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Economic and sociological theories increasingly highlight the importance of social networks for the diffusion of 
technological innovations. However, while it is generally agreed that network structure affects the speed and scale of 
technology diffusion by offering efficient communication channels for the transfer of information, it seems that current 
literature does not say whether also the process of diffusion can affect the very structure of the networks on which it occurs. 
We attempt to address this gap by examining how the spread of a technological innovation influences patterns of dyadic 
relationships within a large social network and, in turn, how those changes interact with the diffusion process. In this paper 
we develop a computer simulation applying agent based modeling techniques and use it to inquire about the feedback loop 
between the number of adopters and diffusion as well as about the extent to which local bandwagon forces reshape entire 
networks that generate them. Our initial results show, first, the emergence of an interesting phase transition in the speed of 
technology diffusion and, second, the acquisition of a complex property by the network structure when the stability of social 
ties, the average number of connections per agent, and certain agent internal characteristics are manipulated. 
 
1. INTRODUCTION 
 
We are witnesses of a growing consensus in the scientific community that social networks play an important role 
in the diffusion of major technological innovations.  The common theme in this diverse body of economic, 
management, and sociological literature (e.g. Bala & Goyal, 1998; Barley, 1990; Katz & Shapiro, 1992; Rogers, 
1995) is that network structure affects both the speed and scale of diffusions by providing social actors with a 
powerful communication channel via which information about new innovations can spread widely and fast 
prompting adoptions. Still, even though the link from network structure to diffusion dynamics seems well 
established theoretically and empirically, the overall picture remains incomplete. First, social networks are 
viewed in most accounts as predominantly stable while stability in real life is anything but typical in social 
settings. Second, it is evident that current literature implies unidirectionality seeing diffusion as guided by the 
underlying network structure and not the other way around. Thus, questions whether and how the structure of the 
social network becomes affected over time by the diffusing technology remain largely unanswered. 
 
It is our interest in this paper to address this gap. We examine how the spread of an innovation is influenced by 
actor relationships within a large social network and, in turn, how the diffusion process shapes those very 
relationships. To achieve this goal, we develop an agent based model through which we control the 
microfoundations and track joint outcomes of the two phenomena. First, our model draws on the growing body 
of knowledge about complex adaptive systems in general in which local interaction coupled with changing agent 
behavior is known to produce different outcomes as a result of small modifications in the initial conditions. 
Second, we acknowledge that such an approach has recently gained prominence in the management literature as 
it gives the researcher an opportunity to bypass the requirement of strict mathematical formalization in place of a 
more contextual treatment of the underlying process (Lane & Maxfield, 1997). It is therefore particularly well 
suited for the study of complex social processes that succumb to no other but non-linear analyses.  



The agents we model are both heterogeneous and adaptive. They assess individually their expected returns from 
the new technology based on their own internal beliefs about it as well as a general level of ambiguity with 
which the technology enters the market. They also bring in varying attitudes towards learning. Some agents may 
be more interested in exploiting the technology they already use, others in exploring new possibilities. The trade-
off between these characteristics gives every agent a unique behavioral trait that governs its networking activities 
but it is not fixed throughout the model: by a strict rule certain individuals are allowed to adapt once they adopt 
the innovation by changing their learning focus while others never adapt. Controlling statistically which agent 
type will prevail we give the agent community a global learning perspective equivalent with that of real networks 
without sacrificing abstraction, parsimony and ease of implementation.  
 
That community, whose size is kept constant, exists on an undirected graph of low average degree in which 
every agent is connected only to a small number of other agents. While the immediate environment of such an 
agent is its local ego-network, the sum of all local neighborhoods generates a large social network that can act as 
a powerful tool to channel information about the diffusing technology. Thus, by being embedded within a macro 
scale network, agents are exposed to micro scale pressures from their own neighborhoods to adopt. Structurally, 
network evolution is governed by a random search process in which the probability of a new tie being created 
and an existing tie dissolved depends both on individual agent characteristics and on parallel diffusion dynamics.  
 
2. COMBINED MODEL OF TECHNOLOGY DIFFUSION AND NETWORK CHANGE 

 
2.1. Threshold Model of Innovation Diffusion 
 
We use a threshold model because traditional rate-oriented diffusion models are primarily designed to answer the 
question how fast, rather than when, diffusion occurs. In that sense, they do little to explain the emergence and 
extent of bandwagons. We propose a mathematical model of diffusion which is very much in line with the 
original model advanced by Abrahamson & Rosenkopf (1993; 1997). Models like that assume that potential 
adopters may have varying attitudes towards the new technology and that, therefore, the timing of adoptions is 
likely to be different across different adopters. At any moment in time, the comparison between costs and 
benefits of the new technology is affected by the number of individuals who have already given in to that 
technology. Still, while pressures stemming from earlier adopters may at each diffusion cycle cause a wave of 
subsequent adoptions, an individual does not have to jump on the bandwagon automatically. Bandwagons add 
significantly to the individual’s perception of the new technology but are not its only determinant. Only after the 
bandwagon pressure exceeds a certain, individually derived threshold will an adoption occur. Thus, an equally 
important factor is the potential adopter’s subjective idea about the innovation resulting from probabilistic 
expectations of whether using the new technology will generate a profit or a loss: the greater the expected loss 
the higher the threshold. Formally, we express the adoption decision of a single agent as:  
 
 i i iD I A P= + ⋅  (2.1) 
 
where iD  stands for agent i’s decision to accept the innovation meaning “adopt” if 0iD >  and “reject” if 0iD ≤ . 
This decision is the sum of i’s subjective assessment of the new technology iI  drawn from a normal distribution 
with a negative mean and the product iA P⋅  which stands for the actual bandwagon pressure experienced by 
agent i. A  is a measure of ambiguity of the new technology and indicates the extent to which an individual 
values information represented by iP  defined as the proportion of adopters in i‘s ego-network:  
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where d  is the focal agent’s degree and ja  equals 1 if the neighboring agent j is an adopter or 0 otherwise. 
 

iP  used here is a modified version of the original construct proposed in Abrahamson & Rosenkopf’s second 
paper (1997). While in their seminal work the number of adopters in the focal agent’s ego-network is divided by 
the number of all potential adopters in the network (i.e. by total network size), here the denominator is the 
degree of an agent. That produces a more intuitive value of iP  calculated with respect to the agent’s local 
environment and not the entire social network structure of which that agent may not be aware.  



2.2. Evolution of the Social Network 
 
Two processes make up topological change in any social network: the dissolution of existing links and the 
formation of new ties. To model these dynamics, we advance a procedure we call “guided random rewiring”. 
Our technique has the feature common to all known rewiring procedures in that it keeps the total number of 
connections and actors constant and thus significantly reduces the analytic effort to trace changes in network 
structure over time. But it is also different from the more stylized stochastic rewiring techniques known from 
statistical physics (Watts, 1999; Watts & Strogatz, 1998) in that the algorithm takes account of node attributes 
when deciding which ties are to be disrupted and which to be formed. 
 
At the outset, the agents we consider are endowed with a random structure. Random networks have been well 
studied analytically but are topologically quite unlike most empirically observed social systems. Therefore, they 
constitute a generic class of artificial graphs that can be used as a good baseline for deploying processes likely to 
result in some quantifiable structural change. A random network is typically a graph in which either (a) a given 
probability is associated with the formation of an edge between any pair of vertices, or (b) a given number of 
edges are allocated among randomly chosen pairs of vertices (Cowan & Jonard, 2004; Cowan et al., 2002). The 
initial network modeled here belongs to the first category. 
 
Having assumed a random network of size N, in each step our model selects with uniform probability a sub-set 
of agents of size less than N. For each of the selected agents a set of probabilities is derived with which the links 
connecting those agents with their neighbors can be removed. For a focal agent, this results in a ranking of 
existing ties from the most likely to the least likely to dissolve. With that probability, then, the selected agent 
gives up one tie. Once tie dissolution is completed, a different agent set of the same size is chosen for tie 
formation. Similarly, for each of the newly chosen agents a list of potential partners is compiled spanning over 
the entire community except that agent’s ego-network. Then, every potential link is assigned a probability 
ranking and the selected agents each create a single new link. Ranking criteria used here are analogous to those 
responsible for tie removal and will be explained in due depth shortly. How big are the selected sub-sets is a key 
exogenous parameter in our model. In fact, we see it as a simple way to control network dynamics since the total 
number of nodes allowed to have their ego-networks reshaped in each simulation step translates directly into 
how much structural change the network will experience in total over time.  
 
Based on what criteria do real people formulate their networking behavior? Much of the existing literature on 
learning prescribes that we are characterized by an internal trade-off between on one hand willing to explore new 
possibilities using our available contacts and, on the other hand, exploiting what we are already familiar with 
(Lee et al., 2003; March, 1991; Nooteboom, 2000). Unless there is an extreme case of a fully exploitative or 
explorative individual, it is likely that in most of us both qualities appear in combination.  The model we develop 
here has this duality built into every agent. Consider i as uniquely characterized by a propensity to explore 
0 ( ) 1iP Exploration≤ ≤  and a propensity to exploit ( ) 1 ( )i iP Exploitation P Exploration= − . Given this 
specification, an agent viewed as explorative will have ( ) 0.5iP Exploration >  while an exploitative agent will 
come with ( ) 0.5iP Exploitation > . The individual propensities are drawn at simulation begin from the statistical 
beta distribution. This distribution offers a simple mathematical way to cover the entire breadth of an agent’s 
exploration preference by manipulating only two shape parameters α  and β  as in:  
 

1 1( )( ) (1 )
( ) ( )

f x x xα βα β
α β

− −Γ += −
Γ Γ

              (2.3) 

 
where 0 1x≤ ≤ , α and β are positive integers, and ( )αΓ  is the Euler gamma function.  
 
The idea is to view the trade-off between explorative and exploitative behavior as the key mechanism by which 
agents rank their subsequent networking decisions and the social structure evolves over time. We design what we 
believe is a highly realistic framework in which exploitative agents are driven by the principle of homophily 
when connecting with similar others with a high propensity to exploit while, at the same time, explorative non-
adopters tend rather to link with adopters of the innovation. A non-adopter i whose ( ) 0.5iP Exploitation >  thus 
forms with a high propensity a new tie with j who is using the same old technology. We calculate that propensity 
as ( ) ( )i jP Exploitation P Exploitation⋅  considering that i and j’s preferences to exploit are independent of each 
other. Similarly, if i is a non-adopter with ( ) 0.5iP Exploration >  it will be more likely to establish new relations 



with adopters. That joint propensity to cooperate will be given by ( ) ( )i jP Exploration P Exploration⋅ . Finally, the 
extent to which an adopter whose ( ) 0.5iP Exploitation > will be interested in pairing with other exploitative 
adopters equals ( ) ( )i jP Exploitation P Exploitation⋅ . It is possible to regard these values as measures of mutual fit 
between two agents. The higher the fit the higher also the likelihood that the model will select them as neighbors. 
 
Purposefully, we reserve for last the discussion of an explorative adopter. We define explorative non-adopters as 
adaptive and thus avoid the paradoxical situation of agents who are already in possession of the new technology 
but are still treating it as unknown. Adaptation occurs when an explorative agent adopts the technology and 
simultaneously adjusts to the new learning target by becoming exploitative. In this way, we guarantee that the 
following is true: while the relative proportion of explorative and exploitative agents among non-adopters is 
controlled at simulation begin by the beta distribution, post adoption all explorative adopters decide to learn 
about the innovation that they have just accepted to use. The only exception are early adopters who use the 
innovation as a result of subjective assessment rather than bandwagons. 
 
Finally, the paradigm of mutual partner fit applies also to existing ties that face deletion. In this case, however, 
we are interested not in the joint propensity of two agents to remain connected i jP P⋅  but in them becoming 
disconnected due to mutual misfit, given by 1 i jP P− ⋅ . Again, several scenarios are thinkable depending on the 
technology that both agents use and their idiosyncratic learning preferences. We summarize those in Table 2.1. 
 
Table 2.1.   Ranking criteria for tie deletion with respect to agent’s learning preference and technology used. 

  
 Agent Type Non-Adopterj Adopterj 

 
Non-Adopteri 1 ( ) ( )i jP Exploitation P Exploitation− ⋅  1 ( ) ( )i jP Exploration P Exploration− ⋅  

 Adopteri 1 ( ) ( )i jP Exploration P Exploration− ⋅  1 ( ) ( )i jP Exploitation P Exploitation− ⋅  

 
One last issue remains to address, namely how the model guarantees that ties are really deleted and formed with 
the likelihood prescribed by their rankings. The easiest way is to consider the propensities calculated for agent 
pairs on the basis of their joint characteristics as weights fed into a stochastic procedure that subsequently picks 
ties either for removal or creation depending on where the model currently is. Guided by these weights, the 
procedure decides probabilistically which tie it will choose, with the most heavily weighted tie being also the 
most likely to get picked. To achieve this goal, we simply divide each resultant weight by the total sum of all 
weights in order to turn it into values normalized between 0 and 1. These values then indicate final probabilities 
with which each tie in the agent sub-set can be selected by the random procedure.  
 
3. RESULTS 
 
3.1. Network structure and technology diffusion 
 
At this point, we are interested in the impact of changing network structure on technology diffusion. Hence, the 
two exogenous parameters we manipulate are structure-relevant: the mean degree of the network and network 
dynamics. Holding the size constant at 500 agents we formulate 35 different initial conditions by moving from a 
sparsely linked random graph with an average degree 2k =  to a dense graph with 10k =  (by steps of 2), and 
simultaneously varying network dynamics D  between a low 2% and a high 11% (by steps of 1.5%). We also 
assume that the network consists to 50% of explorative agents with ( ) 0.5P Exploration >  while the other half 
show an exploitative attitude. To obtain this distribution we set both beta parameters to 5.0. Technological 
ambiguity A  is set to a low 2 in all scenarios. Finally, into all of these networks we introduce a single early 
adopter being the only agent with a positive iI . We replicate every scenario 100 times for a total of 3500 runs. In 
each run we first measure the cumulative share of adopters over time. Then, to compare the speed of technology 
diffusion across all scenarios, we look at how many steps it takes for 60% of agents to adopt. The simulation 
lasts until that cumulative share of adopters is reached or, otherwise, it ends after 10000 steps. 
 



Figure 3.1a below depicts the typical progress of technology diffusion in a situation where structural change is 
slow with just 2% of individuals redefining their social relationships within the network in each step. The 
striking result is that connectivity seems to have a negative impact on adoptions: the higher the average degree 
the lower the speed of diffusion. This effect is particularly strong early on, roughly during the first 200 steps of 
the simulation. After that, technology adoption slows down in the sparse network and begins to show patterns 
similar to those in denser topologies. It is important to note that the critical point marking 60% of adopters is 
reached much faster by the sparse network. The case of high connectivity but varying dynamics (Figure 3.1b) 
reveals quite opposite patterns: here the higher is the network dynamics the more there are adoptions. 
 
Figure 3.1a.   Diffusion under low network dynamics.  Figure 3.1b. Diffusion under high connectivity. 

 
Is it because dense networks require more structural change to overcome inertia? Even more so, is some critical 
mass of change necessary to trigger diffusion the way it sets off here only after the first 200 steps? To enhance 
these findings formally, in Figure 3.2 we depict the combined effect of connectivity and dynamics on diffusion. 
 
Figure 3.2.   Combined effect of network structure on adoption (in steps necessary to reach a 60% adoption rate). 
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The contour plot shows that the time needed to reach the benchmark adoption rate increases dramatically as 
connectivity goes up but network dynamics remain low. At the opposite end lies the fast diffusion scenario 
representing a sparse network. Interestingly, the rate of topological change plays little role in fostering diffusion 
if connectivity is low. In fact, the progression from light grey to black in the chart above is so rapid that we can 
think of it as a phase transition between two distinctive network states: a fast and a slow diffusion state. The 
transition occurs somewhere between the average degree 6 8k< < , and dynamics 0.035 0.05D< < . Points 
lying on the “edge” of phase transition between the second and the third yellow contour line are those 
combinations of low dynamics and high connectivity that designate the frontier between two very different 
efficiency regions in this network.  
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We argue that the effect observed here stems largely from the agents’ adoptive behavior. Since the agents 
experience social pressures to adopt from their ego-networks only, the higher the degree of an agent the lower 
also the level of bandwagon pressures placed on it by others. Thus, higher connectivity necessarily results in 
stronger lock-in effects of non-adopters in the old technology. On the other hand, high network dynamics bring 
more structural change into local neighborhoods. Under certain conditions, this change may absorb the lock-in 
created by the old technology as explorative agents will automatically tend to reconnect from users of the old 
technology to users of the innovation. Thus, the combination of low average degree and high dynamics increases 
the probability of an agent to adopt whereas high connectivity coupled with low dynamics dramatically lowers 
that probability regardless of whether the agent exploits or explores. We believe that this finding may be of 
particular importance for real world diffusion processes. It clearly shows that even in very innovative 
communities it is difficult to escape rigidity and conservatism over the long run as social ties grow in number 
and initially fluid structures stabilize. 
 
3.2. Technology diffusion and network structure 
 
We turn our attention to the emergent network structure now as a product of the interaction between the network 
and technology diffusion. At this point, we offer an initial perspective using graph visualizations only. Starting 
from a random graph of 500 agents we consider two networks that evolve under two different parameter 
configurations, one for a low 2k =  and a high 0.11D =  (Figures 3.3a and 3.3b) and the other one for a high 

10k =  and low 0.02D =  (Figures 3.3c and 3.3d, respectively). Through multiple runs we track both networks 
until no more technology adoptions occur, and choose the most typical graph in each series of runs for visual 
presentation. To indicate the passage of time, the graph is shown at an early stage after the first 5% of diffusion 
cycles and a later stage after the completion of 20% of cycles. Blue color indicates adopters, red – non-adopters. 
 
Figure 3.3a.   Network evolved under low average degree 

and high dynamics after 5% of steps. 
 Figure 3.3b. Network evolved under low average degree and 

high dynamics after 20% of steps. 

 

 
Figure 3.3c.   Network evolved under high average degree 

and low dynamics after 5% of steps.  Figure 3.3d. Network evolved under high average degree and 
low dynamics after 20% of steps. 

 

 



These images seem to contradict all our intuition. Should low connectivity and high dynamics (Figures 3.3a and 
3.3b) not be more likely to cause a disruption in the social structure as opposed to a network that is sparsely 
interconnected and evolves fast (Figures 3.3c and 3.3d)? What we see here is really the opposite. It is in the well 
connected network of low dynamics that most adopters separate from the non-adopter cluster and create a dense 
component of their own. Our observations indicate that these two groups go apart early in the model and remain 
disjoint for the rest of the simulation. Clearly, the disconnected structure inhibits further bandwagon adoptions 
that would otherwise continue to have a strong effect on the topology of this network. 
 
It seems to be an emergent property of our complex system that the structural dynamics observed here follow 
closely the logic of social tie strength without it being an explicit component of agent behavior. If network 
change is slow, dense ties connecting exploitative agents persist long enough to push out the formation of mixed 
explorative pairs if the average degree remains constant. Simultaneously, even though these homophilous links 
have a much higher probability of being selected for deletion as there are simply more of them, they also have a 
much higher likelihood of being formed again than the adopter–non-adopter links increasingly declining due to 
agent adaptation. Tie strength can thus be perceived as an emergent feature of the entire social community rather 
than of a single social tie. In our system, ties exist only in the context of the entire network and only in the 
context of that network at some point they become either strong or weak.  
 
An even more important finding, though, is that the community which develops this internal property performs 
worse. Note that the duo of low dynamics and high connectivity ranks slowest on the speed of diffusion chart in 
Figure 3.2 whereas the dynamic sparse graph is also the best diffusing one. Long lasting exploitative ties 
increase agent lock-in in the given technology type and hamper further spread of the innovation. At the same 
time, explorative ties are no longer there to create bandwagons that would keep the network together. In this way, 
one of the communities shown above splits up in perfect accordance with the learning attributes and adoption 
status of its agents so that now no further diffusion is possible. On the contrary, a more egalitarian network 
where no strong within-group or weak between-group ties emerge manages to preserve a substantial number of 
explorative links from one cluster to another which then foster bandwagons and enable vast diffusion.  
 
4. CONCLUSION 
 
Our model is a dynamic set-up of high internal activity in which the progressive diffusion of a new technology 
and continuous evolution of network ties are mutually intertwined to an extent allowing for an observation of 
complex systems outcomes. Diffusion involves passing information about the innovation from one agent to 
another. If we assume that such information can be transmitted via dyadic interaction channels only, then the 
overall topology of the interaction framework becomes critical for the diffusion process. In this model, the 
topology of the network changes permanently creating at each subsequent step an entirely new social 
architecture which is not only structurally different from its previous state but which also performs differently.  
 
While we ascertain that by this mechanism network evolution gives direction to diffusion, we find that also the 
opposite is true. Singular adoption events induce the dissolution of some ties and cause others to be preserved. 
Yet, by the time existing ego-networks are disrupted, adoptions generate bandwagon pressures that prompt even 
more adoptions and even more shifts in the underlying network topology. This complex interplay is the engine 
that drives our model yielding interesting observations. First, we see that there is a strongly manifested phase 
transition in social network efficiency and, second, we discover that that phase transition is related to a complex 
property acquired by some social networks and not acquired by others depending on their initial conditions.  
 
Is it possible to specify formally the set of such conditions necessary for networks to remain solely within the 
region of high efficiency to the left of the phase transition and thus to make an attempt at engineering social 
networks? If so, what implications can we derive from this knowledge for social systems in general? Are most 
real networks that typically develop a mixture of strong and weak ties always doomed to fail because 
inefficiency becomes their signature when structural change and economic processes come together?  
 
While with this model we can undoubtedly raise a whole spectrum of other explorative issues, we take a shot at 
addressing the first question in the full paper where we derive analytically the set of points on the edge of phase 
transition in network efficiency. At the same time, we leave other issues, in particular those pertaining to real 
social networks, for a future study in which we will empirically assess the validity of this agent based framework 
and make more generic statements about the nature of technology diffusion in multiple network scenarios. 
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