems etc.

Removing standard OS abstractions may seem like a step backwards to pre-OS days, but actu-
ally the most useful part is kept: safe multiplexing. Just as applications today are linked with
runtime libraries, they could also be linked with an operating system module. This will allow
the applications to retain the benefits of the traditional abstractions — wide source portability
across different platforms, while still allowing flexibility in modifying abstractions in the operating
systems without affecting other applications.

ExOSJ[13, 25, 33] is the default library operating system running on top of the exokernels Aegis
and XOK. ExOS implements most of the functionality and APT of a BSD 4.4 UNIX system. Many
UNIX applications can be compiled and linked with ExOS with no more changes than when moving
them between UNIX dialects.

Linking operating system modules to the applications has the advantage of allowing the program-



mer to modify or replace parts of the OS modules the library operating system without
affecting other applications. It also means that an application programmer can choose a pre-made
library operating system, like ExOS, which has implementations of OS abstraction that fits her
application. Functions in the library OS can then be modified or overridden with specialized
implementations of performance critical abstractions.

Many ideas of Exokernels can be traced to the micro kernel architectures such as Mach[19][36,
Chapter 20]. Basically Exokernels are the micro kernels taken one step further towards less ab-
stractions and more responsibility for user level code to manage the hardware resources.
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Figure 1: Applications running on top of an exokernel. The library
operating systems provide different abstractions to the different
applications.

In figure 1, an exokernel based system is shown. It is running two standard applications, Emacs and
Word, on top of two different library operating systems that provides the API and functionality of
two common operating system, UNIX and Win32. It runs a specially written WWW Server that is
running on top of a custom made library operating system. Finally, a threaded Consumer/Producer
application is running on top of a UNIX library OS that has been extended with customized thread
support.

All four applications have their own library operating system that implements the OS abstractions
needed by the application. An application and a library operating system executes in user space,
i.e. outside the kernels protection domain, in the context of the same process and protection
domain'.

Having most of the OS in user space has some interesting consequences with respect to performance.
A call from an application to a OS service is no longer more expensive than a function call, because
it is just a function call  no system context switch is necessary. Also, the parameters supplied
in an OS call need not to be checked as thoroughly, since an OS crash will only affect the calling
application, not the whole machine. Also, any resource accessible to the OS can be assumed to
be accessible to the application, reducing the need for access controls. Once the resource has been
allocated to the application, the kernel is not involved in the management of the resource until it
is deallocated.

There is, however, a price to pay for this: Although some OS functions can be handled without
needing to call the exokernel, others may cause multiple calls to the kernel when the OS function

IThe exokernel papers sometimes discuss environments, the context in which a process executes, but will often
use the words environment and process interchangeably.



is made up of several primitive exokernel operations. Even though calls to the exokernel are more
efficient than kernel calls in traditional operating systems, this situation requires careful design in
order to minimize the number of exokernel calls needed.

One strategy to minimize the number of exokernel calls required is to directly expose kernel struc-
tures, e.g. by mapping them read-only into the applications address space, to avoid calls to
examining the status of a resource. This means that calls are only needed to modify the state.

Keeping the exokernel access control management efficient is also essential, and is achieved by
using a simple capability model. Capabilities to a resource is given at allocation time. Capabilities
are thereafter shared and managed by the processes.

3 Previous exokernel experiments

The MIT exokernel team have explored possibilities offered by exploiting exokernel ideas. Below
we will present some of their most important results concerning library OS and specific applications
along with a discussion about the results. We will finish with one of our early experiments and
some conclusions from that experiment.

3.1 ExOS

ExOSJ[13, 25, 33] is a library UNIX and it implements most of the functionality of an OpenBSD
(BSD 4.4) system. Most UNIX applications can be compiled and run on ExOS.

The primary goal of the first version of ExOS was to show that a library OS can run legacy
applications on top of an exokernel[33].

It was designed to be simple, flexible and give performance comparable to normal UNIX system.
Speed of implementation was very important, so given a choice between a simple or a complex but
efficient algorithm, the simple algorithm was chosen.

Flexibility and clean interfaces between modules was also important, since the code was meant to
be customized or replaced for specific applications. In the FLUX OSKit[17, 16], these ideas are
taken even further.

Finally, performance was important, since if the functionality can only be provided at a noticeable
performance decrease, this would be a strong argument against an exokernel-based solution.

The measured benchmarks of ExOS 1.0 is not quite on par with OpenBSD running on the same
hardware. However, most of the cases where ExOS is lagging behind is believed to be due to the
choice of non-optimized algorithms and the lack of general optimization[33].

ExOS 1.0 does not provide the full semantics of OpenBSD parts of it has been sacrificed to
enhance flexibility. Other parts have been left out to because the goal was not complete compati-
bility — only the ability to run most common programs. Finally, some parts are implemented in
a unsafe manner, both in terms of security and fault isolation, to simplify the implementation.

The goals for version 2.0 of ExOS are to deal with those areas left open by version 1.0: Better

protection and fault-isolation, better security, better performance and more compatibility with
UNIX.

3.2 Cheetah

Cheetah is a HTTP-server that has been designed to take advantage of exokernels to provide
performance. The optimizations done in Cheetah are not dependent on the hardware architecture,
Cheetah[26, 25] has been tested and benchmarked on both the Aegis[13] (DECstation/MIPS) and
the XOK][25] (PC/Intel x86) exokernels, with similar results.

The Cheetah server running on an exokernel outperforms other comparable servers. For small (<=
1KByte) requests it up to eight times faster than the best comparable performance on OpenBSD



and for large requests, Cheetah is limited by available bandwidth rather than by the server hard-
ware. Cheetah delivers over 29.3 MByte/s with the CPU idle over 30% of the time.

Cheetah is an application on top of the library OS component XIO, an extensible I/O library
for implementation of fast servers. The purpose of XIO is to allow programmers of I/0O intensive
applications to exploit knowledge about I/O resource usage.

Cheetah has been benchmarked against the Harvest[8] proxy cache, and systematically outperforms
it on every test. The Harvest[8] proxy cache is a HTTP server which has been shown to outperform
many other contemporary HTTP servers on traditional operating systems.

The Cheetah HTTP server is illustrative, because it achieves good performance via a fairly small
number of easily understood techniques:

Co-location of related files Files that are related are co-located on the disk. This means that
if an HTML-document consists of a base document and two pictures, these three files will be
placed on adjacent blocks in the order they are most likely to be requested. For non-cached
pages, this is show to double the throughput of the disk subsystem[25].

Packet merging The HTTP-server is integrated with the TCP stack, which means that if the
server knows that it will produce a response to a request, it can hold off sending the ACK for
the packet containing the request until the server responds, and piggy-back the ACK on the
response. For small documents, this alone can reduce the number of packets sent by 20%[25].

Avoiding memory copies and CPU touching The HTML documents in Cheetah are stored
as “canned” responses, complete with HTTP-response headers and pre-computed TCP check-
sums. This means that only a few bytes in the TCP/IP header needs to be changed.

The data is sent directly from the disk buffers, which eliminates the need to copy data from
the disk buffers to the network buffers before sending them. Transmitted packets which are
still un-acknowledged are locked in the file buffer cache until they are acknowledged, which
eliminates the need for an explicit retransmission pool.

3.3 C-FFS

The Co-locating Fast File System (C-FFS)[18] is a file system implemented as a user level library.
It provides all the protection and guarantees needed to implement UNIX file semantics, while still
providing significant flexibility to user level software.

The C-FFS has been ported to OpenBSD, making it possible to compare the performance gain
due to the file system design as well as to gains due to the underlying operating system.

In a set of benchmarks using unmodified UNIX programs such as cp, rm, diff, gzip, the bench-
marks running on OpenBSD and C-FFS generally come out ahead of OpenBSD running with the
standard file system. When the same benchmarks are run on the XOK][25] exokernel with C-FFS
the results are typically as fast or faster compared to the OpenBSD/C-FFS combination.

The MIT exokernel team are keen to point out that while it is possible to realize similar improve-
ments with traditional operating systems, as witnessed by the OpenBSD implementation of C-FFS,
the porting of C-FFS to OpenBSD took more effort than it took to both design and implement
it on XOK in the first place[25]. This should be considered as an indication that the flexibil-
ity of exokernels reduces the effort needed to implement new approaches compared to traditional
systems.

3.4 XCP

The standard UNIX cp program is a lot less efficient than it could be. The MIT exokernel team
has written an optimized file copy programs called xcp that gives an indication of how seemingly
simple programs can be improved.

Copying files from one place to another should only be a matter of reading the data from the source
location and then write it to the destination. The dominating factor affecting the performance of



a copy should be the speed of the disks I/O operations when it is done properly. In practice, it
turns out that xcp is three times faster than the standard UNIX cp command.

Disk buffer ,

Figure 2: XCP copies files from one disk to another with DMA
I/0, not requiring the CPU to ever touch the data being copied.

The difference between the two is that xcp exploits the low-level disk interface available to it.
Compared to cp it removes artificial ordering constraints, improves disk scheduling through large
schedules, eliminates data touching by the CPU and performs all disk operations asynchronously.
In figure 2, the idea is presented. xcp only issues read and write DMA operations.

When operating on a set of files, xcp will construct a read schedule by sorting the disk blocks of all
files and issue large, asynchronous disk reads using this schedule. While waiting for the file data
read operations to complete, xcp will allocate inodes and disk blocks for the destination files and
create the files. As the read operations complete, it issues write operations to write the blocks of
the files to the destination directly from the disk buffers it previously read them to. The CPU is
only involved in the creation of the inodes and the disk block allocations, the rest is just DMA.

The normal cp program could gain some of the benefits of xcp by issuing parallel asynchronous
reads and hope that the disk device driver will merge read the block reads from the different files.
However, the big gain of eliminating memory copies cannot be realized.

3.5 Binary emulation

The MIT exokernel team has written a partial OpenBSD binary emulator for XOK to allow
OpenBSD binaries to be run directly on an exokernel.

Binary emulation is gaining in popularity. SCO is claiming that their UNIX can run unmodified
Linux binaries via the 1xrun package[34]. The reverse, i.e. Linux running SCO UNIX binaries,
has been true for many years via iBCS[11] support. In the same vein, Sun has announced Linux
binary compatibility for their Solaris operating system[30].

The XOK OpenBSD emulator is running side by side in user space with the application, which
means that it needs no special privileges or changes to the kernel. The emulator currently only

supports 90 out of 155 OpenBSD system calls, but has successfully run big applications such as
Mosaic.

The performance is comparable to running the program natively, and in some cases it is even

faster, due to the mapping of OpenBSD system call to cheaper exokernel implementations of the
same functionality.



3.6 Discussion

When handling resources, the application programmer knows what he is trying to achieve. E.g.,
in a web server like Cheetah, the programmer knows that he is reading a block of data that will
immediately be sent over the network to another machine. Typically, the OS will read data into a
kernel disk buffer and then copy the contents to a user buffer. The programmer will then proceed
to direct the networking code to send the contents of this buffer, which will probably be copied
to a kernel network buffer and then sent by the network device. But the programmer know that
moving the data to the user buffer is unnecessary it could have been sent directly from the
kernel disk buffer since the data did not need to be touched by the application.

The work done on the optimized file system C-FFS shows that by modifying just a single component
in a system, in this case the file system, gains can be made for all I/0O intensive applications using
this library OS. This improved disk handling was achieved because exokernels export low-level disk
resources and allow programmers to implement her own file system abstraction within the library
0S.

Some things should however be noted with the examples that are discussed above:

e Cheetah has been designed specifically with an Exokernel in mind. It gives very good per-
formance, but the question we should ask ourselves at this moment is if this is a typical
application that will benefit from exokernels? Which applications can be improved like this?

We believe that the answer is “no” and that Cheetah is an extreme case where exokernels
have an edge and that are difficult to duplicate on traditional systems.

Also, if a complete rewrite of an application is required to realize these improvements, how
much of these improvements are just due to the application code being rewritten? Cheetah
running on a traditional OS performs as well, or better, than the best traditional web server
it is compared with.

e The C-FFS file system can and has been implemented on a traditional operating system.
Even on a traditional OS, it performs better than the file systems it is compared to. Again,
how much is due to a better design, and how much is due to exokernel features?

But as pointed out, what’s interesting with C-FFS is that implementing it does not require
special privileges in an exokernel.

3.7 Incremental changes

The application and library OS base from the MIT exokernel team is quite large. Their ambition
have been to design new applications that specifically exploit exokernel features.

We believe redesigning and re-implementing is too expensive. Incremental tweaking can, however,
be motivated if the gain is sufficient to motivate the effort. We have experimented with some such
minor modifications, not so much for the actual gains, but rather to see how much effort is needed
to realize the gains. It turns out that many of the really major improvements would require that
the design of the involved programs are changed.

It is a broadly accepted fact that applications often are designed based on the operating system
and hardware they were first implemented on. This is typically most noticeable when porting a
program from one platform, e.g. UNIX, to another that has a dissimilar architecture, e.g. MS
Windows. Since most traditional operating systems have a fairly similar approach to abstraction,
i.e. they will hide as much as possible of the underlying hardware semantics, it is not surprising that
most applications originally written for a traditional OS will ignore most low-level details. When
moving such an application to an exokernel architecture, it is hard to suddenly start exploiting the
new features, because the necessary low-level knowledge that the applications programmer may
have had, has not been incorporated in the application, since it could not be used on the system it
was originally written for. The work needed to afterwards track this information and exploit may
be on par with redesigning and re-implementing the application.

In one of the first experiments we? performed on an exokernel, we changed the semantics of NFS

2This experiment was done in collaboration with Thomas Pinckney and Héctor Briceno of the MIT exokernel
team. It was done more as an exercise in modifying the library OS, than for the actual performance optimization.



writes to allow caching of writes. We took this slightly altered NFS and linked it with an application
A which is used in a pair with a second application B that reads the file resulting from the first.
By using the modified version of A, the execution time of application B is reduced by almost
50%. The real solution to the above problem would be to alter applications A and B so that they
communicated via a pipe instead, however it may be the case that we do not have the source to
application B, and then this example may be slightly more realistic.

This is a change that could and should not go into the mainstream version of the NFS code, since
we basically violate the NFS semantics. It is safe for us to do this in this specific case, since we
exploit the knowledge that the file has no significance except as input to the next program, and
that any writes performed to this file by other processes should be ignored.

4 Exploiting knowledge of resource utilization to improve
Erlang

One of the main reason for experimenting with new operating systems is performance. We want
our programs to run faster on the existing hardware. This can be achieved both by improving the
implementations of the features used, but also, and often leading to more dramatic improvements,
by better exploiting knowledge of how resources are used. The two forces working against many
performance optimizations are lack of portability and the extra effort needed.

In this section we will first examine why it is hard to use knowledge based improvements when
programming for traditional operating systems using the Erlang system as an example. Then we
will look specifically at the implementation of the Erlang system to see what kind of improvements
can be done to it within the exokernel paradigm. Finally, we will list specific areas of improvements
relevant to Erlang that the exokernel paradigm allow us to exploit.

4.1 Erlang and some definitions
We are looking at Erlang[5] from the outside, mostly from the perspective of the components
“beneath” the Erlang system. This will affect the terminology, and may cause some confusion.

We have worked primarily with the JAM[4] version of the Erlang system, which is based on a byte
code compiler and an abstract machine that interprets the byte code. There are other versions
like the BEAM]20] version that compiles Erlang to C code, as well as HIPE[24], the JAM-based

JIT-compiling Erlang implementation. We believe that most of what is said in this report is also
applicable on the BEAM and HIPE versions.

For our discussions we identify three parts of a running Erlang program:

1. The application written in Erlang.
2. The Erlang interpreter

3. The run-time system (RTS). The RTS serves as the interface for the Erlang interpreter to
the underlying OS, and will vary from OS to OS since it bridges differences between different
0OSs. The RTS also provides any OS-like functionality needed by the Erlang interpreter.

The actual distinction between the Erlang interpreter and runtime system may vary from one
Erlang implementation to another. However, this does not affect the conclusions from this work.

4.2 Exploiting knowledge

In a typical multitasking OS, e.g a UNIX system, if a programmer wants to make use of knowledge
of the underlying hardware architecture, she must do one of:

e allocate a whole hardware device (e.g a whole disk partition)



e modify the kernel

e give the application privileges to directly access hardware

In the first and last cases, the application will be given exclusive access to the resource because
there is no low-level multiplexing mechanism. In the last case also means that privileges outside
of the needed may be granted, because the operating system privileges cannot be confined to a
specific hardware. E.g direct access to hardware under UNIX and similar operating systems means
that all OS protection can be circumvented, both intentionally or unintentionally.

The middle alternative, modifying the kernel, has the unfortunate side effect of changing the be-
havior not only for the specific application, but for all applications. Also, it can only be undertaken
if the source code of the OS is available. Finally, it means that the kernel will grow for each ap-
plication users want to be able to optimize performance for. Some OS’s provide a loadable kernel
module functionality, but this will not solve the main problems. Since a kernel module will execute
in kernel context, any malicious code or programming error in it can bring the whole machine
down.

All in all, this means that, programmers are left with either the general abstractions, or has to
create a dedicated system running directly on top of the hardware. With exokernels, a middle
ground between these two choices is created.

Application| |Application Application| [Application
Erlang Erlang Erlang Erlang
interpreter interpreter interpreter Interpreter

Erlang RTS |Erlang RTS

0S ExXOS

m#m& T
Figure 3: Four different approaches for an Erlang application: Dedicated sys-

tem, dedicated library OS on exokernel, standard library OS on exokernel and
traditional OS (UNIX) solution.

In figure 3 four alternatives are illustrated with Erlang running on different software platforms on
the same hardware. From left to right we have:

1. A dedicated system. On such a system the implementor has full freedom to implement all
necessary abstractions to perfectly fit the Erlang system, but at a very high labor cost since
he has to do all the work for each new hardware platform.

Correctly done, this should result in the most efficient system possible.

2. A dedicated Erlang library OS. With this system, we retain most of the flexibility of the
previous case, but still a substantial amount of work needs to be done to to write a dedicated
library OS. The exokernel will, however, provide all the low-level hardware interfaces.

3. A standard Erlang system running on top of the UNIX look-alike library OS, i.e. ExOS[33].

4. The standard Erlang system running on a UNIX system.



The two last systems should be virtually identical it is the same code, compiled for two different
UNIX-systems. The only difference is that on an exokernel, the Erlang implementor can start with
a library operating system mimicking a standard UNIX and incrementally modify the library OS
and Erlang runtime system until they are merged and specialized into an Erlang OS. A nice feature
is that two versions of the Erlang system, one modified an one unmodified, can be run in parallel,
allowing their behavior to be compared to determine if the change changed semantics and to see
how much difference the change made. With a dedicated system, two sets of identical hardware
would be needed to do this.

4.2.1 The trade-offs

Looking at figure 3, the interfaces between different parts of systems has been illustrated as a thin
dotted line. All four systems have the same hardware API. Similarly, all systems running on top of
an exokernel has the same exokernel API, e.g. XOK or Aegis. ExOS is a 4.4 BSD UNIX look-alike,
and thus an application running on a normal UNIX system and on top of ExOS share the same
4.4 BSD APL

We have tried to illustrate the fact that we do not wish to modify the Erlang interpreter or the
language, by showing all four implementations alternatives of Erlang to use the same API from
the interpreter and upwards. Or put in another way: The white boxes in the figure are the ones
where we can make changes with impunity. The darker striped boxes we consider impossible or
impractical to change. While changes are possible in the plain dark boxes, any changes we make
here must not change semantics and must be simple to maintain across different operating systems.
We believe changes here should be kept to a minimum to avoid forking the development into an
exokernel version and a mainstream OS version.

4.2.2 Performance, effort and visible modifications

We believe that three factors determine if, how and when performance optimizations should be
done to an existing portable application:

1. The performance gain.
2. The effort needed to realize it.

3. The visible modifications necessary.

The improvements we can show in an application is the motivation for the extra effort and the
visible modifications of the common code base® necessary. If improvements are small, they may
not be worth the effort at all, and if they are very big, can motivate a complete rewrite.

The effort needed to realize an improvement can be hard to estimate beforehand, but regardless,
we can expect there to be a non-zero effort needed to improve the code, even if the change only
involves linking with a special library OS component.

The final factor, the visible modifications, is probably the one needing the most explanation. With
visible modifications, we are not necessarily talking about changes that are noticeable when running
the program, but rather changes visible in the common source code. Any improvement that can
be done without requiring a change in the sources common to all platforms that the program is
running on, is essentially “for free”. That is, it can be done without regard to its implications for
other platforms.

Changes that affect the common code base will cause portability problems every time the it is
updated. If the changes are merged in with the common code base, and conditionally compiled,
then this alternative code may slip behind the baseline version. If the code bases are not merged,
then updating the code will require manual intervention every time a new version of the common
code base is released.

3By the common code base we mean the machine/OS independent parts of the code.
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4.3 Improving Erlang

Erlang is a general programming language, which means that we cannot transparently improve
resource use for all application written in Erlang. The resource use of programs written in Erlang
is up to the programmer and cannot be predicted a priori.

We can, however, improve the Erlang system itself. Since the most commonly used Erlang imple-
mentation is interpreted, this opens a new way to improve performance — improving the inter-
preter by utilizing knowledge about the interpreter’s resource usage, rather than the interpreted
program’s. Attempt can also be made to improve the function library and runtime system. The
runtime system (RTS) is also attractive because it provides the interface for Erlang to underlying
operating systems abstractions and thus allows us to remove redundant abstractions.

Generally, a runtime system is a layer that serves to hide the underlying OS from the application,
to make the application OS independent. The application routes all OS-type requests through
the RTS, effectively making the RTS the OS for the application. If the abstractions provided by
the RTS is very similar to the underlying OS, the RTS can be made very thin. This leads us to
conclude that the only OS functionality needed is the one used by the runtime system.

Therefore, in an exokernel based system, we can eliminate the distinction between RTS and OS, or
rather merge them into one system. Having a merged RTS/OS would mean that we could retain
most, or all, of the API used by the interpreter intact, while having full freedom to modify the
actual implementation of the RTS/OS.

The resulting system should give most of the advantages of a dedicated system in terms of freedom
of implementation and tuning, while retaining all of the benefits of a traditional operating system.
In fact we could implement complementary sets of RT'S/OS functionality that can be run side-by-
side in the system.

4.3.1 Specific classes of applications

If we allow ourself to limit us to a smaller class of programs than “all programs that can be written
in Erlang”, we thereby gain more domain specific knowledge of resource usage. As discussed
above, this allows us to make a domain specific implementation that is more efficient than a
general purpose implementation.

The situation is analogous to traditional operating systems — if we know beforehand what types
of applications an OS will run, we can include support to optimize performance for these specific
types. In a similar way, we can export functionality to programmers that is optimized for the kind
of programs we know that they will be writing.

Protocol implementations is an important area for Erlang and we will discuss how performance
can be improved for this subclass of Erlang programs.

An interesting question that we do not address is how to provide support for protocol implementa-
tion  should this be done by modifying existing language abstractions, or by providing function
libraries that implements enhanced functionality? We are focusing on the means to improve per-
formance, but at some point, the way we integrate these improvements with Erlang will affect how
they can be used.

Our recommendation is to chose one of two possible ways:

e Create an annex containing specific function for the specific task. There are plenty of prece-
dents in the Erlang function libraries[32] for this.

e Create a library OS specifically tuned for the type of problems you want to optimize for, and
build a dedicated Erlang system linked with this library OS.

In a compiling Erlang system[20], the latter could be used to chose the library OS components
that best fit the program being compiled.
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4.4 Specifics

We have looked at Erlang and exokernels from two different viewpoints: General speedups and
optimizing for protocol implementation. In in table 1 we present the operating system areas we
believe can be exploited. The areas listed are discussed and summarized in the following sections.
We include areas where we believe that changes would violate our objective of not changing the
common code base or change semantics of the language.

Area Erlang | Runtime | Protocol implementation
Virtual memory for tagged addresses XX

Physical addresses and cache behavior XX XX X
Virtual memory and page handling XX

Memory mapping and copying XX XX XX
CPU scheduling XX

Disk management X

Memory management XX

Interprocess communication XX XX

Downloaded code XX XX
Interrupt handling X XX
Packet filters X XXX
Wake-up predicates XX XX
Symbol Meaning

X Minor gain

XX Gain

XXX Big gain

Table 1: Areas we have identified as possible candidates for optimizations, which components they
affect and the gain we estimate.

Our estimation of the usefulness of different features is based on our own experiments as well as
other published research. Where relevant, we give references to published papers in the summaries.

4.5 The affected components

For the interpreter, we believe that it is mostly in the area of memory management we can improve
performance, since this is the primary resource used by the interpreter.

While some memory management features, especially the cache-related features, can also be used
in the runtime system, we believe that most of the features useful to the runtime is with other
resources than memory.

The Erlang interpreter and runtime system are components that will be used by all programs
written in Erlang. When we narrow our focus on protocol implementation, we also gain specific
knowledge about resource use. We know that we will have to deal with protocol data units (PDUs),
and can implement handling optimized for delivering PDUs between applications and networking
hardware.

4.6 Areas that can be used for improvements

Here follows a short description of the different areas of exokernels which can be used to enhance
performance.

4.6.1 Tagged addresses

Erlang uses tagged addresses (see figure 4) to identify the type of the data structures pointed to
by an address. This is done by using a few bits of the address as a tag. Doing so will, however,
have a performance penalty, since it requires several instructions to dereference a pointer as well
as reducing the amount of memory addressable by Erlang.
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Tag Pointer

Figure 4: A tagged address  part of the actual address is a tag
identifying the type of address.

The advantage of using part of the address as a tag rather than a structure consisting of an address
and a tag is that it will use less memory, and that the standard pointer type can be used when
handling tagged pointers. Special handling is only required when dereferencing the pointer.

The downside of this strategy is that we must remove the tag and restore the original pattern in
the tag bits every time we want to dereference the pointer, i.e. we must “wash” pointers before
using them, see figure 5. Washing a pointer can be done by an AND-operation to remove the tag,
and an OR-operation to restore the original contents of the tag bits. Thus dereferencing, which
normally takes one instruction, would instead take three instructions, adding to memory and cache
footprint as well as execution time.

a | Tag Pointer
b) Pointer
c) 0110 Pointer

Figure 5: Washing the pointer. a) The original tagged pointer. b)
The tag part of the address is discarded. ¢) The original pattern
is restored.

Using part of the address as tag also means that we cannot the whole memory space. For every bit
we use, we halve the usable address space. For small tags and limited applications this may not be
noticeable: In many operating systems, parts of the address space is used by the kernel, and thus
not mappable by applications anyway, because the operating system reserves it[15, 13, 29]. Also,
if the size of the objects pointed to by tagged pointers are known to always be a multiple of bytes
and always placed on aligned addresses, then the low order bits of the address are redundant and
could be used as tag bits without losing information.

The main problem is thus the processing of addresses needed, rather than the reduced address
space. If the tagged pointer could be used directly, this would eliminate the need to wash the
pointer as well as allowing Erlang to use a larger part of the virtual address space.

In theory this should be a fairly simple thing to do if we have full control over the memory system
as we are supposed to have in an exokernel. For XOK][25], however, it turns out that this solution
is not feasible because kernel structures are mapped into parts of memory that we would want to
be able to use for Erlang structures, in effect XOK have the same limitations as other operating

systems in this area, i.e. part of the virtual address space is reserved by the kernel.

The second best solution would then be to at least reduce the number of operations needed to
dereference a tagged pointer. As seen above, two operations are needed to wash the pointer.
However, if data is mapped to addresses for which all the tag bits should be zero, then we could
skip the OR-operation, and only require an AND to clear the tag bits, reducing the instructions
needed for dereferencing a tagged pointer to two instructions.

The tags of the Erlang version we have been working with are four bits wide. Unfortunately, the
normal mappings of ExOS/XOK (see figure 6) place the application heap on an address that would
require us to both clear the tag and restore the original pattern. By moving the starting point of
the heap to a lower address, we can get the desired properties and can eliminate the OR-operation.

Moving around the heap and modifying the layout of memory would on a traditional operating
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Figure 6: Normal memory layout of ExOS/XOK.

system be a major undertaking, and we would probably want to instrument the Erlang code to
determine if dereferencing is such a common operation that changing the operating system to
optimize it would be motivated. Since we're working on an exokernel where operating system
changes are relatively simple, we can use a different experimental methodology: The time needed
to actually make the change to the operating system is comparable to the time needed to instrument
the program, so instead of instrumenting to determine feasibility, we can implement the change
and benchmark the two versions.

The bad news is that in this particular case, it turns out that for all our test cases, the difference
between the three and two instruction washing is negligible.

4.6.2 Cache behavior and memory speeds

Cache lookups are typically performed by the CPU using physical addresses. Most operating
systems hide the physical addresses from applications, and exports virtual addresses. This makes
it impossible for an application to predict and control cache behavior to get higher and more
consistent performance. With an exokernel, a process can explicitly ask for specific physical pages
to be mapped at specific virtual addresses, thus enabling the application to chose physical addresses
so as to be able to layout addresses so that cache conflicts are avoided. E.g. if two chunks of data
is used simultaneously, performance will suffer if the chunks are placed on conflicting cache lines.

A final consideration is that some systems cannot cache all addresses in their physical address
space, for example the Intel Pentium II 233-333MHz processors can address 64GB of memory, but
only the first 512MB can be cached[23]. In some systems, parts of the physical address space have
an access speed penalty compared to other parts. Most operating system do not have a mechanism
to indicate the characteristics of different types of memory, which means that addresses from these
slower memory areas are not available at all to applications, or addresses from these areas will be
handed to the application with no indication of the speed penalty.

If the application and compiler know about the characteristics of different physical memory ad-
dresses, they can avoid this slower memory for time critical parts. The application could also
knowingly use the slower memory for storage of infrequently accessed data.

In an exokernel, an application can request that specific physical pages be used to a virtual address,
which means that in an exokernel, the library OS can be designed to provide fine grain control over
what types of memory it offers to an application. It also means that the application can request
memory that will not cause cache conflicts with existing memory areas.
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4.6.3 Virtual memory and page handling

A virtual memory system has typically a global strategy for handling page replacement. The Least
Recently Used (LRU) algorithm is often used[37]. It evicts the page least recently used when the
system runs out of physical memory.

While LRU is a reasonable strategy in most cases, it can give rise to unwanted behavior in some
circumstances, i.e. when touching a page is actually not a good indication that it in most cases
will soon be needed again. This mismatch happens e.g. during a garbage collection (GC). For GC
we have two unfortunate scenarios: a) Pages will be brought in from disk that will not be needed
again anytime soon. This will cause other pages, that may be needed again soon, to be written out
to disk. b) GC will touch pages that are in reality good candidates for paging out to disk, causing
other, more useful, pages to be paged out instead.

Exokernels allows full control over paging and the algorithm controlling page replacement. By
allowing the application to control page replacement, it can modify the page replacement algorithm
to take these unwanted effects on paging into account. The normal page replacement algorithm
can be suspended, and another strategy can be used during operations that have unwanted effects.

For a garbage collect, a small set of physical pages could be allocated as a page pool for the GC.
The GC can page in any pages it desires, but when its pool of pages is used up, it has to page out
a physical page from its own pool, not the physical memory of the whole application.

4.6.4 Memory mapping to avoid copying

Modern operating systems have support for shared memory between processes. Exokernels add a
finer control over memory mappings, as well as a kernel infrastructure that gives the application
more flexibility in exploiting memory mapping.

Many OS operations involve moving data between buffers, either between kernel and user space,
or between kernel internal buffers. There are also operations performed by applications that
involve copying. When copying small amounts of data, or when copies are infrequent, the effect
on performance is often negligible. If copies of large memory blocks are done frequently, then they
will have a serious impact on performance.

In these cases, the destination virtual addresses can be mapped to the same physical memory
pages as the source addresses. This is an efficient solution for the cases where the copied data is
not altered or when changes are tolerated in both copies. In the cases where changes may not be
propagated between copy and original, remapping can still be profitable. The addresses of source
and destination will be mapped to the same physical pages, as before, but the mappings of both
copy and original will be marked copy-on-write. If an attempt is made to modify a page that is
mapped copy-on-write, then the page will be copied, the virtual mapping will be changed to map
to the copy, and only then the modification is done. The result is that only those pages that are
modified will be copied, the rest will just be remapped.

The cost of remapping must be considered. For small amounts of data, a copy can be cheaper
than remapping memory. On the other hand, if we can replace several copy operations by one
remapping, the cost of remapping can be amortized over all copy operations. The actual cost of
remapping vs copying data varies between different hardware architectures, so the exact trade off
vary from system to system.

An example of an operation that involves a bulk copy of data that will be partially modified is the
UNIX fork() call. In most systems this call is implemented as a copy-on-write remapping of the
pages from the parent process to the child process[29] rather than as an actual copy.

In an exokernel based system, most operating system functionality will be implemented outside
the kernel. This means that to achieve the same performance as on traditional systems, memory
mapping must be available to applications in exokernel systems. The decision to use copy-on-write
mappings rather than a copy is a “gamble” that relies on knowledge that most pages will not be
written to. The application writer is in a position to know if that is the case, and can instruct the
exokernel to map these pages copy-on-write rather than copying their contents.

Device I/0 is another area where remapping strategies can be used. By mapping the device buffers
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into the virtual address space of the application, data do not need to be copied from the device
buffer to the application. For a device buffer mapping scheme, the best strategy would probably
be to reuse mapped buffers for several I/O operations in order to amortize the cost of mapping
the page over several uses of the buffer. Doing so will require cooperation from the application (or
library OS) to avoid that pages currently used for I/O are used by the application[2].

For hardware supporting scatter/gather 1/0[29, 10] for devices such as network cards, memory
mapping schemes are very attractive, since scatter/gather allow the kernel or library operating
system to place the header in private memory while placing data in application readable buffers[1].

Other uses of memory mapping is when exposing kernel data structures to the application and
library OS. We could map the kernel page containing the structures read-only into the applications
address space rather than providing a system call to copy the information from the kernel to the
application. This mapping would have to be done only once for the whole life time of the process.
Exokernels use this technique to expose kernel information to the application and library OS[13].

4.6.5 CPU scheduling

In most operating systems, control over CPU scheduling for an application is a question of assigning
a priority to the process. In some operating system, the application can additionally affect how
it is scheduled by choosing a scheduling class that fits its profile. No control over how to handle
re-scheduling is given to processes, and this means that critical sections must be implemented via
system wide semaphores, since the process can be de-scheduled at any time.

Threads can either be available as kernel controlled objects, or implemented by the user level
process. Kernel threads means that the kernel is aware that a process can have several threads of
control running simultaneously, and will schedule them pre-emptively and ensure that the threads
are handled as first class operating system objects.

User level threads, on the other hand, allow an application more control over how threads are
implemented. The application can impose its own thread semantics and chose an implementation
that better fit the applications needs. The down side is that the OS only expects a single thread of
control in a process. This will manifest itself in different ways, but typically it means that one user
thread calling a blocking OS function will cause all other user threads within then same process to
block as well. Hence, pre-emptive scheduling of user level threads cannot be done, and some type
of cooperative scheduling must be done instead.

The process model of exokernels is very simplistic. Most functionality has to be implemented by
the application, not only control over threads but also over process activation. The exokernel
will generate an up-call (much like an exception) when a process’ time slice starts and when it
ends. The process has to handle context restoring and saving by itself, which has the advantage
of allowing scheduler activations[3]. The process is also free to chose what context to restore on
activation, i.e. the process can implement pre-emptive scheduling of sub-processes (threads) as it
sees fit.

When an up-call to end the time slice has been received, it is up to the process to decide what
parts of the context it must save. E.g. if the programmer knows that the process does not to use
the FPU, then he may chose not to save the FPU state.

If a process overruns its time slice, e.g. it wants to finish a critical section before relinquishing
control and does not release control within its time slice, the overrun will be deducted from the
process’ subsequent time slices until it has forfeited an amount equal to its overrun. If the overrun
is too big, the process will be terminated by the exokernel. The downside of allowing overruns is
that it will make real-time scheduling hard. As long as all running processes cooperate, it should
work, but no hard scheduling guarantees can be given by the exokernel.

Scheduling of processes is not done by an algorithm. Instead it is done by letting the application
allocate time slices in a time vector. This means that the scheduling policy of a process is a
question of how many and which time slices are allocated in the vector to the process. In figure
7 an example time vector is shown. Big CPU-bound jobs tries to allocate as many adjacent slots
as possible, to reduce context switching overhead, while interactive and real-time processes would
try to allocate evenly spaced slots for fast response times. A small program needing CPU only
for occasional updates, would only allocate a single slot, big enough to let it finish the update.
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CPU time vector
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Figure 7: The CPU time vector. In this example, five processes have
allocated all available time slots in accordance to their scheduling pref-
erences. The length of the vector is determined by the implementation.

Background batch programs, finally, allocates any time slots available.

Since all processes allocate their own slices, a greedy application could lock out all other processes.
A global scheduling can be implemented by letting the first process that starts to allocate all time
slices, and then implement a global scheduler using the yield primitive that donates the rest of a
time slice to a named process. It could schedule other processes by successively yielding time slices
to them according to its scheduling mechanism. This first process could also could also serve as
a priority based manager for the time vector, overriding allocations based on the priority of the
allocating process. In figure 7, this would mean that even if the batch process had allocated all
available slots, it would lose them if a higher priority process wants slots.

The MIT exokernel team have implemented and tested a stride scheduler[39] to demonstrate that
a user level scheduler can be implemented given the primitives provided in the exokernel.

For Erlang, these mechanisms could be used to implement Erlang processes. This could combine the
advantages of the current implementation with the advantages of mapping the on OS threads[21].

4.6.6 Disk management

A traditional OS normally offers two different ways of using disks: As structured file systems, or as
raw disk. In the raw form, the unit of multiplexing is typically a disk partition of a static size

i.e. we can assign a partition to an application. Databases often have their own disk handling using
a dedicated partition in order to increase performance and get better control over data placement.

If we want to share disk with a finer grain granularity than a partition, we have to use the file
systems available. But in doing so, we also delegate control over placement and format of data on
the disk to the file system.

In exokernels the unit of multiplexing is individual blocks, rather than files or partitions[25]. An
application can implement its own file system using the blocks. An application file system can
exist side by side with a standard file system.

The main difference between implementing a file system on top of a raw disk and in an exokernel
is that under an exokernel, physical disk blocks must be allocated from a common pool shared
with other applications. Ie., if an application wants a specific disk blocks, it may already have
been allocated by another application. Also, the exokernel requires that the application provides
a mechanism to identify allocated blocks. This is done via a Untrusted Deterministic Function
(UDF) that allows the exokernel to interpret the user file systems own metadata. Le. the blocks
used by a user file system will not be tracked and stored by both the kernel and the file system,
instead the exokernel will use the file systems metadata via the UDFs.

The disk system also provides a user controlled buffer cache mechanism to handle cached disk
blocks without actually imposing a specific disk caching scheme. Cached blocks are handled by
the user application, the disk system only provides a way for file systems to register cached disk
blocks.

For casual disk use, the standard file systems will probably by sufficient. The type of applications
that will benefit are those where disk I/O is a bottleneck, and have disk seek patterns which can
be predicted or where disk block data should not be touched as in Cheetah (see section 3.2) and
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XCP (see section 3.4).

4.6.7 Memory management

It can be assumed that any given application will need memory. For simple applications, only
memory for statically allocated variables and perhaps a few variables on the stack will be needed.
Applications that have more dynamic memory needs will allocate and deallocate memory dynam-
ically during the execution. But why should we stop there? We have already discussed how an
application could affect its cache behavior and also seen how an application could increase its
performance by modifying the page replacement algorithm.

Applications can use knowledge about the contents of pages for more efficient memory handling.
E.g., if an application knows that it is no longer using a page, the application can unmap the
page and release the physical page to the common pool of free pages. Doing this means both that
applications will utilize resources better (they are only holding pages they really need), but also
that the overall performance will be better since when a process that needs memory for a page,
it can get one immediately from the pool, instead of first having to write out a page to disk. If a
garbage page has been written out and we want to reuse the same virtual address for new data,
we will have to read the page back from disk, even though the application already knows that the
current contents of the page is garbage.

There are a few options available when a physical page is needed. If the application has structures
in memory that can be recalculated, it might be more efficient to release the memory used by those
structures rather than page out other code/data. If the application uses speculative caching or
pre-fetching to increase its performance, then it could elect to release a cached or pre-fetched page
rather than lose a page containing code/data. Speculative caching and pre-fetching is often a good
strategy to use otherwise unused memory, but if the caches push out code or data, this may end
up hurting performance. In fact, if the infrastructure to selectively release pages does not exist,
the application programmer may hesitate to add caching and pre-fetching.

The most recent exokernel implementation, XOK, does not support much in the way of paging.
The idea presented in the exokernel papers[13, 25] is that the exokernel will ask, via an up call, an
application to release a physical page. The application then has a certain time to comply to the
up call, and if it does not release a page within the set time, a page will forcibly be removed by
the exokernel and the application will be notified that the page was reclaimed.*

To lessen the impact of such a drastic action a repossession vector is proposed[13]. The application
puts pointers to pages it does not mind that the exokernel revokes into this vector. The applications
should also provide the exokernel with capabilities for backing store resources for storing the
contents of reclaimed pages.

4.6.8 Interprocess communication

Interprocess communication (IPC) is used to allow processes on the same machine to communicate
with each other to exchange data or to synchronize with each other. The mechanisms used to
implement IPC varies, but ultimately it is a question of transferring control and a buffer of data
from one process to another. The simplest form would be to use a shared memory buffer, and to
poll a pre-defined part of the buffer to determine if a call has been made by the other process.
Another possibility would be to use a messaging mechanism in the kernel that signals the receiving
process when a message is available[36].

An important performance factor is the latency IPC has, i.e. how long time does it take from the
time process A sends a message until it is received by process B? Latency is especially important if
IPC is used to call functions in another process i.e. Remote Procedure Calls (RPC), since if calls
between processes are much more expensive than calls within a process, then it may make more
sense not to split functionality into multiple processes, regardless of other advantages.

Exokernels provides mechanisms to transfer the thread of control between two processes as well as
the possibility to share memory, and by using these mechanisms the application programmer can

4A small set of guaranteed mappings should always be provided to the application, so that it can store its
management routines (pager etc).
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build his or her own IPC abstractions. The actual transfer of control is simply done by changing
the program counter to an previously agreed address in the callee and donating the rest of the
current time slice to the callee. Protection is managed by the callee, i.e. it is up to the called
process to determine if should accept the call or not.

The transfer of control can be done asynchronously or synchronously. The former only donates
the current time slice, whereas the second donates the current and all future time slices until the
callee returns control to the caller. The latency of a synchronous transfer of control in the Aegis
exokernel is 30 instructions[13].

All process visible registers are left intact during the transfer, which means that the registers can
be used as message buffer[9]. If this is not sufficient, then a permanently shared memory buffer
can be used instead.

The IPC building blocks provided by exokernels can be used to build many different flavors of
IPC and RPC abstractions. An untrusted RPC mechanism would not trust the callee to save the
contents of registers during the RPC, but if server and client trust each other, then the responsibility
can be migrated to the callee, which can save only those registers used by the RPC call. This will
further reduce the latency of RPC calls[22].

4.6.9 Downloaded code

A problem in an exokernel operating system architecture is that the kernel does not know anything
about the resources handled by the application and library operating system. Since the kernel does
not know how to react to different events such as I/O completion, packet arrivals etc, it must rely
on the application to handle the event. This, however, is expensive since it requires the application
to be scheduled.

The idea of downloadable code is that the application provides code that identifies or transforms
in-kernel data for the kernel. The code is checked by the kernel to ensure that all memory accesses
are legitimate, effectively confining the code to a sandbox[38], and that the tests performed does
not overlap with previously downloaded tests. Once the code has been checked, the kernel can
compile it to machine code and install it. It can then call this code to perform the relevant tests
and transformations and then interpret the results, without actually having to know what is being
tested or what the format of the original data was[12].

The real power of downloaded code is, however, not speed, but the ability to delegate management
from the kernel to application code even in situations where the kernel cannot trust the application:
Downloaded code can be checked and execution times and access be bounded at download time.
This is for example true of the exokernel disk support in which ownership of blocks is resolved by
a downloaded piece of code, a UDF, or the packet filters and wake-up predicates discussed below.

Other operating systems that allow user programs to download code include the SPIN[7] micro-
kernel and Vino[35].

4.6.10 Interrupt handling

By hiding interrupts, traditional operating systems simplify for the programmer, but at the same
time this will restrict the flexibility. By exporting interrupts to an application, it can directly
manage hardware devices associated with the interrupts. Also, to implement efficient critical
sections, control over interrupts must be delegated to the application so that incoming interrupts
will not break the sections.

For some interrupts, the latency involved in a calling the application to serve an interrupt is not
acceptable. For these it would be beneficial to download interrupt handling code into the kernel.

The exokernel implementation Aegis[13] provide the application with an interface to interrupts
as well a method to download interrupt handlers into the kernel. While downloadable interrupt
handlers offer elimination of kernel crossings, the low cost of kernel crossings in exokernels renders
this advantage very small. By providing a fast up-call to the application, most of the benefits
of downloadable code will be retained. For mainstream operating system with expensive context
switches, downloadable interrupt handlers may still be a good solution[25].
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4.6.11 Packet filters

The multiplexing of network resources normally done in traditional operating system is to use
a shared protocol abstractions that allows applications to establish connections and send/receive
packets. This, however, limits applications to use the protocols provided by the operating system
and the network interface.

For the outgoing direction this is not a problem, but for the incoming direction the underlying fun-
damental problem for the kernel is how to de-multiplex incoming packets and establish ownership
of them. If the OS does not know about the protocols used or connection to process id, it cannot
determine what process should get an incoming packet.

A solution is downloading code, a packet filter[31], into the kernel that the kernel can run to
determine ownership of a packet. The packet filter allows the application to describe to the
kernel the packets belonging to it. Once identified, the packet can be dispatched to the proper
process, which then is free to implement the actual protocol, i.e. there is no need to use a shared
protocol abstraction. In the Cheetah HTTP-server, this is used to allow a custom TCP /IP protocol
implementation that in turn allows Cheetah to do intelligent packet merging (see section 3.2).

As the code is downloaded, the kernel will test to see if this packet filter conflicts with any previously
downloaded packet filters. If not, it will be merged with the previous packet filters.

The implementation of packet filters, Dynamic Packet Filters (DPF)[14], used in the Aegis and
XOK exokernels differs from most other implementations[31, 6, 28, 40] in that it compiles the
packet filters to machine code, rather than using an interpreter. This makes installation of packet
filters slower than in other systems, but the demultiplexing performance is reported to be on the
order of 10-20 times faster than the other systems[14, 13].

Fortunately, packet filter installation is only needed at connection setup and closing time. If a
programmer knows beforehand that he will need multiple connection during the lifetime of the
application, a filter that matches the packets of all connections can be downloaded at startup,
rather than installing several more restrictive filters. In this case, the fine grain filtering is done
by the application.

The packet filtering mechanisms can be exported directly to a Erlang program via an annex. This
would allow the Erlang programmer to describe PDUs and then, using zero-copy mechanisms,
allow the Erlang application to directly operate on data from the network buffers.

4.6.12 Wake-up predicates

One of the big differences between an exokernel and a monolithic kernel design is that the monolithic
kernel has access to all OS structures, which means that it is fairly straight forward to construct
mechanisms to let processes sleep while they are waiting for events such as I/O completion, expiring
timers etc.

If such abstractions are removed from the kernel and all those structures and mechanisms are
delegated to the user level OS, this means that if a process is waiting for an event, it must be
woken up regularly to let it check for the event. Unless we are prepared to accept significant
latency between events happening and the process reacting to them, this means busy-waiting for
events.

To avoid this situation, exokernels provide kernel wake-up predicates. These predicates are down-
loaded into the kernel by the process, much in the same way packet filters are, and specifies a set of
events that should cause the kernel to wake this process up. The events are essentially just patterns
in memory at locations accessible to the process. The memory locations could hold anything — a
memory mapped timer register, a buffer structure or any exported exokernel structure.

A wake-up predicate may involve multiple sub-predicates. For example to allow for several events
to generate a wake-up, while waiting for I/O to complete, the application wants to handle both
I/0 completion, as well as error indications or timeouts.

Since the downloaded wake-up predicate is compiled to machine code, they should be comparable
to the cost in a traditional kernel.
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void cat_test(void)
{
LOOP(5) {
fork_and_run_function_in_child(do_cat_test)
}

wait_for_children_to_return();

}

void do_cat_test(void)
{
spawn("cat", fd_in, fd_out);
LOOP (4800) {
write (fd_out, buffer, 200);
select (fd_in);
read(fd_in, buffer, 200);
}
LOOP(4800) {
write (fd_out, buffer, 5);
select(fd_in);
read(fd_in, buffer, 5);
}

return(0) ;

Figure 8: Pseudo-code for a simple test program runs multiple processes that
“ping-pongs” data via an external process.

Wake-up predicates are executed in the context of the kernel. This means that they could be used
to let one process to snoop on other processes private data. To guard against this, all addresses
references are checked for access rights before the predicate is compiled to machine code and
installed.

Our practical experiences with wake-up predicates in ExOS/XOK]|33, 25] for Erlang show an unan-
ticipated performance loss. The reason is the cost of installing the wake-up predicate. It cannot
be amortized over multiple uses in the same way as for a long-lived communication connections.
A wake-up predicate is likely to be discarded after its first positive match. If the time between
installing a predicate and wake-up is long, then it will of course still be a gain to have installed it.

We have experimented with the select () call in ExOS, which basically installs a simple wake-up
predicate that will wake the process up when data is available for a specific file descriptor. This
experiment was prompted by the fact the Port I/O demo benchmark for Erlang on ExOS/X0K
ran significantly slower than on OpenBSD or Linux (see section 5.1).

We have two versions of a simple test program that captures the essence of the Erlang Port I/O
demo. The program forks off a number of processes that ping-pong data to and from an external
program. Version A (see figure 8) waits for data using select () before reading, and version B,
which is identical to A except for the select () calls, just tries to read data immediately.

We expected that version A, which uses the select () call, would be slower on all platforms since it
does more work. Running the test programs under OpenBSD and Linux, we found that the version
A indeed is about 20% slower than version B. Performing the same test under ExOS/XOK, we
find that version A is more than 500% slower than version B.

Instrumenting the code, we find, as we suspected, that it is indeed inside the select () call most
of the time is spent in version A.

The ExOS select () call basically consists of four parts:

—_

. Check if wake-up conditions are already met, and return immediately if they are.
. Construct a wake-up predicate.

. Install the wake-up predicate.

= W N

. Sleep until the wake-up condition is met.
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Further instrumentation of the select() call reveals that just constructing and installing the
predicates in the call consumes twice as much time as is spent in the read () and write() calls.

The conclusion here is that while everything seems to indicate that while wake-up predicates is
a powerful mechanism that has the potential to improve overall system performance, it must be
used with care.

If the kernel could cache predicates, it seems that the program in figure 8 could be run with only a
single installation of a wake-up predicate, but just caching will not solve the problem in the general
case, only the case where identical wake-up predicates are repeatedly installed.

It would be interesting to build an alternate mechanism that do not compile the wake-up predicates
to machine code, and compare the performance to the current implementation. This experiment
has, however, not yet been performed.

A different approach that would probably not require changing the exokernel would be to re-design
the way the mechanism is used. The current implementation will compile hard coded tests. This
can be changed to allow the values tested for to be changed, without requiring the predicates to be
recompiled and reinstalled. The test for a given resource, e.g. file, pipe or timer, would be installed
the first time the resource was used as a wake-up condition. Subsequently, only the parameters
would have to be changed.

A parameter could be used to toggle a certain test on and off, allowing previously used wake-up
predicates to remain installed, but dormant, when testing for another condition. This would make
the wake-up predicates run slightly slower, but offset against the cost of installing a predicate, this
is very likely to be a win.

If predictability is important, the wake-up predicate could be installed ahead of time, i.e. when
opening a file, rather than when first used, to make the time of activating a test equal regardless
if it is the first or subsequent time a specific test is used.

The biggest downside of a scheme like the one outlined above is that it would require the library
OS to keep track of what wake-up predicates it has installed, and make sure they are removed
when the resource is no longer used.

5 Conclusions and results

In this section we will present measurements and our conclusions from the work we have done so
far. In section 5.1 we discuss the port of the Erlang system, and in section 5.2 we present our
conclusions.

5.1 The Erlang system on an exokernel

We have ported the Erlang system (JAM 4.6.3) to the XOK exokernel, running it on top of
ExOS, the 4.4BSD UNIX-compatibility library OS. The effort needed to port the system was
comparable to what would be needed to the system to a previously unsupported UNIX version.
The performance of the Erlang system running on XOK is comparable to the performance we get
from running it on OpenBSD and Linux. As can be seen in table 2, the difference between the
OpenBSD and Linux system is greater than the difference between the XOK/ExOS version and
OpenBSD.

System Estones
Linux 2.0.33 6376
OpenBSD 2.2.0 5557
XOK/Ex0S 1.0.2 5153

Table 2: Results from the Estone Erlang benchmark suite, running Erlang 4.6.3 system on a
Pentium I1/233 system. Higher Estone value is better.

The Linux and OpenBSD implementations of UNIX abstractions are more refined than the ones
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in ExOS, as was discussed in section 3.1 and is discussed in paper [33]. Table 3 show a detailed
comparison between the OpenBSD and XOK/ExOS benchmarks. As can be seen, the results vary
between favoring OpenBSD and XOK/ExOS, or being equal. The one major discrepancy is for
the Port I/O benchmark, where XOK/ExOS has less than half the performance of OpenBSD. In
fact, had the results for XOK/ExOS of this benchmark been equal to OpenBSD, the XOK/ExOS
benchmark result had been superior to that of OpenBSD.

Benchmark OpenBSD | XOK/ExOS | Difference
List manipulation 335 324 3.3%
Small messages 549 546 0.5%
Medium messages 514 529 -2.9%
Huge messages 138 143 -3.5%
Pattern matching 204 200 2.0%
Traverse 154 150 2.6%
Port I/0 944 432 118.5%
Work with large dataset 129 124 4.0%
Work with large local dataset 137 131 4.5%
Alloc and dealloc 117 118 -0.9%
BIF dispatch 583 590 -1.2%
Binary handling 230 254 -9.5%
Ets datadictionary 594 644 -7.8%
Generic server (with timeout) 327 376 -13.1%
Small Integer arithmetics 165 164 0.6%
Float arithmetics 38 38 0.0%
Function calls 236 236 0.0%
Timers 124 115 7.8%
Links 39 39 0.0%

Table 3: Detailed comparison between the benchmarks of the OpenBSD and XOK/ExOS versions
of the Erlang system. The unit is Estones, and the difference column indicates how much faster
than the XOK/ExOS version the OpenBSD version is.

The discrepancy for the Port I/O benchmark inspired the detailed analysis in section 4.6.12, in
which the reason for the bad performance of the XOK/ExOS version of Erlang is explained.

5.2 Conclusions from the port of Erlang to XOK/ExOS

The fact that Erlang could be moved to an exokernel with a reasonable effort, and without any
significant performance loss, tells us that the flexibility we buy does not cost us very much in terms
of work or performance. Thus, the first step to an optimized version, moving the program to an
exokernel based system, can be taken at a low cost. Subsequent steps may require a larger effort,
but those steps should be considered in terms of the expected performance gains only — the cost
of moving moving the program does not need to be amortized over many enhancements.

5.3 Suggestions for Erlang improvements

As a first step towards increased performance of the Erlang system on XOK/ExOS, the ExOS UNIX
emulation library OS should be improved until it is on par with existing UNIX implementations.
This work has already started at MIT. One of the goals of work on ExOS version 2.0[33] is to
match and surpass the performance of contemporary UNIX implementations.

Further improvements should be done bottom up. While there are some opportunities for improve-
ments that would require changes in the Erlang interpreter, these should be put off until those
improvements that do not require changes in the interpreter have been implemented. The further
from the Erlang system changes are made, the better, since this will reduce the number and scope
of the changes made to the Erlang system. The changes we suggest below have been put into four
categories, depending on how visible they will be, and are as follows:
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5.3.1 Transparent changes

The exact OS semantics needed by the Erlang runtime system should be examined, and the im-
plementation of these semantics in ExOS should be tuned to provide maximum performance for
the Erlang system.

Typical changes here include streamlined implementations of I/O using packet filters and zero-copy
mechanisms to get packet data into Erlang memory space directly as outlined in section 4.6.11,
light weight IPC mechanism as outlined in section 4.6.8, things like the changes of the memory
map outlined in section 4.6.1 and choosing algorithms that best fit the execution profile of Erlang.
These changes stand a good chance of significantly boosting the performance of the system, using
mainly the ability in an exokernel to tune implementations of OS functionality, rather than making
use of “tricks”.

The changes outlined here are all in the library OS and will not affect the API or perceived
semantics of the operations, and will thus be completely transparent to the Erlang implementation.

5.3.2 Semi-transparent changes

There are many changes we can do that will for the most part be hidden to the Erlang system, but
will require information and hints from the Erlang system to enable. These hints will mainly consist
of a call from the Erlang system to inform the library OS what the Erlang system is currently up
to, so that the library OS can adapt its behavior.

Changes here include changes in the virtual memory system to account for different memory usage
patters, as outlined in section 4.6.3. E.g. we need some kind of hints from the Erlang system to
inform the library OS that we are now inside a garbage collect, and should turn LRU off and switch
to another page replacement scheme. It could also include other memory management techniques,
such as dropping empty pages, but again this would require some cooperation from the Erlang
system.

It may also include an improved thread implementation, but this will depend very much on the
exact nature of the current Erlang internal threads. For the Erlang versions that use OS threads[21]
using a exokernel thread implementation should be completely transparent.

3

All in all, these changes can be performed with a minimal impact on the Erlang system. There will
be a few extra calls from the Erlang interpreter to the library OS, but these can be conditionally
compiled in for only the exokernel version of Erlang.

5.3.3 Opaque changes

Finally, we have changes that will require more or less substantial changes to the Erlang system.
In some cases, the information needed to optimize is not kept, and retaining it would require a
redesign of part of the Erlang system.

Using memory mapping instead of copying, handling cache alignment of data and code, dealing
with what to page out when we need to release physical memory are all examples of strategies
that could increase performance, but are likely to require a major overhaul of the Erlang system
to exploit.

Attempting this type of changes may give additional performance, but at the very probable cost
of splitting the development into a “standard” OS version and an exokernel version.

5.4 Suggestions for Erlang annexes

A second strategy to exploit exokernel features is to provide annexes. An annex is an extension
to Erlang so that low-level features can be exported directly to an Erlang program. An excellent
example of this would be protocol implementation features. Erlang programs could be given direct
access to the packet filter mechanism and receive/send calls that will place network packets into
the Erlang buffers without requiring copies and send network packets directly from Erlang buffers.
This will allow Erlang programmers to implement fast and efficient protocols.
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Annexes can be provided for other low-level functionality such as direct disk access, interrupt
handling and memory management.

These annexes can, from an Erlang perspective, be seen as an extension to the already wide array
of function libraries. The small difference is that such an extension will not only link new functions
to the Erlang program, but will also link new kernel functionality to the library OS.

5.5 Exokernels and traditional operating systems

The suggestions and strategies presented are possible to realize on non-exokernel systems. The C-
FFS file system and the packet filtering mechanisms have been used on traditional operating system.
However, doing this involves modifying the operating system to provide the new abstractions. The
advantage of working on an exokernel system is that it gives an environment where it is simpler to
experiment with new abstractions. Their very architecture encourages experimentation.

Open source operating systems such as Linux and the many BSD versions have become more
widely accepted in the last years, and the availability of the source to these operating system
enables programmers a fairly simple way to implement new kernel features without having to rely
on an experimental operating system architecture.
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