
Topology Discovery of Sparse Random Graphs

With Few Participants∗

Animashree Anandkumar†, Avinatan Hassidim‡and Jonathan Kelner§

February 28, 2012

Abstract

We consider the task of topology discovery of sparse random graphs using end-to-end random
measurements (e.g., delay) between a subset of nodes, referred to as the participants. The rest of
the nodes are hidden, and do not provide any information for topology discovery. We consider
topology discovery under two routing models: (a) the participants exchange messages along
the shortest paths and obtain end-to-end measurements, and (b) additionally, the participants
exchange messages along the second shortest path. For scenario (a), our proposed algorithm
results in a sub-linear edit-distance guarantee using a sub-linear number of uniformly selected
participants. For scenario (b), we obtain a much stronger result, and show that we can achieve
consistent reconstruction when a sub-linear number of uniformly selected nodes participate.
This implies that accurate discovery of sparse random graphs is tractable using an extremely
small number of participants. We finally obtain a lower bound on the number of participants
required by any algorithm to reconstruct the original random graph up to a given edit distance.
We also demonstrate that while consistent discovery is tractable for sparse random graphs using
a small number of participants, in general, there are graphs which cannot be discovered by any
algorithm even with a significant number of participants, and with the availability of end-to-end
information along all the paths between the participants.

Keywords: Topology Discovery, Sparse Random Graphs, End-to-end Measurements, Hidden Nodes,
Quartet Tests.

1 Introduction

Inference of global characteristics of large networks using limited local information is an important
and a challenging task. The discovery of the underlying network topology is one of the main
goals of network inference, and its knowledge is crucial for many applications. For instance, in
communication networks, many network monitoring applications rely on the knowledge of the
routing topology, e.g., to evaluate the resilience of the network to failures [2, 3]; for network traffic

∗A shorter version appears in [1]. This version is scheduled to appear in Journal on Random Structures and
Algorithms.

†A. Anandkumar is with the Center for Pervasive Communications and Computing, Electrical Engineering and
Computer Science Dept., University of California, Irvine, USA 92697. Email: a.anandkumar@uci.edu

‡A. Hassidim is with Google Research, Tel Aviv, Israel. Email: avinatanh@gmail.com
§J. Kelner is with the Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Tech-

nology, Cambridge MA 02139. Email: kelner@mit.edu

1

prediction [4, 5] and monitoring [6], anomaly detection [7], or to infer the sources of viruses and
rumors in the network [8]. In the context of social networks, the knowledge of topology is useful
for inferring many characteristics such as identification of hierarchy and community structure [9],
prediction of information flow [10, 11], or to evaluate the possibility of information leakage from
anonymized social networks [12].

Traditionally, inference of routing topology in communication networks has relied on tools such
as traceroute and mtrace [13] to generate path information between a subset of nodes. However,
these tools require cooperation of intermediate nodes or routers to generate messages using the
Internal Control Message Protocol (ICMP). Increasingly, today many routers block traceroute
requests due to privacy and security concerns [14,15], there by making inference of topology using
traceroute inaccurate. Moreover, traceroute requests are not scalable for large networks, and cannot
discover layer-2 switches and MPLS (Multi-protocol Label Switching) paths, which are increasingly
being deployed [16].

The alternative approach for topology discovery is the approach of network tomography. Here,
topology inference is carried out from end-to-end packet probing measurements (e.g., delay) be-
tween a subset of nodes, without the need for cooperation between the intermediate (i.e., non-
participating) nodes in the network. Due to its flexibility, such approaches are gaining increasing
popularity (see Section 1.2 for details).

The approach of topology discovery using end-to-end measurements is also applicable in the
context of social networks. In many social networks, some nodes may be unwilling to participate or
cooperate with other nodes for discovering the network topology, and there may be many hidden
nodes in “hard to reach” places of the network, e.g., populations of drug users, and so on. Moreover,
in many networks, there may be a cost to probing nodes for information, e.g., when there is a cash
reward offered for filling out surveys. For such networks, it is desirable to design algorithms which
can discover the overall network topology using small fraction of participants who are willing to
provide information for topology discovery.

There are many challenges to topology discovery. The algorithms need to be computationally
efficient and provide accurate reconstruction using a small fraction of participating nodes. Moreover,
inference of large topologies is a task of high-dimensional learning [17]. In such scenarios, typically,
only a small number of end-to-end measurements are available relative to the size of the network to
be inferred. It is desirable to have algorithms with low sample complexity (see Definition 3), where
the number of measurements required to achieve a certain level of accuracy scales favorably with
the network size.

It is indeed not tractable to achieve all the above objectives for discovery of general network
topologies using an arbitrary set of participants. There are fundamental identifiability issues,
and in general, no algorithm will be able to discover the underlying topology. We demonstrate
this phenomenon in Section 8.2, where we construct a small network with a significant fraction
of participants which suffers from non-identifiability. Instead, it is desirable to design topology
discovery algorithms which have guaranteed performance for certain classes of graphs.

We consider the class of Erdős-Rényi random graphs [18]. These are perhaps the simplest as well
as the most well-studied class of random graphs. Such random graphs can provide a reasonable
explanation for peer-to-peer networks [19] and social networks [20]. We address the following
issues in this paper: can we discover random graphs using a small fraction of participating nodes,
selected uniformly at random? can we design efficient algorithms with low sample complexity
and with provable performance guarantees? what kinds of end-to-end measurements between the

2

participants are useful for topology discovery? finally, given a set of participants, is there a lower
bound on the error (edit distance) of topology discovery that is achievable by any algorithm? Our
work addresses these questions and also provides insights into many complex issues involved in
topology discovery.

1.1 Summary of Contributions

We consider the problem of topology discovery of sparse random graphs using a uniformly selected
set of participants. Our contributions in this paper are three fold. First, we design an algorithm
with provable performance guarantees, when only minimal end-to-end information between the
participants is available. Second, we consider the scenario with additional information, and design
a discovery algorithm with much better reconstruction guarantees. Third, we provide a lower
bound on the edit distance of the reconstructed graph by any algorithm, for a given number of
participants. Our analysis shows that random graphs can be discovered accurately and efficiently
using an extremely small number of participants.

We consider reconstruction of the giant component of the sparse random graph up to its minimal
representation, where there are no redundant hidden nodes (see Section 3.1). Our end-to-end
measurement model consists of random samples (e.g., delay) along the shortest paths between the
participants. Using these samples, we design the first random-discovery algorithm, referred to as
the RGD1 algorithm, which performs local tests over small groups of participating nodes (known
as the quartet tests), and iteratively merges them with the previously constructed structure. Such
tests are known to be accurate for tree topologies [21], but have not been previously analyzed
for random-graph topologies. We provide a sub-linear edit-distance guarantee (in the number of
nodes) under RGD1 when there are roughly n5/6 participants, where n is the number of nodes in
the network. The algorithm is also simple to implement, and is computationally efficient.

We then extend the algorithm to the scenario where additionally, there are end-to-end measure-
ments available along the second shortest paths between the participating nodes. Such information
is available since nodes typically maintain information about alternative routing paths, should the
shortest path fail. In this scenario, our algorithm RGD2, has a drastic improvement in accuracy
under the same set of participating nodes. Specifically, we demonstrate that consistent discovery
can be achieved under RGD2 algorithm when there are roughly n11/12 number of participants, where
n is the network size. Thus, we can achieve accurate topology discovery of random graphs using
an extremely small number of participants. For both our algorithms, the sample complexity is
poly-logarithmic in the network size, meaning that the number of end-to-end measurement samples
needs to scale poly-logarithmically in the network size to obtain the stated edit-distance guarantees.

Our analysis in this paper thus reveals that sparse random graphs can be efficiently discovered
using a small number of participants. Our algorithms exploit the locally tree-like property of random
graphs [18], meaning that these graphs contain a small number of short cycles. This enables us to
provide performance guarantees for quartet tests which are known to be accurate for tree topologies,
and this is done by carefully controlling the distances used by the quartet tests. At the same time,
we exploit the presence of cycles in random graphs to obtain much better guarantees than in the
case of tree topologies. In other words, while tree topologies require participation of at least half the
number of nodes (i.e., the leaves) for accurate discovery, random-graph topologies can be accurately
discovered using a sub-linear number of participants.

Finally, we provide lower bounds on the reconstruction error under any algorithm for a given
number of participants. Specifically, we show that if less than roughly

√
n nodes participate in

3

topology discovery, reconstruction is impossible under any algorithm, where n is the network size.
We also discuss topology discovery in general networks, and demonstrate identifiability issues in-
volved in the discovery process. We construct a small network with a significant fraction of nodes
as participants which cannot be reconstructed using end-to-end information on all possible paths
between the participants. This is in contrast to random graphs, where consistent and efficient
topology discovery is possible using a small number of participants.

To the best of our knowledge, this is the first work to undertake a systematic study of random-
graph discovery using end-to-end measurements between a subset of nodes. Although we limit
ourselves to the study of random graphs, our algorithms are based on the locally tree-like property,
and are thus equally applicable for discovering other locally tree-like graphs such as the d-regular
graphs and the scale-free graphs; the latter class is known to be a good model for social networks [20,
22] and peer-to-peer networks [19]. Indeed more sophisticated and general models for networks have
been developed [23–25], but we defer their study for future work.

1.2 Related Work

Network tomography has been extensively studied in the past and various heuristics and algorithms
have been proposed along with experimental results on real data. For instance, the area of mapping
the internet topology is very rich and extensive, e.g., see [4,26–32]. In the context of social networks,
the work in [33] considers prediction of positive and negative links, the work in [34] considers
inferring networks of diffusion and influence and the work in [35] considers inferring latent social
networks through spread of contagions. A wide range of network tomography solutions have been
proposed for general networks. See [36] for a survey.

Topology discovery is an important component of network tomography. There have been several
theoretical developments on this topic. The work in [37] provides hardness results for topology
discovery under various settings. Topology discovery under availability of different kinds of queries
have been previously considered, such as:
(i) Shortest-path query, where a query to a node returns all the shortest paths (i.e., list of nodes in
the path) from that node to all other nodes [38]. This is the strongest of all queries. These queries
can be implemented by using Traceroute on Internet. In [38], the combinatorial-optimization
problem of selecting the smallest subset of nodes for such queries to estimate the network topology
is formulated. The work in [39] considers discovery of random graphs using such queries. The bias
of using traceroute sampling on power-law graphs is studied in [40], and weighted random walk
sampling is considered in [41].
(ii) Distance query, where a query to a node returns all the shortest-path distances (instead of the
complete list of nodes) from that node to any other node in the network [39]. These queries are
available for instance, in Peer-to-Peer networks through the Ping/Pong protocol. This problem
is related to the landmark placement, and the optimization problem of having smallest number
of landmarks is known as the metric dimension of the graph [42]. The work in [43] considers
reconstruction of tree topologies using shortest-path queries.
(iii) Edge-based queries: There are several types of edge queries such as detection query, which
answer whether there is an edge between two selected nodes, or counting query, which returns
number of edges in a selected subgraph [44,45], or a cross-additive query, which returns the number
of edges crossing between two disjoint sets of vertices [46].

However, all the above queries assume that all the nodes (with labels) are known a priori, and
that there are no hidden (unlabeled) nodes in the network. Moreover, most of the above works

4

consider unweighted graphs, which are not suitable when end-to-end delay (or other weighted)
information is available for topology discovery. As previously discussed, the above queries assume
extensive information is available from the queried objects, and this may not be feasible in many
networks.

Topology discovery using end-to-end delays between a subset of nodes (henceforth, referred
to as participating nodes), has been previously studied for tree topologies using unicast traffic
in [16,21,47] and multicast traffic [48]. The algorithms are inspired by phylogenetic tree algorithms.
See [49] for a thorough review. Most of these algorithms are based on a series of local tests known as
the quartet-based distance tests. Our algorithms are inspired by, and are based on quartet methods.
However, these algorithms were previously applied only to tree topologies, and here, we show how
algorithms based on similar ideas can provide accurate reconstruction for a much broader class of
locally-tree like graphs such as the sparse random graphs. Recent works also incorporate additional
information from temporal dynamics [50] or consider causal models for networks [51,52], while our
work does not consider these effects.

2 System Model

Notation

For any two functions f(n), g(n), f(n) = O(g(n)) if there exists a constant M such that f(n) ≤
Mg(n) for all n ≥ n0 for some fixed n0 ∈ N. Similarly, f(n) = Ω(g(n)) if there exists a constant M ′

such that f(n) ≥M ′g(n) for all n ≥ n0 for some fixed n0 ∈ N, and f(n) = Θ(g(n)) if f(n) = Ω(g(n))
and f(n) = O(g(n)). Also, f(n) = o(g(n)) when f(n)/g(n) → 0 and f(n) = ω(g(n)) when
f(n)/g(n) → ∞ as n → ∞. We use notation Õ(g(n)) = O(g(n)poly log n). Let I[A] denote
indicator of an event A.

Let Gn denote a random graph with probability measure P. Let Q be a graph property (such
as being connected). We say that the property Q for a sequence of random graphs {Gn}n∈N holds
asymptotically almost surely (a.a.s.) if,

lim
n→∞

P(Gn satisfies Q) = 1.

Equivalently, the property Q holds for almost every (a.e.) graph Gn.
For a graph G, let C(l;G) denote the set of (generalized) cycles1 of length less than l in graph G.

For a vertex v, let Deg(v) denote its degree and for an edge e, let Deg(e) denote the total number
of edges connected to either of its endpoints (but not counting the edge e). Let BR(v) denote the
set of nodes within hop distance R from a node v and ΓR(v) is the set of nodes exactly at hop
distance R. The definition is extended to an edge, by considering union of sets of the endpoints of
edge. Denote the shortest path (with least number of hops) between two nodes i, j as Path(i, j;G)
and the second shortest path as Path2(i, j;G). Denote the number of H-subgraphs in G, i.e., the
number of subgraphs in G corresponding to H, as NH;G.

2.1 Random Graphs

We assume that the unknown network topology is drawn from the ensemble of Erdős-Rényi random
graphs [18]. This random graph model is arguably the simplest as well the most well-studied model.

1A generalized cycle of length l is a connected graph of l nodes with l edges (i.e., can be a union of a path and a
cycle). In this paper, a cycle refers to a generalized cycle unless otherwise mentioned.

5

Denote the random graph as Gn ∈ G(n, c/n), for c <∞, where n is the number of nodes and each
edge occurs uniformly with probability c/n. This implies a constant average degree of c for each
node, and this regime is also known as the “sparse” regime of random graphs.

It is well known that sparse random graphs exhibit a phase transition with respect to the
number of components. When c > 1, there is a giant component containing Θ(n) nodes, while all
the other components have size Θ(log n) [53, Ch. 11]. This regime is known as the super-critical
regime. On the other hand, when c < 1, there is no giant component and all components have size
Θ(log n). This regime is known as the sub-critical regime.

We consider discovery of a random graph in the super-critical regime (c > 1). This is the regime
of interest, since most real-world networks are well connected rather than having large number
of extremely small components. Moreover, the presence of a giant component ensures that the
topology can be discovered even with a small fraction of random participants. This is because the
participants will most likely belong the giant component, and can thus exchange messages between
each other to discover the unknown topology. We limit ourselves to the topology discovery of the
giant component in the random graph, and denote the giant component as Gn, unless otherwise
mentioned.

2.2 Participation Model

For the given unknown graph topology Gn = (Wn, En) over Wn = {1, . . . , n} nodes, let Vn ⊂Wn be
the set of participating nodes which exchange messages amongst each other by routing them along
the graph. Let ρn := |Vn|

n denote the fraction of participating nodes. It is desirable to have small
ρn and still reconstruct the unknown topology. We assume that the nodes decide to participate
uniformly at random. This ensures that information about all parts of the graph can be obtained,
thereby making graph reconstruction feasible. We consider the regime, where |Vn| = n1−ε, for some
ε > 0, meaning that extremely small number of nodes participate in discovering the topology.

Let Hn := Wn \ Vn be the set of hidden nodes. The hidden nodes only forward the messages
without altering them, and do not provide any additional information for topology discovery. The
presence of hidden nodes thus needs to be inferred, as part of our goal of discovering the unknown
graph topology.

2.3 Delay Model

The messages exchanged between the participating nodes experience delays along the links in the
route. The participating nodes measure the end-to-end delays2 between message transmissions and
receptions. We consider the challenging scenario that only this end-to-end delay information is
available for topology discovery.

Let m be the number of messages exchanged between each pair of participating nodes i, j ∈ Vn.
Denote the m samples of end-to-end delays computed from these messages as

Dm
i,j := [Di,j(1),Di,j(2), . . . ,Di,j(m)]T .

We assume that the routes taken by the m messages are fixed, and we discuss the routing model
in the subsequent section. On the other hand, these messages experience different delays along

2Our algorithms work under any additive metric defined on the graph such as link utilization or link loss [16],
although the sample complexity, i.e., the number of samples required to accurately estimate the metrics, does indeed
depend on the metric under consideration.

6

each link3 which are drawn identically and independently (i.i.d) from some distribution, described
below.

Let De denote the random delay along a link e ∈ Gn (in either direction). We assume that the
delays De1 and De2 along any two links e1, e2 ∈ Gn are independent. The delays are additive along
any route, i.e., the end-to-end delay along a route R(i, j) between two participants i, j ∈ Vn is

DR(i,j) :=
∑

e∈R(i,j)

De. (1)

Further, the family of delay distributions are regular and bounded, as in [21].
The delay distributions {De}e∈En and the graph topology Gn are both unknown, and need to

be estimated using messages between participating nodes. We exploit the additivity assumption in
(1) to obtain efficient topology discovery algorithms.

2.4 Routing Model

The end-to-end delays between the participating nodes thus depends on the routes taken by the
messages. We assume that the messages between any two participants are routed along the shortest
path with the lowest number of hops. On the other hand, the nodes cannot select the path with
the least delay since the delays along the individual links are unknown and are also different for
different messages.

We also consider another scenario, where the participants are able to additionally route messages
along the second shortest path. This is a reasonable assumption, since in practice, nodes typically
maintain information about the shortest path and an alternative path, should the shortest path fail.
The nodes can forward messages along the shortest and the second shortest paths with different
headers, so that the destinations can distinguish the two messages and compute the end-to-end
delays along the two paths. We will show that this additional information vastly improves the
accuracy of topology discovery. These two scenarios are formally defined below.
Scenario 1 (Shortest Path Delays): Each pair of participating nodes i, j ∈ Vn exchange m
messages along the shortest path in Gn, where the shortest path4 is with respect to the number of
hops. Denote the vector of m end-to-end delays as Dm

i,j .
Scenario 2 (Shortest Path and Second Shortest Path Delays): Each pair of participating
nodes i, j ∈ Vn exchange m messages along the shortest path as well as m messages along the
second shortest path. The vector of m samples along the second shortest path is denoted by D̃m

i,j.

3 Reconstruction Guarantees

3.1 Minimal Representation

Our goal is to discover the unknown graph topology using the end-to-end delay information between
the participating nodes. However, there can be multiple topologies which explain equally well the
end-to-end delays between the participants. This inherent ambiguity in topology discovery with
hidden nodes has been previously pointed out in the context of latent tree models [54].

3The independence assumption implies that we consider unicast traffic rather than multicast traffic considered in
many other works, e.g., in [48].

4If the shortest path between two nodes is not unique, assume that the node pairs randomly pick one of the paths
and use it for all the messages.

7

(a) A non-minimal graph (b) Minimal representation

Figure 1: In the above figures, the shaded nodes are participants while the rest are hidden. In the
minimal representation of a graph, hidden nodes with degree two and less (the highlighted hidden
nodes) are merged with their neighbors. See Procedure 1 for details.

Procedure 1 G̃n := Minimal(Gn;Vn) is the minimal representation of Gn′ given set of participating
nodes Vn.

Input: Graph Gn′ , set of participating nodes Vn, and set of hidden nodes Hn.
Initialize G̃n = Gn, n← n′.
while ∃h ∈ G̃n ∩Hn with Deg(h) ≤ 2 do

Remove h from G̃n if Deg(h) ≤ 1.
Contract all h with Deg(h) = 2 in G̃n.
Decrement n accordingly.

end while

There is an equivalence class of topologies with different sets of hidden nodes which generate
the same end-to-end delay distributions between the participating nodes. We refer to the topology
with the least number of hidden nodes in this equivalence class as the minimal representation. Such
a minimal representation does not have redundant hidden nodes. For example, in Fig.1, the graph
and its minimal representation are shown. In Procedure 1, we characterize the relationship between
a graph and its minimal representation, given a set of participants. The minimal representation
is obtained by iteratively removing redundant hidden nodes (degree two and less) from the graph,
i.e., in the first iteration, redundant hidden nodes are removed and the resulting graph is again
inspected for the presence of hidden nodes. For example, in Fig.1, the highlighted hidden nodes
are redundant and are thus merged with their neighbors to obtain the minimal representation.

Any algorithm can only reconstruct the unknown topology up to its minimal representation us-
ing only end-to-end delay information between the participating nodes. In sparse random graphs,
only a small (but a linear) number of nodes are removed in the minimal representation, and this
number decreases with the average degree c. It thus suffices to reconstruct the minimal represen-
tation of the original topology, and our goal is to accomplish it using small fraction of participants.
We assume that the delay distributions on the edges of the minimal representation {De}e∈G̃n

have
bounded variances {l(e)}e∈G̃n

satisfying

0 < f ≤ l(e) ≤ g <∞, ∀ e ∈ G̃n. (2)

8

3.2 Performance Measures

We now define performance measures for topology discovery algorithms. It is desirable to have an
algorithm which outputs a graph structure which is close to the original graph structure. However,
the reconstructed graph cannot be directly compared with the original graph since the hidden nodes
introduced in the reconstructed graph are unlabeled and may correspond to different hidden nodes
in the original graph. To this end, we require the notion of edit distance defined below.

Definition 1 (Edit Distance) Let F,G be two graphs5 with adjacency matrices AF ,AG, and let
V be the set of labeled vertices in both the graphs (with identical labels). Then the edit distance
between F,G is defined as

∆(F,G;V) := min
π
||AF − π(AG)||1,

where π is any permutation on the unlabeled nodes while keeping the labeled nodes fixed.

In other words, the edit distance is the minimum number of entries that are different in AF and in
any permutation of AG over the unlabeled nodes. In our context, the labeled nodes correspond to
the participating nodes while the unlabeled nodes correspond to hidden nodes.

Our goal is to output a graph with small edit distance with respect to the minimal representation
of the original graph. Ideally, we would like the edit distance to decay as we obtain more delay
samples and this is the notion of consistency.

Definition 2 (Consistency) Denote Ĝn({Dm
i,j}i,j∈Vn) as the estimated graph using m delay sam-

ples between the participating nodes Vn. A graph estimator Ĝn({Dm
i,j}i,j∈Vn) is structurally consis-

tent if it asymptotically recovers the minimal representation of the unknown topology, i.e.,

lim
m→∞

P[∆(Ĝ({Dm
i,j}i,j∈Vn), G̃n;Vn) > 0] = 0. (3)

The above definition assumes that the network size n is fixed while the number of samples m
goes to infinity. A more challenging setting where both the network size and the number of samples
grow is known as the setting of high-dimensional inference [17]. In this setting, we are interested in
estimating large network structures using a small number of delay samples. We will consider this
setting for topology discovery in this paper. Indeed in practice, we have large network structures
but can obtain only few end-to-end delay samples with respect to the size of the network. This is
formalized using the notion of sample complexity defined below for our setting.

Definition 3 (Sample Complexity) If the number of samples is m = Ω(f(n)), for some func-
tion f , such that the estimator Ĝn({Dm

i,j}i,j∈Vn) satisfies

lim
m,n→∞

m=Ω(f(n))

P[∆(Ĝ({Dm
i,j}i,j∈Vn), G̃n;Vn) = O(g(n))] = 0,

for some function g(n), then the estimator Ĝn is said to have sample complexity of Ω(f(n)) for
achieving an edit distance of O(g(n)).

Thus, our goal is to discover topology in high-dimensional regime, and design a graph estimator
that requires a small number of delay samples, and output a graph with a small edit distance.

5We consider inexact graph matching where the unlabeled nodes can be unmatched. This is done by adding
required number of isolated unlabeled nodes in the other graph, and considering the modified adjacency matrices [55].

9

4 Preliminaries

We now discuss some simple concepts which will be incorporated into our topology discovery
algorithms.

4.1 Delay Variance Estimation

In our setting, topology discovery is based on the end-to-end delays between the participating
nodes. Recall that in Section 2.3, we assume general delay distributions on the edges with bounded
variances. Our topology discovery algorithms will be based solely on the estimated variances using
the end-to-end delay samples.

We use the standard unbiased estimator for variances [56].

l̂m(i, j) :=
1

m− 1

m∑

k=1

(Di,j(k)− D̄m
i,j)

2, (4)

where D̄m
i,j is the sample mean delay

D̄m
i,j :=

1

m

m∑

k=1

Di,j(k). (5)

Note that we do not use an estimator specifically tailored for a parametric delay distribution, and
hence, the above estimator yields unbiased estimates for any delay distribution.

Our proposed algorithms for topology discovery require only the estimated delay variances
{l̂(i, j)}i,j∈V as inputs. Indeed, more information is available in the delay samplesDm. For instance,
in [21], the higher-order moments of the delay distribution are estimated using the delay samples
and this provides an estimate for the delay distribution. However, we see that for our goal of
topology discovery, the estimated end-to-end delay variances suffice and yield good performance.

Recall that {l(i, j)}i,j∈V denotes the true end-to-end delay variances and that from (1), the
variances are additive along any path in the graph. We will henceforth refer to the variances
as “distances” between the nodes and the estimated variances as “estimated distances”. This
abstraction also implies that our algorithms will work under input of estimates of any additive
metrics.

4.2 Quartet Tests

We first recap the so-called quartet tests, which are building blocks of many algorithms for dis-
covering phylogenetic-tree topologies with hidden nodes [54, 57–59]. The definition of a quartet is
given below. See Fig.2.

Definition 4 (Quartet or Four-Point Condition) The pairwise distances {l(i, j)}i,j∈{a,b,u,v} for
the configuration in Fig.2 satisfy

l(a, u) + l(b, v) = l(b, u) + l(a, v), (6)

and the configuration is denoted by Q(ab|uv).

10

a

h1 h2

b

u

v

Figure 2: Quartet Q(ab|uv). See (6) and (8).

In the literature on tree reconstruction, instead of (6), an inequality test is usually employed
since it is more robust, given by,

l(a, b) + l(u, v) < min(l(a, u) + l(b, v), l(b, u) + l(a, v)). (7)

However, we use the equality test in (6), since it is also useful in detecting cycles present in random
graphs.

In practice, we only have access to distance estimates and we relax the equality constraint in
(6) to a threshold test, and this is known as the quartet test. Thus, the quartet test is local test
between tuples of four nodes. For the quartet Q = (ab|uv), let e denote the middle edge of the
quartet6, i.e., the edge which joins a vertex on the shortest path between a and b to a vertex on
the shortest path between u and v (Note that the edge can have zero length if the hidden nodes
connecting a, b and u, v are the same.). The estimated length of the middle edge (h1, h2) between
hidden nodes h1 and h2 is given by

2l̂(h1, h2) = l̂(a, u) + l̂(b, v)− l̂(a, b)− l̂(u, v). (8)

Similarly, all other edge lengths of the quartet can be calculated through the set of linear equations
which are based on the fact that the end-to-end lengths in a quartet are the sum of edge lengths
along the respective paths.

Many phylogenetic-tree reconstruction algorithms proceed by iteratively merging quartets to
obtain a tree topology. See [60] for details. We employ the quartet test for random graph discovery
but it additionally incorporates the presence of cycles. Moreover, we introduce modifications under
scenario 2, as outlined in Section 5.2, where second shortest path distances are available in addition
to the shortest path distances between the participating nodes.

5 Proposed Algorithms

5.1 Scenario 1

We propose the algorithm RGD1 for discovering random graphs under scenario 1, as outlined in
Section 2.4, where only shortest path distance estimates are available between the participating
nodes. The idea behind RGD1 is similar to the classical phylogenetic-tree reconstruction algorithms
based on quartet tests [54, 58]. However, the effect of cycles on such tests needs to analyzed, and
is carried out in Section 6.1. The algorithm is summarized in Algorithm 2.

6Such a middle edge always exists, by allowing for zero length edges, and such trivial edges are contracted later
in the algorithm.

11

The algorithm recursively runs the quartet tests over the set of participating nodes. The
algorithm limits to testing only “short quartets” between nearby participating nodes. Intuitively,
this is done to avoid testing quartets on short cycles, since in such scenarios, the quartet tests may
fail to reconstruct the graph accurately. Since the random graphs are locally-tree like and contain a
small number of short cycles, limiting to short quartets enables us to avoid most of the cycles. The
idea of short quartets has been used before (e.g. in [58]) but for a different goal of obtaining low
sample complexity algorithm for phylogenetic-tree reconstruction. We carry out a detailed analysis
on the effect of cycles on quartet tests in Section 6.1.

In algorithm RGD1, we consider short quartets, where all the estimated distances between the
quartet end points are at most Rg + τ , where g is the upper bound on the (exact) edge lengths in
the original graph, as assumed in (2). Thus, R′ := Rg/f is the maximum number of hops between
the end points of a short quartet, where f is the lower bound on the edge lengths. We refer to
R′ as the diameter of the quartet. This needs to be chosen carefully to balance the following two
events: encountering short cycles and ensuring that most hidden edges (with at least one hidden
end point) are part of short quartets. The parameter τ is chosen to relax the bound, since we have
distance estimates, computed using samples, rather than exact distances between the participating
nodes. The short quartets are listed in arbitrary order in Q.

The algorithm attempts to merge the quartets in Q, one at a time, with the previously con-
structed graph Ĝn using procedure QuartetMerge. There are different possibilities during this
process. The quartet under consideration, say Q(ab|uv), may be already satisfied in Ĝn: nothing
needs to be done in such a scenario; or the quartet may be merged without creating new cycles.
This is carried out using procedure TreeMerge. Alternatively, if a cycle needs to be created in Ĝn to
merge Q(ab|uv), additional testing needs to be carried out. Firstly, if it is a short cycle (of length
less than 2Rg+τ), then the algorithm cannot be guaranteed to merge Q(ab|uv) accurately and it is
listed as a bad quartet. Secondly, if it is not a short cycle, the algorithm needs to infer the joining
points between the existing paths in Ĝn and the new path to be created. This is carried out using
procedure CycleMerge and entails the presence of “witnesses” W ⊂ Q, which are (remaining) short
quartets whose nodes are within distance 2R from a, b, u, v. The algorithm attempts to merge the
quartets in W without creating new cycles in Ĝn, and then attempts to merge Q(ab|uv) by using
existing hidden nodes in the paths to create a new (long) cycle and checking if it conflicts with the
distances on quartets in W. There is a tolerance of ε′ for checking distance conflicts. In the end,
any edge smaller than a threshold ε are contracted, for some chosen constant ε < f , where f is the
lower bound on the edge lengths of the original graph.

The quartets that fail to be merged using the above procedure are listed as bad quartets.
These set of quartets cannot be guaranteed to be merged accurately. Any post-processing heuristic
can be used to attempt the merging of these bad quartets. Our analysis accounts for these bad
quartets towards contributing to the edit distance between the reconstructed graph and the minimal
representation of the original graph. The above algorithm is similar in spirit to quartet merging
algorithm proposed in [58], but with the crucial addition of CycleMerge procedure to handle the
presence of cycles.

5.2 Scenario 2

We now consider scenario 2, as outlined in Section 2.4, where second shortest path distance esti-
mates are available in addition to shortest path distance estimates between the participating nodes.
We propose RGD2 algorithm for this case, which is summarized in Algorithm 3.

12

Algorithm 2 RGD1({l̂(i, j)}i,j∈Vn ;R, g, τ, ε, ε′) for Topology Discovery Using Shortest-Path Dis-
tance Estimates.

Input: Distance estimates between the participating nodes {l̂(i, j)}i,j∈Vn , upper bound g on exact
edge lengths and parameters R, τ, ε, ε′ > 0.
Initialize list of short quartets: Q = {Q(ab|uv) : max

i,j∈{a,b,u,v}
l̂(i, j) < Rg + τ}, list of bad quartets

Qbad = ∅ and reconstructed graph Ĝn = (Vn, ∅).
while Q 6= ∅ do

Q(ab|uv)← Pop(Q).
Q ← Q \ {Q(ab|uv)}.
[Ĝn,Fail]← QuartetMerge(Ĝn, Q(ab|uv),Q, {l̂(i, j)}i,j∈Vn ; ε, ε

′).
if Fail then
Qbad ← Qbad ∪ {Q(ab|uv)}.

end if
end while
Use any heuristic to merge bad quartets in Qbad.

The algorithm RGD2 is an extension of RGD1, where we use the second shortest distances
in the quartet tests, in addition to the shortest distances. For each tuple of participating nodes
a, b, u, v ∈ Vn, the quartet test in (6) is carried out for all possible combinations of shortest and
second shortest distances; only short quartets are retained, where all the distances used for quartet
test are less than the specified threshold (which is the same as in RGD1). If the same quartet is
formed using different combinations of shortest and second shortest distances, only the quartet with
the shorter middle edge, computed using (8), is retained. We clarify the reason behind this rule
and give examples on when this can occur in Section 6.1. As before, all these quartets are merged
with previously constructed graph using procedure QuartetMerge, but with a minor difference that
the path lengths need to be checked since there may be multiple paths between participating nodes
with different lengths. The performance analysis for RGD2 is carried out in Section 6.3.

6 Analysis Under Exact Distances

We now undertake performance analysis for the proposed topology discovery algorithms RGD1 and
RGD2. In this section, for simplicity, we first analyze the performance assuming that exact distances
between the participating nodes are input to the algorithms. Analysis when distance estimates are
input to the algorithms is considered in Section 7.

6.1 Effect of Cycles on Quartet Tests

We now analyze the effect of cycles on quartet tests. Recall that the quartet test is the inequality
test in (6), and if this inequality test is satisfied, internal edge lengths of the quartet are computed,
and they are added to the output using procedure QuartetMerge. The quartet test in (6) is based
on the assumption that the shortest paths between the four nodes {a, b, u, v} in the quartet are
along the paths on the quartet.

Thus, the outcome of the quartet test is incorrect only when some shortest path between
{a, b, u, v} is outside the quartet. We refer to such quartets as “bad quartets”. There are two

13

Algorithm 3 RGD2({l̂(i, j), l̂2(i, j)}i,j∈Vn ;R, g, τ, ε, ε′) for Topology Discovery Using Shortest-Path
and Second Shortest-Path Distance Estimates.

Input: Shortest-path and second shortest-path distance estimates {l̂(i, j), l̂2(i, j)}i,j∈Vn upper
bound g on exact edge lengths and parameters R, τ, ε, ε′ > 0.
Initialize list of short quartets: Q = {Q(ab|uv) : max

i,j∈{a,b,u,v}
l̂(i, j) < Rg + τ}, list of bad quartets

Qbad = ∅ and reconstructed graph Ĝn = (Vn, ∅).
while Q 6= ∅ do

Q(ab|uv)← Pop(Q).
Q ← Q \ {Q(ab|uv)}.
[Ĝn,Fail]← QuartetMerge(Ĝn, Q(ab|uv),Q, {l̂(i, j), l̂2(i, j)}i,j∈Vn ; ε, ε

′).
if Fail then
Qbad ← Qbad ∪ {Q(ab|uv)}.

end if
end while
Use any heuristic to merge bad quartets in Qbad.

a

h1 h2

b

u

v

w

x

y

z

h3h4

Figure 3: An example on the use of witnesses for creating new paths in the existing graph Ĝ in
CycleMerge Procedure. In order to create a new path between h1 and h2 (shown using dotted lines
according to length specified by quartet Q(ab|uv)), the quartet Q(wx|yz) is used as a witness to
verify if h3 and h4 are the joining points of the existing path in Ĝ with the new path.

possible outcomes for bad quartets (a) the procedure QuartetMerge detects inconsistencies in the
set of linear equations, used to compute the internal distances in the quartet, and does not merge
the quartet, or (b) the procedure QuartetMerge does not detect inconsistencies, and thus merges a
fake quartet with wrong internal edge lengths. Both these outcomes result in reconstruction error.

The examples of both the cases are given in Fig.5. Note that the set of linear equations used
by the procedure QuartetMerge for computing the internal edge-lengths in the quartet consist of
5 variables and 6 equations (corresponding to the 6 known edge-lengths between the quartet end-
points). Additionally, there is an equality constraint that l(a, u)+ l(b, v) = l(a, v)+ l(b, u). The case
in Fig.5a does not satisfy this equality constraint7, since the cycle is in the middle of the quartet,
and thus the procedure QuartetMerge does not merge this quartet. On the other hand, for the case
in Fig.5b, the equality constraint is satisfied, since the cycle is on the same side of the quartet,
and in this case, the procedure QuartetMerge merges the quartet, but with wrong edge lengths, as
shown in Fig.5c.

Thus, bad quartets lead to reconstruction error. The number of bad quartets can be bounded

7There exist pathological cases of equal distances where configurations of the form in Fig.5a will satisfy equality
constraint. Such scenarios do not occur in a.e. random graph.

14

Procedure 4 QuartetMerge(Ĝn, Q(ab|uv)),Q, {l̂(i, j), [l̂2(i, j)]}i,j∈Vn ; ε, ε
′) for merging a new quar-

tet Q(ab|uv) with current structure Ĝn.

Input: Current graph Ĝ, candidate quartet Q(ab|uv), remaining short quartets Q, shortest dis-
tance estimates between the participating nodes {l̂(i, j)}i,j∈Vn and optionally second shortest

distances {l̂2(i, j)}i,j∈Vn , threshold ε for contracting short edges and tolerance ε′ for comparing
path lengths.
if For each i, j ∈ {a, b, u, v}, |l̂(i, j; Ĝ)− l̂(i, j;Q)| < ε′ (All paths already present in Ĝ) then

Fail← False.
else if For each i, j ∈ {a, b, u, v}, either |l̂(i, j; Ĝ) − l̂(i, j;Q)| < ε′ or l̂(i, j; Ĝ) = ∞ (Either the
paths agree or the path does not exist in Ĝ) then

Ĝn ← TreeMerge(Ĝn, Q(ab|uv), ε′), Fail← False. (Merge quartet without creating cycles).
else if ∃ i, j ∈ {a, b, u, v} such that l̂(i, j; Ĝ)+ l̂(i, j;Q) < 2Rg+ τ (A merge would create a short
cycle) then

if Second shortest distances {l̂2(i, j)}i,j∈Vn , are available then

Use second shortest distances between a, b, u, v to infer the join points in Ĝ. If the points
are consistently found, add quartet Q(ab|uv) to Ĝ and output Fail ← False. Else output
Fail← True. (Report failure due to inconsistent distances).

else
Fail← True. (Report failure due to presence of a short cycle).

end if
else

[Ĝn,Fail]← CycleMerge(Ĝn, Q(ab|uv),Q, {l̂(i, j), [l̂2(i, j)]}i,j∈Vn , [{l̂2(i, j)}i,j∈Vn]; ε
′). (Attempt

to merge quartet by creating a new long cycle and querying witnesses, if no witnesses are
present, create a new path, else if witnesses are contradictory output fail).

end if
Contract any edge (with at least one hidden end point) with length < ε.

as follows: in a bad quartet, the middle edge of the quartet is part of a (generalized) cycle of
length less than 2R′, where R′ := Rg/f is the maximum number of hops between the endpoints of
a short quartet, as discussed in Section 5.1. In addition, the bad quartets also affect the merging
of quartets using CycleMerge procedure when they are called upon to serve as witnesses. Thus, we
also need to consider quartets which are part of slightly longer cycles. See Appendix B for details.
The number of such bad quartets can be bounded for random graphs leading to reconstruction
guarantees for RGD1 algorithm.

For the RGD2 algorithm where second shortest path distances are additionally available, bad
quartets do not adversely affect performance. We argue that a quartet is correctly recognized as
long as the paths on the quartet correspond to either the shortest or the second shortest paths
(between the quartet endpoints). In such a scenario, some combination of shortest and second
shortest path distances exists which accurately reconstructs the quartet and the RGD2 algorithm
finds all such combinations. Moreover, fake quartets are detected since they produce a longer
middle edge than the true quartet. This is because the cycle shortens the distance between end
points on its side (in Fig.5b, this corresponds to {a, b} and note that the middle edge in Fig.5c is
longer than the true edge length).

Thus, a quartet is correctly reconstructed under RGD2 when the paths on the quartet consist of

15

Procedure 5 TreeMerge(Ĝn, Q(ab|uv)); ε′) for merging a new quartet with current structure Ĝn

without creating cycles.

Input: Current graph Ĝ, candidate quartet Q(ab|uv) with hidden nodes h1, h2 (See Fig.2), and
tolerance ε′ for comparing path lengths.
if There exists hidden node in Ĝ such that |l̂(i, h; Ĝ)− l̂(i, h1;Q)| < ε′ for i = a, b then

Assign h as h1.
end if
if There exists hidden node in Ĝ such that |l̂(i, h; Ĝ)− l̂(i, h2;Q)| < ε′ for i = u, v then

Assign h as h2.
end if
Connect paths in Ĝ according to Q which are missing as follows:
If both h1 and h2 are assigned in Ĝ, connect h1 and h2 in Ĝ and assign length l̂(h1, h2;Q) if they
are not already connected in Ĝ.
If say h1 is assigned and the path between a and h1 exists in Ĝ but not between b and h1, let
l ← minw 0.5(l̂(w, b) + l̂(h1, b;Q) − l̂(h1, w; Ĝ) over all w ∈ Ĝ such that l̂(w, b) < Rg + τ . If
l < l̂(h1, b;Q), split path l̂(h1, w; Ĝ), add new hidden node h3 such that l̂(h3, w; Ĝ) = l̂(b, w) − l
and attach b to h3 with length l; otherwise create a new path between h1 and b. Similarly split
the other paths if present or create new paths.
If the paths exist but not the hidden nodes, split the paths and add hidden nodes according to
the lengths in Q. Otherwise, also add new paths to Ĝ.

a

h1 h2

b

u

v

Figure 4: A bad quartet: l(a, b) < l(a, h1) + l(b, h1). Since the maximum number of hops between
{a, b, u, v} is R′ := Rg/f , and one of the shortest paths is not along the quartet, the middle edge
(h1, h2) is part of a generalized cycle of (hop) length less than 2R′. Such quartets are detected by
the RGD1 algorithm.

shortest or second shortest paths. We finally use the locally tree-like property of random graphs to
establish that this occurs in almost every graph if the quartet diameter R′ is small enough. Thus,
we obtain stronger reconstruction guarantees for RGD2 algorithm.

6.2 Analysis of RGD1

We now provide edit distance guarantees for RGD1 under appropriate choice of maximum quartet
diameter R′ := Rg/f . We analyze the edit distance by counting the number of hidden edges (with
at least one hidden end point) which are not recovered correctly under RGD1. A hidden edge is not
recovered when one of the following two events occur: (a) it is not part of a short quartet (b) it is
part of a bad short quartet. A large value of the quartet diameter R′ decreases the likelihood of
event (a), while it increases the likelihood of event (b), i.e., we are likely to encounter more cycles
as R′ is increased. For a fixed value of R′, we analyze the likelihood of these two events and obtain

16

Procedure 6 CycleMerge(Ĝn, Q(ab|uv)),Q, {l̂(i, j)}i,j∈Vn ; ε
′) for merging a new quartet with cur-

rent structure Ĝn by creating cycles.

Input: Current graph Ĝ, candidate quartet Q(ab|uv) with hidden nodes h1, h2 (See Fig.2), re-
maining short quartets Q, shortest distance estimates {l̂(i, j)}i,j∈Vn and optionally second short-

est distance estimates {l̂2(i, j)}i,j∈Vn and tolerance ε′ for comparing path lengths.

W ← {Q(ij|kl) : Q(ij|kl) ∈ Q,∪x,y∈{i,j,k,l,a,b,u,v}l̂(x, y) < 2Rg+ τ}. (Find potential witnesses by
using short quartets “near” to a, b, u, v. Also use second shortest distances if available and they
are less than 2Rg + τ).
for Each Q(wx|yz) ∈ W do

if For i, j ∈ {w, x, y, z}, either |l̂(i, j; Ĝ) − l̂(i, j;Q)| < ε′ or l̂(i, j; Ĝ) = ∞ (Either the paths
agree in the two graphs or the path does not exist in Ĝ) then

Ĝn ← TreeMerge(Ĝn, Q(wx|yz), ε′), Fail ← False. (Merge all quartets in W which do not
create cycles).

end if
end for
To create new paths in Ĝ according to Q(ab|uv), consider all hidden nodes on paths in Ĝ as
candidates for positions where the paths split. Query the quartet corresponding to these hidden
nodes for verification. (See Fig.3 for an example).
If the witnesses are absent or contradictory, output Fail ← True. Else, add the new path to Ĝ
and output Fail← False.

the bound on edit distance stated below.
Assume that the algorithm RGD1 chooses parameter R as

Rmin ≤ R ≤ Rmax, (9)

where

Rmin := 2
log 9 logn

(
√
c−1)2

log 3
, Rmax :=

6 log n

5 log c
. (10)

Let the fraction of participating nodes be ρn = n−β, such that

ρnc
R−Rmin

2 = ω(1), (11)

implying that γ > 2β, where

γ :=
log c

log n
(R−Rmin). (12)

Similarly, define µ as

µ := R
log c

ξ(c)

log n
, (13)

where ξ(c) is a function that depends on the average degree c of the original Erdős-Rényi random
graph, and is given by

ξ(c) := 1− e−c − ce−c − 0.5c2e−c. (14)

Recall that f and g are the bounds on edge lengths according to (2). We have the following result.

17

a

a

h1 h2

b

u

v
(a) Bad Quartet Where Test Fails.

a

h1 h2

b

u

v
(b) Bad Quartet Where Test Suc-
ceeds.

a

h1 h2

b

u

v

1.5

1.5

1.5
1

1

(c) Reconstructed Quartet for (b).

Figure 5: Two possible outcomes for bad quartets in (a) and (b). Assume all unit-length edges.
In (a), the procedure QuartetMerge fails and quartet is not declared, while in (b), it succeeds but
leads to wrong edge estimates, as shown in (c).

Theorem 1 (Edit Distance Under RGD1) The algorithm RGD1 recovers the minimal represen-
tation G̃n of the giant component of a.e. graph Gn ∼ G(n, c/n) with edit distance

∆(Ĝn, G̃n;Vn) = Õ(n5µg/f−4β). (15)

Remarks:
(i) Thus, an edit-distance guarantee can be provided under RGD1 when the parameter R is chosen
according to the constraints mentioned above. A sufficient condition to achieve a sub-linear edit
distance above under homogeneous edge lengths (f = g) is when

10β(1 + δ)
log c

ξ(c)

log c
− 4β < 1, (16)

for some constant δ > 0. When c→∞, we have ξ(c)→ 1 and in this regime, we have that β < 1/6.

In other words, approximately n
5
6 nodes need to participate to achieve a sub-linear edit distance

under RGD1.
(ii) When the ratio of the bounds on the edge lengths g/f is small (i.e., the edge lengths are nearly
homogeneous), the edit-distance guarantee in (15) improves, for a fixed ρ. This is because we can
control the hop lengths of the selected quartets more effectively in this case.
(iii) The dominant event leading to the edit-distance bound in (15) is the presence of bad quartets
due to short cycles in the random graph. In subsequent section, we show that RGD2 algorithm
effectively handles this event using the second shortest path distances.
Proof Ideas:

The proof is based on the error events that can cause the quartet tests to fail. The first error
event is that an edge which does not occur as a middle edge of a short quartet, meaning that there
are not enough participating nodes within distance R/2 from it. The second error event is that an
edge occurs as a middle edge of a bad quartet, meaning that it is close to a short cycle or it has bad
quartets as witnesses. We analyze the probability of these events and the resulting edit distance
due to these events.

6.3 Analysis of RGD2

We now provide edit distance guarantees for RGD2 algorithm. The analysis is on the lines of the
previous section, but we instead analyze the presence of overlapping cycles, as noted in Section 6.1.

18

There are no overlapping short cycles in a random graph, and thus, we can provide a much stronger
reconstruction guarantee for the RGD2 algorithm, compared to the RGD1 algorithm. We have the
following result.

Theorem 2 (Edit Distance Under RGD2) Under the assumptions of Theorem 1, the algorithm
RGD2 recovers the minimal representation G̃n of the giant component of a.e. graph Gn ∼ G(n, c/n)
with edit distance

∆(Ĝn, G̃n;Vn) = Õ(n8µg/f−4β−1). (17)

The above result immediately implies that consistent recovery of the minimal representation is
possible when there are enough number of participating nodes. We state the result formally below.

Corollary 1 (Consistency Under RGD2) The algorithm RGD2 consistently recovers the mini-
mal representation G̃n of the giant component of a.e. graph Gn ∼ G(n, c/n), when the parameter
R and the fraction of participating nodes ρ satisfy

(
c

ξ(c)

) 8Rg
f

ρ4 = o(n), c
R−Rmin

2 ρ = ω(1),

or equivalently
8µg

f
− 4β < 1, γ > 2β.

Remarks:
(i) From the above constraints, we see that consistent topology recovery is feasible. Thus, for
homogeneous edge lengths (f = g), as c→∞ and the number of participants is more than n11/12,
RGD2 consistently recovers the topology. Thus, a sub-linear number of participants suffice to
recover the minimal representation consistently.
(ii) Thus, the availability of second shortest distances makes consistent topology discovery possible
with a sub-linear number of participating nodes, while consistent recovery is not tractable under
RGD1 using only shortest-path distances between a sub-linear number of participants.
Proof Ideas:

The proof is on similar lines as in Theorem 1, but with modified error events that cause the
quartet tests to fail. As before, the first error event is that an edge which does not occur as a middle
edge of a short quartet. The second error event is now that an edge is close to two overlapping
short cycles instead of being close to a single short cycle. This event does not occur in random
graphs for sufficiently short lengths, and thus, we see a drastic improvement in edit distance.

7 Analysis Under Samples

We have so far analyzed the performance of RGD1 and RGD2 algorithms when exact distances (i.e.,
delay variances) are input to the algorithm. We now analyze the scenario when instead only delay
samples are available and estimated variances are input to the algorithm.

We show that the proposed algorithms have low sample complexity, meaning they require slow
scaling of number of samples compared to the network size to achieved guaranteed performance.
The result is given below.

19

Theorem 3 (Sample Complexity) The edit distance guarantees under RGD1 and RGD2 algo-
rithms, as stated in Theorem 1 and Theorem 2, are achieved under input of estimated delay vari-
ances, if the number of delay samples satisfies

m = Ω(poly(log n)). (18)

Thus, the sample complexity of RGD1 and RGD2 algorithms is poly(log n). In other words,
the size of the network n can grow much faster than the number of delay samples m, and we can
still obtain good estimates of the network. This implies with m = Ω(poly(log n)) samples, we can
consistently discover the topology under RGD2 algorithm, given sufficient fraction of participating
nodes.
Proof Ideas:

The proof follows from Azuma-Hoeffding inequality for concentration of individual variance
estimates, as in [21, Proposition 1], and then consider the union bound over various events.

8 Converse Results & Discussion

8.1 Fraction of Participating Nodes

We have so far provided edit distance guarantees for the proposed topology discovery algorithms.
In this section, we provide a lower bound on the fraction of participating nodes required for any
algorithm to recover the original graph up to a certain edit distance guarantee.

We can obtain a meaningful lower bound only when the specified edit distance is lower than
the edit distance between a given graph and an independent realizations of the random graph.
Otherwise, the edit distance guarantee could be realized by a random construction of the output
graph. To this end, we first prove a lower bound on the edit distance between any fixed graph and
an independent realization of the random graph.

Let D(G; δ) denote the set of all graphs which have edit distance of at most δ from G

D(G; δ) := {F : ∆(F,G; ∅) < δ}. (19)

Lemma 1 (Lower Bound on Edit Distance) Almost every random graph Gn ∼ G(n, c/n) has
an edit distance at least (0.5c − 1)n from any given graph Fn.

Proof: First, we have for any graph Fn

|D(Fn; δn)| ≤ n! ·
(n2

2

δn

)
< n(δ+1)n3δn, (20)

since we can permute the n vertices and change at most δn entries in the adjacency matrix AF

and we use the bound that
(N
k

)
≤ Nk

k! ≤ (Nk)
k3k. Let B denote the set of graphs having exactly cn

2
edges and the size of B is

|B| =
(n2

2
cn
2

)
≥ (

n2

cn
)cn/2 = (

n

c
)cn/2.

We can now bound the probability that a random graph Gn ∼ G(n, c/n) belongs to set D(Fn; δn)
for any given graph Fn is

P[Gn ∈ D(Fn; δn)] ≤
P[Gn ∈ D(Fn; δn)]

P[Gn ∈ B]

20

≤
|D(Fn; δn)| max

g∈D(Fn;δn)
P[Gn = g]

|B|min
g∈B

P[Gn = g]

(a)

≤ |D(Fn; δn)|
|B| = n(δ+1−c/2)n3δn,

where inequality (a) is due to the fact that ming∈B P[Gn = g] ≥ maxg∈S(Fn) P[Gn = g] (i.e., the
mode of the binomial distribution). Hence, P[Gn ∈ D(Fn; δn)] decays to zero as n → ∞, when
δ < 0.5c − 1. 2

Thus, for any given graph, a random graph does not have edit distance less than (0.5c−1)n from
it. It is thus reasonable to expect for any graph reconstruction algorithm to achieve an edit distance
less than (0.5c− 1)n, since otherwise, a random choice of the output graph could achieve the same
edit distance. We now provide a lower bound on the fraction of the participating nodes such that
no algorithm can reconstruct the original graph up to an edit distance less than (0.5c − 1)n.

Theorem 4 (Lower Bound) For Gn ∼ G(n, c/n) and any set of participants Vn, for any graph
estimator Ĝn using (exact) shortest path distances between the participating node pairs, we have

P[∆(Ĝn, Gn;V) > δn]→ 1, when

|V |2 < Mn(0.5c− δ − 1)
log n

log log n
, (21)

for a small enough constant M > 0 and any δ < (0.5c − 1).

Thus, no algorithm can reconstruct Gn up to edit distance δn, for δ < 0.5c−1, if the number of
participating nodes is below a certain threshold. From Lemma 1, almost every random graph has an
edit distance greater than (0.5c− 1)n from a given graph. Thus, when the number of participating
nodes is below a certain threshold, accurate reconstruction by any algorithm is impossible.
Remarks:
(i) The lower bound does not require that the participating nodes are chosen uniformly and holds
for any set of participating nodes of given cardinality.
(ii) The lower bound is analogous to a strong converse in information theory [61] since it says that
the probability of edit distance being more a certain quantity goes to one (not just bounded away
from zero).
(iii) The result is valid even for the scenario where second shortest path distances are used since
the maximum second shortest path distance is also O(log n).
(iv) We have earlier shown that our algorithms RGD1 and RGD2 have good performance under a
sub-linear number of participants. Closing the gaps in the exponents between lower bound and
achievability is of interest.
Proof Ideas:

The proof is based on information-theoretic covering type argument, where cover the range of
the estimator with random graphs of high likelihood. Using bounds on binomial distribution, we
obtain the desired lower bound.

8.2 Non-Identifiability of General Topologies

Our proposed algorithms require the knowledge of shortest and second shortest path distances.
Performance analysis reveals that the knowledge of second shortest path can greatly improve the

21

a

w

b

u v

a

w

b

u v

Figure 6: Example of two graphs with unit lengths where nodes a, b, u, v, w are participating.
Even under all path length information between the participating nodes, the two graphs cannot be
distinguished.

accuracy of topology discovery for random graphs. We now address the question if this can be
accomplished in general.

To this end, we provide a counter-example in Fig.6, where a significant fraction of nodes are par-
ticipating, and we are given distances along all the paths between the participants; yet, the topology
cannot be correctly identified by any algorithm. This reveals a fundamental non-identifiability of
general topologies using only a subset of participating nodes.

8.3 Relationship to Phylogenetic Trees

We note some key differences between the phylogenetic-tree model [49] and the additive delay model
employed in this paper. In phylogenetic trees, sequences of extant species are available, and the
unknown phylogenetic tree is to be inferred from these sequences. The phylogenetic-tree models
the series of mutations occurring as the tree progresses and new species are formed. Efficient
algorithms with low sample complexity have been proposed for phylogenetic-tree reconstruction,
e.g., in [58,62].

In the phylogenetic-tree model, the correlations along the phylogenetic tree decay exponentially
with the number of hops. This implies that long-range correlations (between nodes which are
far away) are “hard” to estimate, and require large number of samples (compared to the size of
the tree) to find an accurate estimate. However, under the delay model, the delays are additive
along the edges, and even long-range delays can be shown to be “easy” to estimate. Hence, the
delay model does not require the more sophisticated techniques developed for phylogenetic-tree
reconstruction (e.g., [62]), in order to achieve low sample complexity. However, the presence of
cycles complicates the analysis for delay-based reconstruction of random graphs. Moreover, we
developed algorithms when additional information is available in the form of second shortest-path
distances. Such information cannot be obtained from phylogenetic data. We demonstrated that this
additional information leads to drastic improvement in the accuracy of random-graph discovery.

9 Conclusion

In this paper, we considered discovery of sparse random graph topologies using a sub-linear number
of uniformly selected participants. We proposed local quartet-based algorithms which exploit the
locally tree-like property of sparse random graphs. We first showed that a sub-linear edit-distance
guarantee can be obtained using end-to-end measurements along the shortest paths between a

22

sub-linear number of participants. We then considered the scenario where additionally, second
shortest-path measurements are available, and showed that consistent topology recovery is feasible
using only a sub-linear number of participants. Finally, we establish a lower bound on the edit
distance achieved by any algorithm for a given number of participants. Our algorithms are simple
to implement, computationally efficient and have low sample complexity.

There are many interesting directions to explore. Our algorithms require the knowledge of the
bounds on the delay variances (i.e., edge lengths), and algorithms which remove these requirements
can be explored. Our algorithms are applicable for other locally tree-like graphs as well, while
the actual performance indeed depends on the model employed. Exploring how the reconstruction
performance changes with the graph model is of interest. In many networks, such as peer-to-peer
networks, there is a high churn rate and the nodes join and leave the networks, and it is of interest to
extend our algorithms to such scenarios. Moreover, we have provided reconstruction guarantees in
terms of edit distance with respect to the minimal representation, and plan to analyze reconstruction
of other graph-theoretic measures such as the degree distribution, centrality measures, and so on.
While we have assumed uniform sampling, other strategies (e.g., random walks) need to analyzed.
We plan to implement the developed algorithms developed on real-world data.

Acknowledgements

The authors thank the anonymous reviewers for comments which significantly improved this paper.
The first author is supported in part by the setup funds at UCI and the AFOSR Award FA9550-
10-1-0310.

A Properties of Random Graphs

We first note the number of cycles in random graphs.

Lemma 2 (Cycles in Erdős-Rényi Random Graphs) In Gn ∼ G(n, c
n), the expected number

of cycles of lengths l is O(cl). Moreover, the number of two overlapping cycles of length l, denoted
by Hl, satisfies

E[NHl
] = O(n−1c2l+1). (22)

Thus, there are a.a.s. no overlapping cycles of length less than (1−δ) logn
2 log c for δ > 0.

Proof: The proof is along the lines of [18, Cor. 4.9], but we specialize it for cycles. By counting
argument, the expected number of cycles is given by

E[NC(l)] =

(
n

l

)
l!

2l

(c
n

)l
= O(cl).

Let number of vertices in H, be |v(Hl)| = s with l < s ≤ 2l. Note that the number of edges
|Hl| ≥ s+ 1 to be overlapping cycles. Hence,

E[NHl
] ≤

(
n

s

)
(s!)

(c
n

)s+1

= O(n−1cs+1),

and we obtain the desired result. 2

23

Since we are dealing with the minimal representative G̃n obtained by contracting nodes of
degree < 3 in the original random graph Gn′ , we need to derive its distribution. First note that
n = Θ(n′) a.a.s., where n′ is the number of nodes in the original graph. On lines of [63, Lemma 4.4]
and [63, Lemma 5.1], conditioned on n nodes in the minimal representative, the resulting graph is
Erdős-Rényi, conditioned on the event that the minimum degree is at least three and denote this
distribution as G′(n, c

n).
We now obtain a lower bound on the size of the neighborhood in l hops in G′(n, c/n). Let Γl(i)

denote the set of nodes at graph distance l from node i in G′(n, c
n). We have the following result.

Lemma 3 (Neighborhood in G′(n, c
n)) For each node i in graph G̃n ∼ G′(n, c

n), with probability
at least 1− o(1/n),

|Γl(i)| ≥
1

(
√
c− 1)2

cl−l0 log n, (23)

for all l0 ≤ l ≤ 3 logn
5 log c , where

l0 ≤
log 9 logn

(
√
c−1)2

log 3
. (24)

Proof: The proof is along the lines of [64, Lemma 6] but with modification to account for the
minimum degree of three. Let l0 denote the first time when

|Γl0(i)| ≥
9 log n

(
√
c− 1)2

. (25)

Since the minimum degree is at least three, l0 is given by (24). The rest of the proof proceeds along
the lines of [64, Lemma 6]. 2

We now provide bounds on the number cycles in G′(n, c
n). Let

ξ(c) := 1− e−c − ce−c − 0.5c2e−c. (26)

Lemma 4 (Cycles in G′(n, c
n)) In G̃n ∼ G′(n, c

n), the expected number of cycles of lengths l is

E
′[NCl

] = O

((
c

ξ(c)

)l
)
. (27)

Moreover, the number of two overlapping cycles of length l, denoted by Hl, satisfies

E
′[NHl

] = O

(
n−1c2l+1

ξ(c)l

)
. (28)

Proof: Let E′[NCl
] denote the expected number of cycles of length l in random graph G′(n, c/n)

and let E[NCl
] denote the corresponding number in Erdős-Rényi random graph G(n, c/n). Let Λn(l)

denote the event that all given l nodes have degree at least three in G(n, c/n), and let Φn(l) denote
the event that all given l nodes have degree at least three in G(n, c/n) and have edges only to nodes
other than the given l nodes. Thus, we have that

E
′[NCl

] = E[NCl
|Λ(l)] =

E[NCl
1Λ(l)]

P[Λ(l)]
≤ E[NCl

]

P[Λ(l)]
= O

((
c

ξ(c)

)l
)
,

24

where 1 denotes indicator event and

P[Λn(l)] ≥ P[Φn(l)] = (P[Φn(1)])
l n→∞

= ξ(c)l, (29)

where the last result is from the fact that the asymptotic degree distribution of a node is the Poisson
distribution. Similarly we have the other result on number of overlapping cycles. 2

B Proof of Theorem 1

To prove the reconstruction guarantees for RGD1 algorithm, we first characterize “good” events
which lead to accurate addition of edges in each step of RGD1 algorithm. We then bound the
number of “bad” events which leads to an edit distance guarantee between the reconstructed graph
Ĝ by RGD1 algorithm (under exact distances) and the minimal representation of the original graph
G̃.

Recall in Section 6.1, we introduced the concept of bad quartets, where a middle hidden node
is part of a cycle of length less than 2R′ hops in the original graph Gn, where R′ = Rg/f . Such
quartets have wrong edge lengths or are not discovered. We weaken the criterion for bad quartets
as those, where a middle hidden node is part of a (generalized) cycle of length less than 3R′ hops.
We note that this suffices to guarantee the presence of good witnesses which leads to accurate
merging of the quartet under consideration. We prove this fact below.

Lemma 5 (Correctness of RGD1 for good quartets) Given a minimal representation G̃ and
a set of observed nodes V , conditioned on the event that every edge in G̃ is part of a short quartet
(with edge lengths less than Rg + τ), each short quartet is successfully and accurately merged by
RGD1 when its middle hidden node is not part of a (generalized) cycle of length less than 3R′ hops.

Proof: The proof proceeds by induction on the steps of RGD1. Initially the graph is empty and
since the quartet added is good, it is correct. At any step, assume that the graph Ĝ is accurate
(i.e., either the hidden nodes and paths are not yet added, or if there are added are correct).
Let Q(ab|uv) be the quartet to be merged with Ĝ and let h1 and h2 be its two hidden nodes.
If TreeMerge procedure is called by RGD1 algorithm in this step, it is accurate since it correctly
adds the quartet Q(ab|uv) to Ĝ. If CycleMerge procedure is called instead, the quartet Q(ab|uv)
is accurately merged if the join points between the existing paths in Ĝ and the new paths to be
created are correct. Note that the distance between hidden nodes h1 and h2 to be added and the
join points to be inferred is at most R′ hops. Since each of the join points is part of the short
quartet, these short quartets are part of the witness set W. If the witness quartets are not part of
cycles of length less than 2R′ hops, then they are guaranteed to be of the correct length and the
join points for Q(ab|uv) are correctly discovered. This implies that the middle nodes in Q(ab|uv)
are required to be not part of generalized short cycles of length less than 3R′. Thus, the graph Ĝ
is accurate upon merging Q(ab|uv). This implies the correctness of RGD1 at each step and thus,
the above statement holds. 2

Thus, the above result implies that the errors occur due to the following events: let E1(e; G̃n, Vn)
denote the event that the edge e is not a middle edge in any short quartet. Let E2(v; G̃n, Vn) denote
the event that the node v is the middle node of a bad short quartet, and let Kv denote the number
of such bad short quartets (with participating nodes as end points and v as one of the middle

25

nodes). The edit distance satisfies

∆(Ĝn, G̃n;Vn) ≤
∑

v∈G̃n

(Deg(v; G̃n) + 6Kv) I[E2(v)] + 2n2
∑

e∈Gn

I[E1(e)]. (30)

This is because under event E2(v), v is the middle node of a bad quartet, either it is not recon-
structed, in which case, it contributes an edit distance of at most Deg(v), or the bad quartet is
reconstructed with wrong edge lengths. In this case, it amounts to adding three wrong edges and
not reconstructing the three correct edges. Thus, the edit distance is at most 6Kv , where Kv is the
number of bad quartets having v as a middle node under this event. For event E1(e), where there
is no short quartet containing e as a middle edge, we use the trivial bound on the edit distance as
2n2.

For the event E1(e), we have

P[E1(e;Gn, Vn)] ≤ 2max
v∈V

P[|Vn ∩BR/2(v; G̃n)| < 2],

since Ec1(e;Gn, Vn)] = {|Vn ∩BR/2(v1; G̃n) ≥ 2}∩{|Vn ∩BR/2(v2; G̃n) ≥ 2}, where v1 and v2 are the
endpoints of e. We now have

P

[
|Vn ∩BR/2(v; G̃n)| < 2

∣∣∣|BR/2(v; G̃n)| ≥ k
]
≤ (1− ρ)k

(
1 +

ρ

1− ρ

)
.

We have a lower bound on |BR/2(v; G̃n)| from Lemma 3. Hence, for

Rmin ≤ R ≤ Rmax, (31)

where Rmin and Rmax are given by (10), with probability 1− o(n−1), we have

|BR/2(v)| ≥ (1− δ)c(R−Rmin)/2,

for some constant δ > 0. Thus,

P[|V ∩BR/2(v)| < 2] ≤ (1− ρ)(1−δ)c(R−Rmin)/2
(1 +

ρ

1− ρ
). (32)

For the second event E2, that the edge v is a part of a bad quartet, this occurs when it is part
of a (generalized) cycle of length less than 3R′,

P[E2(v; G̃n, Vn)] = P[v ∈ C(3R′; G̃n)],

where R′ = Rg/f = γg logn
f log c . We have from Lemma 4,

P[e ∈ C(3R′; G̃n)] = O

((
c

ξ(c)

)3R′
)
.

The number of bad short quartets Kv satisfies

Kv = Õ(ρ4c2R
′

),

26

since Kv ≤ |Vn ∩BR′/2(v; G̃n)|4 and

E[|Vn ∩BR′/2(v; G̃n)|] ≤ ρ

(
c

ξ(c)

)R′/2

,

and using Chernoff bounds, we have |Vn ∩ BR′/2(v;Gn)| = Õ(ρ(c/ξ(c))R
′/2) with probability 1 −

o(n−1).
Thus, the expected edit distance is

E[∆(Ĝn, G̃n;Vn)] = O(n4(1− ρ)(1−δ)c(R−Rmin)/2
)

+ Õ

((
c

ξ(c)

)5R′

ρ4

)
. (33)

Let ρn = n−β. We have

(1− ρ)Θ(c(R−Rmin)/2) = O(exp[−nγ/2−β]),

when γ > 2β and γ := log c
logn(R − Rmin). When (c/ξ(c))R

′
= nµg/f , the second term in (33) is

Õ(n5µg/f−4β), and is the dominant error event. Thus, the expected edit distance is

E[∆(Ĝn, G̃n;Vn)] = Õ(n5µg/f−4β).

By Markov inequality, we have the result.

C Proof of Theorem 2

The proof follows the lines of proof of Theorem 1. It is easy to note that each step of RGD2 succeeds
and accurately merges a candidate quartet Q(ab|uv) when the quartet has at most one (generalized)
cycle of length less than 3R′. This is because in this case, the join points of the quartet Q(ab|uv)
in Ĝ can be inferred using shortest and second shortest paths. As in Theorem 1, we require that
all edges be part of short quartets. Thus, We again have error events E1 and E2 which lead to a
bound on edit distance (30). As before, let E1(v; G̃n, Vn) denote the event that the node v is not
a middle node in any short quartet and E2(v) is the event that the node v is the middle node of a
bad short quartet. However, now, the definition of a bad quartet is different: it occurs only when
node v part of at least two overlapping generalized cycles, both of length less than 3R′, and denote
such structures as H3R′ .

The analysis for E1 is same as in proof of Theorem 1. For E2, from Lemma 4, we have,

P[v ∈ H3R′] = O(n−2(
c

ξ(c)
)6R

′

).

Thus, the expected edit distance is

E[∆(Ĝn, G̃n;Vn)] = O(n(1− ρ)c
(R−Rmin)/2)

+O(n−1(
c

ξ(c)
)8R

′

ρ4).

Thus, we have the desired result.

27

D Proof of Theorem 3

The proof follows the lines of sample complexity results in [21]. From [21, Proposition 1], we have
concentration bounds for delays (distances) under m samples as

P[|l̂m(i, j) − l(i, j)| > ε] ≤ 2 exp[− mε2

MR3
],

for any ε > 0, some constant M > 0, and for all i, j ∈ Vn. Taking union bound over all node pairs,
we see that when m = Ω(poly(log n)), we have concentration of all the distances and we have the
desired result.

E Proof of Theorem 4

We use a covering argument for obtaining the lower bound, inspired by [65, Thm. 1]. For recon-
structed graph Ĝ using shortest path distances between O(|V (G)|2/2) node pairs, the range R(Ĝ)
of the estimator is bounded by

|R(Ĝ)| ≤ (Diam(G))|V (G)|2/2,

since the delay variances on the edges are assumed to be known exactly, and the shortest path can
range from 1 to Diam(G). For G ∼ G(n, c/n), the diameter8 is O(log n) w.h.p. Let S(Ĝ; δn) denote
all the graphs which are within edit distance of δn of the graphs in range R(Ĝ)

S(Ĝ; δn) := {F : ∆(F,G′) ≤ δn, for some G′ ∈ R(Ĝ)}.

Thus, using (19) and (20),

|S(Ĝ; δn)| ≤
⋃

G′∈R(Ĝ)

|D(G′; δn)| ≤ |R(Ĝ)|n(δ+1)n3δn.

For the original graph G ∼ G(n, c/n), we have the required probability

P[∆(Ĝ,G;V) > δn] =
∑

g∈Sc

P[∆(Ĝ, g;V)] > δn]P(G = g)

+
∑

g∈S
P[∆(Ĝ, g;V)] > δn]P(Gn = g)

≥
∑

g∈Sc

P[∆(Ĝ, g;V) > δn]P(Gn = g)

(a)
=
∑

g∈Sc

P(Gn = g)

(b)
= 1−

∑

g∈S
P(Gn = g), (34)

8The diameter of G(n, c
n
) is C(c) log n [66], where C(c) = 1

log c
+ 2

c
+O(log c

c2
) as c → ∞.

28

where equality (a) is due to the fact that P[∆(Ĝ, g;V) > δn] = 1 for all g ∈ Sc and (b) is due
to
∑

g∈S P(G = g) +
∑

g∈Sc P(G = g) = 1. From (34), it suffices to provide an asymptotic upper

bound for the term Υ :=
∑

g∈S P(G = g). Furthermore, let eg ∈ {1, . . . ,
(n
2

)
} denote the number of

edges in the graph g ∈ Gn. Then,

P(G = g) =
(c
n

)eg (
1− c

n

)(n2)−eg
. (35)

We have the general result that for graphs g1, g2 ∈ Gn

eg1 ≤ eg2 ⇒ P(G = g1) ≥ P(G = g2). (36)

Define

z := min

{
l ∈ N :

l∑

k=1

((n
2

)

k

)
≥ |S|

}
(37)

We obtain

z ≤ O(
|V |2 log log n

log n
) + 0.5n(δ + 1) + o(1).

Thus,

Υ :=
∑

g∈S
P(G = g)

≤
z∑

k=0

((n
2

)

k

)(c
n

)k (
1− c

n

)(n2)−k

(a)

≤ exp

[
− 4

nc

(
0.5n(0.5c − δ − 1)−O

(|V |2 log log n
log n

)
− o(1)

)2]

where inequality (a) follows from the fact that Pr(Bin(N, q) ≤ k) ≤ exp(− 2
Nq (Nq−k)2) for k ≤ Nq

with the identifications N =
(
n
2

)
, q = c/n and k = z, and that

(
n
2

)
≥ (n/2)2. Finally, we observe

from (a) that if |V |2 < Mn(0.5c − δ − 1) logn
log logn for small enough M > 0, then Υ → 0 as n → ∞

and we obtain the required result.

References

[1] A. Anandkumar, A. Hassidim, and J. Kelner, “Topology Discovery of Sparse Random Graphs
With Few Participants,” in Proc. of ACM SIGMETRICS, June 2011.

[2] S. Kandula, D. Katabi, and J. Vasseur, “Shrink: A Tool for Failure Diagnosis in IP Networks,”
in Proc. of ACM SIGCOMM Workshop on Mining network data, Philadelphia, PA, Aug. 2005.

[3] A. Motter and Y. Lai, “Cascade-based Attacks on Complex Networks,” APS Physical Review
E, vol. 66, no. 6, pp. 65–102, 2002.

[4] B. Eriksson, P. Barford, R. Nowak, and M. Crovella, “Learning Network Structure from Passive
Measurements,” in Proc. of the ACM SIGCOMM conference on Internet measurement, Kyoto,
Japan, Aug. 2007.

29

[5] Y. Vardi, “Network Tomography: Estimating Source-Destination Traffic Intensities from Link
Data.” J. of the American Statistical Association, vol. 91, no. 433, 1996.

[6] A. Anandkumar, C. Bisdikian, and D. Agrawal, “Tracking in a Spaghetti Bowl: Monitoring
Transactions Using Footprints,” in Proc. of ACM SIGMETRICS, Annapolis, Maryland, USA,
June 2008.

[7] D. Alderson, H. Chang, M. Roughan, S. Uhlig, and W. Willinger, “The many facets of internet
topology and traffic,” AIMS J. on Networks and Heterogeneous Media, vol. 1, no. 4, p. 569,
2006.

[8] D. Shah and T. Zaman, “Detecting Sources of Computer Viruses in Networks: Theory and
Experiment,” in Proc. of ACM Sigmetrics, New York, NY, June 2010.

[9] S. Fortunato, “Community Detection in Graphs,” Physics Reports, 2009.

[10] F. Wu, B. Huberman, L. Adamic, and J. Tyler, “Information Flow in Social Groups,” Physica
A: Statistical and Theoretical Physics, vol. 337, no. 1-2, pp. 327–335, 2004.

[11] D. Acemoglu, A. Ozdaglar, and A. ParandehGheibi, “Spread of (mis) information in social
networks,” Games and Economic Behavior, 2010.

[12] L. Backstrom, C. Dwork, and J. Kleinberg, “Wherefore Art Thou r3579x?: Anonymized Social
Networks, Hidden Patterns, and Structural Steganography,” in Proc. of ACM Intl. Conf. on
World Wide Web, Banff, Canada, May 2007.

[13] “mtrace– Print multicast path.” ftp://ftp.parc.xerox.com/pub/net-research/ipmulti.

[14] M. Gunes and K. Sarac, “Resolving anonymous routers in Internet topology measurement
studies,” in Proc. of IEEE INFOCOM, 2008, pp. 1076–1084.

[15] B. Yao, R. Viswanathan, F. Chang, and D. Waddington, “Topology inference in the presence
of anonymous routers,” in Proc. of IEEE INFOCOM, 2003.

[16] J. Ni, H. Xie, S. Tatikonda, and Y. Yang, “Efficient and dynamic routing topology inference
from end-to-end measurements,” Networking, IEEE/ACM Transactions on, vol. 18, no. 1, pp.
123–135, 2010.

[17] M. Wainwright and M. Jordan, “Graphical Models, Exponential Families, and Variational
Inference,” Foundations and Trends in Machine Learning, vol. 1, no. 1-2, pp. 1–305, 2008.

[18] B. Bollobás, Random Graphs. Academic Press, 1985.

[19] M. Jovanović, F. Annexstein, and K. Berman, “Modeling peer-to-peer network topologies
through small-world models and power laws,” in TELFOR, 2001.

[20] M. Newman, D. Watts, and S. Strogatz, “Random graph models of social networks,” Proc. of
the National Academy of Sciences of the United States of America, vol. 99, no. Suppl 1, 2002.

[21] S. Bhamidi, R. Rajagopal, and S. Roch, “Network Delay Inference from Additive Metrics,” To
appear in Random Structures and Algorithms, on Arxiv, 2010.

30

[22] A. Barabási and R. Albert, “Emergence of scaling in random networks,” Science, vol. 286, pp.
509–512, 1999.

[23] J. Leskovec, D. Chakrabarti, J. Kleinberg, C. Faloutsos, and Z. Ghahramani, “Kronecker
graphs: An approach to modeling networks,” J. of Machine Learning Research, vol. 11, pp.
985–1042, 2010.

[24] J. Leskovec, K. Lang, A. Dasgupta, and M. Mahoney, “Statistical properties of community
structure in large social and information networks,” in Proc. of WWW, 2008, pp. 695–704.

[25] A. Clauset, C. Moore, and M. Newman, “Hierarchical structure and the prediction of missing
links in networks,” Nature, vol. 453, no. 7191, pp. 98–101, 2008.

[26] “Internet Mapping Project,” http://www.cheswick.com/ches/map/.

[27] “The Skitter Project,” http://www.caida.org/tools/measurement/skitter/.

[28] “Cooperative Analysis for Internet Data Analysis, (CAIDA),” http://www.caida.org/tools/.

[29] R. Govindan and H. Tangmunarunkit, “Heuristics for Internet Map Discovery,” in IEEE IN-
FOCOM, Tel-Aviv, Israel, June 2000.

[30] N. Spring, R. Mahajan, D. Wetherall, and T. Anderson, “Measuring ISP Topologies with
Rocketfuel,” IEEE/ACM Tran. on networking, vol. 12, no. 1, pp. 2–16, 2004.

[31] Y. Shavitt and E. Shir, “DIMES: Let the internet measure itself,” ACM SIGCOMM Computer
Communication Review, vol. 35, no. 5, p. 74, 2005.

[32] Y. He, G. Siganos, and M. Faloutsos, “Internet Topology,” in Encyclopedia of Complexity and
Systems Science, R. Meyers, Ed. Springer, 2009, pp. 4930–4947.

[33] J. Leskovec, D. Huttenlocher, and J. Kleinberg, “Predicting Positive and Negative Links in
Online Social Networks,” in ACM WWW Intl. Conf. on World Wide Web, 2010.

[34] M. Gomez-Rodriguez, J. Leskovec, and A. Krause, “Inferring Networks of Diffusion and Influ-
ence,” in Proc. of the ACM SIGKDD Intl. Conf. on Knowledge Discovery and Data Mining,
2010.

[35] S. Myers and J. Leskovec, “On the Convexity of Latent Social Network Inference,” in Proc. of
NIPS, 2010.

[36] R. Castro, M. Coates, G. Liang, R. Nowak, and B. Yu, “Network Tomography: Recent Devel-
opments,” Stat. Sc., vol. 19, pp. 499–517, 2004.

[37] F. Chung, M. Garrett, R. Graham, and D. Shallcross, “Distance realization problems with
applications to Internet tomography,” J. of Comp. and Sys. Sc., vol. 63, no. 3, pp. 432–448,
2001.

[38] Z. Beerliova, F. Eberhard, T. Erlebach, A. Hall, M. Hoffmann, M. Mihal ak, and L. Ram,
“Network Discovery and Verification,” IEEE Journal on Selected Areas in Communications,
vol. 24, no. 12, p. 2168, 2006.

31

[39] T. Erlebach, A. Hall, and M. Mihal’ak, “Approximate Discovery of Random Graphs,” Lecture
Notes in Computer Science, vol. 4665, p. 82, 2007.

[40] D. Achlioptas, A. Clauset, D. Kempe, and C. Moore, “On the bias of traceroute sampling: Or,
power-law degree distributions in regular graphs,” J. ACM, vol. 56, no. 4, 2009.

[41] M. Kurant, M. Gjoka, C. T. Butts, and A. Markopoulou, “Walking on a Graph with a Mag-
nifying Glass,” in Proceedings of ACM SIGMETRICS ’11, San Jose, CA, June 2011.

[42] S. Khuller, B. Raghavachari, and A. Rosenfeld, “Landmarks in graphs,” Discrete Appl. Math.,
vol. 70, no. 3, pp. 217–229, 1996.

[43] L. Reyzin and N. Srivastava, “On the longest path algorithm for reconstructing trees from
distance matrices,” Information Processing Letters, vol. 101, no. 3, pp. 98–100, 2007.

[44] ——, “Learning and verifying graphs using queries with a focus on edge counting,” Lecture
Notes in Computer Science, vol. 4754, p. 285, 2007.

[45] H. Mazzawi, “Optimally Reconstructing Weighted Graphs Using Queries,” in Symposium on
Discrete Algorithms, 2010, pp. 608–615.

[46] S. Choi and J. Kim, “Optimal query complexity bounds for finding graphs,” in Proc. of annual
ACM symposium on Theory of computing, 2008, pp. 749–758.

[47] M. Shih and A. Hero, “Unicast inference of network link delay distributions from edge mea-
surements,” in Proc. of IEEE ICASSP, vol. 6, 2002, pp. 3421–3424.

[48] N. Duffield, J. Horowitz, F. Presti, and D. Towsley, “Multicast topology inference from end-
to-end measurements,” Advances in Performance Analysis, vol. 3, pp. 207–226, 2000.

[49] R. Durbin, S. R. Eddy, A. Krogh, and G. Mitchison, Biological Sequence Analysis: Probabilistic
Models of Proteins and Nucleic Acids. Cambridge Univ. Press, 1999.

[50] M. Gomez-Rodriguez, E. Balduzzi, M. DE, and B. Schölkopf, “Uncovering the temporal dy-
namics of diffusion networks,” in Intl. Conf. on Machine Learning, Bellevue, WA, 2011.

[51] T. Lappas, E. Terzi, D. Gunopulos, and H. Mannila, “Finding effectors in social networks,” in
Proc. of ACM SIGKDD, 2010, pp. 1059–1068.

[52] T. Snowsill, N. Fyson, T. De Bie, and N. Cristianini, “Refining causality: who copied from
whom?” in Proc. of ACM SIGKDD, 2011, pp. 466–474.

[53] N. Alon and J. Spencer, The probabilistic method. Wiley-Interscience, 2000.

[54] J. Pearl, Probabilistic Reasoning in Intelligent Systems—Networks of Plausible Inference. Mor-
gan Kaufmann, 1988.

[55] G. Bunke et al., “Inexact graph matching for structural pattern recognition,” Pattern Recog-
nition Letters, vol. 1, no. 4, pp. 245–253, 1983.

[56] E. Lehmann, Theory of Point Estimation. New York, NY: Chapman & Hall, 1991.

32

[57] H.-J. Bandelth and A. Dress, “Reconstructing the shape of a tree from observed dissimilarity
data,” Adv. Appl. Math, vol. 7, pp. 309–43, 1986.

[58] P. L. Erdős, L. A. Székely, M. A. Steel, and T. J. Warnow, “A few logs suffice to build (almost)
all trees: Part ii,” Theoretical Computer Science, vol. 221, pp. 153–184, 1999.

[59] T. Jiang, P. E. Kearney, and M. Li, “A polynomial-time approximation scheme for inferring
evolutionary trees from quartet topologies and its application,” SIAM J. Comput., vol. 30,
no. 6, pp. 1942–1961, 2001.

[60] R. Durbin, S. R. Eddy, A. Krogh, and G. Mitchison, Biological Sequence Analysis: Probabilistic
Models of Proteins and Nucleic Acids. Cambridge Univ. Press, 1999.

[61] T. Cover and J. Thomas, Elements of Information Theory. John Wiley & Sons, Inc., 2006.

[62] C. Daskalakis, E. Mossel, and S. Roch, “Optimal phylogenetic reconstruction,” in STOC ’06:
Proceedings of the thirty-eighth annual ACM symposium on Theory of computing, 2006, pp.
159–168.

[63] I. Benjamini, G. Kozma, and N. Wormald, “The mixing time of the giant component of a
random graph,” Arxiv preprint, 2006.

[64] F. Chung and L. Lu, “The diameter of sparse random graphs,” Advances in Applied Mathe-
matics, vol. 26, no. 4, pp. 257–279, 2001.

[65] G. Bresler, E. Mossel, and A. Sly, “Reconstruction of Markov Random Fields from Samples:
Some Observations and Algorithms,” in Intl. workshop APPROX Approximation, Randomiza-
tion and Combinatorial Optimization. Springer, 2008, pp. 343–356.

[66] D. Fernholz and V. Ramachandran, “The diameter of sparse random graphs,” Random Struc-
tures and Algorithms, vol. 31, no. 4, pp. 482–516, 2007.

33

