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1 Introduction

In many theoretical models economic agents learn from each other. Whether in herding

models, where agents are assumed fully rational but have incomplete information sets (e.g.,

Banerjee (1992) and Bikhchandani, Hirshleifer, and Welch (1992)),1 or in adaptive models

where agents learn or form their expectations based on recent experience (see, e.g., Timmer-

mann (1994) and Chevillon, Massmann, and Mavroeidis (2010)), agents are affected by past

outcomes or the views of groups of other agents. Carroll (2003), for example, sets out a model

whereby agents update their views probabilistically by looking at media reports, as opposed

to forming full-information rational expectations. Similarly, cognitive psychology might be

used to explain the contagion of views which leads to herd or imitating behaviour (see, e.g.,

Jegadeesh and Kim (2010)). See Akerlof and Shiller (2009) for a popular textbook discussion.

In this paper, motivated by this largely theoretical literature, we develop a general econo-

metric modelling framework that incorporates herding effects and allows cross-sectional de-

pendence, of many forms, to arise endogenously. In contrast, the popular factor models view

cross-sectional dependence as an exogenous feature of the data. The proposal, discussion and

econometric analysis of the proposed model, which is shown to nest many extant models as a

special case, forms the main aim of this paper.

The model proposed in this paper is a nonlinear panel data model. Its distinguishing

characteristic is the use of unit-specific aggregates of past values of variables relating to other

units that are ‘close’ in some sense to a given unit, for the modelling of that unit. The nature

of the model is dynamic in the sense that the past values of aggregates determine the present.

We consider a number of nonlinear specifications for the construction of the unit specific

aggregates, and our central specification is based on a threshold mechanism. The model nests

a variety of dynamic panel data models, such as the standard panel data AR model. More

interestingly, it is closely related to factor models that have received considerable attention

in recent years following the works of Bai and Ng (2002), Stock and Watson (2002), and Bai

(2003).

Our model provides a natural way in which many forms of cross-sectional dependence can

arise in a large panel dataset comprised of variables of a similar nature that relate to different

agents/units. The degree of cross-sectional dependence can vary, from a case where it is similar

to standard factor models, for which the largest eigenvalue of the variance covariance matrix

of the data tends to infinity at a rate N , where N is the number of cross-sectional units in the

dataset, to the case of very weak or no factor structure where this eigenvalue is bounded as

N →∞. Of course, all intermediate cases can arise as well. In this sense our work is closely

1Information-driven herding can sometimes be classified as “clustering” to differentiate it from herding due
to extraneous incentive structures (e.g., Trueman (1994) and Hirshleifer and Teoh (2003)).
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related to the works of Chudik and Pesaran (2010) and Chudik, Pesaran, and Tosetti (2009).

These papers discuss the concepts of weak and strong cross-sectional dependence based on

the characteristics of the variance-covariance matrix of the data and are dynamic in nature,

being instances of large dimensional VAR models. Our work can be viewed as a particular

instance of a large dimensional VAR but for the fact that our model is intrinsically nonlinear

in nature. More importantly, our work is possibly the first specific instance of a model that

falls within the remit of the general class of models discussed in Chudik and Pesaran (2010),

has a flexible way of allowing many forms and degrees of cross-sectional dependence and has

a clear structural interpretation that relates to the intuitive herding ideas discussed above.

Our work has precedents in the system engineering literature. However, all the work in

that literature relaters to deterministic models whose limit behaviour is a fixed point that

represents clustering. A discussion of the asymptotic behaviour of the deterministic version

of our basic model can be found in Blondel, Hendrickx, and Tsitsiklis (2009) following on

from the work of Krause (1997). Another literature that is closely related to our work is

the ‘similarity’ literature as exemplified by Gilboa, Lieberman, and Schmeidler (2006) and

references therein. This work relates to univariate processes. It suggests that forecasting for

yt, at time T , can be based on a model which places heavier weights on those past observations

of yt, for which a given vector of variables, xt, is close to xT with respect to some metric. In

other words, observations yt, t ≤ T , for which ||xt− xT || is small, for some metric ||.||, have a

larger weight for constructing forecasts of yT+1 at time T . Gilboa, Lieberman, and Schmeidler

(2006) provide powerful theoretical economic justifications for this approach. Our work can be

thought of as an extension of this analysis to a multi-agent panel framework, where similarity

between agents takes the place of similarity between circumstances.

We provide a comprehensive analysis of the stochastic version of the model, while allowing

both for threshold but also smooth transition type nonlinearities. Further, we discuss estima-

tion of the model and analyse the asymptotic properties of the estimators. We propose a large

number of extensions to the basic model that cover many interesting cases. These include the

combination of our ‘herding’ mechanism with more traditional forms of factor modelling that

allow for exogenous forms of cross-sectional dependence. As another example of an extension,

a more realistic modelling of the very complicated behaviour of and interactions among agents

can be analysed in a flexible manner by employing neural network type specifications in con-

junction with partial cross-sectional averaging. This extension could shed further lights on

identifying the possibly asymmetric impacts of the differences of opinions on stock prices and

volumes (see, e.g., Banerjee, Kaniel, and Kremer (2009) and Banerjee and Kremer (2010)).

A very interesting aspect of our work arises out of our analysis of how the new model,

being a generalised autoregressive panel data model, relates to the simple panel data AR

model. Interestingly, we find that the standard ‘Nickel’ bias (c.f., Nickell (1981)) that arises
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in the simple panel data AR model and leads to the need for the IV (more generally GMM)

estimation, does not arise in a number of our specifications, but does in others.

The structure of the paper is as follows: Section 2 presents the basic specification of

the model and discusses in detail its theoretical properties. Section 3 presents a number

extensions and discusses their properties. Section 4 discusses the issue of how to test for the

presence of nonlinearity in the data. Section 5 presents extensive Monte Carlo simulation

evidence. Section 6 provides two empirical illustrations for analysing nonlinearity and cross-

section dependence of stock returns and inflation expectations, which clearly demonstrate the

usefulness of our proposed models. 7 concludes. All proofs are relegated to an Appendix.

2 The Theoretical Model

We propose a model, which can be given a behavioural interpretation, based on the common-

place idea that agents consider the views or behaviour of those around them and aggregate

them in some way in order to decide on their own expectations or behaviour. This interaction

or mimicking may be explicit, in the sense that agents know what the other agents experi-

enced or expect, or could be implicit, in the sense that groups of agents happen to behave

similarly even though they do not interact formally. This might be because they are subject

to the same environment and/or have similar information sets when forming expectations.

To formalise this idea, we propose an explicit dynamic panel model of a multitude of agents.

Let xi,t denote the value of the variable of interest, such as the agent’s income or the agent’s

view of the future value of some macroeconomic variable, at time t, for agent i. We assume a

sample of T observations for each of N agents. Then, we specify that

xi,t =
ρ

mi,t

N∑
j=1

I (|xi,t−1 − xj,t−1| ≤ r)xj,t−1 + εi,t, t = 2, ..., T, i = 1, ..., N, (1)

where

mi,t =
N∑
j=1

I (|xi,t−1 − xj,t−1| ≤ r) ,

{εi,t}Tt=1 is an error process whose properties will be further discussed below, I (.) is the

indicator function and −1 < ρ < 1. Verbally, the above model states that xi,t is influenced

by the cross-sectional average of a selection of past xj and in particular that the relevant xj

are those that lie closest to xi,t−1. This formalises the intuitive idea that people are affected

more by those with whom they share common views or behaviour. The model may be equally

viewed as a descriptive model of agents’ behaviour, reflecting the fact that ‘similar’ agents are

affected by ‘similar’ effects, or as a structural model of agents’ views whereby agents use the

past views of other agents, similar to them in some respect, to form their own views. The
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interactive term in (1) may then be thought to capture the (cross-sectional) local average or

common component of their views. This idea of commonality has various clear, motivating,

concrete examples in a variety of social science disciplines such as psychology and politics.

In economics and finance, the herding could be rational (imitative herding: see Devenow and

Welch (1996)) or irrational.

A deterministic form of the above model has been analysed previously in the mathematical

and system engineering literature. In particular, Blondel, Hendrickx, and Tsitsiklis (2009)

have analysed a continuous form of the restricted version of (1) given by

xi,t =
1

mi,t

N∑
j=1

I (|xi,t−1 − xj,t−1| ≤ 1)xj,t−1, t = 2, ..., T, i = 1, ..., N. (2)

where mi,t =
∑N

j=1 I (|xi,t−1 − xj,t−1| ≤ 1). To the best of our knowledge, we are the first to

introduce a stochastic term to this type of model and to allow for an unknown value of the

threshold parameter.

(1) bears considerable resemblance to threshold autoregressive (TAR) models analysed in

the time series literature. However, unlike straightforward extensions of such models to a panel

setting whereby individual units/agents would not have interactions through the nonlinear

specification, the nonlinearity in (1) is inherently cross-sectional in nature and provides for

the development of a dynamic network effect. In deterministic contexts this has been shown

to generate interesting behaviour, such as clustering.

2.1 Clustering

To appreciate more concretely the dynamics of the model we report various graphical results.

We start by reporting the dynamic behaviour of the deterministic model (i.e. setting εi,t = 0).

In particular we set N = 100, T = 20. We set the initial conditions to xi,0 ∼ N(0, 25) and

report the evolution of the system for ρ = 1, r = 0.5 and 3, in Figure 1. As we see, the system

settles quickly to a steady state with a number of clusters. The number of clusters declines

with the size of the threshold parameter, as one would intuitively expect. Obviously, for a

large value of r, only one cluster will arise.

Of course, the dynamic behaviour of the stochastic model can be expected to be quite

different. To explore this, we present some realisations of the stochastic system. We set

N = 100, T = 500, and the initial conditions as before. For the rest of the parameters, we set

r = 0.5, ρ = 0.999, and εi,t ∼ N(0, 0.1). As we will discuss below, the model is stationary for

|ρ| < 1, and the behaviour of a stationary model is of particular interest. But nonstationarity

is of interest, too, and has been extensively explored in the literature dealing with factor

models. The most interesting behaviour of the model can be obtained when ρ is high enough

for the model to be quite persistent. We report two realisations of this model in Figure 2. The

5



first realisation shows emerging cluster structures in the first 100 observations. Then, there

are clearly two clusters that persist throughout the rest of the sample. A number of units are

outlying and do not join any cluster for the whole sample. The second realisation has one

dominant cluster. There is a second cluster which starts at the beginning of the sample and

fizzles out by observation 250. At that point a new cluster emerges and by the end of the

sample becomes as dominant as the original major cluster.

Clearly this model can model flexibly all sorts of clustering behaviour. It is tempting to

attempt to characterise the behaviour of the model as a function of the parameters and it is

clear that for persistent ρ, the interplay of r and the variance of εi,t is crucial. For instance, a

small variance for εi,t relative to r implies that units do not escape clusters easily. Similarly,

ceteris paribus, a larger r leads to fewer clusters and dynamically to faster consolidation to-

wards clusters. This needs to be tempered with the finding, discussed in detail later, than

when the value of r tends to infinity the model has a smaller degree of cross-sectional depen-

dence. So, overall it seems that the model can behave in distinct ways depending sensitively

on all its parameters, including higher moments of εi,t, as we discuss below.

Next, we wish to allow for fat tails in the distribution of εi,t. Therefore, we set εi,t ∼ t3,

and subsequently normalise εi,t to have variance equal to 0.1. We report a realisation of this

model in Figure 3. Here, it is clear that more clusters arise. There is cluster consolidation

but at the same time cluster bifurcation (see the cluster made up of units with high values

that bifurcates around observation 400 only to re-emerge as a single cluster by the end of the

sample). Overall, it is clear that the new model can generate complex behaviour across units.

2.2 Special cases

It is interesting to note the nature of restricted versions of the above model, obtained by

taking extreme values of the threshold parameter. By setting r = 0, we obtain a simple panel

autoregressive model of the form

xi,t = ρxi,t−1 + εi,t (3)

On the other hand letting r →∞, we obtain the model

xi,t =
ρ

N

N∑
j=1

xj,t−1 + εi,t (4)

where past cross-sectional averages of opinions inform, in similar fashions, current opinions.

Recently, the use of cross-sectional averages has been advocated by Pesaran (2006), Chudik

and Pesaran (2010) and Chudik, Pesaran, and Tosetti (2009) as a means of modelling cross-

sectional dependence in the form of unobserved factors. However, unlike these models where

the use of cross-sectional averages is an approximation to the unknown model, in our case this

is a limiting case of a structural nonlinear model.
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A graphical comparison of these restricted versions of the nonlinear model is also instruc-

tive. In Figure 4, we report comparable realisations to those in Figure 1 but setting r = 0 in

the upper panel and r = ∞ in the lower panel. These are, of course, just single realisations;

but repeated realisations suggest a very similar picture. While the upper panel depicts inde-

pendent and very persistent series evolving with little regard to other series in the panel, the

lower panel depicts a closely linked set of series behaving similarly. It is interesting to note

that this similarity, reminiscent of factor structures, can be proven to arise only for finite N

when |ρ| < 1, as we will discuss in more detail below. Neither of these pictures compares in

terms of complexity and flexibility to the realisations of the nonlinear model seen in Figures

2-3. It is clear that neither of these two restricted versions of the model can accommodate

clustering or evolving herding.

It is important to investigate the properties of our model. A number of results, stated and

proved in the appendix, provide help in this respect. Intuitively, as we show in Lemma 1, (1)

is geometrically ergodic, and therefore asymptotically stationary, if |ρ| < 1. This allows for

the analysis of estimators along traditional lines, as discussed below.

2.3 Cross-sectional dependence and factor models

It is of interest to examine the cross-sectional dependence properties of the model. This is

slightly complicated by the need to define cross-sectional dependence in our context. We

choose to follow an approach which is used in the analysis of factor models. In the factor

literature, the behaviour of the covariance matrix of xt = (x1,t, ..., xN,t)
′, is considered. Factor

models have the property that both the maximum eigenvalue and the row/column sum norm

of the covariance matrix tend to infinity at rate N , as N →∞. In contrast, for other models of

cross-sectional dependence such as, for example, spatial AR or MA models, these quantities

are bounded, implying that they exhibit much lower degrees of cross-sectional dependence

than factor models.2 It is useful to see where our model fits in this nomenclature. Lemma

4 shows that the column sum norm of the variance covariance matrix of xt when xt follows

(1) is O(N). Thus, the model is much more similar to factor models than spatial AR or MA

models. Interestingly, as we will see in the next section that discusses extensions to the basic

model (1), there are versions of (1) that resemble spatial models, more than factor models.

Another very interesting finding is that (4) implies a variance covariance matrix for xt with

a column sum norm that is O(1). This is surprising, given the similarity that cross-sectional

average schemes have with factor models as detailed in Pesaran (2006). However, this result

and the analysis of Pesaran (2006) are not directly comparable. Pesaran (2006) assumes the

prior existence of factors and uses cross-sectional averages to approximate the existing factors.

2A useful discussion of the various concepts of cross-sectional can be found in Chudik and Pesaran (2010)
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These pre-existing exogenous factors generate high cross-sectional dependence and herding.

In our case no exogenous factors exist and the cross-sectional average is a primitive term that

exists in the structure of the model. Our surprising result is proven in Lemma 3.3

Given the above, it is of interest to examine the analogy with factor models in more

detail. We do this by simulating data using (1) and the parametrisation used to construct

the realisations in Figure 2. Using the simulated dataset we then extract factor estimates

using principal components. We extract 8 principal components and subsequently examine

the proportion of the variance of the dataset explained by these principal components. Our

previous pictorial analysis suggests that factor like behaviour emerges in the form of clusters of

series moving together. The first column of Table 1 presents the average cumulative proportion

of the dataset variance explained by successive principal components, over 100 replications.

As we can see there is behaviour reminiscent of factor analysis. The first factor explains about

40% of the total dataset variance rising to about 77% when all 8 factors are considered.

For comparability, we also consider simulations from the same model but setting r = ∞.

Results are reported in the second column of Table 1. As we see, while the first factor explains

roughly the same proportion of the variance in the two parametrisations, the rest of the factors

explain little further. This is reasonable. In this case there is only one cluster arising around

the cross-sectional mean. As we noted above, there is a crucial difference between (1) and (4).

This relates to the fact that while the column sum norm of xt for (1) is O(N), it is O(1) for

(4). This result is asymptotic with respect to N and as noted in footnote 3, the distinction can

be difficult to discern for values of ρ close to 1. As a result, we consider a further simulation

along the same lines but setting higher values for N (N = 100, 200, 400, 800, 1000 and 1500)

and a lower value for ρ (ρ = 0.8). Results on the average cumulative proportion of the dataset

variance explained by successive principal components, over 100 replications, are reported in

Tables 2 and 3. It is clear that data from (1) are more cross-sectionally dependent than data

from (4). More pertinently, while it is clear that as N increases principal components can

explain a decreasing proportion of the data variance for (4), the proportion remains constant

for (1).

It is important to restate here one crucial difference between our model and a factor model.

Our model has a clear parametric structure and its properties as an approximating mecha-

nism for generic cross-sectional dependence is, and, to some extent, should be, unclear and

limited. On the other hand, a factor model can lay claim to some generality, in the following

sense. Once a dataset has pronounced cross-sectional dependence exhibited by, say, explod-

3It is interesting to note that further interesting interactions arise if we let ρ = 1. This unit root behaviour
counteracts the tendency of the cross-sectional average to disappear asymptotically as N → ∞. Then, the
behaviour of both the variances and the covariances of xt as both N and T →∞, depends on the limit of T

N .
For example, as long as T

N remains bounded so do the variances of xt, despite the unit root structure of the
model. We feel that a detailed investigation of this possibility is beyond the scope of the present paper.

8



ing eigenvalues or column sum norms, associated with its covariance matrix, then a factor

model should have good approximation ability irrespective of the structural form giving rise

to the cross-sectional dependence. In a similar vein, in a strongly cross-sectionally dependent

dataset, principal components are able nonparametrically to construct linear combinations of

the variables that can capture this cross-sectional dependence, irrespective of its origin, as

we have seen above. Of course, since our model nests (4), it is reasonable to expect that it

can approximate a factor model by allowing r → ∞, in a similar manner to that underlying

the analysis of Pesaran (2006). Finally, it is worth noting that the factor model, unlike the

nonlinear model (or its relevant extensions in Section 3), cannot accommodate the case when

the cross-sectional dependence is not strong as in the case of spatial models.

2.4 Estimation

In this section we explore estimation of the nonlinear model in (1). We consider the standard

estimation procedure for a threshold model, whereby a grid of values for r is constructed. Then

for all values on that grid the model is estimated by least squares to obtain estimates of the au-

toregressive parameter, ρ. More specifically, denoting x̃i,t = 1
mi,t

∑N
j=1 I (|xi,t−1 − xj,t−1| ≤ r)xj,t−1,

x̃i = (x̃i,1, ..., x̃i,T−1)′, x̃ = (x̃′1, ..., x̃
′
N)′, xi = (xi,2, ..., xT )′ and x = (x′1, ..., x

′
N)′, x is regressed

on x̃ using OLS to give an estimate for ρ, for a given value of r in the grid. The value of r

that minimises the sum of squared residuals, 1
NT

∑N
i=1

∑T
t=1 ε̂

2
i,t(ρ, r), where

ε̂i,t(ρ, r) = xi,t −
ρ

mi,t

N∑
j=1

I (|xi,t−1 − xj,t−1| ≤ r)xj,t−1

is the estimator of r. We denote the least squares estimator of (ρ, r) by (ρ̂, r̂). We make the

following assumption about the error term, εi,t.

Assumption 1 εi,t is i.i.d. across t and independent across i. E(ε2i,t) = σ2
εi

. E(ε4i,t) < ∞.

For all i, the density of εi,t is bounded and positive over all compact subsets of R.

Then, we have the following theorems:

Theorem 1 Let Assumption 1 hold for εi,t in (1). Then, as long as |ρ| < 1, the least squares

estimator of (ρ, r) is consistent as N, T →∞.

Theorem 2 Let Assumption 1 hold for εi,t in (1). Let (ρ0, r0) denote the true value of (ρ, r).

Then, as long as |ρ| < 1, NT (r̂ − r0) = Op(1). Further, as long as |ρ| < 1, (NT )1/2(ρ̂ − ρ0)

has the same asymptotic distribution as if r0 was known.

These theorems are intuitive, as they accord with the work and theoretical analysis of

Chan (1993) who was the first to analyse, theoretically, the estimator for the univariate
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threshold autoregressive model. There exist a number of possible theoretical extensions of

this estimation problem. One obvious one relates to the fact that the asymptotic distribution

of NT (r̂ − r0) is non-normal and depends on unknown parameters, as discussed in Chan

(1993). The work of Hansen (2000) is of great use here, since by assuming that the model

is linear asymptotically, a tractable distributional theory can be obtained for r̂. We feel that

it is perhaps more appropriate to allow for the nonlinearity to persist asymptotically and,

therefore, we do not pursue further this interesting avenue of research.

2.5 Unbalanced panels

The model in (1) can be adjusted to allow for unbalanced panels. In this case (1) takes the

form

xi,t = ρx̃upi,t + εi,t, t = 2, ..., T, i = 1, ..., Nt, (5)

as long as both xi,t and x̃upi,t are observable, where Nt is the number of observable pairs,(
xi,t, x̃

up
i,t

)
, at time t. The definition of x̃upi,t depends on the application at hand. An obvious

definition is

x̃upi,t =
ρ

mi,t

Nt−1∑
j=1

I (|xi,t−1 − xj,t−1| ≤ r)xj,t−1 (6)

where mi,t =
∑Nt−1

j=1 I (|xi,t−1 − xj,t−1| ≤ r) and (xi,t, xi,t−1) is observable. Alternative specifi-

cations can be used to increase the number of available observations. For example, if xi,t−1 is

not observed, the latest available observation for the i-th unit prior to time t could be used.

More specifically, letting si,t denote the latest time period, prior to t, in which x is observable

for unit i, we can define x̃upi,t as either

x̃upi,t =
ρ

mi,t

Nt−1∑
j=1

I
(∣∣xi,si,t

− xj,t−1

∣∣ ≤ r
)
xj,t−1 (7)

or

x̃upi,t =
ρ

mi,t

Nsi,t∑
j=1

I
(∣∣xi,si,t

− xj,si,t

∣∣ ≤ r
)
xj,si,t

(8)

where

mi,t =

Nt−1∑
j=1

I
(∣∣xi,si,t

− xj,t−1

∣∣ ≤ r
)

and

mi,t =

Nsi,t∑
j=1

I
(∣∣xi,si,t

− xj,si,t

∣∣ ≤ r
)
,

respectively. The specifications in (7) and (8) allow for a larger set of available observations

to be used than in (6). Estimation of this model can then be carried out similarly to the case
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where the number of cross-sectional units is fixed over time. In this case, the effective number

of observations is equal to the number of observable pairs of
(
xi,t, x̃

up
i,t

)
over i and t, rather

than NT , and the statements of Theorems 1 and 2 need to be amended accordingly.

Model (1) can be extended in a large variety of ways. We explore a number in the next

Section.

3 Extensions

The model given in (1), while interesting from the perspective of analysing cross-sectional

dependence or studying phenomena, such as herding, in an empirical context is quite restrictive

in a number of senses. This section provides some extensions that alleviate this. Given that

our benchmark model is a panel model it is reasonable to include fixed effects. For such an

extension, the basic model becomes

xi,t = νi +
ρ

mi,t

N∑
j=1

I (|xi,t−1 − xj,t−1| ≤ r)xj,t−1 + εi,t (9)

where νi ∼ i.i.d.(0, σν). Of course, more general versions of the above model can be accom-

modated, such as

xi,t = νiζt +
ρ

mi,t

N∑
j=1

I (|xi,t−1 − xj,t−1| ≤ r)xj,t−1 + εi,t (10)

for an r × 1 vector of observable variables, ζt.

We now examine the properties of the least squares estimator for (9). As is well known, the

presence of νi induces endogeneity in standard panel AR models, leading to biased estimation

of the autoregressive parameter for finite T , when standard panel least squares estimators,

such as the within group estimator, are used. It is easiest to see the problem for standard

AR models, and its relation to our model, by noting that the endogeneity arises because

unbiasedness, for least squares estimators, requires that

E

(
xi,t−1

(
εi,t −

1

T

T∑
t=1

εi,t

))
= 0 (11)

Obviously, the expectation in (11) is not zero but O
(

1
T

)
. One would expect a similar problem

to arise for (9). However, surprisingly, this is not the case. As is shown in Lemma 11 in the

Appendix

E

((
1

mi,t

N∑
j=1

I (|xi,t−1 − xj,t−1| ≤ r)xj,t−1

)(
εi,t −

1

T

T∑
t=1

εi,t

))
= O

(
1

NT

)
(12)
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which implies that Theorems 1 and 2 hold for (9). As a result the standard within group

estimator can be used for (9), thus removing the need for less efficient GMM estimation as is

usually the case.

The restriction that (1) has a single lag can be relaxed to allow for p lags so that

xi,t =

p∑
s=1

[
ρs
mi,t,s

N∑
j=1

I (|xi,t−s − xj,t−s| ≤ r)xj,t−s

]
+ εi,t (13)

where mi,t,s =
∑N

j=1 I (|xi,t−s − xj,t−s| ≤ r). Alternatively, we can introduce more regimes and

consider the model given by

xi,t =

q∑
s=1

[
ρs
mi,t,s

N∑
j=1

I (rs ≤ |xi,t−1 − xj,t−1| < rs+1)xj,t−s

]
+ εi,t (14)

where mi,t,s =
∑N

j=1 I (rs ≤ |xi,t−1 − xj,t−1| < rs+1). Both (13) and (14) can be estimated

similarly to (1). However, sufficient conditions for their geometric ergodicity are different to

those for (1), and are given in Lemmas 13 and 14, respectively.

As we noted in the introduction, (1) has a structural interpretation, whereby agents collect

information about other agents’ views and behaviour and use them to construct their own.

But it can be reasonably argued that this information gathering has costs. As a result, and

as N → ∞, it may be reasonable to suppose that not all units close to i will be used when

constructing cross-sectional averages. This idea of costs to information gathering can be

formalised, so that the model may be modified to

xi,t =
ρ

m̃i,t

m̃i,t∑
j=1

x
(i)
j,t−1 + εi,t (15)

where x
(i)
t−1 = (x

(i)
1,t−1, ..., x

(i)
N,t−1)′, x

(i)
t−1 = sort(xt−1, (|x1,t−1 − xi,t−1|, ..., |xN,t−1 − xi,t−1|)′),

sort(a, b) sorts the vector a in the same order as the ascending order sort of the vector b and

m̃i,t = min(mi,t,m), for some constant, m, possibly depending on T or N . This version of the

model places the restriction that only the first m units closest to i at time t−1, enter the cross-

sectional average, at most. This model has quite distinct properties. It is still geometrically

ergodic if |ρ| < 1, as proven by Lemma 6. However, its cross-sectional dependence properties

are different since it is much closer to a standard panel AR model. As proven in Lemma 7, the

column sum norm of the covariance matrix of xt, when xt follows (15), is bounded as N →∞,

as long as mρ < 1. As a result, the extent of cross-sectional dependence for this variant of the

model is much smaller. This model introduces another parameter that needs to be estimated:

m. The estimation of m can be carried out similarly to the estimation of r, by constructing

a two dimensional grid of values for (r,m) and then choosing the combination that minimises

12



the sum of squared residuals. We have the following consistency result for this model, proven

in the Appendix.

Theorem 3 Let Assumption 1 hold for εi,t in (15). Then, as long as |ρ| < 1, the least squares

estimator of (ρ, r,m) is consistent for finite N and as T →∞.

Another implication of the reduced extent of cross-sectional dependence for this model

relates to the extension of this model that allows for fixed effects. As we discussed above, (9)

can be estimated using the within group estimator without suffering biases due to the presence

of lagged endogenous variables. This is possible because the lagged term in (9) is sufficiently

diluted by the presence of lagged variables belonging to other cross-sectional units to allow

for (12) to hold. This is not the case for (15), as shown in Lemma 12, in the Appendix. As a

result, estimation of this model using the within estimator is biased, possibly severely so, for

finite T . The standard solution is to estimate by GMM. In our case the moment conditions

take the form:

E

(
xi,t−s

(
∆xi,t − ρ∆

(
1

m̃i,t

m̃i,t∑
j=1

x
(i)
j,t−1

)))
= 0, t = 3, ..., T, s = 1, .., t− 2.

This is a set of T (T − 1)/2 conditions that could, in principle, be used to estimate efficiently

the model. However, there are problems with this approach. As noted in Caner and Hansen

(2004), GMM estimation of threshold models is inconsistent if the variable used in the indicator

function is endogenous, as it is in our case. Recently, Kourtellos, Tan, and Stengos (2008) have

suggested a method for estimating, with GMM, threshold models with endogenous switches.

But, the derivation of distributional results is not clear and so the applicability of the method

is unclear too. Of course, the ‘within’ estimator is consistent as T →∞, and so can be used

for long panels.

Up until now we have considered only threshold mechanisms for constructing the unit-

specific cross-sectional averages. This need not be the case. In particular, we can envisage

models of the form

xi,t = ρ
N∑
j=1

w(|xi,t−1 − xj,t−1| ; γ)xj,t−1∑N
j=1w(|xi,t−1 − xj,t−1| ; γ)

+ εi,t (16)

where w(x; γ) is a positive twice differentiable integrable function such as, e.g., the exponential

function exp(−γx2) or the normal cdf, Φ(x). By now, the properties of this model should be

reasonably clear. Lemma 8 shows that the model is geometrically ergodic if |ρ| < 1 and

similarly to model (1), the column sum norm of the covariance matrix of xt, when xt follows

(16) is O(N), as shown in Lemma 9. The model in its simple form given by (16) can be

estimated by nonlinear least squares; and we have the following Theorem concerning the

asymptotic properties of this estimator.

13



Theorem 4 Let Assumption 1 hold for εi,t in (16). Then, as long as |ρ| < 1, the nonlinear

least squares estimator of (ρ, γ) is (NT )1/2-consistent and asymptotically normal as N, T →
∞.

Similarly to Lemma 11, it can also be shown that

E

((
N∑
j=1

w(|xi,t−1 − xj,t−1| ; γ)xj,t−1∑N
j=1w(|xi,t−1 − xj,t−1| ; γ)

)(
εi,t −

1

T

T∑
t=1

εi,t

))
= O

(
1

NT

)
(17)

which implies that a ‘within’ estimator is valid for estimating (16), when fixed effects are

incorporated in (16). The above model can be refined to allow for costly information gathering.

In particular, the following model has the required feature in a smooth transition framework

xi,t = ρ
m∑
j=1

w
(∣∣∣xi,t−1 − x(i)

j,t−1

∣∣∣ ; γ)x(i)
j,t−1∑m

j=1w
(∣∣∣xi,t−1 − x(i)

j,t−1

∣∣∣ ; γ) + εi,t (18)

Again, similarly to Lemma 12, it can easily be seen that

E

 m∑
j=1

w
(∣∣∣xi,t−1 − x(i)

j,t−1

∣∣∣ ; γ)x(i)
j,t−1∑m

j=1w
(∣∣∣xi,t−1 − x(i)

j,t−1

∣∣∣ ; γ)
(εi,t − 1

T

T∑
t=1

εi,t

) = O

(
1

T

)
(19)

implying that, once fixed effects are introduced, the within estimator is biased for finite T .

Then, GMM based on the set of T (T − 1)/2 conditions given by

E

xi,t−s
∆xi,t − ρ∆

 m∑
j=1

w
(∣∣∣xi,t−1 − x(i)

j,t−1

∣∣∣ ; γ)x(i)
j,t−1∑m

j=1 w
(∣∣∣xi,t−1 − x(i)

j,t−1

∣∣∣ ; γ)
 = 0, t = 3, ..., T, s = 1, .., t−2.

provides a consistent and asymptotically normal estimator for (ρ, γ) and a consistent estimator

for m, through a grid search over possible values of m.

Another obvious extension to the set of models we have been developing is to introduce

other variables to the model either linearly as in

xi,t =
ρ

mi,t

N∑
j=1

I (|xi,t−1 − xj,t−1| ≤ r)xj,t−1 + βzi,t + εi,t (20)

or nonlinearly as in, e.g.,

xi,t =
ρ

mi,t

N∑
j=1

I (|xi,t−1 − xj,t−1| ≤ r)xj,t−1 +
β

mi,t

N∑
j=1

I (|xi,t−1 − xj,t−1| ≤ r) zj,t−1 + εi,t (21)

or to introduce other switch variables, giving rise to a model of the form

xi,t =
ρ

mi,t

N∑
j=1

I (|xi,t−1 − xj,t−1| ≤ r1)xj,t−1 +
β

mz,i,t

N∑
j=1

I (|zi,t−1 − zj,t−1| ≤ r2)xj,t−1 + εi,t

(22)
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where mz,i,t =
∑N

j=1 I (|zi,t−1 − zj,t−1| ≤ r2). It is also clear from the work of Kapetanios

(2001) that information criteria can be used to choose the switch variables. The theoretical

properties of the models in (20)-(22) should be obvious from the preceding analysis. For

example, geometric ergodicity of (22) holds if |ρ+ β| < 1. Another interesting point is that if

costly information gathering is combined with a model with switches (such as, e.g., a model

of the form (22) with only the second nonlinear term included, assuming that zi,t, is strictly

exogenous), then this model can be estimated via GMM using the following set of GMM

conditions

E

(
xi,t−s

(
∆xi,t − β∆

(
β

m̃z,i,t

m̃z,i,t∑
j=1

I (|zi,t−1 − zj,t−1| ≤ r2)xj,t−1

)))
= 0, t = 3, ..., T, s = 1, .., t−2.

where m̃z,i,t = min(mz,i,t,m).

The extension presented in (22) is very important. While it is intuitive that it is likely

that there exists some variable which can be used to order units (denoted by zi,t in (22)), it

is not clear why one would want to set zi,t = xi,t as we did in the first version of the model

we presented in (1). A main reason for us doing so, in the first instance, was because then

the model is self-contained and can be analysed along the lines used in section 2. But there is

another reason why one may wish to focus on (1) rather than the more general (22). To see

why, let us provide a simple analogy in terms of simple univariate time series models before

analysing the case at hand. Let

xt = st + ut

where

st = γst−1 + vt

and ut and vt are serially uncorrelated. Then, it is straightforward to see that a good approx-

imation for this model can be provided by fitting an AR(1) model to xt. Similarly, let the

true model for xi,t be given by a slight variation of (22) of the form

xi,t = si,t + εi,t (23)

where

si,t =
β

mz,i,t

N∑
j=1

I (|zi,t−1 − zj,t−1| ≤ r2) qj,t−1 (24)

and let

zi,t = γzi,t−1 + vi,t

and

qi,t = δqi,t−1 + ξi,t
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By the fact that the zi,t and qi,t are serially correlated, it follows that the si,t are serially

correlated since units which cluster together along the z dimension at time t will be more

likely to cluster together along the z dimension at time t+ 1. Therefore, the serial correlation

in qi,t will be transmitted onto si,t. Furthermore, units which cluster along the z dimension

will tend to have more correlated si,t over i. But, of course, this means that units that cluster

along the z dimension will also cluster along the x dimension, in the same order as across the

z dimension, since they will have si,t that are more correlated across i than units which do not

cluster along the z dimension. The resulting clustering along the x dimension then implies

that a term of the form ρ
mz,i,t

∑N
j=1 I (|xi,t−1 − xj,t−1| ≤ r2) qj,t−1 will have explanatory power

for xi,t justifying the use of model (1). So, just as (23) can be approximated by an AR(1),

xi,t =
β

mi,t

N∑
j=1

I (|zi,t−1 − zj,t−1| ≤ r)xj,t−1 + εi,t, (25)

can be approximated by(1), which has an ‘AR’ structure in the distance/trigger variable. The

usefulness of this approximation becomes more apparent if one notes the possibility of having

cross-sectional averages defined through intersections of triggering events with more than one

trigger variables such as

xi,t =
β

mz,i,t

N∑
j=1

I
(
∩ps=1

{∣∣∣z(s)
i,t−1 − z

(s)
j,t−1

∣∣∣ ≤ rs

})
xj,t−1 + εi,t (26)

where
(
z

(1)
i,t−1, ..., z

(p)
i,t−1

)′
is a vector of trigger variables and I

(
∩ps=1

{∣∣∣z(s)
i,t−1 − z

(s)
j,t−1

∣∣∣ ≤ rs

})
=

1 if and only if I
(∣∣∣z(s)

i,t−1 − z
(s)
j,t−1

∣∣∣ ≤ rs

)
= 1 for all s. Further, it is also clear that even if

there is structural change whereby the identity of the trigger variables changes over time, the

model with the ‘AR’ structure in the distance/trigger variable, can still approximate the true

unknown and changing model.

It is reasonable to expect that there are further sources of cross-sectional dependence in

panels such as those we are considering. For example, the endogenously determined cross-

sectional dependence exemplified by model (1) can be coupled with exogenous cross-sectional

dependence, such as common shocks arising in the macroeconomy. Such exogenous cross-

sectional dependence can be modelled by linear factor structures. Further cross-sectional

dependence, of the factor variety, can be introduced by considering the following extension of

(1)

xi,t =
ρ

mi,t

N∑
j=1

I (|xi,t−1 − xj,t−1| ≤ r)xj,t−1 + ηi,t (27)

where

ηi,t = λ′ift + εi,t (28)
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and ft is an unobserved factor. The estimation of (27) is of particular interest. If the factor

is serially uncorrelated, estimation of this model along the lines suggested for estimation of

(1) is possible. However, if the factor is serially correlated, it is clear that ηi,t and x̃i,t =∑N
j=1 I (|xi,t−1 − xj,t−1| ≤ r)xj,t−1 are correlated. Then, we suggest estimating a parametric

factor model whereby the factor is modelled as a VAR process and the following state space

model

x̄i,t = xi,t − x̃i,t = λ′ift + εi,t

ft = Aft−1 + vt

is estimated by pseudo-MLE using the Kalman filter. If one entertains (16) as the chosen model

then estimation may be carried out by nonlinear least squares. It is interesting to consider

the behaviour of this extended model. Therefore, we reconsider the model underlying the

realisations reported in Figure 2, but allow for a factor which is i.i.d. and distributed as

ft ∼ t1. The loadings are given by λi ∼ U(0, 1). We are explicitly aiming to introduce

extreme behaviour through the factor. We consider two values of r, given by 0.9 and 0.999.

The realisations from these two different values of r are reported in Figure 5. In the first case,

there is clearly a single cluster but, as expected, the factor can generate abrupt shifts of all

units. We see this around observation 130 and again around observation 170. Moving on to

the very persistent case, yet more interesting behaviour arises. Here it is clear that big shocks

attributed to the factor can lead to the destruction or creation of new clusters. For example,

a shock around observation 260 leads to consolidation of three clusters into two. Conversely,

the shock at observation 325 leads to the emergence of three clusters from the existing two

before the shock.

The next extension relates to our view that (1) is an attempt at modelling, rather than

describing, economic behaviour without recourse to assumptions such as rationality. In this

respect (1) sets out a possible way in which information from the past is analysed by agents

in forming their future behaviour. Such analysis on the part of agents may be far more

complex, even in schematic terms than (1), without obeying any rationality assumptions.

Allowing for a variety of further nonlinearities can capture such complexity in a tractable

manner. Interesting kinds of nonlinearity that can play such a role include neural network

type nonlinearities combined with cross-sectional averages. An example is

xi,t =

q∑
j=1

cjψ(x̄i,t−1, γj) + εi,t

where

x̄i,t−1 =

(
1

mz1,i,t

N∑
j=1

I (|z1,i,t−1 − z1,j,t−1| ≤ r1) s1,j,t−1, ...,
1

mzk,i,t

N∑
j=1

I (|zk,i,t−1 − zk,j,t−1| ≤ rk) sk,j,t−1

)′
,
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(z1,i,t−1, ..., zk,i,t−1)′ and (s1,i,t−1, ..., sk,i,t−1)′, i = 1, ..., N , are vector of observations on some

unit specific variables where, of course, both vectors may include xi,t−1. The neural net-

work nodes, ψ(x̄i,t−1, γj), are some continuous function of x̄i,t−1, such as, e.g., the logistic,

exponential or some radial basis function. RBF functions, given by ψ(x̄i,t−1, x̄j, σT ), are ra-

dially symmetrical, integrable, bounded functions, x̄j are referred to as the centres of the

RBFs and σT is a sequence of constants. Examples include the Gaussian function of the

form exp

(
−
(
||x−ti||
σT

)2
)

, or the multiquadric function

(
1 +

(
||x−ti||
σT

)2
)−1

, σT > 0, where ||.||

denotes Euclidean distance. Such a general specification allows for very complicated interac-

tions within groups defined in a variety of ways. Complexity is also introduced in the way

cross-sectional averages are perceived and acted upon by agents, through the use of the node

functions ψ.

While the dynamic nature of the model given by (1) is interesting, it may not be able

to capture contemporaneous cross-sectional dependence effects that might be very important

in fields, such as financial asset pricing, where dynamics may be less prevalent, at least in

terms of the conditional mean. For example, the CAPM specifies that individual asset excess

returns depend contemporaneously on a market excess return index which of course can be

viewed as an aggregate of individual excess returns. Alternatively, one can think of opinions

(e.g., fund manager opinions) on variables such as asset return prospects, as being determined

contemporaneously by agents considering the opinions of similar agents. This motivates the

following extension of our basic model

xi,t =
ρ0

m0,i,t

N∑
j=1,j 6=i

I (|xi,t − xj,t| ≤ r0)xj,t+
ρ1

m1,i,t

N∑
j=1

I (|xi,t−1 − xj,t−1| ≤ r1)xj,t−1+εi,t, (29)

where m0,i,t and m1,i,t are defined in an obvious way. This extended model incorporates a

complex mechanism for the determination of xt since each xj,t depends in a complicated way

on every other xj,t. The complex nature of this extension can be best understood by noting

that simulating (29) involves solving N nonlinear simultaneous equations at each point in time,

where the nonlinearity has discontinuities arising from the threshold nature of the relevant

functions. This is a non-trivial mathematical problem. A linear simplification may help clarify

further the issue. A simplified linear version of (29) is given by

xi,t =
ρ0

N

N∑
j=1

xj,t +
ρ1

N

N∑
j=1

xj,t−1 + εi,t

In the case where ρ1 = 0, the model decouples temporally and the solution at each point in

time is given by

xt =
(
I − ρ

N
ιι′
)−1

εt
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where xt = (x1,t, ..., xN,t)
′, εt = (ε1,t, ..., εN,t)

′ and ι = (1, ..., 1)′. It is worth noting that(
I − ρ

N
ιι′
)−1

does not exist when ρ = 1.

The final extension generalises further the gamut of weighted averages that can inform the

evolution of agent opinion formation or agent actions to a very general class of models which

takes the form

xi,t =
ρ

mSi,t

N∑
j=1

I (j ∈ Si,t−1)xj,t + εi,t, (30)

where Si,t−1 denotes a set of unit indices for unit i at time t−1 and mSi,t =
∑N

j=1 I (j ∈ Si,t−1).

This enables a wide variety of modelling options such as the existence of a leader unit or set

of units whose behaviour is mimicked by other units. For example, a specific instance of (30),

where

Si,t−1 = St−1 = arg max
j=1,...,N

p∑
s=1

qj,t−s (31)

can be used to model fund managers that follow the best performing manager in the near

past. In this case xi,t denotes the holdings of a given asset by manager i at time t, while qi,t

denotes a performance measure of manager i at time t. Of course, multivariate extensions to

describe the evolution of holdings for multiple assets are obvious. Similarly

Si,t−1 = St−1 = median(

p∑
s=1

qj,t−s) (32)

can be used to proxy the behaviour of fund managers that conform to forms of benchmarking.

Obviously schemes such as (31) or (32) imply a factor like covariance matrix for xi,t. Note that

specifications such as (31) or (32) are significantly different to schemes that specify a priori

units that are dominant such as, e.g., macroeconometric panel models that give a leading

status to US variables. The present specifications describe a mechanism that allocates leader

status to a given unit or set of units endogenously.

This extension completes the set of extensions that we think are both interesting and

relevant for the effects we attempt to capture through our basic model (1). In section 5 we

will report some Monte Carlo results on the performance of the estimators suggested in this

section.

4 Testing Linearity

In this section, we discuss how to test if the data support the nonlinear representation con-

tained in the proposed models. We start by recalling what parameter values imply linearity

both for the basic model (1) and the leading case of the smooth version of the model given

by (16) where w(x; γ) = exp(−γx2).
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As we noted in section 2, setting r = 0 reduces (1) to the panel autoregression (3), while

setting r =∞ gives the model (4). Both are linear models. We also see that these two linear

models are nested in (16). Setting γ = 0, gives (4), whereas setting γ = ∞, gives (3). As a

result and unlike standard time series models there is no unique test of linearity. Which test

one carries out depends very much on which null hypothesis is of greater interest.

The differences with linearity tests for standard nonlinear time series models do not stop

here. A well-known problem with linearity testing in time series relates to the fact that

because there invariably exist underidentified nuisance parameters, the test statistics do not

have standard distributions. For example, when two regime threshold (TAR) models are

considered, the specifications usually include two autoregressive parameters and the threshold.

Linearity is obtained by setting the two autoregressive parameters equal to each other, in which

case the threshold parameter is not identified under the null. Further, in the case of threshold

models, the problem is compounded by the fact that the threshold parameter does not have

a standard asymptotic distribution in any case.

A cursory analysis of the panel threshold model suggests that no underidentified parameter

problem arises here. Both linear models nested by the nonlinear models, (1) and (16), have

the same number of parameters as the nonlinear models, apart from the actual parameter

being restricted by the null hypothesis. As a result, testing in the context of the panel model

is considerably easier. In the case of (16) and using Theorem 4, one can use the normal

asymptotic approximation to carry out testing for null hypotheses relating to γ.

Testing in the context of the threshold model is more difficult due to the nonstandard

distribution of r̂. Although, we have not established this distribution, the results of Chan

(1993) suggest that it should be nonstandard and very difficult to use in practice. Note that,

for standard time series TAR models, the standard bootstrap has been shown to be invalid

for the threshold parameter by Yu (2009), while the parametric bootstrap has been shown to

be valid by Yu (2007). But, since our model is likely to suffer from a number of potential

misspecifications, which would invalidate the use of the parametric bootstrap, we suggest

a simulation approach for carrying out inference for this parameter, and, in particular, the

use of subsampling, following Gonzalo and Wolf (2005). That paper suggests subsampling,

for inference in threshold models. Subsampling has been introduced by Politis and Romano

(1994) and is similar, in a number of respects, to bootstrapping. The main difference is that

the resamples are of a smaller dimension than the original sample. This difference makes

subsampling more robust. Subsampling is valid for the overwhelming majority of cases where

the bootstrap is invalid, as discussed in Politis, Romano, and Wolf (1999).

In our case, the application of subsampling carries added complications, introduced by the

fact that our sample grows in two dimensions. Following Politis, Romano, and Wolf (1999)

and Kapetanios (2010), we suggest the following algorithm for creating the subsamples: Set
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the temporal and cross-sectional subsample sizes to bT = T ζ and bN = N ζ , respectively,

for some 0 < ζ < 1. Construct initial subsamples by sampling blocks of data temporally.

These are given by {x̃1,bT , x̃2,bT +1, ..., x̃T−bT +1,T} where x̃t1,t2 = (xt1 , ..., xt2)
′. Then, for each

x̃t1,t2 , randomly select bN cross-sectional units to construct the B-th subsample, xt1,t2 , t1 =

1, .., T − bT + 1, t2 = bT , ..., T , B = 1, .., T − bT + 1. Note that the cross-sectional units

can be different across subsamples. Although this is of no importance theoretically, it makes

sense to make use of information contained in as many cross-sectional units, as possible,

when subsampling. ζ is a tuning parameter related to block size. No theory exists on its

determination but usual values are 0.8 or 0.7. Once the subsamples have been created, r is

estimated for each subsample. The empirical distribution of the set of estimates, denoted by

r̂∗,(i), i− 1, ...B, can then be used for inference. This empirical distribution is given by

LbT ,bN (x) =
1

B

B∑
s=1

1
{
bNbT

(
r̂∗,(s) − r̂

)
≤ x

}
. (33)

The following theorem justifies the use of subsampling for the nonlinear panel threshold model.

Theorem 5 Let Assumption 1 hold for εi,t in (1). Then, as long as |ρ| < 1, LbT ,bN (x) is a

consistent estimate of PrP (NT (r̂ − r0) ≤ x) where P denotes the unknown joint probability

distribution of the idiosyncratic errors εi,t..

As a final point it is worth noting some cases where the need for testing arises for reasons

that are specific to the panel nature of the model. One such leading case is when one wishes

to use this model to draw inference for aggregate variables. Let x̄t = 1
N

∑N
j=1 xj,t. Further,

consider the case where the model is of the form (3) but with the presence of an exogenous

factor. This model is given by

xi,t = ρxi,t−1 + ηi,t (34)

where ηi,t is given by (28). Then, it follows that

x̄t = ρx̄t−1 +
1

N

N∑
j=1

ηi,t = ρx̄t−1 +

(
1

N

N∑
j=1

λ′i

)
ft +

1

N

N∑
j=1

εi,t (35)

Assuming that λi does not have zero mean and that εi,t are zero mean and i.i.d. across i,

the above implies that x̄t accepts a linear AR(1) representation whose error tends to ft as

N →∞. Similarly, letting the model be of the form (4), but allowing for factors, gives

xi,t = ρ
1

N

N∑
j=1

xj,t−1 + ηi,t (36)

where again ηi,t is given by (28). Then,

x̄t = ρ
1

N

N∑
j=1

(
1

N

N∑
j=1

xj,t−1

)
+

1

N

N∑
j=1

ηi,t = ρx̄t−1 +

(
1

N

N∑
j=1

λ′i

)
ft +

1

N

N∑
j=1

εi,t
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which, under the same assumptions as for (35), again implies that x̄t accepts a linear AR(1)

representation whose error term tends to ft asN →∞. This essentially justifies the widespread

use of autoregressive modelling of aggregate variables. But, if the basic model for xi,t is given

by (1), there is no justification for a linear AR model for the aggregate variable. Further, and

this has more general and important implications for the modelling of the aggregate variable,

if (1) holds then the aggregate variable cannot be modelled in terms of lags of the aggregate

variable alone. The constituents of the aggregate variable enter the aggregate equation in com-

plicated ways which may imply that an appropriate model of the aggregate variable is based

on modelling the whole panel, even if one only cares about the aggregate variable. Therefore,

a test of linearity is crucial in determining the model employed on aggregate variables.

5 Monte Carlo Study

In this section we undertake a detailed Monte Carlo study of the new model and a number

of its extensions. The Monte Carlo study focuses on the small sample properties of the

estimators of the nonlinear model, and does not consider the properties of the model estimator

to misspecification.

5.1 Monte Carlo setup

We consider three different sets of Monte Carlo experiment. The first focuses on the main

model given by (1). The second considers (9), while the third uses (16). Of course, given the

number of extensions considered in the previous section, many more Monte Carlo experiments

could be considered but we feel that these three give a crucial and informative snapshot of the

performance of the estimators, we discussed. They enable one to have some confidence in the

fact that estimation of the model can be carried out effectively with relatively small samples.

The first set of experiments uses (1), where we set ρ = 0.9, r = 0.5 and σ2
εi

= 0.5.

εi,t ∼ N.I.I.D.(0, σ2
εi

). We let N, T = 5, 10, 20, 50, 100, 200. The grid for determining r

is 0.10, 0.11, 0.12, ..., 1.09, 1.10. The second set of experiments is like the first, but we set

ηi ∼ N.I.I.D.(0, 1) and use within group estimation which simply involves demeaning both

RHS and LHS variables prior to applying least squares. Finally, the third set of experiments

uses the model given by (16) where w(x, γ) = e−γx
2

and γ = 0.5. The rest of the settings are

as with the first set of experiments. The estimation method used is nonlinear least squares.

We carry out 1000 replications for all experiments. The bias and variance of the estimators

over the Monte Carlo replications (multiplied by 100) are reported in Tables 4-6.
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5.2 Monte Carlo results

Results make very interesting reading. We start by examining the results for the first set of

experiments, reported in Table 4. We look at the estimator for ρ first. The biases for this

estimator are extremely small, at less than 0.01 even for N, T = 5. Given the very small size of

the bias it is not surprising to note that there is little in terms of a clear pattern as the number

of observations increase. The bias does not reduce further as N increases, for small values of

T , but it does reduce as either T increase or as N increases, for moderate and large values

of T . Overall, for the largest sample size (N, T = 200) the bias is negligible. The variance

of ρ̂ is reduced at equal rates when either N or T increases, as we expect from Theorem

2. Moving on to r̂, we note that the biases are much larger for very small sample sizes but

reduce very rapidly, again consistent with our expectations given Theorem 2. The most rapid

declines occur as N, T increase from their smallest settings. Both biases and variances are

reduced with either N or T increasing. Overall, it is clear that even with N, T = 10 one can

be reasonably confident that estimation of (1) can be carried out effectively.

Next, we consider results for the second set of experiments, reported in Table 5. Here, the

biases related to ρ̂ are considerably larger. The biases are reduced as both N and T rise but

they are reduced much faster with T . The variances for ρ̂ are again much larger compared

to the first set of experiments but are reduced quite quickly as the number of observations

increases. Moving on to r̂, we note that unlike ρ̂, the estimation of r is hardly affected by the

presence of individual effects. If anything, the performance of the estimator is better. This

is a surprising result, but as there is little work on the small sample properties of estimators

of nonlinear panel models with individual effects, our prior about the performance of this

estimator was not very strong.

Finally, we consider the third and final set of experiments, whose results are reported in

Table 6. The biases and variances for ρ̂ are comparable but slightly larger than those for the

first set of experiments. However, the absolute performance for this estimator is very good

even for very small samples, such as N, T = 5. Estimation of γ in very small samples is

problematic. But, as long as both N and T equal or exceed 10, estimation improves greatly.

The size of the bias and variance becomes comparable to that seen for r in the first two sets

of experiments.

Overall, we therefore conclude that estimation of both the autoregressive coefficient and the

parameters of the nonlinear terms is quite satisfactory. More importantly, the time dimension

does not have to be large, in contrast to when linear time series models are estimated. This

is helpful given that many panel datasets, to which this model may be applied, have a short

time dimension.

23



6 Empirical Illustrations

In this section, we provide two empirical applications that illustrate the potential utility of

the proposed modelling approach.

6.1 Stock Returns

Perhaps surprisingly, given that our model is one that models the dynamics of the condi-

tional mean, for our first application we consider a dataset of stock returns. We motivate

this as follows. Firstly, market returns are important for individual stock returns, albeit con-

temporaneously, in a number of theoretical models. Our model, with its emphasis on forms

of cross-sectional averages, provides a useful vehicle to model them. Second, an autoregres-

sive specification, which is a special case of our model, is used routinely as a benchmark

for modelling, and especially forecasting, stock returns. Thirdly, although a linear dynamic

specification has a poor track record for modelling stock returns, a common finding in the

literature is that nonlinearity has a role to play in this respect (e.g., Guidolin, Hyde, McMil-

lan, and Ono (2009)). This is a common finding when stock return indices are analysed.

Given our discussion at the end of section 4, on aggregating processes that follow our model,

which implies that the aggregate has a nonlinear structure, our model can offer interesting

insights. Finally, as noted in Section 3, a model of the form of (1), which uses the own lag

of the dependent variable to define the dimension along which the cross-sectional averaging

is carried out, can approximate models which have other variables defining distance. So, in

the case of returns, the model we use approximates models that may define distance in terms

of industrial sector, profitability or other characteristics. As noted earlier the approximation

properties of this model are likely to be retained to a certain extent even if the identity of the

variables that regulate the distance undergoes structural change over time. In this sense our

model is a ‘reduced form’ approximation for more structural explanations for cross-sectional

correlations in returns.

We consider constituent stock return data from the S&P500 at a weekly frequency. The

data are from 1993W1 through 2007W52. In our dataset, only 364 companies are present

throughout the period and these are the ones we analyse.

We first estimate the simple nonlinear model given by (9). We estimate ρ̂ = −0.0995,

r̂ = 0.08. The t-test associated with ρ̂ is -39.37, which is extremely significant given Theorem

2. The panel R2 associated with the model is 0.0058, which is of course extremely low,

but expected, given that we analyse stock returns. The average R2 across cross-sectional

equations is 0.0063. Next, we introduce two comparator models: a panel data AR and a

model where the lagged cross-sectional average is used as an explanatory variable, i.e. the

nonlinear model for r =∞. For the panel data AR, ρ̂ = −0.066 with t-test given by 37.08, the
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panel R2 = 0.0052 and the average R2 = 0.0053, while for the cross-sectional average model

the respective numbers are: -0.107, -28.40, 0.0033 and 0.0036. The nonlinear model has better

fit, as measured by the R2, than the comparator models. Of course, the nonlinear model has

an extra parameter (the threshold) which needs to be penalised. A multivariate information

criterion is not possible since the dimension of the model is so large that the determinant

of the covariance matrix of the residuals, needed to construct the information criterion, is

found to be numerically indistinguishable from zero. We choose to construct information

criteria for each cross-sectional equation, where the penalty parameter is set to 1/N since the

threshold parameter is shared by all cross-sectional equations. Table 7 reports the proportion

of companies for which each criterion chooses the nonlinear model over the two comparator

models. Again we see that the nonlinear model is preferred over its comparators.

Next, we carry out a variety of tests on the residuals of the models. In particular, for ev-

ery stock return series, we obtain its residuals, from the nonlinear model and the comparator

models, and test them for the following: normality (Jarque-Bera test), residual serial corre-

lation (LM test with 1 and 4 lags), ARCH effects (LM test with 1 and 4 lags) and neglected

dynamic nonlinearity (Teräsvirta, Lin, and Granger (1993) RESET type test with third order

polynomial approximation and 1 lag). We report the number of rejections, at the 5% sig-

nificance level, in Table 8. It seems that all residuals are non-normal, as one would expect.

There is some limited evidence of further serial correlation. There is significant evidence of

ARCH effects. There is considerable evidence of neglected nonlinearity. It seems that the

cross-sectional model displays considerably more evidence of further serial correlation com-

pared to the other models. The most interesting finding relates to neglected nonlinearity. The

nonlinear model has about 10% fewer cases of rejection than the other models. This supports

the case for the presence of the effect our model is designed to pick up.

Next, we add idiosyncratic AR components to every cross-sectional equation. This makes

the specification more flexible and allows for an own-lag effect whose inclusion has a com-

pelling rationale given the existing literature. We do not consider the panel AR model in

this case for obvious reasons. In this case, ρ̂ = −0.083 with t-test given by -14.81, the panel

R2 = 0.0098 and the average R2 = 0.0103 while for the cross-sectional average model the

respective numbers are: -0.049, -11.12, 0.0095 and 0.0098. Tables 9 and 10 report the respec-

tive information criteria and test results. These again make clear that the nonlinear model

is preferred. In particular, the favourable evidence from the neglected nonlinearity test is, if

anything, even stronger.

As a final extension we add to the model a set of macroeconomic variables commonly

used in the existing literature to model stock returns. Specifically we consider: a set of US

T-bill yields (3-month, 6-month, 1-year, 2-year and 10-year), oil prices (Brent crude), effective

exchange rates, industrial production, unemployment rate and CPI inflation. We add a fixed
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effect and consider our model augmented with these macroeconomic regressors, and the two

restricted versions of the model (panel AR and cross-sectional average) which, in turn, are both

augmented with the set of macroeconomic variables. Then estimation reveals ρ̂ = −0.1106

and r̂ = 0.06. The t-test associated with ρ̂ is -47.96, which is again very significant given

Theorem 2. The panel R2 associated with the model is 0.02429, which is considerably higher

than previously. The average R2 for the nonlinear model, across cross-sectional equations, is

0.02495. Looking at the two comparator models, for the panel AR ρ̂ = −0.083 with t-test

given by 45.87, the panel R2 = 0.02366 and the average R2 = 0.02385. These results suggests

that in-sample the nonlinear model improves fit by at least 4% compared to the linear panel

AR model. For the cross-sectional average model the respective numbers are: -0.134, -34.39,

0.0207 and 0.021. Clearly, the nonlinear model has better fit as measured by the R2 compared

to this model as well. Finally, we note that, once again, nonlinearity is less prevalent in

the residuals of the nonlinear model with the nonlinearity test rejecting 138 times, while the

equivalent number for the panel AR is 153 and, for the cross-sectional average model, 148.

6.2 Inflation Expectations

In this section we consider a widely exploited dataset that can be usefully analysed with the

new nonlinear panel model. This is the Survey of Professional Forecasters (SPF) carried out

from 1968 to 1990 by the American Statistical Association and the NBER and, since 1990, by

the Federal Reserve Bank of Philadelphia. We should expect macroeconomic forecasts, such

as those from the SPF, to be correlated among forecasters and estimation of the new nonlinear

panel model is instructive in determining empirically the nature of the cross-sectional depen-

dence. In turn, this is helpful in understanding further the nature of expectation formation.

As Carroll (2003) stressed, there have been few attempts to model actual expectations data.

Moreover, there have been even fewer studies of expectational data at the micro-economic

level. Souleles (2004), who found considerable heterogeneity across individuals, is a notable

exception. Other work, more interested in the forecasting properties of these expectational

data than in testing alternative models of expectation formation, has restricted attention to

modelling any dependence among the agents using factor models (see Gregory, Smith, and

Yetman (2001)). Therefore it does not admit the possibility of alternative ways to model

dependence, such as our nonlinear model, that may offer some insight on the nature of the

dependence. Determining the nature of the dependence among a panel of forecasters also has

a practical importance given that Gregory, Smith, and Yetman (2001) motivate use of the

mean (across forecasters) forecast as a summary statistic, to be used for policymaking etc.,

when there is forecast “consensus”. Forecast consensus is defined as when individual forecasts

are both determined by a latent variable (a factor) subject to an idiosyncratic mean zero error,
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and when each forecaster places the same weight on the common component. But the (linear)

mean forecast is not a valid measure of consensus under the nonlinear model (see, e.g., Manski

(2010)).

In our application we focus on the one-quarter ahead CPI inflation rate forecasts from the

SPF. While our model, as discussed in section 2.5, can accommodate missing data given there

is so much in the SPF we conduct our analysis on a subsample of regular SPF respondents.

This is common practice with the SPF and indeed any forecaster panel given that respondents

come and go from the survey, for various reasons, so frequently. We focus on responses for

the period 1990Q1-2010Q1, a total of 81 quarters. Over this period we have records of 18

professional forecasters, giving a total of 1458 potential observations. However, there remain

significant gaps in the dataset which leave a total of 1079 actual observations. We consider

the simple model given by (9), with includes fixed effects, in this case. This model generalises

the model of Gregory, Smith, and Yetman (2001).

The current application provides a number of challenges. Firstly, we have to deal with the

considerable number of missing observations; we assume that the pattern of missing obser-

vations is random. Secondly, we wish to allow for the joint presence of a nonlinear herding

mechanism of the form we advocate, as well as the possibility of a factor structure similar

to that of Gregory, Smith, and Yetman (2001). To handle missing observations we use the

formulation given in (7). Noting that the inflation rate data are expressed as annualised

quarter-over-quarter percentage points, the threshold is estimated to be 0.99 while the es-

timated autoregressive coefficient is given by 0.5303 with an associated t-statistic given by

18.44. It is worth at this point noting that the use of this model has some implications for

the modelling of the aggregate forecast. As we noted in section 4 it is not appropriate to

assume a linear model for the aggregate forecast and research has to consider the possibility

of nonlinear conditional mean models with potential ARCH structures. In that respect, the

volatility associated with the spread of forecasts around the aggregate is also an important

source of information at the aggregate level.

Next, we wish to consider the possibility that the model should be augmented by an

exogenous factor structure such as (27)-(28). Due to the presence of missing data, we consider

a different estimation approach to that suggested when the factor extension was discussed

earlier. An additional advantage of the estimation method described below is that we do not

need to specify a parametric model for the unobserved factor.

Specifically, we consider an EM type algorithm, whereby we initialise estimation by ob-

taining some factor estimate and using it as an observed variable in a model of the form

xi,t =
ρ

mi,t

N∑
j=1

I (|xi,t−1 − xj,t−1| ≤ r)xj,t−1 + λ′ift + εi,t (37)
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which is estimated as if the factor were observed, and then the residuals, given by

ε̂i,t = xi,t −
ρ̂

mi,t

N∑
j=1

I (|xi,t−1 − xj,t−1| ≤ r̂)xj,t−1

are used to extract a new estimate of the factor. The whole approach is iterated to convergence.

The actual factor is estimated, accommodating missing observations, by introducing a second

estimation loop where for a given set of observed residuals and a given pattern of missing

residuals, both the factor and the missing residuals are estimated. This is done by conditioning

on a factor estimate to get estimated missing residuals using the factor and estimated loadings

λ̂′i. Once these estimates are obtained one can estimate a new factor estimate. This two step

estimation is again iterated to convergence.

When this estimation is carried out we find minimal changes in the parameter estimates for

the nonlinear model. The threshold is estimated to be 0.99 while the estimated autoregressive

coefficient is given by 0.5305 with an associated t-statistic given by 18.46. This suggest that

in the presence of the nonlinear cross-sectional average a factor structure is redundant.

One alternative way to see this, that is of interest independently, is to compute a mea-

sure and test of cross-sectional dependence. We use the following statistic, which is a slight

modification of the sphericity test statistic of Ledoit and Wolf (2002)

cd(x) =
1

N
tr ((C(x)− I) (C(x)− I))

where C(x) denotes the estimated correlation matrix of a given dataset, x. When the data xi,t

are used to compute cd we get cd(x) = 14.69, while if the residuals from the nonlinear cross-

sectional average model, without factors, are used the statistic is given by 1.76. The statistic

obtained when residuals, from the nonlinear cross-sectional average model with factors, are

used, is 1.75. Once again the difference is minimal suggesting that our model is capable of

capturing the cross-sectional dependence of the data quite well. As a final check we also

consider the statistic associated with using only a factor model without a nonlinear structure.

The associated statistic is then 3.30, again illustrating the superiority of the nonlinear model.

7 Conclusions

Modelling assumptions, such as full-information rational expectations, are increasingly being

questioned in economics and finance in favour of bounded forms of rationality and learning,

where agents interact and form their own views by looking at other agents’ views. This group-

think can explain herding, as commonly observed in financial markets, for example. While

the theoretical analysis of these forms of rationality has become relatively commonplace, the

development of econometric techniques and models that complement theoretical developments
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is less developed. This paper aims to provide an econometric panel model that incorporates

useful and intuitive ideas on the structure of herding behaviour in a variety of settings.

Our model can be viewed as both a new kind of panel model, as well as a model that incor-

porates more structural aspects, in the sense that it can be given behavioural underpinnings.

From an economic point of view, the cross-sectional average structures that appear in our

panel regressions have a clear interpretation as ‘shortcuts’ that agents may take to form views

and expectations (cf. Carroll (2003)). Such an interpretation brings our work firmly within

the context of the extensive literature on bounded rationality and behavioural explanations

for economic behaviour like herding.

From an econometric point of view, we make a number of contributions. Our model

provides, to the best of our knowledge, the first attempt to introduce endogenous cross-

sectional correlation in a panel framework where typically units, while sharing commonalities,

in terms of parameters, remain stochastically uncorrelated. In doing so we link a variety of

literatures such as nonlinear time series analysis, factor analysis and panel data econometrics.

The model has interesting and puzzling econometric features, such as nonstandard behaviour

when fixed effects are introduced and when linearity, as a restricted hypothesis, is tested. We

provide a large set of extensions to the simple form of the model that allow for great modelling

flexibility. These extensions possibly delineate the whole class of models that can be used to

fit large N, T , panel datasets, allow endogenous cross-sectional correlations and are contained

within the class of models that have finite parametric representations.

29



References

Akerlof, G., and R. Shiller (2009): Animal spirits: How Human Psychology Drives the

Economy, and Why It Matters for Global Capitalism. Princeton University Press.

Bai, J. (2003): “Inferential Theory for Factor Models of Large Dinensions,” Econometrica,

71, 135–173.

Bai, J., and S. Ng (2002): “Determining the Number of Factors in Approximate Factor

Models,” Econometrica, 70, 191–221.

Banerjee, A. V. (1992): “A Simple Model of Herd Behavior,” The Quarterly Journal of

Economics, 107(3), 797–817.

Banerjee, S., R. Kaniel, and I. Kremer (2009): “Price Drift as an Outcome of Differ-

ences in Higher Order Beliefs,” Review of Financial Studies, 22, 3707–3734.

Banerjee, S., and I. Kremer (2010): “Disagreement and Learning: Dynamic Patterns of

Trade,” Journal of Finance, Forthcoming.

Bikhchandani, S., D. Hirshleifer, and I. Welch (1992): “A Theory of Fads, Fashion,

Custom, and Cultural Change in Informational Cascades,” Journal of Political Economy,

100(5), 992–1026.

Blondel, V. D., J. M. Hendrickx, and J. N. Tsitsiklis (2009): “Continuous Time Av-

erage Preserving Opinion Dynamics with Opinion Dependent Communications,” Working

Paper, arXiv No. 0907 4662 v1.

Caner, M., and B. Hansen (2004): “Instrumental Variables Estimation of a Threshold

Model,” Econometric Theory, 20, 813–843.

Carroll, C. D. (2003): “Macroeconomic Expectations Of Households And Professional

Forecasters,” The Quarterly Journal of Economics, 118(1), 269–298.

Chan, K. S. (1989): “A Note on the Geometric Ergodicity of a Markov chain,” Advances in

Applied Probability, 21, 702–704.

(1993): “Consistency and Limiting Distribution of the Least Squares Estimator of a

Threshold Autoregressive Model,” The Annals of Statistics, 21(1), 520–533.

Chan, K. S., and H. Tong (1985): “On the Use of the Deterministic Lyapunov Function

for the Ergodicity of Stochastic Difference Equations,” Advances in Applied Probability, 17,

666–678.

30



Chevillon, C., M. Massmann, and S. Mavroeidis (2010): “Inference in Models with

Adaptive Learning,” Journal of Monetary Economics, 57, 341–351.

Chudik, A., and M. H. Pesaran (2010): “Infinite Dimensional VARs and Factor Models,”

Journal of Econometrics, p. Forthcoming.

Chudik, A., M. H. Pesaran, and E. Tosetti (2009): “Weak and Strong Cross Section

Dependence and Estimation of Large Panels,” Mimeo, University of Cambridge.

Davidson, J. (1994): Stochastic Limit Theory, Advanced Tests in Econometrics. Oxford

University Press.

Devenow, A., and I. Welch (1996): “Rational herding in financial economics,” European

Economic Review, 40(3-5), 603–615.

Gilboa, I., O. Lieberman, and D. Schmeidler (2006): “Empirical Similarity,” Review

of Economics and Statistics, 88(3), 433–444.

Gonzalo, J., and M. Wolf (2005): “Subsampling Inference in Threshold Autoregressive

Models,” Journal of Econometrics, 127, 201–224.

Gregory, A. W., G. W. Smith, and J. Yetman (2001): “Testing for Forecast Consen-

sus,” Journal of Business and Economic Statistics, 19, 34–43.

Guidolin, M., S. Hyde, D. McMillan, and S. Ono (2009): “Non-Linear Predictability

in Stock and Bond Returns: When and Where Is It Exploitable,” International Journal of

Forecasting, 21(2), 373–399.

Hansen, B. E. (2000): “Sample Splitting and Threshold Estimation,” Econometrica, 68,

575–603.

Hayashi, F. (2000): Econometrics. Princeton University Press.

Hirshleifer, D., and S. H. Teoh (2003): “Herd Behavior and Cascading in Capital

Markets: A Review and Synthesis,” Review of Financial Studies, 9, 25–66.

Jegadeesh, N., and W. Kim (2010): “Do Analysts Herd? An Analysis of Recommendations

and Market Reactions,” Review of Financial Studies, 23, 901–937.

Kapetanios, G. (2001): “Model Selection in Threshold Models,” Journal of Time Series

Analysis, 22, 733–754.

31



(2010): “A Testing Procedure for Determining the Number of Factors in Approximate

Factor Models with Large Datasets,” Journal of Business and Economic Statistics, 28, 397–

409.

Kourtellos, A., C. M. Tan, and T. Stengos (2008): “Threshold Regression with En-

dogenous Threshold Variables,” Working Paper Series 05-08, Rimini Centre for Economic

Analysis.

Krause, U. (1997): “Soziale Dynamiken mit vielen Interakteuren. Eine Problemskizze,”

Modellierung und Simulation von Dynamiken mit vielen interagierenden Akteuren, pp. 37–

51.

Ledoit, O., and M. Wolf (2002): “Some Hypotheses Tests for the Covariance Matrix

when the Dimension is Large Compared to the Sample Size,” Annals of Statistics, 30(4),

1081–1102.

Manski, C. F. (2010): “Interpreting and Combining Heterogeneous Surveys,” in Forecasts,

the Oxford Handbook on Economic Forecasting, ed. by M. Clements, and D. Hendry. Oxford

University Press.

Nickell, S. J. (1981): “Biases in Dynamic Models with Fixed Effects,” Econometrica, 49(6),

1417–26.

Pesaran, M. H. (2006): “Estimation and Inference in Large Heterogeneous Panels with a

Multifactor Error Structure,” Econometrica, 74(4), 967–1012.

Phillips, P. C. B., and H. R. Moon (1999): “Linear Regression Limit Theory for Non-

stationary Panel Data,” Econometrica, 67(5), 1057–1112.

Politis, D. N., and J. P. Romano (1994): “Large Sample Confidence Regions Based on

Subsamples Under Minimal Assumptions,” Annals of Statistics, 22, 2031–2050.

Politis, D. N., J. P. Romano, and M. Wolf (1999): Subsampling. Springer Verlag.

Schwarz, H., H. R. Rutishauser, and E. Stiefel (1973): Numerical Analysis of Sym-

metric Matrices. Prentice Hall.

Souleles, N. S. (2004): “Expectations, Heterogeneous Forecast Errors, and Consumption:

Micro Evidence from the Michigan Consumer Sentiment Surveys,” Journal of Money, Credit

and Banking, 36(1), 39–72.

Stock, J. H., and M. W. Watson (2002): “Macroeconomic Forecasting Using Diffusion

Indices,” Journal of Business and Economic Statistics, 20, 147–162.

32
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Appendix

Lemmas

In what follows, we develop some theoretical results that form the basis of our analysis. As

noted earlier, we aim to analyse the general case where both N and T tend to infinity. There-

fore, without loss of generality we let N(T ) be an unspecified function of T . For notational

convenience we suppress the dependence of N on T . We have the following Lemmas.

Lemma 1 Let
{
{xi,t}Ni=1

}T
t=1

follow (1). Then, for all N0 ≤ N , there exists T0 such that for

all T > T0,
{
{xi,t}N0

i=1

}T
t=T0

is geometrically ergodic and asymptotically stationary, as long as

|ρ| < 1. Further, if supi≤N0
E
(
ε4i,t
)
<∞, then supi≤N0

E
(
x4
i,t

)
<∞.

Proof: We can write the part of (1) relevant for {xi,t}N0

i=1, as

x
(N0)
t = Φ

(N0)
t x

(N0)
t−1 + εt (38)

where x
(N0)
t = (x1,t, ..., xN0,t)

′, ε
(N0)
t = (ε1,t, ..., εN0,t) and Φ

(N0)
t = [Φi,j,t] where

Φi,j,t =
ρ

mi,t

I (|xi,t−1 − xj,t−1| ≤ r) .

Then, by Theorem A1.5 of Tong (1995), using the work of Tweedie (1975), the Lemma follows if

supt λmax(Φ
(N0)
t ) < 1, where λmax(Φ

(N0)
t ) denotes the maximum eigenvalue of Φ

(N0)
t in absolute

value. By Schwarz, Rutishauser, and Stiefel (1973), supt λmax(Φ
(N0)
t ) is bounded from above

by the supremum over t of the row sum norm of Φ
(N0)
t . But, by the definition of mi,t this row

sum norm is equal to ρ for all t. Therefore, the result for the first part of the Lemma follows.

The second part of the Lemma, follows by the discussions in Remark B of Chan (1993), Chan

and Tong (1985) and Chan (1989).

Lemma 2 Let
{
{xi,t}Ni=1

}T
t=1

be given by

xi,t = qi,t−1 + εi,t

such that the column sum norm of the variance covariance matrix of ε
(N)
t is O(1) as N →∞.

The column sum norm of the variance covariance matrix of x
(N)
t is O(N) if (i) qi,t−1 is

stationary, (ii) there is δ > 0 such that for all N , there exist units i, j = 1, ..., δN such

that (a) 0 < limN→∞ supi=1,...,δN V ar (qi,t−1) and (b) limN→∞ supi=1,...,δN V ar (qi,t−1) < ∞
and (iii) there is δ > 0 such that for all N , there exist units i, j = 1, ..., δN , such that

Cov (qi,t−1, qj,t−1) 6= 0. If (ii)(a) does not hold then the column sum norm of the variance

covariance matrix of x
(N)
t is O(1).
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Proof: The proof is immediate once the definition of the column sum norm is taken into

account.

Lemma 3 Let
{
{xi,t}Ni=1

}T
t=1

follow (4). The column sum norm of the variance covariance

matrix of x
(N)
t is O(1).

Proof: To prove this theorem we will use the second part of Lemma 2. (4) can be written

as

xt = ν + ριx̄t−1 + εt = ν + ρΦxt−1 + εt (39)

where ν = (ν1, ..., νN)′, x̄t−1 = 1
N

∑N
j=1 xj,t−1, Φ = 1

N
ιι′ and ι = (1, ..., 1)′. Note that Φ is

idempotent. This implies that

xt =
(1− ρt−1)

(1− ρ)
Φν + ρtΦx0 + εt + Φ

t−1∑
i=1

ρiεt−i = ρtΦx0 + εt + ι

[
1

N

N∑
j=1

ξj,t

]
(40)

where

ξj,t =
t−1∑
i=1

ρiεj,t−i

But, it is straightforward to show that

lim
N→∞

V ar

(
1

N

N∑
j=1

ξj,t

)
= 0

this proving the Lemma.

Lemma 4 Let
{
{xi,t}Ni=1

}T
t=1

follow (1). The column sum norm of the variance covariance

matrix of x
(N)
t is O(N).

Proof: We use Lemma 2. The model can be written as

xi,t = qi,t−1 + εi,t

where

qi,t−1 =
ρ

mi,t

N∑
j=1

I (|xi,t−1 − xj,t−1| ≤ r)xj,t−1.

We need to verify the three conditions of Lemma 2. Condition (i) follows from Lemma 1.

Next, we establish Condition (ii). By Lemma 1 it follows that it is sufficient to show that

0 < lim
N→∞

V ar

(
ρ

mi,t

N∑
j=1

I (|xi,t−1 − xj,t−1| ≤ r)xj,t−1

)
, for all j. (41)
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By Assumption 1, we know that

Pr (|εi,t − εi,t−1| > r) > 0

for all j and r <∞. This implies that

Pr (|xi,t − xi,t−1| > r) > 0

for all j and r <∞. From this it follows that there exists ε > 0 such that

Pr

(∣∣∣∣∣ ρmi,t

N∑
j=1

I (|xi,t − xj,t| ≤ r)xj,t −
ρ

mi,t

N∑
j=1

I (|xi,t−1 − xj,t−1| ≤ r)xj,t−1

∣∣∣∣∣ > ε

)
> 0 (42)

But since by Markov’s inequality

Pr

(∣∣∣∣∣ ρmi,t

N∑
j=1

I (|xi,t − xj,t| ≤ r)xj,t −
ρ

mi,t

N∑
j=1

I (|xi,t−1 − xj,t−1| ≤ r)xj,t−1

∣∣∣∣∣ > ε

)
<

1

ε2
E

∣∣∣∣∣ ρmi,t

N∑
j=1

I (|xi,t − xj,t| ≤ r)xj,t −
ρ

mi,t

N∑
j=1

I (|xi,t−1 − xj,t−1| ≤ r)xj,t−1

∣∣∣∣∣
2

(42) implies (41). The final condition to be checked is Condition (iii) of Lemma 2. We need

to show that there is δ > 0 such that for all N , there exist units i, j = 1, ..., δN , such that

E

[(
ρ

mi,t

N∑
s=1

I (|xi,t − xs,t| ≤ r)xs,t

)(
ρ

mj,t

N∑
s=1

I (|xj,t − xs,t| ≤ r)xs,t

)]
6= 0 (43)

LetMj,t denote the set of j such that I (|xi,t − xj,t| ≤ r) = 1. By the geometric ergodicity of

x
(N0)
t for all N0, established in Lemma 1, and the fact that the stationary density of x

(N0)
t is

strictly positive over all compact sets in RN0 for all N0, which is implied by our assumption

that the density of ε
(N0)
t is strictly positive over all compact sets in RN0 for all N0, we have that

there is a non-zero proportion of units, that lie in bothMi,t andMj,t for a non-zero proportion

of j,k = 1, ..., N . This implies that (43) holds for some δ > 0 and units i, j = 1, ..., δN, proving

the result of the Lemma.

Lemma 5 Let
{
{xi,t}Ni=1

}T
t=1

follow (1). Then,

sup
i
V ar

(
ρ

mi,t

N∑
j=1

I (|xi,t−1 − xj,t−1| ≤ r)xj,t−1

)
= O(1) (44)

and

inf
i
V ar

(
ρ

mi,t

N∑
j=1

I (|xi,t−1 − xj,t−1| ≤ r)xj,t−1

)
= O(1) (45)
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Proof: We examine (44) which involves simply a form of cross-sectional averaging. (45)

can be analysed similarly. It is easy to see that

V ar

 1

mi,t

∑
j∈Mi,t

xj,t−1

 ∼ 1

m2
i,t

 ∑
j∈Mi,t

σ2
xj

+ 2
∑
j∈Mi,t

∑
k∈Mi,t

σxj ,xk


where ∼ denotes equality in order of magnitude and σ2

xj
and σxj ,xk

denote the variance of

xj,t−1 and the covariance of xj,t−1 and xk,t−1 respectively. The result of the Lemma follows

immediately by Lemma 2.

Lemma 6 Let
{
{xi,t}Ni=1

}T
t=1

follow (15). Then, for every N0 ≤ N , there exists T0 such that

for all T > T0,
{
{xi,t}N0

i=1

}T
t=T0

is geometrically ergodic and asymptotically stationary, as long

as |ρ| < 1.

Proof: As in the proof of Lemma 1, we can write part of (1) relevant for {xi,t}N0

i=1, as

xt = Φ̃
(N0)
t xt−1 + εt (46)

where x
(N0)
t , ε

(N0)
t = (ε1,t, ..., εN0,t) are as in the proof of Lemma 1 and Φ̃

(N0)
t = [Φ̃i,j,t] where

Φ̃i,j,t =

{
ρ

m̃i,t
xj,t−1, if xj,t−1 ∈

{
x

(i)
1,t−1, ..., x

(i)
m̃i,t,t−1

}
0, otherwise

,

Then, again by Theorem A1.5 of Tong (1995) the Lemma follows if supt λmax(Φ̃
(N0)
t ) < 1,

where λmax(Φ̃
(N0)
t ) denotes the maximum eigenvalue of Φ̃

(N0)
t in absolute value. By Schwarz,

Rutishauser, and Stiefel (1973), supt λmax(Φ̃
(N0)
t ) is bounded from above by the supremum

over t of the row sum norm of Φ̃
(N0)
t . But, by the definition of m̃i,t, this row sum norm is equal

to ρ for all t. Therefore, the result follows.

Lemma 7 Let
{
{xi,t}Ni=1

}T
t=1

follow (1). Let mρ < 1. The column sum norm of the variance

covariance matrix of xt is O(1).

Proof: We denote Φ̃t = Φ̃
(N)
t . We have the following MA representation of xt.

xt =

(
t∏

j=1

Φ̃t−j

)
x0 + εt +

t−1∑
i=1

(
i−1∏
j=1

Φ̃t−j

)
εt−i (47)

By Lemma 6, ∥∥∥∥∥
t∏

j=1

Φ̃t−j

∥∥∥∥∥ = Oa.s.

(
ρt
)

(48)
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Noting that εt is an i.i.d. sequence gives,

E (xtx
′
t) = Σε +

t−1∑
i=1

E

((
i−1∏
j=1

Φ̃t−j

)
εt−iε

′
t−i

(
i−1∏
j=1

Φ̃t−j

)′)
(49)

Then,

‖E (xtx
′
t)‖c ≤ C +

t−1∑
i=1

∥∥∥∥∥E
((

i−1∏
j=1

Φ̃t−j

)
εt−iε

′
t−i

(
i−1∏
j=1

Φ̃t−j

)′)∥∥∥∥∥
c

(50)

for some constant C. We examine the first term of the sum on the RHS of (50). Denoting by

M̃j,t, the set of j such that xj,t−1 ∈
{
x

(i)
1,t−1, ..., x

(i)
m̃i,t,t−1

}
, we have that

Φ̃tεt−1 =

 ρ

m̃i,t

∑
j∈M̃1,t

εj,t−1, ...,
ρ

m̃i,t

∑
j∈M̃N,t

εj,t−1

′

and

Φ̃tεt−1εt−1Φ̃′t =



(
ρ

m̃1,t

∑
j∈M̃1,t

εj,t−1

)2
ρ

m̃1,tm̃2,t

∑
j∈M̃1,t,k∈M̃2,t

εj,t−1εk,t−1 ... ρ
m̃1,tm̃N,t

∑
j∈M̃1,t,k∈M̃N,t

εj,t−1εk,t−1

ρ
m̃1,tm̃2,t

∑
j∈M̃1,t,k∈M̃2,t

εj,t−1εk,t−1

(
ρ

m̃2,t

∑
j∈M̃2,t

εj,t−1

)2

... ρ
m̃2,tm̃N,t

∑
j∈M̃2,t,k∈M̃N,t

εj,t−1εk,t−1

... ... ... ...

ρ
m̃1,tm̃N,t

∑
j∈M̃1,t,k∈M̃N,t

εj,t−1εk,t−1
ρ

m̃2,tm̃N,t

∑
j∈M̃2,t,k∈M̃N,t

εj,t−1εk,t−1 ...
(

ρ
m̃N,t

∑
j∈M̃N,t

εj,t−1

)2


Each set M̃i,t has a finite number of elements, which is bounded from above by m, uni-

formly over i. As a result only a finite number of the intersections M̃i,t ∩ M̃j,t are not empty

which implies that only a finite number of elements of every row/column of Φ̃tεt−1εt−1Φ̃′t have

non-zero expectation. This number is bounded from above by m. As a result∥∥E (Φtεt−1ε
′
t−1Φ′t

)∥∥
c
≤ Cm

By similar reasoning we can show that∥∥∥∥∥E
((

i−1∏
j=1

Φ̃t−j

)
εt−iε

′
t−i

(
i−1∏
j=1

Φ̃t−j

)′)∥∥∥∥∥
c

≤ Cρi min(mi, N)

which implies that, as long as m
ρ
< 1, there exists κ < 1, such that∥∥∥∥∥E

((
i−1∏
j=1

Φ̃t−j

)
εt−iε

′
t−i

(
i−1∏
j=1

Φ̃t−j

)′)∥∥∥∥∥
c

≤ Cκi

which further implies that for some constant C > 0,

lim
t→∞

t−1∑
i=1

∥∥∥∥∥E
((

i−1∏
j=1

Φ̃t−j

)
εt−iε

′
t−i

(
i−1∏
j=1

Φ̃t−j

)′)∥∥∥∥∥
c

≤ C

proving the lemma.
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Lemma 8 Let
{
{xi,t}Ni=1

}T
t=1

follow (16). Then, for every N0 ≤ N , there exists T0 such that

for all T > T0,
{
{xi,t}N0

i=1

}T
t=T0

is geometrically ergodic and asymptotically stationary, as long

as |ρ| < 1.

Proof: Proceeding as in the proof of Lemma 1, we can write part of (16) relevant for

{xi,t}N0

i=1, as

xt = Φ
w,(N0)
t xt−1 + εt (51)

where Φ
w,(N0)
t = [Φw

i,j,t] where

Φw
i,j,t =

ρw(|xi,t−1 − xj,t−1| ; γ)∑N
j=1w(|xi,t−1 − xj,t−1| ; γ)

.

Then, the result follows along very similar lines to the proof of Lemma 1.

Lemma 9 Let
{
{xi,t}Ni=1

}T
t=1

follow (16). The column sum norm of the variance covariance

matrix of x
(N)
t is O(N).

Proof: Let xt = x
(N)
t and Φw

t = Φ
w,(N)
t . We have the following MA representation of xt.

xt =

(
t∏

j=1

Φw
t−j

)
x0 + εt +

t−1∑
i=1

(
i−1∏
j=1

Φw
t−j

)
εt−i (52)

By Lemma 8, ∥∥∥∥∥
t∏

j=1

Φw
t−j

∥∥∥∥∥ = Oa.s.

(
ρt
)

(53)

Noting that εt is a i.i.d. sequence gives,

E (xtx
′
t) = Σε +

t−1∑
i=1

E

((
i−1∏
j=1

Φw
t−j

)
εt−iε

′
t−i

(
i−1∏
j=1

Φw
t−j

)′)
(54)

It is sufficient to show that ∥∥E (Φw
t εt−1ε

′
t−1Φw′

t

)∥∥
c

= O(N)

We have that

Φtεt−1 =

(
ρ

N∑
j=1

w(|x1,t−1 − xj,t−1| ; γ)∑N
j=1w(|xi,t−1 − xj,t−1| ; γ)

εj,t−1, ..., ρ

N∑
j=1

w(|xN,t−1 − xj,t−1| ; γ)∑N
j=1w(|xi,t−1 − xj,t−1| ; γ)

εj,t−1

)′
and it follows that every element of Φw

t εt−1ε
′
t−1Φw′

t has nonzero expectation by the geometric

ergodicity of x
(N0)
t established in Lemma 8. As a result,

∥∥E (Φtεt−1ε
′
t−1Φ′t

)∥∥
c

= O(N), thus

establishing the result of the Lemma. It can again be similarly established that for any

ordering of the units and any choice of N0, the Lemma holds for x
(N0)
t .
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Lemma 10 Let
{
{xi,t}Ni=1

}T
t=1

follow (16). Then,

sup
i
V ar

(
N∑
j=1

ρw(|xi,t−1 − xj,t−1| ; γ)xj,t−1∑N
j=1 w(|xi,t−1 − xj,t−1| ; γ)

)
= O(1)

and

inf
i
V ar

(
N∑
j=1

ρw(|xi,t−1 − xj,t−1| ; γ)xj,t−1∑N
j=1w(|xi,t−1 − xj,t−1| ; γ)

)
= O(1)

Proof: The proof follows very similarly to that of Lemma 3.

Lemma 11 Let
{
{xi,t}Ni=1

}T
t=1

follow (9).Let ε̄i,t = εi,t− ε̄i, where ε̄i = 1
T

∑T
j=1 εj,t Then, there

exists T0 such that for all T > T0,

E

([
ρ

mi,t

N∑
j=1

I (|xi,t−1 − xj,t−1| ≤ r)xj,t−1

]
(εi,t − ε̄i)

)
= O

(
1

NT

)
.

Proof: We establish the result for r = ∞ (i.e. the linear model given by (4)). Then,

the result follows by Lemma 1 and the assumption that the stationary density of {xi,t}N0

i=1 is

positive uniformly over N0, since this implies that there exists T0 such that for all T > T0,

and uniformly over i, the number of j such that I (|xi,t−1 − xj,t−1| ≤ r) = 1 for any t, is a

non-zero proportion of N0, for all N0.

To show the result for the linear model, let, as before, xt = x
(N)
t . As before, (4) can be

written as

xt = ν + ριx̄t−1 + εt = ν + ρΦxt−1 + εt (55)

where ν = (ν1, ..., νN)′, x̄t−1 = 1
N

∑N
j=1 xj,t−1, Φ = 1

N
ιι′ and ι = (1, ..., 1)′. Note that Φ is

idempotent. This implies that

xt =
(1− ρt−1)

(1− ρ)
Φν + ρtΦx0 + εt + Φ

t−1∑
i=1

ρiεt−i = ρtΦx0 + εt + ι
t−1∑
i=1

ρi

(
1

N

N∑
j=1

εj,t−i

)
(56)

For simplicity, we assume that x0 = ν = 0. We need to show that

E

([
ρ

N

N∑
j=1

xj,t−1

]
(εi,t − ε̄i)

)
= E (ρx̄t−1 (εi,t − ε̄i)) = O

(
1

NT

)
.

We have that

x̄t−1 =
1

N

N∑
j=1

εj,t−1 +
t−2∑
i=1

ρi

(
1

N

N∑
j=1

εj,t−i−1

)
Then,

x̄t−1 (εi,t − ε̄i) =

(
1

N

N∑
j=1

εj,t−1

)
(εi,t − ε̄i) +

t−2∑
i=1

ρi

(
1

N

N∑
j=1

εj,t−i−1

)
(εi,t − ε̄i) (57)
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Looking at the expectation of the first term on the RHS of (57), we have

E

((
1

N

N∑
j=1

εj,t−1

)(
εi,t −

1

T

T∑
j=1

εj,t

))
=

1

NT
σ2
ε (58)

For the expectation of the second term on the RHS of (57), using (58), we have

E

(
t−2∑
i=1

ρi

(
1

N

N∑
j=1

εj,t−i−1

)(
εi,t −

1

T

T∑
j=1

εj,t

))
=

1

NT

t−2∑
i=1

ρiσ2
ε =

(1− ρt−1)σ2
ε

(1− ρ)NT

which proves the result.

Lemma 12 Let
{
{xi,t}Ni=1

}T
t=1

follow

xi,t = νi +
ρ

m̃i,t

m̃i,t∑
j=1

x
(i)
j,t−1 + εi,t (59)

where x
(i)
j,t and m̃i,t are defined below (57). Let ε̄i,t = εi,t − ε̄i, where ε̄i = 1

T

∑T
j=1 εj,t Then,

E

([
ρ

m̃i,t

m̃i,t∑
j=1

x
(i)
j,t−1

]
(εi,t − ε̄i)

)
= O

(
1

T

)
.

Proof: The proof proceeds using a similar line of attack as in the proof of Lemma 11. For

simplicity, set ν = 0. Using (47) and (46) gives

xt =

(
t∏

j=1

Φ̃t−j

)
x0 + εt +

t−1∑
i=1

(
i−1∏
j=1

Φ̃t−j

)
εt−i (60)

For simplicity, set x0 = 0. It is easy to see that for each unit, i, its error term εi,t−j will

enter at every lag j. This can be formalised by the following MA representation. Define Φ̃t,−i

to be equal to
i−1∏
j=1

Φ̃t−j but with its diagonal equal to a vector of zeros. Then, (60) may be

rewritten as

xt = εt +
t−1∑
i=1

Φ̃t,−iεt−i +
t−1∑
i=1

ρi
(
m̃

(i)
t � εt−i

)
where � denotes the Hadamard product, and

m̃
(i)
t =

(
i−1∏
j=1

1

m̃1,t−j
, ...,

i−1∏
j=1

1

m̃N,t−j

)
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It is then easy to see that for all i, i = 1, ..., N,[
ρ

m̃i,t

m̃i,t∑
j=1

x
(i)
j,t−1

]
(εi,t − ε̄i) =

(
−

t−2∑
j=1

ρj

(
j−1∏
s=1

1

m̃i,t−s

)
εt−j

)(
1

T

T∑
j=1

εj,t

)
+Ri,t

where Ri,t has terms with expectation of at most O
(

1
T

)
. Focusing on the first term of the

RHS of (60), we have that

E

(
−

t−2∑
j=1

ρj

(
j−1∏
s=1

1

m̃i,t−s

)
εt−j

)(
1

T

T∑
j=1

εj,t

)
= − 1

T

t−2∑
j=1

ρj

(
j−1∏
s=1

1

m̃i,t−s

)
σ2
ε

But, since by definition 1 ≤ m̃i,t ≤ m, it follows that

t−2∑
j=1

ρj

(
j−1∏
s=1

1

m̃i,t−s

)
= O(1)

and therefore the result of the Lemma holds.

Lemma 13 Let
{
{xi,t}Ni=1

}T
t=1

follow (13). Then, for all N0 ≤ N , there exists T0 such that

for all T > T0,
{
{xi,t}N0

i=1

}T
t=T0

is geometrically ergodic and asymptotically stationary, as long

as p
∑p

i=1 |ρs| < 1.

Proof: As is usual for autoregressive models with more than one lag, we write the model

in companion form. So, we can write the part of (13) relevant for {xi,t}N0

i=1, as

x
(p,N0)
t = Φ

(p,N0)
t x

(p,N0)
t−1 + ε

(p,N0)
t (61)

where x
(p,N0)
t = (x1,t, ..., xN0,t, ..., x1,t−p, ..., xN0,t−p)

′, ε
(N0)
t = (ε1,t, ..., εN0,t, 0, ..., 0)′,

Φ
(p,N0)
t =


Φ̃

(1,N0)
t Φ̃

(2,N0)
t ... Φ̃

(p,N0)
t

I 0 ... 0
... ... ... ...
0 ... I 0

 ,

Φ̃
(s,N0)
t = [Φ̃

(s)
i,j,t], s = 1, ..., p, and

Φ̃
(s)
i,j,t =

ρs
mi,t,s

I (|xi,t−s − xj,t−s| ≤ r)xj,t−s.

Then, similarly to the proof of Lemma 1 it is sufficient that the row sum norm of
(

Φ̃
(1,N0)
t Φ̃

(2,N0)
t ... Φ̃

(p,N0)
t

)
is bounded from above by one. But for this, it sufficient that p

∑p
i=1 |ρs| < 1 proving the result.

Lemma 14 Let
{
{xi,t}Ni=1

}T
t=1

follow (14). Then, for all N0 ≤ N , there exists T0 such that

for all T > T0,
{
{xi,t}N0

i=1

}T
t=T0

is geometrically ergodic and asymptotically stationary, as long

as q
∑q

i=1 |ρs| < 1.

Proof: The proof follows along very similar lines to that of Lemma 13.
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Proof of Theorem 1

We prove consistency of the least squares estimator of ρ and r. We define xij,t−s = |xi,t−s − xj,t−s|
and Ft−1 = σ(x1,t−1, ..., xN,t−1, x1,t−2, ..., xN,t−2, ...). Recall that ρ0 and r0 denote the true value

of ρ and r, and denote the respective expectation conditional on Ft−1 by Eρ,r(.|t − 1). We

proceed as in Chan (1993). Following the proof of consistency of the threshold parameter

estimates by Chan (1993), we see that three conditions need to be satisfied for consistency.

Firstly, we need to show that the data xi,t are geometrically ergodic and hence asymptotically

covariance stationary (Condition C1). Secondly, we need to show that (Condition C2)

E (xi,t − Eρ0,r0(xi,t|t− 1))2 < E (xi,t − Eρ,r(xi,t|t− 1))2 ∀ρ 6= ρ0, ∀r 6= r0, i = 1, .., N ,

(62)

is satisfied and, thirdly, we need to show that (Condition C3)

lim
δ→0

E

(
sup

(ρ,r)∈B((ρ0,r0),δ)

|Eρ0,r0(xi,t|t− 1)− Eρ,r(xi,t|t− 1)|

)
= 0, (63)

where B(a, b) is an open ball of radius b centered around a, is satisfied. These three conditions

together imply the uniform convergence of the objective function given

S(ρ, r) =
1

NT

N∑
i=1

T∑
t=1

(
xi,t −

ρ

mi,t

N∑
j=1

I (|xi,t−1 − xj,t−1| ≤ r)xj,t−1

)2

to the limit objective function which is the key to establishing consistency. C1 is needed for

obtaining a law of large numbers needed for Claim 1 of Chan (1993), and hence for convergence

of the objective function. C3 is needed for uniformity of the convergence and, finally, C2 is

needed to show that the limiting objective function is minimized at the true parameter values.

C1 can be seen to follow from Lemma 1. We establish C2 and C3.

For C2 we have that

E (xi,t − Eρ0,r0(xi,t|t− 1))2 = σ2
εi

(64)

Letting m0
i,t =

∑N
j=1 I (|xi,t−1 − xj,t−1| ≤ r0), and assuming, without loss of generality, that

r ≥ r0, we also have

E (xi,t − Eρ,r(xi,t|t− 1)) = εi,t +
ρ0

m0
i,t

N∑
j=1

I
(
|xi,t−1 − xj,t−1| ≤ r0

)
xj,t−1− (65)

ρ

mi,t

N∑
j=1

I (|xi,t−1 − xj,t−1| ≤ r)xj,t−1 =

εi,t +
(ρ0 − ρ)

mi,t

N∑
j=1

I
(
|xi,t−1 − xj,t−1| ≤ r0

)
xj,t−1−
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ρ

mi,t

N∑
j=1

(
I (|xi,t−1 − xj,t−1| ≤ r)− I

(
|xi,t−1 − xj,t−1| ≤ r0

))
xj,t−1 = εi,t + hi,t−1

But, under our assumption that εi,t is i.i.d. across i and t, E(εi,thi,t−1) = 0, thus implying

that

E (εi,t + hi,t−1)2 > σ2
εi

and thereby establishing C2. For C3, we have, using (65),

Eρ0,r0(xi,t|t− 1)− Eρ,r(xi,t|t− 1) =
(ρ0 − ρ)

mi,t

N∑
j=1

I
(
|xi,t−1 − xj,t−1| ≤ r0

)
xj,t−1− (66)

ρ

mi,t

N∑
j=1

(
I (|xi,t−1 − xj,t−1| ≤ r)− I

(
|xi,t−1 − xj,t−1| ≤ r0

))
xj,t−1

We examine the first term of the RHS of (66). By Lemma 3,

1

mi,t

N∑
j=1

I
(
|xi,t−1 − xj,t−1| ≤ r0

)
xj,t−1 = Om.s.(1)

and so

lim
δ→0

E

(
sup

(ρ,r)∈B((ρ0,r0),δ)

∣∣∣∣∣(ρ0 − ρ)

mi,t

N∑
j=1

I
(
|xi,t−1 − xj,t−1| ≤ r0

)
xj,t−1

∣∣∣∣∣
)

= 0

Moving to the second term on the RHS of (66), we have, using the fact that the stationary

density of {xi,t}N0

i=1 is positive and bounded, uniformly over N0, which follows from Assumption

1 on the density of {εi,t}N0

i=1, that

lim
δ→0

E

(
sup

(ρ,r)∈B((ρ0,r0),δ)

∣∣∣∣∣ ρmi,t

N∑
j=1

(
I (|xi,t−1 − xj,t−1| ≤ r)− I

(
|xi,t−1 − xj,t−1| ≤ r0

))
xj,t−1

∣∣∣∣∣
)
≤

lim
δ→0

sup
i,j

sup
(ρ,r)∈B((ρ0,r0),δ)

Pr(|xi,t−1 − xj,t−1| ∈ (r, r0)) = 0

proving the result.

Proof of Theorem 2

We prove the rate of convergence of r̂ to r0. We focus on the pooled least squares estimator.

Since we know that (ρ̂, r̂) is consistent, we restrict the parameter space to a neighborhood of

(ρ0, r0), given by

ϑ(∆) =
{

(ρ, r) ∈ Ω,
∣∣ρ− ρ0

∣∣ < ∆;
∣∣r − r0

∣∣ < ∆, 0 < ∆ < 1
}
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It is sufficient to prove that for any ε, there exists K, such that for (ρ, r) ∈ ϑ(∆), and

r > K/(NT ),

Pr
(
S(ρ, r)− S(ρ, r0) > 0

)
> 1− ε. (67)

Recall that xij,t−s = |xi,t−s − xj,t−s|. Define Qij(r) = E (I (xij,t < r)). By Claim 1 of Propo-

sition 1 of Chan (1993), it follows that (67) holds if for any ε > 0, η > 0, there exists K > 0

such that for all N, T

inf
1≤i,j≤N

Pr

(
sup

∆≥r>K/(NT )

∣∣∣∣∣
N∑
j=1

T∑
t=2

I (xij,t−1 < r)

NTQij(r)
− 1

∣∣∣∣∣ < η

)
> 1− ε, (68)

inf
1≤i,j≤N

Pr

(
sup

∆≥r>K/(NT )

∣∣∣∣∣
N∑
j=1

T∑
t=2

εi,tI (xij,t−1 < r)

NTQij(r)

∣∣∣∣∣ < η

)
> 1− ε (69)

and

inf
1≤i,j≤N

Pr

(
sup

∆≥r>K/(NT )

∣∣∣∣∣
N∑
j=1

T∑
t=2

xj,t−1εi,tI (xij,t−1 < r)

NTQij(r)

∣∣∣∣∣ < η

)
> 1− ε (70)

By Claim 2 of Proposition 1 of Chan (1993), (68)- (70) hold if there exists H <∞, such that

sup
1≤i,j≤N

V ar

(
N∑
j=1

T∑
t=2

I (xij,t−1 < r)

)
≤ NTH sup

1≤i,j≤N
Qij(r), (71)

sup
1≤i,j≤N

V ar

(
N∑
j=1

T∑
t=2

|xj,t−1εi,t| I (r1 < xij,t−1 < r2)

)
≤ NTH sup

1≤i,j≤N
(Qij(r2)−Qij(r1))

(72)

and

sup
1≤i,j≤N

V ar

(
N∑
j=1

T∑
t=2

xj,t−1εi,tI (xij,t−1 < r)

)
≤ NTH sup

1≤i,j≤N
Qij(r) (73)

But, by Lemma 1and the boundedness of the indicator function, it follows that there exists

0 < m < M <∞ such that

mr ≤ sup
1≤i,j≤N

Qij(r) ≤Mr (74)

Then, by (74), the uniform boundedness of the indicator function and the second part of

Lemma 1, (71)-(73) follow, thus proving the result for the rate of convergence. The second

part of the theorem follows similarly to the proof of Theorem 2 and (4.11) of Chan (1993).

Proof of Theorem 3

We wish to prove that the estimator of (ρ0, r0,m0), denoted by (ρ̂, r̂, m̂) is consistent. Let

Eρ,r,m(xi,t|t−1) denote the expectation of xi,t conditional on Ft−1, for a given set of parameters

(ρ, r,m). Since m only takes discrete values, it is sufficient to show that

E (xi,t − Eρ0,r0,m0(xi,t|t− 1))2 < E (xi,t − Eρ,r,m(xi,t|t− 1))2 , ∀ρ 6= ρ0, r 6= r0,m 6= m0, i = 1, .., N ,

(75)
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Then, the result follows by the proof of Theorem 1. To show (75), we have the following:

E (xi,t − Eρ,r,m(xi,t|t− 1)) = εi,t +
ρ0

m̃0
i,t

m̃0
i,t∑

j=1

x
(i)
j,t−1 −

ρ

m̃i,t

m̃i,t∑
j=1

x
(i)
j,t−1 (76)

where m̃0
i,t = min(m0

i,t,m
0) m0

i,t =
∑N

j=1 I (|xi,t−1 − xj,t−1| ≤ r0). As in (65), and assuming,

without loss of generality, that r ≥ r0, (76) can be written as

εi,t +
(ρ0 − ρ)

m0
i,t

m̃0
i,t∑

j=1

x
(i)
j,t−1 −

ρ

mi,t

m̃i,t∑
j=1

x
(i)
j,t−1 −

m̃0
i,t∑

j=1

x
(i)
j,t−1

 = εi,t + hi,t−1

Then, the proof proceeds as that of Theorem 1.

Proof of Theorem 4

We wish to prove that the NLS estimator of (ρ0, γ0), denoted by (ρ̂, γ̂) is consistent and

asymptotically normal. For consistency, we need to establish conditions (62) and (63) but

for the model given by (16). These follow along very similar lines to those for the threshold

model and are therefore omitted. These conditions together with geometric ergodicity imply

consistency.

For asymptotic normality, we note that using, e.g., Proposition 7.8 of Hayashi (2000), and

noting that, under our assumptions, (ρ0, γ0) lies in the interior of the parameter space and

w(.; .) is twice differentiable and integrable, it is sufficient to show that

1√
NT

N∑
i=1

T∑
t=2

(
N∑
j=1

∂w
∂γ

(|xi,t−1 − xj,t−1| ; γ0)xj,t−1εi,t∑N
j=1w(|xi,t−1 − xj,t−1| ; γ0)

)
d→ N

(
0, σ2

wi

)
, uniformly over i. (77)

and

1√
NT

N∑
i=1

T∑
t=2

(
N∑
j=1

ρ0w(|xi,t−1 − xj,t−1| ; γ0)xj,t−1εi,t∑N
j=1 w(|xi,t−1 − xj,t−1| ; γ0)

)
d→ N

(
0, σ2

∂wi

)
, uniformly over i.

(78)

We prove (77). (78) follows similarly. One way to prove the result is to show first sequential

convergence in distribution, with respect to N and T and then that sequential convergence

with respect to N and T , uniformly over i, implies joint convergence in distribution, uniformly

over i, with respect to N and T .

We prove sequential convergence first. We examine wi,j,tεi,t where

wi,j,t =
N∑
j=1

∂w
∂γ

(|xi,t−1 − xj,t−1| ; γ0)xj,t−1∑N
j=1w(|xi,t−1 − xj,t−1| ; γ0)

.
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By Lemma 10 which implies that wi,j,t has finite variance, uniformly over i, the fact that wi,j,t

and εi,t are independent, and the fact that εi,t has finite variance, uniformly over i, by assump-

tion, it follows that wi,j,tεi,t is a martingale difference with finite second moments. Hence, a

martingale difference CLT holds for wi,j,tεi,t proving sequential convergence, uniformly over i.

Next we prove that sequential convergence implies joint convergence. Define

YN,T =
1√
N

N∑
i=1

1√
T

T∑
t=2

(
N∑
j=1

∂w
∂γ

(|xi,t−1 − xj,t−1| ; γ0)xj,t−1εi,t∑N
j=1w(|xi,t−1 − xj,t−1| ; γ0)

)
and

YN =
1√
N

N∑
i=1

[
p lim
T→∞

(
1√
T

T∑
t=2

(
N∑
j=1

∂w
∂γ

(|xi,t−1 − xj,t−1| ; γ0)xj,t−1εi,t∑N
j=1w(|xi,t−1 − xj,t−1| ; γ0)

))]
Sequential convergence implies that there exists YN such that YN,T

d→ YN as T →∞.

Then, from Lemma 6 of Phillips and Moon (1999) the result follows if we show that

lim sup
N,T

|E (f (YN,T ))− E (f (YN))| = 0, ∀f ∈ C (79)

where C is the space of all bounded continuous real functions on R. Without loss of generality

let the functions f be such that
∣∣f (k)(x)

∣∣ ≤ 1 where f (k)(x) denotes the k-th derivative function

of f(x). Fix f . Let

g(h) = sup
x
|f (x+ h)− f (x)− f ′(x)h|

Set x = YN,T and h = YN,T − YN . It follows by the triangle inequality that

lim sup
N,T

|E (f (YN,T ))− E (f (YN))| ≤ (80)

lim sup
N,T

|E (f ′ (YN,T ) (YN,T − YN))|+ lim sup
N,T

|E (g (YN,T − YN))| (81)

But since
∣∣f (k)(x)

∣∣ ≤ 1

lim sup
N,T

|E (f ′ (YN,T ) (YN,T − YN))| ≤ lim sup
N,T

|E (YN,T )− E (YN)| (82)

Also by the mean value theorem and for some finite M

g(h) ≤M min{|h| , h2}

Thus,

lim sup
N,T

|E (g (YN,T − YN))| ≤M lim sup
N,T

E |YN,T − YN | (83)

From (82) and (83), it follows that the result is true if

lim sup
N,T

E |YN,T − YN | = 0 (84)

However, uniform integrability of |YN,T |, implies (84). By Theorem 12.10 of Davidson (1994)

supN,T E |YN,T |
ϑ <∞, for some ϑ > 1 implies uniform integrability of |YN,T |. Hence, the result

follows, by Lemma 10 and the fact that εi,t are assumed to have finite variance uniformly over

i.
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Proof of Theorem 5

Define

JT,N(x, P ) = PrP
{
NT

(
r̂ − r0

)
≤ x

}
. (85)

Denote by J(x, P ) the limit of JT,N(x, P ) as N, T → ∞.The subsampling approximation to

J(x, P ) is given by LbT ,bN (x). For xα, where J(xα, P ) = α, we need to prove that

LbT ,bN (xα)→ J(xα, P )

for the theorem to hold. But,

E(LbT ,bN (xα)) = JT,N(x, P )

because as discussed in Section 4, the subsample is a sample from the true model, retaining the

temporal ordering of the original sample. Hence, it suffices to show that V ar(LbT ,bN (xα))→ 0

as N, T →∞. Let

1bT ,bN ,s = 1
{
bNbT

(
r̂∗,(s) − r̂

)
≤ xα

}
, (86)

vB,h =
1

B

B∑
s=1

Cov (1bT ,bN ,s, 1bT ,bN ,s+h) . (87)

Then,

V ar (LbT ,bN (xα)) =
1

B

(
vB,0 + 2

B∑
h=1

vB,h

)
= (88)

1

B

(
vB,0 + 2

CbT−1∑
h=1

vB,h

)
+

2

B

B∑
h=CbT

vB,h = V1 + V2.

for some C > 1. We first determine the order of magnitude of V1. By the boundedness of

1bT ,bN ,s, it follows that vB,h is uniformly bounded across h. Hence, |V1| ≤ CbT
B

maxh |vB,h|,
from which it follows that V1 = O(CbT/B) = o(1). We next examine V2. For this we have

that

|V2| ≤
2

B

B−1∑
h=CbT

|vB,h|, (89)

But, by Lemma 1, it follows that

vB,h = o(1), uniformly across h. (90)

Note that this follows by the geometric ergodicity and, hence β-mixing of the process. Further,

note that (90) follows for any random selection of cross sectional units undertaken to construct

the subsamples. Hence,

2

B

B−1∑
h=CbT

|vB,h| = o(1),

proving the convergence of LbT ,bN (xα) to J(xα, P ).
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Table 1: Proportion of variance explained by successive principal components for the nonlinear
and linear models (T = 200, ρ = 0.999, r = 0.5(nonlinear) or r =∞ (linear))

No. of PC Nonlinear Linear
1 0.390 0.346
2 0.520 0.359
3 0.607 0.372
4 0.662 0.385
5 0.700 0.397
6 0.728 0.409
7 0.750 0.421
8 0.767 0.433

Table 2: Proportion of variance explained by successive principal components for the nonlinear
model as N rises (T = 200, ρ = 0.9, r = 0.1)

No. of PC/N 100 200 400 800 1000 1500
1 0.102 0.090 0.087 0.079 0.086 0.091
2 0.203 0.167 0.172 0.163 0.168 0.166
3 0.289 0.229 0.249 0.234 0.244 0.237
4 0.319 0.301 0.292 0.308 0.292 0.297
5 0.382 0.363 0.353 0.362 0.360 0.357
6 0.442 0.419 0.411 0.417 0.414 0.415
7 0.495 0.462 0.450 0.468 0.448 0.451
8 0.542 0.500 0.496 0.500 0.489 0.494

Table 3: Proportion of variance explained by successive principal components for the linear
model as N rises (T = 200, ρ = 0.9, r =∞)

No. of PC/N 100 200 400 800 1000 1500
1 0.037 0.036 0.022 0.017 0.016 0.015
2 0.071 0.062 0.044 0.034 0.033 0.030
3 0.105 0.088 0.065 0.050 0.049 0.045
4 0.138 0.112 0.085 0.067 0.066 0.059
5 0.170 0.136 0.104 0.083 0.082 0.074
6 0.199 0.160 0.123 0.099 0.097 0.088
7 0.228 0.183 0.142 0.114 0.113 0.102
8 0.256 0.206 0.160 0.130 0.127 0.116
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Table 4: Estimation Results for threshold model. Bias and Variance

100* Sample Bias for ρ
N/T 5 10 20 50 100 200

5 0.377 -0.138 -0.323 -0.242 -0.299 -0.181
10 0.386 0.021 -0.153 -0.165 -0.080 -0.075
20 0.749 0.218 0.033 -0.008 -0.024 -0.045
50 0.695 0.342 0.128 0.005 0.014 -0.006
100 0.760 0.294 0.130 0.039 0.021 -0.007
200 0.754 0.316 0.160 0.054 0.018 0.005

100* Sample Variance for ρ
5 0.303 0.156 0.088 0.047 0.030 0.017
10 0.141 0.062 0.037 0.022 0.014 0.008
20 0.065 0.026 0.018 0.012 0.007 0.004
50 0.025 0.010 0.007 0.004 0.003 0.002
100 0.014 0.005 0.004 0.002 0.002 0.001
200 0.008 0.003 0.002 0.001 0.001 0.000

100* Sample Bias for r
5 -4.740 2.401 2.980 -0.411 -1.069 -0.742
10 4.523 2.190 0.655 -1.098 -0.636 -0.195
20 3.428 -0.891 -0.976 -0.391 -0.019 -0.018
50 1.578 -1.186 -0.545 0.012 0.037 0.008
100 0.071 -0.749 -0.122 -0.079 0.003 -0.022
200 -0.277 -1.080 -0.270 -0.044 -0.032 0.004

100* Sample Variance for r
5 10.025 7.875 5.438 2.197 1.106 0.360
10 7.028 4.659 2.604 0.729 0.192 0.052
20 5.211 2.482 1.254 0.209 0.048 0.010
50 3.026 1.265 0.431 0.061 0.021 0.003
100 2.238 0.762 0.190 0.034 0.011 0.002
200 2.102 0.539 0.149 0.028 0.007 0.001
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Table 5: Estimation Results for threshold model with individual effects. Bias and Variance

100* Sample Bias for ρ
N/T 5 10 20 50 100 200

5 -14.125 -5.127 -2.498 -1.397 -0.913 -0.588
10 -11.438 -4.405 -1.943 -1.067 -0.768 -0.467
20 -10.708 -3.926 -1.683 -0.913 -0.663 -0.478
50 -10.529 -3.637 -1.604 -0.860 -0.622 -0.456
100 -10.655 -3.748 -1.633 -0.827 -0.622 -0.438
200 -10.349 -3.666 -1.593 -0.832 -0.608 -0.451

100* Sample Variance for ρ
5 2.476 0.465 0.123 0.043 0.019 0.011
10 1.038 0.168 0.053 0.015 0.009 0.005
20 0.446 0.072 0.019 0.007 0.004 0.003
50 0.153 0.028 0.006 0.002 0.002 0.001
100 0.092 0.015 0.004 0.001 0.001 0.001
200 0.038 0.007 0.002 0.001 0.000 0.000

100* Sample Bias for r
5 -3.482 3.176 4.241 0.578 0.491 0.139
10 7.406 5.767 2.221 -0.535 -1.429 -0.593
20 6.797 1.357 -1.216 -0.656 -0.127 -0.067
50 3.994 0.136 -0.163 -0.027 -0.001 0.005
100 2.024 -0.288 0.040 -0.055 -0.007 0.002
200 2.239 -0.176 0.009 -0.027 0.000 0.000

100* Sample Variance for r
5 10.304 9.240 7.948 5.542 3.761 2.714
10 8.207 5.458 3.816 2.105 1.096 0.347
20 5.469 2.801 1.436 0.371 0.120 0.027
50 3.476 1.359 0.268 0.036 0.006 0.001
100 2.785 0.547 0.080 0.007 0.001 0.000
200 2.796 0.340 0.032 0.002 0.000 0.000
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Table 6: Estimation Results for smooth (exponential) model. Bias and Variance

100* Sample Bias for ρ
N/T 5 10 20 50 100 200

5 -0.035 -0.760 -1.004 -1.115 -0.708 -0.387
10 0.097 -0.443 -0.578 -0.510 -0.339 -0.316
20 0.350 -0.296 -0.287 -0.118 -0.259 -0.153
50 -0.013 -0.275 -0.107 -0.151 -0.150 -0.103
100 -0.023 -0.290 -0.161 -0.119 -0.034 -0.109
200 -0.449 -0.435 -0.135 -0.042 -0.042 -0.062

100* Sample Variance for ρ
5 0.513 0.303 0.249 0.124 0.093 0.058
10 0.320 0.155 0.101 0.086 0.057 0.043
20 0.142 0.073 0.062 0.046 0.039 0.031
50 0.109 0.035 0.031 0.025 0.023 0.018
100 0.101 0.024 0.018 0.015 0.012 0.012
200 0.052 0.013 0.010 0.008 0.008 0.006

100* Sample Bias for γ
5 107.369 119.040 1.246 0.471 0.250 -0.097
10 25.474 1.751 0.804 0.376 0.120 0.116
20 4.844 1.957 0.761 0.275 0.137 0.107
50 4.925 1.474 0.675 0.247 0.240 0.112
100 5.062 1.601 0.610 0.210 0.047 0.059
200 5.271 1.904 0.484 0.158 0.069 0.030

100* Sample Variance for γ
5 11955.80 132836.9 1.144 0.511 0.254 0.143
10 9762.673 1.900 0.420 0.256 0.153 0.085
20 3.893 0.406 0.222 0.129 0.087 0.052
50 1.920 0.168 0.099 0.063 0.046 0.027
100 1.510 0.103 0.062 0.039 0.021 0.014
200 0.463 0.063 0.032 0.019 0.013 0.007

Table 7: Stock return empirical application. Proportion of series for which information criteria
choose the simple nonlinear model over comparator models over 364 series

Criterion Panel AR Cross-sectional Average
AIC 0.604 0.634
BIC 0.604 0.634

Hannan-Quinn 0.604 0.634
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Table 8: Stock return empirical application. Test results for simple models. Proportion of
series for which tests reject their respective null hypotheses over 364 series.

Test Nonlinear model Panel AR Cross-sectional Average
Normality 1 1 364
LM(SC(1)) 0.253 0.247 134
LM(SC(4)) 0.016 0.016 0.016

LM(ARCH(1)) 0.849 0.838 0.835
LM(ARCH(4)) 0.489 0.491 0.491
Nonlinearity 0.393 0.426 0.428

Table 9: Stock return empirical application. Test results for models, augmented with id-
iosyncratic AR component. Proportion of series for which tests reject their respective null
hypotheses over 364 series.

Test Nonlinear model Cross-sectional Average
Normality 1 1
LM(SC(1)) 0 0
LM(SC(4)) 0.016 0.016

LM(ARCH(1)) 0.827 298
LM(ARCH(4)) 0.475 0.483
Nonlinearity 0.395 0.442

Table 10: Stock return empirical application. Proportion of series for which information crite-
ria choose the nonlinear model, augmented with idiosyncratic AR component, over comparator
model over 364 series

Criterion Cross-sectional Average
AIC 0.536
BIC 0.536

Hannan-Quinn 0.536
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Figure 1: Results for the deterministic model. First panel: r = 0.5, Second panel: r = 3.
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Figure 2: Results for the stochastic model. Two different realisations
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Figure 3: Results for the stochastic model using errors with fat tails

56



Figure 4: Results for the restricted linear version of the stochastic model

57



Figure 5: Results for the stochastic model using errors and factors with fat tails. First
panel:ρ = 0.9, Second panel: ρ = 0.999
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