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Abstract

The paper discusses the dynamics of inflation and money
growth in a stochastic framework, allowing for double unit roots
in the nominal variables. It gives some examples of typical I(2)
’symptoms’ in empirical I(1) models and provides both a non-
technical and a technical discussion of the basic differences be-
tween the I(1) and the I(2) model. The notion of long-run and
medium-run price homogeneity is discussed in terms of testable
restrictions on the I(2) model. The Brazilian high inflation period
of 1977:1-1985:5 illustrates the applicability of the I(2) model and
its usefulness to address questions related to inflation dynamics.
JEL classification: C32, E41, E31.
Keywords: Cointegrated VAR, Price Homogeneity, Cagan Model,

Hyper Inflation

1 Introduction

The purpose of this paper is to give an intuitive account of the cointe-
grated VAR model for I(2) data and to demonstrate that the rich struc-
ture of the I(2) model is particularly relevant for the empirical analyses of
economic data characterized by strongly persistent shocks to the growth
rates. Such data are usually found in applications of economic mod-
els explaining the determination of nominal magnitudes. For example,
the explicit assumption of a nonstationary error term in some models of
money demand during periods of high or hyper inflation (Cagan, 1956,
Sargent, 1977), implies that nominal money and prices are I(2). Thus,
the empirical analysis of such models would only make sense in the I(2)
model framework.
However, as argued in Juselius and Vuojesevic (2003), prices in hyper-

inflationary episodes should not be modelled as an I(2) but rather as an
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explosive root process. Though such episodes are (almost by defini-
tion) short they are usually preceded by periods of high inflation rates
for which the I(2) analysis is more adequate. Even though inflationary
shocks in such periods are usually large, it is worth stressing that the
(double) unit root property, as such, is not related to the magnitude but
the permanence of shocks. Therefore, we may equally well find double
unit roots in prices during typical periods of low inflation rates, like
the present one, and not just in periods of high inflation rates like the
seventies. But, while the persistence of shocks determine whether price
inflation is I(1) or I(0), the magnitude of inflationary shocks is probably
much more indicative of a risk for hyper inflation. High inflation peri-
ods are, therefore, particularly interesting as they are likely to contain
valuable information about the mechanisms which subsequently might
lead to hyper-inflation.
The empirical application to the Brazilian high-inflation period of

1977-1985 offers a good illustration of the potential advantages of using
the I(2) model and demonstrates how it can be used to study impor-
tant aspects of the inflationary mechanism in periods preceding hyper
inflation.
The Cagan hyper inflation model is first translated into set of testable

empirical hypotheses on the pulling and pushing forces described by the
cointegrated I(2) model in AR and MA form. The paper finds strong
empirical support for one of the hypothetical pulling forces, the Ca-
gan money demand relation with the opportunity cost of holding money
measured by a combination of CPI inflation and currency depreciation
in the black market. The Cagan’s α coefficient, defining the average
inflation rate at which government can gain maximum seignorage, is
estimated to be approximately 40-50% which is usually considered to
describe hyper inflation. Thus, it seems likely that the seed to the sub-
sequent Brazilian hyper inflation episode can be found in the present
data. This is further supported by the finding that (1) there is a small
explosive root in the VAR model, (2) the condition for long-run price ho-
mogeneity was strongly violated, and (3) the CPI price inflation showed
lack of equilibrium correction behavior. The latter is associated with
the widespread use of wage and price indexation, which prohibited mar-
ket forces to adjust back to equilibrium after a price distortion. As a
consequence domestic price inflation gained momentum as a result of
increasing inflationary expectations in the foreign exchange market.
The organization of the paper is as follows: Section 2 discusses money

growth and inflation in a Cagan type of high / hyper inflation model
framework. Section 3 reformulates the high inflation problem in a sto-
chastic framework allowing for double unit roots in the nominal vari-
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ables. Section 4 discusses typical ’symptoms’ in the VAR analysis when
incorrectly assuming that the data are I(1) instead of I(2) and gives a
first intuitive account of the basic difference between the I(1) and the
I(2) analysis. Section 5 defines formally the I(2) model in the AR and
the MA form, discusses the role of deterministic components in the I(2)
model and introduces the two-step procedure for determining the two
cointegration rank indices. Section 6 gives an interpretation of the vari-
ous components in the I(2) model and illustrates with the Brazilian data.
Section 7 discusses long-run and medium-run price homogeneity and how
these can formulated as testable restrictions on the I(2) model. Section
8 presents the empirical model for money growth, currency depreciation
and price inflation in Brazil. Section 9 concludes.

2 Money growth and inflation

It is widely believed that the growth in money supply in excess of real
productive growth is the cause of inflation, at least in the long run.
The economic intuition behind this is that other factors are limited in
scope, whereas money in principle is unlimited in supply (Romer, 1996).
Generally, the reasoning is based on equilibrium in the money market so
that money supply equals money demand:

M/P = L(R,Y r), (1)

where M is the money stock, P the price level, Y r real income, R an
interest rate, and L(·) the demand for real money balances. In a high
(and accelerating) inflation period, the Cagan model for hyper inflation
predicts that aggregate money demand is more appropriately described
by :

M/P = L(πe, Y r), Lπe < 0, LY r > 0 (2)

where πe is expected inflation.
The latter model (2) is chosen as the baseline model in the subsequent

empirical analysis of the Brazilian high inflation experience in the seven-
ties until the mid eighties. The data consists of money stock measured
as M3, the CPI price index, the black market spot exchange rate, and
the real industrial production and covers the period 1977:1,...,1985:5.
The graphs of the data in levels and differences (after taking logs)

gives a first indication of the order of integration. The growth rates
of all three nominal variables in Figure 1 exhibit typical I(1) behavior,
implying that the levels of the variables are I(2). In contrast the graphs
of the log of the industrial production in levels and differences in Figure
2 do not suggest I(2) behavior: The smooth behavior typical of I(2)
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variables is not present in the level of industrial production and the
differenced process looks significantly mean-reverting.
The middle part of Figure 2 demonstrates how real money stock

(lnM3 - lnCPI ) and real exchange rates have evolved in a nonstationary
manner and increasingly so after 1981. Figure 2, lower panel compares
the levels and the differences of the official and black market rate ex-
change rate. While the official rate seems to have stayed below the black
market rate for some periods the graphs show that the two major de-
valuations brought the two series back to the same level. Thus, it seems
likely that the black market exchange rate is a good proxy for the ’true’
value of the Brazilian currency in this period.
When data are nonstationary, the Cagan model can be formulated

as a cointegrating relation, i.e.:

(M/P )t − L(πet , Yt) = vt (3)

where vt is a stationary process measuring the deviation from the steady-
state position at time t.
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Figure 1. Nominal M3, CPI, and exchange rates in levels and
differences.
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Figure 2. The graphs of industrial production in levels and differences
(upper part), M3 and exchange rate both deflated with CPI (middle
panel), and the black and white market exchange rate in levels and

differences (lower panel).

The stationarity of vt implies that whenever the system has been
shocked it will adjust back to equilibrium and is, therefore, essential for
the interpretation of (3) as a steady-state relation. If vt is nonstation-
ary as explicitly assumed in Sargent (1977) money supply has deviated
from the steady-state value of money demand. As this case generally
implies a double unit root in the data, the choice of the I(2) model for
the econometric analysis seems natural. Therefore, when addressing em-
pirical questions related to the mechanisms behind inflation and money
growth in a high or hyper inflation regime we need to understand and
interpret the I(2) model .

3 Formulating the economic problem in a stochas-
tic framework

Cointegration and stochastic trends are two sides of the same coin: if
there is cointegration there are also common stochastic trends. There-
fore, to be able to address the transmission mechanism of monetary
policy in a stochastic framework it is useful first to consider a conven-
tional decomposition into trend, T , cycle, C, and irregular component,
I, of a typical macroeconomic variable.
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X = T × C × I
and allow the trend to be both deterministic, Td, and stochastic, Ts, i.e.
T = Ts×Td, and the cyclical component to be of long duration, say 6-10
years, Cl, and of shorter duration, say 3-5 years, Cs, i.e. C = Cl × Cs.
The reason for distinguishing between short and long cycles is that a
long/short cycle can either be treated as nonstationary or stationary
depending on the time perspective of the study. For example, the graph
of the trend-adjusted industrial production in Figure 5, lower panel,
illustrates long cycles in the data that were found nonstationary by the
statistical analysis.
An additive formulation is obtained by taking logarithms:

x = (ts + td) + (cl + cs) + i (4)

where lower case letters indicate a logarithmic transformation. Even if
the stochastic trends are of primary interest for the subsequent analyses,
a linear time trend is needed to account for average linear growth rates
typical of most economic data.

3.1 Stochastic and deterministic trends
As an illustration of a trend-cycle decomposition we consider the follow-
ing vector of variables xt = [m, p, sb, yr]t, t = 1977:1,...,1985:5, where m
is the log of M3, p is the log CPI, sb is the log of black market exchange
rate, and yr is the log of industrial production. All variables are treated
as stochastic and will be modelled, independently of whether they are
considered endogenous or exogenous in the economic model.
A stochastic trend describes the cumulated impact of all previous

permanent shocks on a variable, i.e. it summarizes all the shocks with
a long lasting effect. This is contrary to a transitory shock, the effect of
which cancels either during the next period or over the next few periods.
For example, the income level of a household can be thought of as the
cumulation of all previous permanent income changes (shocks), whereas
the effect of temporary shocks, like lottery prizes, will not cumulate as
it is only a temporary change in income.
If inflation rate is found to be I(1), then the present level of inflation

can be thought of as the sum of all previous shocks to inflation, i.e.

πt =
tP

i=1

εi + π0. (5)

Because the effect of transitory shocks disappears in the cumulation a
stochastic trend, ts, is defined as the cumulative sum of previous perma-
nent shocks, ts,t =

Pt
i=1 εi. The difference between a linear stochastic
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and a linear deterministic trend is that the increments of a stochastic
trend change randomly, whereas those of a deterministic trend are con-
stant over time. Figure 3 illustrates three different stochastic trends
measured as the once cumulated residuals from the money, price and
exchange rate equations.
A representation of prices is obtained by integrating (5) once, i.e.

pt =
tP

s=1

πs =
tP

s=1

sP
i=1

εi + π0t+ p0. (6)

Thus, if inflation is I(1) with a nonzero mean (as most studies find),
prices are I(2) with a linear trend. Figure 4 illustrates the twice and
once cumulated residuals from the CPI price equation of the VAR model
defined in the next section.
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Figure 3. The graphs of the cumulated residuals from the money, price,
and exchange rate equations of the estimated VAR.
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Figure 4. The graphs of the twice and once cumlated residuals from
the price equation.

3.2 A trend-cycle scenario
Given the set of variables discussed above, one would expect (at least)
two autonomous shocks u1,t and u2,t, of which u1,t is a nominal shock
and u2,t is a real shock. If there are second order stochastic trends in the
data it seems plausible that they have been generated from the nominal
shocks. We will, therefore, tentatively assume that the second order
long-run stochastic trend ts in (4) is described by the twice cumulated
nominal shocks,

Pt
s=1

Ps
i=1 u1i. The long cyclical components cl in the

data will then be described by a combination of the once cumulated
nominal shocks,

Pt
i=1 u1i, and the once cumulated real shocks,

Pt
i=1 u2i.

This allows us to distinguish empirically between the long-run stochastic
trend in nominal levels,

Pt
s=1

Ps
i=1 u1i, the medium-run stochastic trend

in nominal growth rates,
Pt

i=1 u1i, and the medium-run stochastic trend
in real activity,

Pt
i=1 u2i. Figure 5 illustrates.

8



1977 1978 1979 1980 1981 1982 1983 1984 1985

.05

0

tradm3

1977 1978 1979 1980 1981 1982 1983 1984 1985
005

0

005
Dtradm3

1977 1978 1979 1980 1981 1982 1983 1984 1985
-.2

0

.2 trendadY

Figure 5. The graphs of trend-adjusted M3 in levels and differences
(upper and lower panel) and trend-adjusted industrial production

(lower panel).

The trend-cycle formulation below illustrates the ideas:

⎡⎢⎢⎣
mt

pt
sbt
yrt

⎤⎥⎥⎦ =
⎡⎢⎢⎣
c1
c2
c3
0

⎤⎥⎥⎦∙ tP
s=1

sP
i=1

u1i

¸
+

⎡⎢⎢⎣
d11 d12
d21 d22
d31 d32
d41 d42

⎤⎥⎥⎦∙Pt
i=1 u1iPt
i=1 u2i

¸
+

⎡⎢⎢⎣
g1
g2
g3
g4

⎤⎥⎥⎦ [t]+stat.comp.
(7)

The deterministic trend component, td = t, is needed to account for
linear growth trends present in the levels of the variables. If g4 = 0 and
d41 = 0 in (7), then

Pt
i=1 u2,i is likely to describe the long-run trend

in industrial production. In this case it may be possible to interpretPt
i=1 u2,i as a ”structural” unit root process (cf. the discussion in King,

Plosser, Stock and Watson (1991) on stochastic versus deterministic real
growth models).
If, on the other hand, g4 6= 0, then it seems plausible that the long-

run real trend can be approximated by a linear deterministic time trend.
In this case

Pt
i=1 u2,i is likely to describe medium-run deviations from

the linear trend, i.e. the long business cycle. The graph of the trend-
adjusted industrial production in the lower panel of Figure 5 illustrates
such a long cycle starting from the long upturn from 1977-1980:6 and
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ending with the downturn 1980:6-1984. Note also the shorter cycles of
approximately a year’s duration imbedded in the long cycle.
Therefore, the possibility of interpreting the second stochastic trend,Pt

i=1 u2,i, as a long-run structural trend depends crucially on whether
one includes a linear trend in (7) or not.
The trend components of mt, pt, st, and yt in (7) can now be repre-

sented by:

mt= c1
PP

u1i+d11
P

u1i+d12
P

u2i+g1t+ stat. comp.
pt = c2

PP
u1i+d21

P
u1i+d22

P
u2i+g2t+ stat. comp

st = c3
PP

u1i+d31
P

u1i+d32
P

u2i+g3t+ stat. comp
yt = +d41

P
u1i+d42

P
u2i+g4t+ stat. comp

(8)

If (c1, c2, c3) 6= 0, then {mt, pt, st} ∼ I(2). If, in addition, c1 = c2 = c3
then

mt − pt=(d11 − d21)
P

u1i+(d12 − d22)
P

u2i+(g1 − g2)t+stat.comp.
pt − st=(d21 − d31)

P
u1i+(d22 − d32)

P
u2i+(g2 − g3)t+stat.comp.

mt − st=(d11 − d31)
P

u1i+(d12 − d32)
P

u2i+(g1 − g3)t+stat.comp.
yt= +d41

P
u1i +d42

P
u2i +g4t+stat.comp.

(9)
The real variables are at most I(1) but, unless (g1 = g2), (g2 = g3), and
(g1 = g3), they are I(1) around a linear trend. Figure 5 illustrates the
trend-adjusted behavior of real M3 and industrial production.
Long-run price homogeneity among all the variables implies that both

the long-run stochastic I(2) trends and the linear deterministic trends
should cancel in (9). But, even if overall long-run homogeneity is re-
jected, some of the individual components of {mt− pt, pt− st, mt− st}
can, nevertheless, exhibit long-run price homogeneity. For example, the
case (mt− pt) ∼ I(1) is a testable hypothesis which implies that money
stock and prices are moving together in the long-run, though not neces-
sarily in the medium-run (over the business cycle).
The condition for long-run and medium-run price homogeneity is

{c11 = c21, and d11 = d21}, i.e. that the nominal shocks u1t affect
nominal money and prices in the same way both in the long run and
in the medium run. Because the real stochastic trend

P
u2i is likely

to enter mt but not necessarily pt, testing long-run and medium-run
price homogeneity jointly is not equivalent to testing (mt − pt) ∼ I(0).
Testing the composite hypothesis is more involved than the long-run
price homogeneity alone.
It is important to note that (mt− pt) ∼ I(1) implies (∆mt−∆pt) ∼

I(0), i.e. long-run price homogeneity implies a stationary spread between
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price inflation and money growth. In this case the stochastic trend in
inflation is the same as the stochastic trend in money growth. The
econometric formulation of long-run and medium-run price-homogeneity
in the I(2) model will be discussed in Section 7.
When overall long-run price homogeneity holds it is convenient to

transform the nominal system (8) to a system consisting of real variables
and a nominal growth rate, for example:

⎡⎢⎢⎣
mt − pt
st − pt

∆pt
yt

⎤⎥⎥⎦ =
⎡⎢⎢⎣
d11 − d21 d12 − d22
d21 − d31 d22 − d32

c21 0
d41 d42

⎤⎥⎥⎦∙Pt
i=1 u1,iPt
i=1 u2,i

¸
+

⎡⎢⎢⎣
g1 − g2
g2 − g3
0
g4

⎤⎥⎥⎦ [t] + ...

(10)
Given long-run price homogeneity all variables are at most I(1) in

(10). The nominal growth rate (measured by ∆pt, ∆mt, or ∆st) is only
affected by the once cumulated nominal trend,

Pt
i=1 u1,i, but all the

other variables can (but need not) be affected by both stochastic trends,Pt
i=1 u1,i and

Pt
i=1 u2,i.

The case (mt−pt−yt) ∼ I(0), i.e. the inverse velocity of circulation is
a stationary variable, requires that d11−d21−d41 = 0, d12−d22−d42 = 0
and g1 − g2 − g4 = 0. If d11 = d21 (i.e. medium run price homogeneity),
d22 = 0 (real stochastic growth does not affect prices), d41 = 0 (medium-
run inflationary movements do not affect real income), and d12 = d42,
thenmt−pt−yt ∼ I(0). In this case real money stock and real aggregate
income share one common trend, the real stochastic trend

P
u2i. The

stationarity of money velocity, implying common movements in money,
prices, and income, would then be consistent with the conventional mon-
etarist assumption as stated by Friedman (1970) that ”inflation always
and everywhere is a monetary problem”. This case would correspond to
model (1) in Section 2.
The case (mt − pt − yt) ∼ I(1), implies that the two common sto-

chastic trends affect the level of real money stock and real income dif-
ferently. Cagan’s model of money demand in a high (hyper) inflation
period suggests that the nonstationarity of the liquidity ratio is related
to the expected rate of inflation Et(∆pt+1). The latter is generally not ob-
servable, but as long as Et(∆pt+1)−∆pt is a stationary disturbance, one
can replace the unobserved expected inflation with actual inflation with-
out loosing cointegration. The condition that {Et(∆pt+1)−∆pt} ∼ I(0)
seems plausible considering that {∆pt+1 −∆pt} ∼ I(0) when pt ∼ I(2).
It amounts to assuming that {Et(∆pt+1)−∆pt+1} ∼ I(0), i.e. agents’
inflationary expectations do not systematically deviate from actual in-
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flation. Therefore, from a cointegration point of view we can replace the
expected inflation with the actual inflation:

mt − pt − yt + a1∆pt ∼ I(0), (11)

or, equivalently:

(mt − pt − yt) + a2∆st ∼ I(0).

where under the Cagan model a1 > 0, a2 > 0.

4 Diagnosing I(2)

VAR models are widely used in empirical macroeconomics based on the
assumption that data are I(1) without first testing for I(2) or checking
whether a near unit root remains in the model after the cointegration
rank has been imposed. Unfortunately, when the data contains a double
unit root essentially all inference in the I(1) model is affected. To avoid
making wrong inference it is, therefore, important to be able to diagnose
typical I(2) symptoms in the I(1) VAR model.
For the Brazilian data, the unrestricted VAR model was specified as:

∆xt = Γ1∆xt−1 +Πxt−2 + µ1t+ µ0 + ΦpDp83.8t + ΦsQst + εt,
εt ∼ Np(0,Ω ), t = 1, ..., T

(12)

where xt = [mt, pt, s
b
t , y

r
t ], t =1977:1,...,1985:5, Π = αβ0, µ1 = αβ1, µ01 =

αβ01, and (Γ1, µ0,Φp,Φs,Ω) are unrestricted. The estimates have been
calculated using CATS for RATS, Hansen and Juselius (1994). Misspec-
ification tests are reported in the Appendix.
The data are distinctly trending and we need to allow for linear trends

both in the data and in the cointegration relations when testing for coin-
tegration rank (Nielsen and Rahbek, 2000). The industrial production,
yrt , exhibits strong seasonal variation and we include 11 seasonal dum-
mies, Qst, and a constant, µ0 in the VAR model. Finally, the graphs of
the differenced black market exchange rate and nominal M3 money stock
exhibited an extraordinary large shock at 1983:8, which was accounted
for by an unrestricted impulse dummy Dp83.8t = 1 for t = 1983:8 and 0
otherwise. A permanent shock to the changes corresponds to a level shift
in the variables, which may or may not cancel in the cointegration rela-
tions. To account for the latter possibility the shift dummy, Ds83.8t = 0
for t = 1983:8 and 1 otherwise, was restricted to be in the cointegration
relations. It was found to be insignificant (p-value 0.88) and was left
out.
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The I(1) estimation procedure is based on the so called R-model in
which the short-run effects have first been concentrated out:

R0t = αβ0R1t + εt. (13)

where R0t and R1t are defined by:

∆xt|{z}
I(1)

= B̂11∆xt−1| {z }
I(1)

+ const+B13Dpt + R0t|{z}
I(0)

(14)

and
x̃t−1|{z}
I(2)

= B̂21∆xt−1| {z }
I(1)

+ const+B23Dpt + R1t|{z}
I(2)

. (15)

x̃0t = [mt, pt, s
b
t , y

r
t , t] and Dpt is a catch-all for all the dummy variables.

If xt ∼ I(2) then ∆xt ∼ I(1) and (14) is a regression of an I(1) process
on its own lag. Thus, the regressand and the regressor contain the
same common trend which will cancel in regression. This implies that
R0t ∼ I(0), even if xt ∼ I(2). On the other hand equation (15) is a
regression of an I(2) variable, x̃t−1, on an I(1) variable, ∆xt−1. Because
an I(2) trend cannot be canceled by regressing on an I(1) trend, it follows
that R1t ∼ I(2).
Therefore, when xt ∼ I(2) (13) is a regression of an I(0) variable

(R0t) on an I(2) variable (R1t). Under the (testable) assumption that
εt ∼ I(0), either β0R1t = 0 or β0R1t ∼ I(0) for the equation (13) to
hold. Because the linear combination β0R1t transforms the process from
I(2) to I(0), the estimate β̂ is super-super consistent (Johansen, 1992).
Even though β is precisely estimated in the I(1) model when data are
I(2), the interpretation of β0xt as a stationary long-run relation has to
be modified as will be demonstrated below.
It is easy to demonstrate the connection between β0xt−2 and β0R1t

by inserting (15) into (13) :

R0t=αβ0R1t + εt
αβ0(x̃t−1 −B2∆xt−1) + εt

=α(β0x̃t−1 − β0B2∆xt−1) + εt
=α(β0x̃t−1| {z }

I(1)

− ω0∆xt−1| {z })
I(1)| {z }

I(0)

+ εt (16)

where ω = β0B2. It appears that the stationary relations β0R1t consists
of two components β0x̃t−1 and ω0∆xt−1 both of which are generally I(1).
The stationarity of β0R1t is, therefore, a consequence of cointegration
between β0x̃t−1 ∼ I(1) and ω0∆xt−1 ∼ I(1).
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Thus, when data are I(2), β0ix̃t ∼ I(1), while β0iR1t ∼ I(0) for at
least one i, i = 1, ..., r. It is, therefore, a clear sign of double unit roots
(or, alternatively, a unit root and an explosive root) in the model when
the graphs of β0ix̃t exhibits nonstationary behavior whereas β

0
iR1t looks

stationary. As an illustration we have reported the graphs of all four
cointegration relations (of which β01R1t and β02R1t are stationary) in
<Figures 6-9>. The upper panels contain the relations, β0ix̃t, and the
lower panels the cointegration relations corrected for short-run dynamics,
β0iR1t.
Among the graphs in Figures 6 and 7 β01x̃t and β

0
2x̃t exhibit distinctly

nonstationary behavior whereas the graphs of the corresponding β0iR1,t
look reasonably stationary. This is strong evidence of double roots in
the data. As all the remaining graphs seem definitely nonstationary, this
suggests that r = 2 and that there is at least one I(2) trend in the data.
Another way of diagnosing I(2) behavior is to calculate the charac-

teristic roots of the VAR model for different choices of the cointegration
rank r. When xt ∼ I(2) the number of unit roots in the characteristic
polynomial of the VARmodel is s1+2s2, where s1 and s2 are the number
of autonomous I(1) and I(2) trends respectively and s1 + s2 = p− r.
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Figure 6. The graphs of β01xt (upper panel) and β01R1t (lower panel).
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Figure 7. The graphs of β02xt (upper panel) and β02R1t (lower panel).
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Figure 8. The graphs of β03xt (upper panel) and β03R1t (lower panel).
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V4`  * Zk(t)
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Figure 9. The graphs of β04xt (upper panel) and β04R1t (lower panel).

The characteristic roots contain information on unit roots associated
with both Γ andΠ, whereas the standard I(1) trace test is only related to
the number of unit roots in theΠmatrix. If the data are I(1) the number
of unit roots (or near unit roots) should be p− r, otherwise p− r + s2.
Therefore, if for any reasonable choice of r there are still (near) unit
roots in the model, it is a clear sign of I(2) behavior in at least some of
the variables. Because the additional unit root(s) are related to ∆xt−1,
i.e. belong to the matrix Γ = I − Γ1, lowering the value of r does not
remove the s2 additional unit root associated with the I(2) behavior.
In the Brazilian nominal model there are altogether p× k = 4× 2 =

8 eigenvalue roots in the characteristic polynomial which are reported
below for r = 1, ..., 4. Unrestricted near unit roots are indicated with
bold face.

V AR(p)1.002 0.97 0.90 0.90 0.38 0.33 0.06 0.06
r = 3 1.0 1.002 0.91 0.91 0.38 0.33 0.06 0.06
r = 2 1.0 1.0 0.99 0.86 0.38 0.32 0.09 0.07
r = 1 1.0 1.0 1.0 1.001 0.61 0.33 0.09 0.00

In the unrestricted model two of the roots are very close to the unit
circle, one is larger than unity possibly indicating explosive behavior,
the other is a stable near unit root. In addition there is a complex
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pair of two fairly large roots. The presence of an unstable root can be
seen in the graph of the first cointegration relation β01x̃t in Figure 6:
The equilibrium error in the ‘steady-state’ relation in levels grows in an
unstable manner at the end of the period, but is ‘compensated’ by a
similar increase in the inflation rate, so β01R1,t looks stationary. This
suggests that the seed to the Brazilian hyper inflation in the subsequent
period can already be found in the present data.
However, the explosive part of the root is very small and might not

be statistically significant. In such a case we would expect the unstable
root to disappear when restricting the rank. We notice that for r = 3 and
r = 1 the explosive root is still left in the model, whereas for r = 2 it has
disappeared. Independently of the choice of r, a near unit root remains
in the model consistent with I(2), or moderately explosive, behavior.
Therefore, we continue with r = 2 and disregard the possibility of an
explosive root in the econometric analysis. Subsequently we will use
the empirical results to demonstrate where in the model the seed to the
subsequent hyper inflationary behavior can be found.
In most cases a graphical inspection of the data is sufficient to de-

tect I(2) behavior and it might seem meaningless to estimate the I(1)
model when xt is in fact I(2). However, a variety of hypotheses can be
adequately tested using the I(1) procedure with the caveat that the in-
terpretation of the cointegration results should be in terms of CI(2, 1)
relations, i.e. relations which cointegrated from I(2) to I(1), and not
from I(1) to I(0). One of the more important hypotheses which can be
tested is the long-run price homogeneity of β to be discussed in Section
7.

5 Defining the I(2) model

It is useful to reformulate the VAR model defined in the previous section
in acceleration rates, changes and levels:

∆2xt = Γ∆xt−1 +Πxt−1 + ΦpDp,t + ΦsQs,t + µ0 + µ1t+ εt,
εt ∼ Np(0,Ω ), t = 1, ..., T

(17)

where Γ = −(I − Γ1) and µ1 = αµ1.0 is restricted to lie in sp(α) (cf.
Section 5.3).

5.1 The AR formulation
The hypothesis that xt is I(2) is formulated in Johansen (1992) as two
reduced rank hypotheses:

Π = αβ0 , where α, β are p× r (18)
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and
α0⊥Γβ⊥ = ζη0, where ζ, η are (p− r)× s1. (19)

The first condition is the usual I(1) reduced rank condition associated
with the variables in levels, whereas the second condition is associated
with the variables in differences. The intuition is that the differenced
process also contains unit roots when data are I(2). Note, however, that
(19) is formulated as a reduced rank condition on the transformed Γ.
The intuition behind this can be seen by pre-multiplying (17) with α⊥
(and post-multiplying by β⊥). This makes the levels component αβ

0xt−2
disappear and reduces the model to a ((p − r) × (p − r))-dimensional
system of equations in first- and second order differences. In this system
the hypothesis of reduced rank of the matrix α0⊥Γβ⊥ is tested in the
usual way. Thus, the second reduced rank condition is similar to the
first except that the reduced rank regression is on the p − r common
driving trends. Using (19) it is possible to decompose α⊥ and β⊥ into
the I(1) and I(2) directions:

α⊥ = {α⊥1, α⊥2} and β⊥ = {β⊥1, β⊥2}, (20)

where α⊥1 = α⊥(α
0
⊥α⊥)

−1ζ and β⊥,1 = β⊥(β
0
⊥β⊥)

−1η is p × s1, α⊥2 =
α⊥ζ⊥ and β⊥2 = β⊥η⊥ is p × s2, and ζ⊥, η⊥ are the orthogonal com-
plements of ζ and η, respectively. Note that the matrices α⊥1, α⊥2, β⊥1,
and β⊥2 are called α1, α2, β1 and β2 in the many papers on I(2) by Jo-
hansen and coauthors. The reason why we deviate here from the simpler
notation is that we need to distinguish between different β and α vec-
tors in the empirical analysis and, hence, use the latter notation for this
purpose.
While the I(1) model is only based on the distinction between r coin-

tegrating relations and p− r non-cointegrating relations, the I(2) model
makes an additional distinction between s1 I(1) trends and s2 I(2) trends.
Furthermore, when r > s2, the r cointegrating relations can be divided
into r0 = r−s2 directly stationary CI(2, 2) relations (cointegrating from
I(2) to I(0)) and s2 polynomially cointegrating relations. This distinction
will be illustrated in Section 6 based on the Brazilian data.

5.2 The moving average representation
The moving average representation of (17) describes the variables as a
function of stochastic and deterministic trends, stationary components,
initial values and deterministic dummy variables. It is given by:
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xt = C2
tP

s=1

sP
i=1

εi + C2
1
2
µ0t

2 + C2Φp

tP
s=1

sP
i=1

Dpi + C2Φs

tP
s=1

sP
i=1

Qsi

+C1
tP

s=1

εs + C1Φp

tP
s=1

Dps + C2Φs

tP
s=1

Qss + (C1 +
1
2
C2)µ0t+ γ1t

+Yt +A+Bt, t = 1, ..., T

(21)

where Yt defines the stationary part of the process, A andB are functions
of the initial values x0, x−1, ..., x−k+1, and the coefficient matrices satisfy:

C2 = β⊥2(α
0
⊥2Ψβ⊥2)

−1α
0
⊥2, β0C1 = −α0ΓC2, β0⊥1C1 = −α0⊥1(I−ΨC2)

(22)
where Ψ = Γβα0Γ+ I − Γ1 and the shorthand notation α = α(α0α)−1 is
used. See Johansen (1992, 1995).
We denote eβ⊥2 = β⊥2(α

0
⊥2Ψβ⊥2)

−1 so that

C2 = eβ⊥2α0
⊥2 (23)

i.e. the C2 matrix has a similar reduced rank representation as C1 in the
I(1) model. It is, therefore, natural to interpret α

0
⊥2ΣΣεi as the second

order stochastic trend that has affected the variables xt with weights eβ⊥2.
However, the C1 matrix cannot be decomposed similarly. It is a more
complex function of the AR parameters of the model and the C2 matrix
and the interpretation of the parameters α⊥1 and β⊥1 is less intuitive.
The MA representation (22) together with (23) can be used to obtain

ML estimates of the stochastic and deterministic trends and cycles and
their loadings in the intuitive scenario (8) of Section 3. This will be
illustrated in Section 6.

5.3 Deterministic components in the I(2) model
It appears from (21) that an unrestricted constant in the model is con-
sistent with linear and quadratic trends in the data. Johansen (1992)
suggested the decomposition of the constant term µ0 into the α, α⊥1, α⊥2
projections:

µ0 = αµ0 + γ0 + γ1,

where

• µ0 is a constant term in the stationary cointegration relations,

• γ0 is the slope coefficient of linear trends in the variables, and
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• γ1 is the slope coefficient of quadratic trends in the variables.

Quadratic trends in the levels of the variables is consistent with linear
trends in the growth rates, i.e. in inflation rates, which generally does
not seem plausible (not even as a local approximation). Therefore, the
empirical model will be based on the assumption that the data contain
linear but no quadratic trends, i.e. that γ1 = 0.
Similar arguments can be given for the dummy variables. An unre-

stricted shift dummy, such as Ds83.8t, in the model is consistent with a
broken quadratic trend in the data, whereas an unrestricted blip dummy,
such as Dp83.8t = ∆Ds83t, is consistent with a broken linear trend in
the data. Thus, a correct specification of dummies is important as they
are likely to strongly affect both the model estimates and the asymptotic
distribution of the rank test.
In many cases it is important to allow for trend-stationary relations

in the I(2) model (Rahbek, Kongsted, and Jørgensen, 1999). In this case
µ1t 6= 0 and the vector µ1 needs to be decomposed in a similar way as
the constant term:

µ1 = α0µ1 + δ0 + δ1,

where

• µ1 is the slope coefficient of a linear trend in the cointegration
relations,

• δ0 is the slope coefficient of quadratic trends in the variables, and

• δ1 is the slope coefficient of cubic trends in the variables.

Since the presence of deterministic quadratic or cubic trends are not
very plausible we will assume that δ0 = δ1 = 0.

5.4 The determination of the two rank indices
The cointegration rank r can be determined either by the two-step es-
timation procedure in Johansen (1995) based on the polynomial cointe-
gration property of β0xt, or by the FIML procedure in Johansen (1997)
based on the CI(2, 1) property of β0xt and β0⊥1xt. The idea of the two-
step procedure is as follows: The first step determines r = r based on
the trace test in the standard I(1) model and the estimates α̂ and β̂. The
second step determines s1 = s1 by solving the reduced rank problem for
the matrix (α̂0⊥Γβ̂⊥). The practical procedure is to calculate the trace
test for all possible combinations of r and s1 so that the joint hypothesis
(r, s1) can be tested using the procedure in Paruolo (1996).
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Table 1: Testing the two rank indices in the I(2) model
p-r r FIML test procedure: Q(s1, r) Q(r) λi
4 0 323.87

[0.00]
220.09
[0.00]

149.68
[0.00]

99.01
[0.00]

95.91
[0.00]

0.43

3 1 141.95
[0.00]

73.89
[0.02]

51.69
[0.08]

44.16
[0.04]

0.24

2 2 48.92
[0.05]

24.14
[0.47]

19.67
[0.25]

0.12

1 3 13.40
[0.34]

7.29
[0.32]

0.05

s2 4 3 2 1 0

Based on a broad simulation study Nielsen and Rahbek (2003) show
that the FIML procedure has better size properties than the two-step
procedure. The estimates here are, therefore, based on the FIML pro-
cedure using a new version of CATS for RATS developed by Jonathan
Dennis.
Table 1 reports the test of the joint hypothesis (r, s1) with the 95%

quantiles of the simulated distribution given in brackets. They are de-
rived for a model with a linear trend restricted to be in the cointegra-
tion space. The test procedure starts with the most restricted model
(r = 0, s1 = 0, s2 = 4) in the upper left hand corner, continues to the
end of the first row (r = 0, s1 = 4, s2 = 0), and proceeds similarly row-
wise from left to right until the first acceptance. The first acceptance
is at (r = 1, s1 = 1, s2 = 1) with a p-value of 0.08. However, the case
(r = 2, s1 = 1, s2 = 1) is accepted with a much higher p-value 0.47 and
will be our preferred choice. As a matter of fact, the subsequent results
will demonstrate that the second relation plays a crucial role in the prce
mechanisms which led to hyper inflation.
To improve the small sample properties of the test procedures, a

Bartlett correction can be employed (Johansen, 2000). Even though it
significantly improves the size of the cointegration rank, the power of
the tests is generally very low for I(2) or near I(2) data.
The Paruolo procedure delivers a correct size asymptotically, but

does not solve the problem of low power. Because economic theory is
often consistent with few rather than many common trends, a reversed
order of testing might be preferable from an economic point of view.
However, in that case the test will no longer deliver a correct asymptotic
size.

Furthermore, when the I(2) model contains intervention dummies
that cumulate to trends in the DGP , standard asymptotic tables are no
longer valid. For example, an unrestricted impulse dummy, like Dp83.8 t,
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will cumulate to a broken linear trend in the data. The asymptotic
distributions for the I(2) model do not account for this feature. Since
the null of a unit root is not necessarily reasonable from an economic
point of view, the low power and the impact of the dummies on the
distributions can be a serious problem. This can sometimes be a strong
argument for basing the choice of r and s1 on prior information given by
the economic insight as well as the statistical information in the data. As
demonstrated in Section 4 such information can be a graphical inspection
and the number of (near) unit roots in the characteristic polynomial of
the VAR.
For the present choice of rank (r = 2, s1 = 1, s2 = 1) the character-

istic roots of the V AR model became

1.0 1.0 1.0 0.89 0.39 0.06 −0.09 −0.32
leaving a fairly large root in the model. Therefore, another possibility
would have been to choose r = 2 , s1 = 0, s2 = 2.

6 Interpreting the I(2) structure

It is no easy task to give the intuition for the different levels of integration
and cointegration in the I(2) model and how they can be translated into
economically relevant relationships. Table 2 illustrates the I(2) decompo-
sition of the Brazilian data, which is based on the following assumptions
(anticipating the subsequent results):

mt ∼ I(2), pt ∼ I(2), sbt ∼ I(2), yrt ∼ I(1)

and
r = 2| {z }

r0=1,r1=1

, and p− r| {z }
s1=1,s2=1

= 2

The left hand side of Table 2 illustrates the decomposition of xt into
two β and two β⊥ directions corresponding to r = 2 and p− r = 2. This
decomposition defines two stationary polynomially cointegrating rela-
tions, β01xt+ω01∆xt and β

0
2xt+ω02∆xt, and two nonstationary relations,

β0⊥1xt ∼ I(1) and β0⊥2xt ∼ I(2). Note that β0⊥1xt is cointegrating from
I(2) to I(1), and can become I(0) by differencing once, whereas β0⊥2xt is
not cointegrating at all and, thus, can only become I(0) by differencing
twice.
When r > s2 the polynomially cointegrating relations can be further

decomposed into r0 = r − s2 = 1 directly cointegrating relations, β00xt,
and r1 = r − r0 = s2 = 1 polynomially cointegrating relations, β

0
1xt +

κ0∆xt, where κ is a p× s2 matrix proportional β⊥2.
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Table 2: Decomposing the data vector using the I(2) model
The β, β⊥ decomposition of xt The α, α⊥ decomposition

r = 2
[β0.1xt| {z }
I(1)

+ ω0.1∆xt| {z }
I(1)

] ∼ I(0) α1:short-run adjustment coefficients

[β0.2xt| {z }
I(1)

+ ω0.2∆xt]| {z }
I(1)

∼ I(0) α2: short-run adjustment coefficients

s1 = 1 β0⊥1xt ∼ I(1) α0⊥1
Pt

i=1 εi: I(1) stochastic trend

s2 = 1 β0⊥2xt ∼ I(2) α0⊥2
Pt

s=1

Ps
i=1 εi: I(2) stochastic trend

The right hand side of Table 2 illustrates the corresponding decom-
position into the α and the α⊥ directions, where α1 and α2 measure
the short-run adjustment coefficients associated with the polynomially
cointegrating relations, whereas α⊥1 and α⊥2 measure the loadings to
the first and second order stochastic trends.
Both β0xt and β0⊥1xt are CI(2, 1) but they differ in the sense that

the former can become stationary by polynomial cointegration, whereas
the latter can only become stationary by differencing. Thus, even in the
I(2) model the interpretation of the reduced rank of the matrix Π is that
there are r relations that can become stationary either by cointegration
or by multi-cointegration, and p−r relations that only become stationary
by differencing.
Thus, the I(2) model can distinguish between the CI(2, 1) relations

between levels {β0xt, β
0
⊥1xt}, the CI(1, 1) relations between levels and

differences {β0xt−1 + ω0∆xt}, and finally the CI(1, 1) relations between
differences {β0⊥1∆xt}. As a consequence, when discussing the economic
interpretation of these components, we need to modify the generic con-
cept of ”long-run” steady-state relations accordingly. We will here use
the interpretation of
• β00xt as a static long-run equilibrium relation,
• β01xt + κ0∆xt as a dynamic long-run equilibrium relation,
• β0⊥1∆xt as a medium-run equilibrium relation.

As mentioned above the parameters of Table 2 can be estimated
either by the two-step procedure or by the FIML procedure. Paruolo
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Table 3: Unrestricted estimates of the I(0), I(1), and I(2) directions of
α and β

m p sb yr

The stationary cointegrating relations
β̂0 1.00 -0.07 -0.91 -1.22
β̂1 -0.67 1.00 -0.06 0.37
κ -4.87 -3.78 -5.48 -0.30

The adjustment coefficients
α̂0 0.04 -0.03 0.17 0.01
α̂1 0.10 0.04 0.11 -0.01

The nonstationary relations
β̂⊥1 4.54 0.46 -3.99 6.69
β̂⊥2 0.52 0.40 0.58 -0.03

The common stochastic trends
α̂⊥1 0.038 -0.007 -0.012 0.122
α̂⊥2 -0.053 -0.078 -0.016 -0.023
σ̂ε 0.016 0.010 0.054 0.028

(2000) showed that the two-stage procedure gives asymptotically efficient
ML estimates. The FIML procedure solves just one reduced rank prob-
lem in which the eigenvectors determine the space spanned by (β, β⊥1),
i.e. the p− s2 I(1) directions of the process. Independently of the esti-
mation procedure, the crucial estimates are {β̂, β̂⊥1}, because for given
values of these it is possible to derive the estimates of {α, α⊥1, α⊥2, β⊥2}
and, if r > s2, to further decompose β and α into β = {β0, β1} and
α = {α0, α1}.
The parameter estimates in <Table 3> are based on the two-step

procedure for r = 2, s1 = 1, and s2 = 1. We have imposed identifying
restrictions on two cointegration relations by distinguishing between the
directly stationary relation, β00xt, and the polynomially cointegrated re-
lation, β01xt+κ∆xt, where κ is proportional to β⊥2. Note, however, that
this is just one of many identification schemes which happen to be pos-
sible because r − s2 = 1. In Section 8 we will present another identified
structure where both relations are polynomially cointegrating.
The bβ0⊥1xt relation is a CI(2, 1) cointegrating relation which only

can become stationary by differencing. We interpret such a relation as
a medium long-run steady-state relation. The estimated coefficients ofbβ⊥1 suggest a first tentative interpretation:

∆yrt = 0.60∆sbt − 0.68∆mt
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i.e. real industrial production has increased in the medium run with the
currency depreciation relative to the growth of money stock.
The estimate of α⊥2 determines the stochastic I(2) trend α̂0⊥2ΣΣε̂i =

ΣΣbu2i, where ε̂i is the vector of estimated residuals from (17) and bu2t =
α̂0⊥2ε̂t. Permanent shocks to money stock relative to price shocks, to
black market exchange rates and to industrial production seem to have
generated the I(2) trend in this period. The standard deviations of the
VAR residuals are reported in the bottom row of the table.
The estimate of α⊥1 describes the second I(1) stochastic trend,

Pbu2i =bα0⊥1P ε̂i. The coefficient to real industrial production has by far the
largest weight in bα⊥1 suggesting that it measures an autonomous real
shock. This is consistent with the hypothetical scenario (7) of Section 3.
Figure 10, upper panel, shows the graph of the I(2) stochastic trend,

α̂0⊥2
PP

ε̂i, where α̂⊥2 is from Table 3. The graph in the middle panel
is the differenced I(2) trend and the graph in the lower panel is the real
stochastic trend given by

P
ε̂y,i.

1977 1978 1979 1980 1981 1982 1983 1984 1985

.5

I2trend
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.01
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Figure 10. The graphs of the estimated I(2) trend in the upper panel,
the nominal I(1) trend (i.e. the differenced I(2) trend) in the middel

panel and the real I(1) trend in the lower panel.

The vector β̂⊥2 describes the weights ci, i = 1, .., 4 of the I(2) trend in
the scenario (7) of Section 3 for the Brazilian variables. Nominal money,
prices and exchange rates have large coefficients of approximately the
same size, whereas the coefficient to real income is very small. This
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suggests that only the nominal variables are I(2) consistent with the
assumption behind the scenario in (7).

7 Nominal growth in the long run and the medium
run

The notion of price homogeneity plays an important role for the analysis
of price adjustment in the long run and the medium run. Both in the
I(1) and the I(2) model, long-run price homogeneity can be defined
as a zero sum restriction on β. Under the assumption that industrial
production is not affected by the I(2) trend, long-run price homogeneity
for the Brazilian data can be expressed as:

β0i = [ai,−ωiai,−(1− ωi)ai, ∗, ∗], i = 1, ..., 2,
β0⊥1= [b,−ω3b,−(1− ω3)b, ∗],
β0⊥2= [c, c, c, 0].

(24)

where β and β⊥1 define CI(2, 1) relations and β⊥2 define the variables
which are affected by the I(2) trends. Overall price homogeneity is
testable either as a joint hypothesis of the first two conditions or as a
single hypothesis of the last condition in (24) (see, Kongsted, 2004). The
first condition in (24) describes price homogeneity between the levels of
the nominal variables. It can be easily tested in the standard I(1) model
as a linear hypothesis on β either expressed as R0βi = 0, i = 1, 2, ..., r,
where for the Brazilian data R0 = [1, 1, 1, 0, 0] or, equivalently, as β =
Hϕ where ϕ is a (p1− 1)× r matrix of free coefficients and

H =

⎡⎢⎢⎢⎢⎣
1 0 0 0
−1−1 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎥⎦ .
The hypothesis of price homogeneity was strongly rejected based on

a LR test statistic of 41.9, asymptotically distributed as χ2(2). We note
that the first three coefficients of β̂1 in Table 3 do not even approximately
sum to zero, whereas those of β̂0 are much closer to zero.
The β̂⊥2 estimates in Table 3 suggest that nominal money stock

and black market exchange rate have been similarly affected by the I(2)
trend, whereas the CPI price index has a smaller weight. Furthermore,
the coefficient to industrial production is close to zero, consistent with
the hypothesis that the latter has not been affected by the I(2) trend.
This can be formally tested based on the LR procedure (Johansen, 2004)
as an hypothesis that industrial production is I(1). The test, distributed
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as χ2(1), was accepted based a test statistic of 1.30 and a p-value of
0.25.
In the I(2) model, there is the additional possibility of medium-

run price homogeneity defined as homogeneity between nominal growth
rates. This is, in general, associated with real variables being I(1). For
example if (m− p) ∼ I(1) and (sb − p) ∼ I(1), then (∆m−∆p) ∼ I(0)
and (∆sb −∆p) ∼ I(0) and there is medium-run price homogeneity in
the sense of nominal growth rates being pairwise cointegrated (1, -1).
Hence, a rejection of long-run price homogeneity implies a rejection of
homogeneity between the nominal growth rates. We note that the first
three coefficients of β̂⊥1 in Table 3 do not even roughly sum to zero
consistent with the rejection of long-run price homogeneity.
The previous section demonstrated that the levels component, Πxt−2

and the differences component, Γ∆xt−1 in (17) are closely tied together
by polynomial cointegration. In addition Γ∆xt−1 contains information
about β0⊥∆xt−1, i.e. about the medium long-run relation between growth
rates. Relying on results in Johansen (1995) the levels and difference
components of model (17) can be decomposed as:

Γ∆xt−1 +Πxt−1=(Γβ)β
0∆xt−1| {z }
I(0)

+(αα0Γβ⊥1 + α⊥1)β
0
⊥1∆xt−1| {z }

I(0)

+(αα0Γβ⊥2)β
0
⊥2∆xt−1| {z }

I(1)

+α1 β
0
1xt−1| {z }
I(1)

+α0 β
0
0xt−1| {z }
I(0)

(25)

where β̄ = β(β0β)−1 and ᾱ is similarly defined. The Γ matrix is de-
composed into three parts describing different dynamic effects from the
growth rates, and the Π matrix into two parts describing the effects from
the stationary relation, β00xt−1, and the nonstationary relation, β

0
1xt−1.

The matrices in brackets correspond to the adjustment coefficients.
The interpretation of the first component in (25), (Γβ)β0∆xt−1, is

that prices are adjusting both to the equilibrium error between the price
levels, β0xt−2, and to the change in the equilibrium error, β

0∆xt−1. Under
long-run price homogeneity it would have represented a homogeneous
effect in inflation rates.
The second component, (αα0Γβ⊥1 + α⊥1)β

0
⊥1∆xt−1, corresponds to

a stationary medium long-run relation between growth rates of nominal
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magnitudes. Because of the rejection of long-run price homogeneity, this
represents a non-homogeneous effect in nominal growth rates.
The third component, (αα0Γβ⊥2)β

0
⊥2∆xt−1, and the fourth com-

ponent, α1β
0
1xt, are both I(1) relations which combine to a stationary

polynomial cointegration relation, α1(β
0
1xt−1 + κ0∆xt−1) ∼ I(0), where

α1κ
0 = (αα0Γβ⊥2)β

0
⊥2.

The long-run matrix Π is the sum of the two levels components mea-
sured by:

Π = α0β
0
0 + α1β

0
1.

Hypothetically, theΠmatrix is likely to satisfy the condition for long-run
price homogeneity in a regime where inflation is under control. Thus,
the lack of price homogeneity is likely to be the first sign of inflation
running out of control.
The growth-rates matrix Γ is the sum of the three different compo-

nents measured by

Γ = (Γβ)β0 + (αα0Γβ⊥1 + α⊥1)β
0
⊥1 + (αα

0Γβ⊥2)β
0
⊥2.

The Γ matrix is, however, not likely to exhibit medium-run price ho-
mogeneity, even under the case of long-run price homogeneity. This is
because R0β = 0 implies R0β⊥2 6= 0. The intuition is as follows: When
β0xt ∼ I(0), a non-homogeneous reaction in nominal growth rates is
needed to achieve an adjustment towards a stationary long-run equilib-
rium position. Therefore, medium-run price homogeneity interpreted as
a zero sum restriction of rows of Γ would in general be inconsistent with
overall long-run price homogeneity.
Table 4 reports the estimates of Γ = −(I − Γ1) = α0⊥Γβ⊥ and

Π = αβ0. We notice that the coefficients of each row do not sum to
zero. Next section will show that the difference is statistically signifi-
cant. The diagonal elements of the Π matrix are particularly interesting
as they provide information of equilibrium correction behavior, or the
lack of it, of the variables in this system. We notice a significant posi-
tive coefficient in the diagonal element of the domestic prices, which in a
single equation model would imply accelerating prices. In a VAR model
absence of equilibrium correction in one variable can be compensated
by a sufficiently strong counteracting reaction from the other variables
in the system. It is noticeable that the only truely market determined
variable, the black market exchange rate, is significantly equilibrium-
correcting variable, whereas money stock is only borderline so.
Section 3 demonstrated that the unrestricted characteristic roots of

the VAR model contained a small explosive root, which disappeared
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Table 4: The unrestricted parameter estimates
The estimated Γ = α0⊥Γβ⊥matrix
∆mt ∆pt ∆sbt ∆yrt

∆2mt : -1.07 -0.06 0.00 0.02
∆2pt : -0.02 -0.55 0.01 -0.01
∆2sbt : -0.42 0.42 -0.92 0.03
∆2yrt : -0.13 0.20 0.04 -1.32

The estimated Π = αβ0 matrix
mt−1 pt−1 sbt−1 yrt−1 trend

∆2mt : −0.03
(−1.7)

0.11
(7.5)

−0.05
(−3.3)

0.00
(0.4)

-0.001
(−6.6)

∆2pt : −0.05
(−5.1)

0.03
(3.3)

0.03
(3.1)

0.05
(4.8)

0.00
(0.1)

∆2sbt : 0.11
(1.9)

0.15
(2.8)

−0.19
(−3.9)

−0.15
(−2.6)

0.002
(4.2)

∆2yrt : 0.02
0.7

-0.01
−0.3

−0.01
−0.5

-0.02
−0.6

−0.00
(−0.1)

when two unit roots were imposed. Nevertheless, the positive diagonal
element of prices suggest that the spiral of price increases which subse-
quently became hyper inflation had already started at the end of this
sample.

8 Money growth, currency depreciation, and price
inflation in Brazil

Long-run price homogeneity is an important property of a nominal sys-
tem and rejecting it is likely to have serious implications both for the
interpretation of the results and for the validity of the nominal to real
transformation. The empirical analysis of Durevall (1998) was based on
a nominal to real transformation without first testing its validity. We will
here use the I(2) model for the empirical investigation of the money-price
spiral without having to impose invalid long-run price homogeneity.

8.1 Identifying the β relations
The estimates of β0, β1 and κ in Table 3 are uniquely identified by the
CI(2, 2) property of β00xt. However, other linear combinations of β0 and
β1 may be more relevant from an economic point of view, but these will
be I(1) and will, therefore, have to be combined with the differenced
I(2) variables to become stationary.
To obtain more interpretable results three overidentifying restrictions

have been imposed on the two β relations. The LR test of overidentifying
restrictions, distributed as χ2(3) became 1.41 and the restrictions were
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accepted based on a p-value of 0.70. The estimates of the two identified
relations became:

βc01,txt=mt−1 − sbt−1 − yrt−1 − 0.005
(−2.5)

trend

βc02,txt= pt−1 − 0.64
(18.3)

(mt−1 − yrt−1)− 0.008
(−2.5)

trend
(26)

The first relation is essentially describing a trend-adjusted liquidity ratio,
except that the black market exchange rate is used instead of the CPI
as a measure of the price level. The liquidity ratio with CPI instead of
the exchange rate was strongly rejected. This suggests that inflationary
expectations were strongly affected by the expansion of money stock and
that these expectations influenced the rise of the black market nominal
exchange rate.
Both relations need a liner deterministic trend. The estimated trend

coefficient of the first relation in suggests that ’the liquidity ratio’ grew
on average with 6% (0.005×12 × 100) per year in this period. The
second relation shows that prices grew less than proportionally with
the expansion of M3 money stock relative to industrial production af-
ter having accounted for an average price increase of approximately 9%
(0.008×12× 100) per year.
The graphs in Figure 11 of the liquidity ratio based on the nomi-

nal exchange rate and on the CPI index, respectively, may explain why
nominal exchange rates instead of domestic prices were empirically more
relevant in the first relation. It is interesting to note that the graphs
are very similar until the end of 1980, whereafter the black market ex-
change rate started to grow faster than CPI prices. Thus, the results
suggest that money stock grew faster than prices in the crucial years
before the first hyper inflation episode, but also that the depreciation
rate of the black market currency was more closely related to money
stock expansion. This period coincided with the Mexican moratorium,
the repercussions of which were strongly and painfully felt in the Brazil-
ian economy. The recession and the major decline of Brazilian exports
caused the government to abandon its previous more orthodox policy of
fighting inflation by maintaining a revalued currency and, instead, en-
gage in a much looser monetary policy. For a comprehensive review of
the Brazilian exchange rate policy over the last four decades, see Bobomo
and Terra (1999).
Under the assumption that the black market exchange rate is a fairly

good proxy for the ‘true’ value of the Brazilian currency, the following
scenario seems plausible: The expansion of money stock needed to fi-
nance the recession and devaluations in the first case increased inflation-
ary expectations in the black market, which then gradually spread to
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the whole domestic economy. Because of the widespread use of wage
and price indexation in this period there were no effective mechanisms
to prevent the accelerating price inflation.

1977 1978 1979 1980 1981 1982 1983 1984 1985
2.4

2.6

2.8

3.0

Lm3-Lcpi-LY

1977 1978 1979 1980 1981 1982 1983 1984 1985
5.50

5.75

6.00

6.25 Lm3-Lexc-LY

Figure 11. The graphs of inverse velocity with CPI as a price variable
(upper panel) and with nominal exchange rate (lower panel).

8.2 Dynamic equilibrium relations
This scenario can be further investigated by polynomial cointegration.
In the I(2) model β0xt ∼ I(1) has to be combined with the nominal
growth rates to yield a stationary dynamic equilibrium relation. The
two identified relations, β01,1xt and β01,2xt in (26) need to be combined
with nominal growth rates to become stationary. Table 5 reports various
versions of the estimated dynamic equilibrium relations.
The first dynamic steady-state relation corresponds essentially to Ca-

gan’s money demand relation in periods of hyper inflation. However, the
price level is measured by the black market nominal exchange rate and
the opportunity cost of holding money is measured both by the CPI
inflation and by the currency depreciation. The coefficient to inflation
corresponds to Cagan’s α coefficient which defines the average inflation
rate (1/α) at which the government can obtain maximum seignorage.
The present estimate suggests average inflation rates of an order of mag-
nitude of 0.40-0.50 which corresponds to the usual definition of hyper
inflation periods.
The second relation is more difficult to interpret from a theoretical
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Table 5: Estimates of the polynomially cointegrated relations
The dynamic equilibrium relations β0xt + ω0∆xt

β̂
0
1,1xt ω1,1∆mt ω1,2∆pt ω1,3∆sbt

(1) 1.0 −0.62
(1.1)

2.52
(3.4)

0.59
(2.7)

(2) 1.0 - 2.02
(3.4)

0.53
(2.5)

β̂
0
1,2xt ω2,1∆mt ω2,2∆pt ω2,3∆sbt

(3) 1.0 −5.80
(67)

−11.32
(9.9)

−0.34
(1.0)

(4) 1.0 −6.02
(7.1)

−11.38
(10.0)

-

(5) 1.0 − −16.57
(15.4)

-

(6) 1.0 −11.42
(12.4)

- -

point of view but seems crucial for the mechanisms behind the increas-
ingly high inflation of this period and the hyper inflation of the subse-
quent periods. Eq. (3) shows that the ‘gap’ between prices and ‘excess’
money as measured by β01,2xt is cointegrated with changes in money
stock and prices, but not with currency depreciation. Eq. (4) combines
β01,2xt with money growth, ∆m, and price inflation, ∆p, Eq. (5) with
∆p and Eq. (6) with ∆m. Although both nominal growth rates are
individually cointegrating with β01,2xt, there is an important difference
between them: The relationship between money growth and the rela-
tion β01,2xt suggests error-correcting behavior in money stock, whereas
the one between price inflation and β01,2xt indicates lack error-correcting
behavior in prices. The latter would typically describe a price mech-
anism leading ultimately to hyper inflation unless counterbalanced by
other compensating measures, such as currency control.

8.3 The short-run dynamic adjustment structure
The inflationary mechanisms will now be further investigated based on
the estimated short-run dynamic adjustment structure. Current as well
as lagged changes of industrial production were insignificant in the sys-
tem and were, therefore, left out. Thus, real growth rates do not seem to
have had any significant effect on the short-run adjustment of nominal
growth rates which is usually assumed to be the case in a high inflation
regime. Furthermore, based on a F-test the lagged depreciation rate
was also found insignificant in the system and was similarly left out. Ta-
ble 6 reports the estimated short-run structure of the simplified model.
Most of the significant coefficients describe feed-back effects from the
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Table 6: Dynamic adjustment and feed-back effects in the nominal sys-
tem

Ref. Regressors: Eq.: ∆mt ∆pt ∆sbt
∆mt−1 0.33

(4.2)
0.11
(2.4)

0.91
(2.7)

∆pt−1 0.59
(5.6)

0.76
(12.1)

−

Table 5 (2) (β̂1,1x− ŵ1,1∆x)t−1 −0.03
(−2.3)

−0.03
(−2.9)

0.08
(1.9)

Table 5 (4) (β̂1,2x− ŵ1,2∆x)t−1 0.06
(6.4)

0.02
(4.3)

0.06
(2.0)

Table 3 β̂
0
⊥1∆xt +0.008

(−2.2)
−0.005
(2.1)

-

1.0
Residual correlations: -0.02 1.0

0.08 -0.12 1.0

dynamic steady-state relations defined by Eq. (2) and Eq. (4) in Ta-
ble 5 and the medium-run steady-state relation between growth rates,
β0⊥1∆xt defined in Table 3. It is notable that the residual correlations
are altogether very small, so that interpretation of the results should be
robust to linear transformations of the system.
The short-run adjustment results generally confirm the previous find-

ings. Price inflation has not been equilibrium correcting in the second
steady-state relation, whereas the growth in money stock has been so
in both of the two dynamic steady-state relations. The depreciation of
the black market exchange rate has been equilibrium correcting to the
first steady-state relation measuring the liquidity ratio relation and has
been positively affected strongly affected by the second price ’gap’ re-
lation. Furthermore, it has reacted strongly to changes in money stock
confirming the above interpretation of the important role of inflation-
ary expectations (measured by changes in money stock) for the currency
depreciation rate.
After the initial expansion of money stock at around 1981 (which

might have been fatal in terms of the subsequent hyper inflation expe-
rience) money supply seems primarily to have accommodated the in-
creasing price inflation. The lack of equilibrium correction behavior in
the latter was probably related to the widespread use of wage and price
indexation in this period. Thus, the lack of market mechanism to cor-
rect for excessive price changes allowed domestic price inflation to gain
momentum as a result of high inflationary expectations in the foreign
exchange market.

33



9 Concluding remarks

The purpose of this paper was partly to give an intuitive account of the
cointegrated I(2) model and its rich (but also complicated) statistical
structure, partly to illustrate how this model can be used to address
important questions related to inflationary mechanisms in high inflation
periods. The empirical analysis was based on data from the Brazilian
high inflation period, 1977:1-1985:5. An additional advantage of this pe-
riod was that it was succeeded by almost a decade of hyper-inflationary
episodes. The paper demonstrates empirically that it is possible to un-
cover certain features in the data and the model which at an early stage
may suggest a lack of control in the price mechanism. Thus, a violation
of two distinct properties, price homogeneity and equilibrium correction,
usually prevalent in periods of controlled inflation, seemed to have a high
signal value as a means to detect an increasing risk for a full-blown hyper
inflation. The paper demonstrates that:

1. prices started to grow in a non-homogeneous manner at the begin-
ning of the eighties when the repercussions of the Mexican mora-
torium strongly and painfully hit the Brazilian economy. The ex-
pansion of money stock needed to finance the recession and de-
valuations increased inflationary expectations in the black market,
which then spread to the whole domestic economy.

2. the widespread use of wage and price indexation in this period
switched off the natural equilibrium correction behavior of the
price mechanism. Without other compensating control measures
which might have dampened inflationary expectations, it was not
possible to prevent price inflation to accelerate.
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Table 7: Misspecification tests
Univariate misspecification tests

yr sb m p
Normality,χ2(2) 0.66

(0.72)
1.71
(0.43)

0.36
(0.84)

1.67
(0.43)

AR(1) 0.19
(0.66)

0.00
(0.95)

0.03
(0.87)

1.27
(0.26)

Skewness -0.13 0.21 0.09 -0.21
Kurtosis 3.06 3.29 2.62 3.27

Multivariate misspecification tests
Normality, χ2(8) 4.43 (0.82)
AR(1) 5.59 (0.99)
AR(4) 62.21 (0.54)

under rational expectations: I. International Economic Review 18, 1,
59-82.
Tourinho, O.A.F., (1997). The demand and supply of money under

high inflation; Brazil 1974-1994. The Brazilian Review of Econometrics
17, 89-118.

11 Appendix A: Misspecification diagnostics

The univariate normality test in Table A.1 is a Jarque-Bera test, distrib-
uted as χ2(2). The multivariate normality test is described in Doornik
and Hansen (1995) distributed as χ2(8). The AR-test is the F-test de-
scribed in Doornik (1996), page 4. P-values are in brackets.
Figure A.1 shows the residual auto-correlograms and cross-correlograms

of order 10 for all four equations. Figure A.2 shows the residual his-
tograms compared to the normal distribution for all equations.
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Figure A.1: Residual autocorrelograms and crosscorrelograms.
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Figure A.2: Residual histograms for the four equations.
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