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Abstract All gravity field functionals obtained from an
Earth gravitational model (EGM) depend on the underlying
terrestrial reference frame (TRF), with respect to which the
EGM’s spherical harmonic coefficients refer to. In order to
maintain a coherent framework for the comparison of cur-
rent and future EGMs, it is thus important to investigate the
consistency of their inherent TRFs, especially when their use
is intended for high precision studies. Following the metho-
dology described in an earlier paper by Kleusberg (1980),
the similarity transformation parameters between the asso-
ciated reference frames for several EGMs (including the most
recent CHAMP/GRACE models at the time of writing this
paper) are estimated in the present study. Specifically, the
differences between the spherical harmonic coefficients for
various pairs of EGMs are parameterized through a
3D-similarity spatial transformation model that relates their
underlying TRFs. From the least-squares adjustment of such
a parametric model, the origin, orientation and scale stabi-
lity between the EGMs’ reference frames can be identified by
estimating their corresponding translation, rotation and scale
factor parameters. Various aspects of the estimation proce-
dure and its results are highlighted in the paper, including
data weighting schemes, the sensitivity of the results with
respect to the selected harmonic spectral band, the correla-
tion structure and precision level of the estimated transfor-
mation parameters, the effect of the estimated differences of
the EGMs’ reference frames on their height anomaly signal,
and the overall feasibility of Kleusberg’s formulae for the
assessment of TRF inconsistencies among global geopoten-
tial models.
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1 Introduction

During the last 5 years, and after the launch of the CHAMP
and GRACE satellite missions, more than 20 new spherical
harmonic models have become available for Earth’s static
gravitational field. These developments represent the culmi-
nation in modern global gravity field mapping after the break-
through release of the EGM96 model (Lemoine et al. 1998),
involving new types of satellite-borne measurements that
have been analyzed by a variety of mathematical models and
data processing techniques (e.g. Ditmar et al. 2006; Földvary
et al. 2005; Gerlach et al. 2003; Ilk et al. 2005; Mayer-Gürr
et al. 2005; Reigber et al. 2002, 2003a,b, 2005). Several com-
bined Earth gravitational models (EGMs) based on CHAMP
and/or GRACE satellite data, complete to spherical harmonic
degree and order 360, have been produced using additional
information from terrestrial gravimetry and satellite altime-
try (Förste et al. 2006; Reigber et al. 2006; Tapley et al. 2005),
which can recover regional spatial features up to ∼110 km
resolution in the geoid and gravity anomaly signals at an
average accuracy level of ∼30 cm and ∼8 mgal, respectively
(Förste et al. 2005).

In view of the increasing need to compare different EGMs
and to evaluate their accuracy for various gravity field func-
tionals, it is important to investigate the consistency of their
inherent reference frames. Each EGM given in terms of a set
of spherical harmonic coefficients (SHCs) underlies a speci-
fic terrestrial reference frame (TRF) which should be used for
all SHC-based gravity field calculations with the particular
model. Such a TRF is usually realized through an appropriate
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set of constraints that are applied to a number of terrestrial
stations for the purpose of removing the rank deficiency of the
satellite tracking data that lead to the estimation of the low-
degree SHCs (Pavlis 1998). This option is followed when a
simultaneous solution for the tracking station positions (and
possibly velocities) along with the geopotential coefficients
is sought, as it was done, for example, in the case of EGM96
(Lemoine et al. 1998). Alternatively, one may adopt an exis-
ting global TRF to fix a priori the EGM’s reference frame,
and then process the tracking data (along with other types
of gravity field observables coming from dedicated satellite
gravity missions such as GRACE and CHAMP) exclusively
for geopotential recovery.

Several investigations exist in the geodetic literature that
have dealt with TRF consistency issues in global geopoten-
tial models (Anderle 1974; Rapp and Rummel 1976; Schaab
and Groten 1979; Grappo 1980; Lachapelle and Kouba 1981;
Weigel 1993; Kirby and Featherstone 1997; Pavlis 1998).
Despite the varying interpretations of their results, most of
these studies have relied on a common methodology, nota-
bly the comparison of geometrically derived and EGM-based
geoid undulations over a global, continental or regional net-
work of control stations. Using the general model

h − H − N EGM = N0 + N1 (1)

the zero- and first-degree geoidal terms, N0 and N1, can be
estimated through a least-squares adjustment of pointwise
geoid undulation differences obtained from GPS data (or
from Doppler measurements in earlier studies), spirit-leveled
orthometric heights, and a SHC model of Earth’s gravitatio-
nal field. Equation (1) has been used for the comparison of
geoid undulations (and their inherent TRFs) obtained from
different EGMs (Schaab and Groten 1979), as well as for
the assessment of the TRF consistency between altimetri-
cally derived geoids and EGM-based geoid models (e.g. West
1982; Engelis 1985).

In principle, the zero-degree term N0 contains the effects
of the mass and potential differences between the ‘true’ geoid
and the reference equipotential ellipsoid implied in the deter-
mination of N EGM (Heiskanen and Moritz 1967, p. 101)

N0 = GδM

rγ
− δW

γ
(2)

and it will appear as a constant offset between the geometric
and the EGM geoid heights. Since the term δW = W0 − U0

depends on a conventional choice for the normal gravity
potential of the reference ellipsoid and the selection of the
particular equipotential surface of Earth’s gravity field
(W = W0) representing the geoid, the physical meaning of
the zero-degree term in Eq. (1) is mainly hidden in our insuf-
ficient knowledge of the real Earth’s mass.

In practice, the estimate of N0 that is obtained from the
joint adjustment of ellipsoidal, orthometric and geoid heights

absorbs additional systematic effects originating from: (1) the
offset between the vertical datum implicated in the calcula-
tion of H and the reference equipotential surface associated
with N EGM, and (2) the possible differences in the defining
parameters of the adopted reference ellipsoids for the geo-
metric and the EGM geoid. Other biases due to datum scale
differences (Soler and van Gelder 1987; Kotsakis 2008) and
the inconsistent treatment of permanent tidal effects (Smith
1998; Vatrt 1999; McCarthy and Petit 2004) may additionally
contribute to the final estimate of N0.

The first-degree term in Eq. (1) stems from the spatial
offset between the TRFs involved in the determination of h
and N EG M . While the TRF of the geometric geoid is dictated
by the GPS heights that appear in Eq. (1), the TRF of N EG M

depends on the conventions and constraints that were used
in the development of the underlying EGM. Using the well
known geoid transformation due to a datum shift (Heiskanen
and Moritz 1967, p. 99)

δN (= N1) = tx cosϕ cos λ + ty cosϕ sinλ + tz sinϕ (3)

the 3D translation parameters tx , ty and tz can be estimated
from the least-squares adjustment of Eq. (1). Assuming that
the ellipsoidal heights underlying the geometric geoid refer
to a geocentric reference system, these parameters provide
a geocentricity assessment for the inherent TRF of the geo-
potential model from which N EG M is computed (e.g. Rapp
and Rummel 1976; Grappo 1980; Weigel 1993).

Based on the above approach, the corresponding correc-
tions to the zero- and first-degree SHCs for a number of
known EGMs have been determined by Kirby and Feathers-
tone (1997), using GPS and spirit-leveled heights over Aus-
tralia. Also, Schaab and Groten (1979) applied the least-
squares fitting of Eq. (1) to globally and uniformly distribu-
ted geoid undulations obtained from different geopotential
models, thus providing a direct comparison of their TRFs’
origins without relying on GPS/Doppler satellite data and
spirit-leveled orthometric heights.

A drawback of the aforementioned methodology is that
the TRF translation parameters obtained from the inversion
of Eq. (1) are inevitably distorted due to the high correlation
caused by the non-uniform distribution and limited spatial
coverage of the control points. Even in cases with a truly
global and uniform distribution of data points (Schaab and
Groten 1979), the conclusions drawn from such an evaluation
scheme are likely to be obscured by the coupling of several
long-wavelength data biases into the zero- and first-degree
geoidal terms N0 and N1; see Weigel (1993).

Orientation differences between the EGMs’ reference
frames can also affect the comparison and/or combination of
gravity field functionals obtained from their SHCs. It should
be noted that the geoid height is totally insensitive to the
rotation of the underlying TRF about the symmetry axis of
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the adopted reference ellipsoid, and it is thus impossible to
estimate this datum transformation parameter solely from the
residuals h − H − N EG M . The latter are able to recover only
variations in the direction of the mean Earth rotation axis
that is implied in the geometric and EGM geoids, and not
orientation differences in the zero-meridian planes of their
associated TRFs.

Following the above remarks, the objective of this paper
is to implement an alternative approach for TRF consis-
tency testing in EGMs, using a different framework than
the ‘indirect’ methodologies which are based on Eq. (1).
In particular, the formulation given in Kleusberg (1980) on
the similarity transformation of a SHC series is employed
for the estimation of origin, orientation and scale variations
among the TRFs implied in recent static EGMs. The benefit
of such an approach is that it does not involve the intermediate
computation and comparison of other gravity field functio-
nals, but it relies entirely on the original SHCs for Earth’s
gravitational potential. The similarity transformation para-
meters between the inherent TRFs in geopotential models
are fully estimable from the differences of their correspon-
ding SHCs (Kleusberg 1980), and this is exactly the quali-
tative property that will be numerically investigated in this
paper.

Using the aforementioned approach, the problems that
commonly arise from Eq. (1) due to the joint analysis of
several heterogeneous data types, each of which carries its
own reference frame, modeling assumptions and systematic
errors, are largely avoided. The mathematical model that is
now used for comparing geodetic reference frames has an
intrinsic ‘global’ geometric character with uniform spatial
resolution (more details to be given in later sections), and
thus all the estimated TRF transformation parameters are
practically uncorrelated, without being affected by network
geometry or spatial coverage problems. Furthermore, the sta-
bility of the terrestrial zero-meridian plane among different
geopotential models (which is equivalent to a rotation of the
EGM-linked TRFs about the symmetry axis of an adopted
reference ellipsoid) is now estimable from the differences of
their non-zonal SHCs. This ‘z-axis’ rotation angle, however,
remains the most weakly estimable transformation parameter
between the EGMs’ reference frames, as it will be confirmed
by our results.

The paper is organized as follows: in Sect. 2 a gene-
ral overview of Kleusberg’s (1980) transformation model is
given without its detailed mathematical proof, but with some
additional corrections and theoretical explanations; in Sect. 3
the least-squares estimation procedure and some data weigh-
ting aspects that were followed for the numerical tests of the
paper are described; in Sect. 4 a series of numerical tests that
have been performed with Kleusberg’s (1980) transformation
model is presented, while in Sect. 5 the main conclusions and
a short discussion of our findings are given.

2 Reference frame transformation of a SHC series

The earliest studies on the problem of transforming a SHC
series under arbitrary translations, rotations and scale change
of its underlying Cartesian coordinate system should be
attributed to Schmidt (1899), Wigner (1959, Chap. 15) and
Jeffreys (1963). The most comprehensive work in the geo-
detic and geophysical literature is due to Goldstein (1984),
who presented an in-depth analysis for the nonlinear effect
of reference system rotations on the transformed values of
the geopotential SHCs. Equivalent transformation formulae
have also been derived by Balmino and Borderies (1976) and
Shkodrov (1981), whereas relevant studies related to appli-
cations in satellite geodesy, potential field theory and spatial
correlation analysis have been published by Kaula (1961),
Cook (1963), Izsak (1964), Giacaglia (1980) and Eckhardt
(1984).

Our present study is based on the mathematical work
of Kleusberg (1980), who presented a linear approximation
scheme for the transformation properties of the gravitational
potential SHCs due to translation, rotation and scale variation
in their underlying TRF. Although the linearized formulae
derived in that study are theoretically less rigorous than other
versions that appeared in previous references (e.g. Goldstein
1984), they are fairly precise for practical use in geodetic stu-
dies where small (differential) TRF perturbations are com-
monly involved (Pavlis 1998). Moreover, the complexity of
the nonlinear transformation equations, in conjunction with
their increasing numerical instability in high-degree SHC
series expansions, can cause considerable problems in their
forward implementation (with known transformation para-
meters) or in their optimal inversion (with unknown trans-
formation parameters).

2.1 General remarks

The usual expansion of Earth’s gravitational potential in
terms of a SHC series is

V (r, λ, ϕ) = GM

r

∞∑

n=0

(a

r

)n

×
n∑

m=0

[
C̄nm cosmλ+ S̄nm sinmλ

]
P̄nm(sinϕ)

(4)

where r, λ, ϕ denote the spherical geodetic coordinates
(radial distance, geodetic longitude, geocentric latitude) of
an arbitrary evaluation point P that is located on, or out-
side, the Earth’s surface; see Fig. 1. The set {C̄nm, S̄nm}
contains unitless fully-normalized SHCs which are obtai-
ned from a global geopotential model (up to a maximum
degree nmax ), while P̄nm(·) represent the fully-normalized
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Fig. 1 The TRF associated with the SHC series expansion of Earth’s
gravitational potential in Eq. (4) (cm: geocenter)

associated Legendre functions of degree n and order m
(Heiskanen and Moritz 1967, Chap. 1). The quantities GM
and a correspond to the geocentric gravitational constant and
mean equatorial radius, which are the basic Earth-scaling
factors that are commonly associated with a geopotential
model.

In most EGMs, the zero-degree coefficient C̄0,0 is usually
treated as an errorless quantity, with its value fixed a priori
to 1. Based on Eq. (4), this gives an initial approximation for
Earth’s gravitational potential

V (r, λ, ϕ) ≈ GM

r
C̄0,0 = GM

r
(5)

which corresponds to a point-mass or a homogeneous-sphere
Earth model, with the origin of the inherent TRF located at
the geocenter. In essence, the zero-degree coefficient C̄0,0

controls the spatial scale of the Euclidean TRF that is asso-
ciated with an EGM solution and its formally induced (i.e.
the TRF’s scale) by the GM value that appears in Eq. (4).

In some geopotential models, the zero-degree coefficient
C̄0,0 is not conventionally fixed to 1, while its actual value is
accompanied by an error estimateσC̄0,0

that reflects the uncer-
tainty of the geocentric gravitational ‘constant’. In Table 1,
a selected list of global geopotential models that will be used
in our tests is given along with their conventional GM values,
their original C̄0,0 coefficients and their corresponding infer-
red estimates for GM. From these models, only TUM1S,
TUM2S and GRIM5C1 are associated with zero-degree SHCs
that are not constrained a priori to 1, thus enforcing a theo-
retically different spatial scale in their underlying TRFs than
the one implied by the conventional GM value that appears
in Eq. (4). The official error estimates for the zero-degree
SHCs of these models are given in Table 2, along with the
standard deviations for the inferred values of the geocentric
gravitational constant.

Note that the accuracy values shown in Table 2 are quite
optimistic with respect to the IERS standard uncertainty of
σGM = 0.8 × 106 m3s−2 (McCarthy and Petit 2004), or the
formal GM estimation accuracy of σGM = 0.12×106 m3s−2

obtained by Pavlis (2002). For practical purposes, the IERS
uncertainty level for GM can be used to assign a realistic error
variance to the zero-degree coefficient in current ‘scale-fixed’
EGMs, based on the simple formula

σC̄0,0
= σGM

GM
(6)

Table 1 GM values associated
with various EGMs and their
fixed or estimated zero-degree
SHC. (GM values are given in
m3 s−2)

Model GM (conventional value) C̄0,0 GM (inferred estimate)

EIGEN-CG03C 398600.4415 ×109 1.0000000000000000 Fixed

EIGEN-GL04C 398600.4415 ×109 1.0000000000000000 Fixed

EIGEN-CG01C 398600.4415 ×109 1.0000000000000000 Fixed

EIGEN-CHAMP03S 398600.4415 ×109 1.0000000000000000 Fixed

ITG-GRACE02S 398600.4415 ×109 1.0000000000000000 Fixed

GGM02C 398600.4415 ×109 1.0000000000000000 Fixed

GGM02S 398600.4415 ×109 1.0000000000000000 Fixed

TUM2S 398600.4418 ×109 1.0000000002947140 398600.4419 ×109

TUM1S 398600.4360 ×109 0.9999999996743549 398600.4359 ×109

EIGEN-GRACE02S 398600.4415 ×109 1.0000000000000000 Fixed

EIGEN-GRACE01S 398600.4415 ×109 1.0000000000000000 Fixed

EIGEN2 398600.4415 ×109 1.0000000000000000 Fixed

EIGEN1S 398600.4415 ×109 1.0000000000000000 Fixed

GRIM5C1 398600.4415 ×109 0.9999999998860000 398600.4415 ×109

EGM96 398600.4415 ×109 1.0000000000000000 Fixed
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A study on the reference frame consistency in recent Earth gravitational models 35

Table 2 Formal uncertainty of the zero-degree SHC and the correspon-
ding standard deviation of the GM inferred estimate, for the TUM1S,
TUM2S and GRIM5C1 models (GM sigma values are given in m3s−2)

Model σC̄0,0
σGM

TUM2S 1.62270320 ×10−11 0.006 ×106

TUM1S 1.97626465 ×10−11 0.008 ×106

GRIM5C1 3.07800000 ×10−11 0.012 ×106

In general, the inclusion of σC̄0,0
in the evaluation of the

total commission error for EGM-based gravity field func-
tionals yields a more rigorous assessment of their actual
accuracy, since it incorporates the effect of spatial scale
uncertainty of their underlying TRF (Zhu et al. 2001).

The first-degree SHCs C̄1,0, C̄1,1, S̄1,1 are directly related
to the offset of the origin of the EGM’s TRF (in which the
coordinates r, λ, ϕ in Eq. (4) should refer to) with respect to
the geocenter. In fact, we have the following relationships

xcm = GM

GMtrue
a
√

3C̄1,1 (7)

ycm = GM

GMtrue
a
√

3S̄1,1 (8)

zcm = GM

GMtrue
a
√

3C̄1,0 (9)

where xcm, ycm, zcm are the Cartesian coordinates of the geo-
center with respect to the global TRF associated with the SHC
series in Eq. (4); see Fig. 1. For more details, see Heiskanen
and Moritz (1967, Chap. 2).

Instead of the above ‘theoretical’ equations, the following
alternative expressions can also be used

xcm = a
√

3

C̄0,0
C̄1,1 (10)

ycm = a
√

3

C̄0,0
S̄1,1 (11)

zcm = a
√

3

C̄0,0
C̄1,0 (12)

The last three equations establish a link between the spa-
tial scale that is realized by the TRF of a global geopoten-
tial model, with its zero-degree coefficient and the adopted
Earth’s mean equatorial radius.

In most EGMs, the coefficients C̄1,0, C̄1,1, S̄1,1 are set a
priori to zero, thus enforcing a geocentricity constraint for
their inherent TRFs. However, in a number of recent CHAMP
and GRACE models, non-zero values and associated error
variances are given for their first-degree SHCs, which are
handled as additional unknown parameters and estimated
anew within the EGM development process. The geocen-
ter’s Cartesian coordinates and their formal accuracy level

Table 3 Geocenter’s Cartesian coordinates (and their formal uncer-
tainty level) with respect to the inherent TRFs in GRACE/CHAMP
models with non-zero first-degree SHCs (all values are given in mm)

Model xcm ycm zcm

EIGEN-CG03C −5.5 ± 4.8 −0.3 ± 4.8 −15.2 ± 4.4

EIGEN-CG01C −3.8 ± 6.1 1.2 ± 6.1 −11.9 ± 5.5

EIGEN-CHAMP03S −2.7 ± 3.3 0.6 ± 3.3 −9.2 ± 3.4

TUM2S 0.2 ± 0.2 0.7 ± 0.2 0.2 ± 0.2

TUM1S −1.1 ± 0.2 −2.1 ± 0.2 −15.1 ± 0.2

(as obtained from the last three equations) with respect to the
TRFs of these models are given in Table 3.

Note that the error propagation formulae for the assess-
ment of σxcm , σycm , and σzcm in EGMs with estimated (i.e.
not fixed to zero) first-degree SHCs have the general form

σ 2
xcm

=
(

a
√

3

C̄0,0

)2 (
σ 2

C̄1,1
+ C̄2

1,1σ
2
C̄0,0

)
(13)

σ 2
ycm

=
(

a
√

3

C̄0,0

)2 (
σ 2

S̄1,1
+ S̄2

1,1σ
2
C̄0,0

)
(14)

σ 2
zcm

=
(

a
√

3

C̄0,0

)2 (
σ 2

C̄1,0
+ C̄2

1,0σ
2
C̄0,0

)
(15)

which include the effect of the EGM/TRF’s spatial scale
uncertainty (i.e. GM uncertainty) through the error termσC̄0,0

.
The latter can be practically determined from Eq. (6) using
the IERS standard uncertainty for GM, or it may formally be
provided by the corresponding EGM solution (e.g. TUM1S,
TUM2S).

2.2 Linearized TRF transformation for {C̄nm, S̄nm}
(Kleusberg 1980)

A brief overview of Kleusberg’s TRF transformation formu-
lae (without their mathematical proof) will be presented in
this section, along with some additional corrections that were
missing from their original publication.

The expansion of the gravitational potential V (·) in a dif-
ferent Earth-fixed TRF than the one implied in Eq. (4) has
the general form

V (r ′, λ′, ϕ′) = GM

r ′
∞∑

n=0

( a

r ′
)n

×
n∑

m=0

[
C̄ ′

nm cos mλ′ + S̄′
nm sin mλ′] P̄nm (sin ϕ′) (16)

where r ′, λ′, ϕ′ are the spherical geodetic coordinates of the
evaluation point with respect to a new Cartesian coordinate
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system O ′x ′y′z′; see Fig. 2. Note that the basic scaling factors
of the geopotential SHCs are assumed to retain their conven-
tional values in both frames.

Let us assume that the two TRFs differ according to the
linearized similarity (Helmert-type) transformation model
(e.g. Leick and van Gelder 1975; Soler 1998)

⎡

⎣
x ′ − x
y′ − y
z′ − z

⎤

⎦ =
⎡

⎣
tx
ty

tz

⎤

⎦ +
⎡

⎣
δs εz −εy

−εz δs εx

εy −εx δs

⎤

⎦

⎡

⎣
x
y
z

⎤

⎦ (17)

where tx , ty, tz are the translation parameters between the
two frames, εx , εy, εz are the rotation angles about the axes of
the Oxyz frame (anti-clockwise rotations assumed positive),
and δs is the unitless differential factor of their spatial scale
change.

Based on the spatial transformation model of Eq. (17) and
the fact that the gravitational potential V (·) is independent of
the TRF in which we choose to perform its evaluation through
a SHC series, a set of linearized transformation formulae
can be derived between {C̄nm, S̄nm} and {C̄ ′

nm, S̄′
nm}. These

equations were originally given by Kleusberg (1980) and they
are expressed as

C̄ ′
nm − C̄nm = δC̄nm(tx ) + δC̄nm(ty) + δC̄nm(tz)

+ δC̄nm(εx ) + δC̄nm(εy) + δC̄nm(εz) + δC̄nm(δs) (18)

S̄′
nm − S̄nm = δ S̄nm(tx ) + δ S̄nm(ty) + δ S̄nm(tz)

+ δ S̄nm(εx ) + δ S̄nm(εy) + δ S̄nm(εz) + δ S̄nm(δs) (19)

where each individual transformation term is analytically
given by

δC̄nm(tx ) = −
√

2n − 1

2n + 1

√
(n − m − 1)(n − m)(1 + δ0m)C̄n−1,m+1 − √

(n + m − 1)(n + m)(1 + δ1m)C̄n−1,m−1

2a
tx (20)

δC̄nm(ty) = −
√

2n − 1

2n + 1

√
(n − m − 1)(n − m)(1 + δ0m)S̄n−1,m+1 + √

(n + m − 1)(n + m)(1 + δ1m)S̄n−1,m−1

2a
ty (21)

δC̄nm(tz) =
√

2n − 1

2n + 1

√
(n + m)(n − m)C̄n−1,m

a
tz (22)

δC̄nm(εx ) = −
√

(n − m + 1)(n + m)(1 + δ1m)S̄n,m−1 + √
(n + m + 1)(n − m)(1 + δ0m)S̄n,m+1

2
εx (23)

δC̄nm(εy) = −
√

(n − m + 1)(n + m)(1 + δ1m)C̄n,m−1 − √
(n + m + 1)(n − m)(1 + δ0m)C̄n,m+1

2
εy (24)

δC̄nm(εz) = mS̄n,mεz (25)

δC̄nm(δs) = (n + 1)C̄n,mδs (26)

δ S̄nm(tx ) = −
√

2n − 1

2n + 1

√
(n − m − 1)(n − m)(1 + δ0m)S̄n−1,m+1 − √

(n + m − 1)(n + m)(1 + δ1m)S̄n−1,m−1

2a
tx (27)

δ S̄nm(ty) =
√

2n − 1

2n + 1

√
(n − m − 1)(n − m)(1 + δ0m)C̄n−1,m+1 + √

(n + m − 1)(n + m)(1 + δ1m)C̄n−1,m−1

2a
ty (28)

δ S̄nm(tz) =
√

2n − 1

2n + 1

√
(n + m)(n − m)S̄n−1,m

a
tz (29)

δ S̄nm(εx ) =
√

(n − m + 1)(n + m)(1 + δ1m)C̄n,m−1 + √
(n + m + 1)(n − m)(1 + δ0m)C̄n,m+1

2
εx (30)

δ S̄nm(εy) = −
√

(n − m + 1)(n + m)(1 + δ1m)S̄n,m−1 − √
(n + m + 1)(n − m)(1 + δ0m)S̄n,m+1

2
εy (31)

δ S̄nm(εz) = −mC̄n,mεz (32)

δ S̄nm(δs) = (n + 1)S̄n,mδs (33)

The terms δ0m and δ1m correspond to the Kronecker delta
symbol (e.g. δ1m = 1 when m = 1, and δ1m = 0 otherwise).
For the detailed proof of the above equations, see Kleusberg
(1980).

From the previous TRF/SHC transformation model, the
following ‘aliasing’ aspects can be identified:

– rotational variation about the x axis causes changes in
the C̄-type harmonics of order m that are proportional to
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Fig. 2 The TRFs associated with the SHC series expansions of Earth’s
gravitational potential in Eqs. (4) and (9) (cm: geocenter)

the S̄-type harmonics of order m − 1 and m + 1, within
the same degree; see Eq. (23)

– rotational variation about the x axis causes changes
in the S̄-type harmonics of order m that are proportio-
nal to the C̄-type harmonics of order m − 1 and m + 1,
within the same degree; see Eq. (30)

– rotational variation about the y axis causes changes
in the C̄-type harmonics of order m that are proportio-
nal to the C̄-type harmonics of order m − 1 and m + 1,
within the same degree; see Eq. (24)

– rotational variation about the y axis causes changes
in the S̄-type harmonics of order m that are proportio-
nal to the S̄-type harmonics of order m − 1 and m + 1,
within the same degree; see Eq. (31)

– rotational variation about the z axis causes change in
the C̄-type harmonics of degree n and order m that are
proportional to the S̄-type harmonics of the same degree
and order; see Eq. (25)

– rotational variation about the z axis causes changes in
the S̄-type harmonics of degree n and order m that are
proportional to the C̄-type harmonics of the same degree
and order; see Eq. (32)

– translation along the x axis causes changes in the C̄-type
harmonics of degree n and order m that are proportional
to the C̄-type harmonics of the previous degree (n − 1)
and order m − 1 and m + 1; see Eq. (20)

– translation along the x axis causes changes in the S̄-type
harmonics of degree n and order m that are proportional
to the S̄-type harmonics of the previous degree (n − 1)
and order m − 1 and m + 1; see Eq. (27)

– translation along the y axis causes changes in the C̄-type
harmonics of degree n and order m that are proportional
to the S̄-type harmonics of the previous degree (n − 1)
and order m − 1 and m + 1; see Eq. (21)

– translation along the y axis causes changes in the S̄-type
harmonics of degree n and order m that are proportional

to the C̄-type harmonics of the previous degree (n − 1)
and order m − 1 and m + 1; see Eq. (28)

– translation along the z axis causes changes in the C̄-type
harmonics of degree n and order m that are proportional
to the C̄-type harmonics of degree n −1, within the same
order; see Eq. (22)

– translation along the z axis causes changes in the S̄-type
harmonics of degree n and order m that are proportional
to the S̄-type harmonics of degree n − 1, within the same
order; see Eq. (29)

– spatial scale variation causes changes in each harmonic
by a degree-dependent linear scaling factor (assuming
that the GM and a values remain unaffected by the TRF
transformation); see Eqs. (26) and (33).

Note that the term (1 + δ0m) that appears in the definition
of the transformation components δC̄nm(tx ), δC̄nm(ty), δ S̄nm

(tx ), δ S̄nm(ty), δC̄nm(εx ), δC̄nm(εy), δ S̄nm(εx ) and δ S̄nm(εy)

was missing from the original formulae given in Kleusberg
(1980), probably due to an incorrect implementation of the
non-normalized to fully-normalized SHC transformation
(ibid, sect. 3). The inclusion of this term is necessary in order
to maintain correct transformation results for the zonal har-
monic coefficients.

Depending on the particular values for the harmonic
degree and order of the coefficient C̄nm or S̄nm that is being
transformed, algebraic terms containing ‘meaningless’ SHCs
of the form C̄−1,m+1, S̄−1,m+1, C̄n−1,−1, S̄n−1,−1, C̄n,−1,

S̄n,−1, C̄−1,m, S̄−1,m, C̄n−1,n, S̄n−1,n, C̄n−1,n+1 and S̄n−1,n+1

may appear at the right hand-side of Eqs. (18) and (19). In
such cases, these meaningless SHCs must be set equal to
zero for the proper numerical implementation of the entire
{C̄nm, S̄nm} → {C̄ ′

nm, S̄′
nm} transformation algorithm (ibid,

appendix).
In summary, Kleusberg’s model can be used for the for-

ward transformation of the geopotential SHCs from their
original TRF to another global TRF, based on known values
for the similarity transformation parameters between the two
frames. Alternatively, Kleusberg’s model may also be imple-
mented in an inverse manner for estimating the TRF discre-
pancies between different EGMs, based on the adjustment
of the differences of their corresponding SHCs (more details
are given in following sections).

2.3 ‘Scaling’ issues

Available geopotential models are not always compatible
with the same Earth-scaling factors (GM, a). If we want to
evaluate the consistency of the inherent TRFs in different
EGMs through a least-squares adjustment with Kleusberg’s
model, we may need to re-scale their SHCs so that they refer
to the same conventional values of GM and a.
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Table 4 Conventional values for the Earth-scaling factors associated
with the EGMs that are used for the numerical tests in this paper

Model GM (in m3s−2) a (in m) nmax

EIGEN-CG03C 398600.4415 ×109 6378136.460 360

EIGEN-GL04C 398600.4415 ×109 6378136.460 360

EIGEN-CG01C 398600.4415 ×109 6378136.460 360

EIGEN-CHAMP03S 398600.4415 ×109 6378136.460 140

ITG-GRACE02S 398600.4415 ×109 6378136.300 170

GGM02C 398600.4415 ×109 6378136.300 200

GGM02S 398600.4415 ×109 6378136.300 160

TUM2S 398600.4418 ×109 6378137.000 60

TUM1S 398600.4360 ×109 6378137.000 60

EIGEN-GRACE02S 398600.4415 ×109 6378136.460 150

EIGEN-GRACE01S 398600.4415 ×109 6378136.460 140

EIGEN2 398600.4415 ×109 6378136.460 140

EIGEN1S 398600.4415 ×109 6378136.460 119

GRIM5C1 398600.4415 ×109 6378136.460 120

EGM96 398600.4415 ×109 6378136.300 360

Assuming that a couple of EGMs with given SHCs {C̄nm,

S̄nm} and {C̄ ′
nm, S̄′

nm} need to be tested for their TRF consis-
tency on the basis of Kleusberg’s model, the aforementioned
re-scaling has the form (Pavlis 1998; Lemoine et al. 1998,
Chap. 7, p. 79)
{

C̄ ′′
nm

S̄′′
nm

}
= GM′

GM

(
a′

a

)n {
C̄ ′

nm
S̄′

nm

}
(34)

where GM′ and a′ are the scaling factors associated with the
original SHCs {C̄ ′

nm, S̄′
nm} of the second model. The coef-

ficients {C̄ ′′
nm, S̄′′

nm} obtained from Eq. (34) are compatible
with the values GM and a of the first model {C̄nm, S̄nm} and
they should be used, instead of {C̄ ′

nm, S̄′
nm}, in the formula-

tion of Kleusberg’s transformation equations (which actually
require in advance that both sets of SHCs should refer to the
same conventional scaling factors). A list with the formal
GM and a values associated with the EGMs that will be used
in our numerical tests is given in Table 4.

Note that the scale-change parameter (δs) that is estimated
through the inversion of Kleusberg’s model will be affected
by the differences that may originally exist in the formal GM
and/or a values of the underling EGMs. This particular trans-
formation parameter will also reflect the combined effect of
systematic errors, data biases, and other types of modeling
uncertainties that have affected the SHCs of both geopoten-
tial models and cause an apparent scale perturbation in their
inherent TRFs.

It should be underlined that the scale-dependent variation
terms δC̄nm(δs) and δ S̄nm(δs), during the forward transfor-
mation of an EGM from its original TRF to another, could
be simply replaced by an appropriate re-scaling of the GM

and a values that will accompany the transformed SHCs in
the new frame, according to the equations

GM′ = (1 + δs)GM (35a)

a′ = (1 + δs)a (35b)

3 Least-squares estimation procedure

Based on Kleusberg’s model, a least-squares adjustment can
be performed for the estimation of the similarity transfor-
mation parameters between the inherent TRFs in different
EGMs. Using matrix notation, the following linear system
of observation equations is formed

y = Ax + v (36)

where y contains the SHC differences C̄ ′
nm − C̄nm and

S̄′
nm − S̄nm (or C̄ ′′

nm − C̄nm and S̄′′
nm − S̄nm , in case the

re-scaling of Eq. (34) is needed), x is the unknown vec-
tor of the TRF transformation parameters, and v includes
the remaining residuals due to non-datum related effects and
other errors in the original SHCs. The elements of the design
matrix A are computed through the analytic expressions in
Eqs. (20)–(33), taking into account also the remark given
in Sect. 2.2 on the appearance of ‘meaningless’ SHCs in
Kleusberg’s transformation equations.

Due to the significant differences in the accuracy level
of the SHCs within each EGM, a suitable weight matrix
P should be employed for the least-squares adjustment of
Eq. (36). For our tests, a diagonal weight matrix has been
used, with elements

pi = 1

σ 2
C̄ ′

nm
+ σ 2

C̄nm

for each observation of type C̄ ′
nm −C̄nm

(37)

and

pi = 1

σ 2
S̄′

nm
+ σ 2

S̄nm

for each observation of type S̄′
nm − S̄nm

(38)

where σ 2
C̄ ′

nm
, σ 2

C̄nm
, σ 2

S̄′
nm

and σ 2
S̄nm

are the SHC error variances

associated with the corresponding models.
A total of 15 EGMs have been used for our numerical

tests (see Table 4). Their SHCs and their error variances have
been obtained from the website of the International Centre of
Global Earth Models (ICGEM) at the GeoForschungsZent-
rum (GFZ), Potsdam (http://icgem.gfz-potsdam.de/ICGEM/
ICGEM.html). In cases where both formal and calibrated
error variances are provided for a particular EGM (e.g.
EIGEN-GRACE02S), the latter have been selected for the
statistical weight determination according to Eqs. (37)
and (38).
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Remark 1 In cases where the SHC re-scaling of Eq. (34) is
required, the initial error variances σ 2

C̄ ′
nm

and σ 2
S̄′

nm
of the tes-

ted EGM have been accordingly re-scaled before the weight
determination.

The geopotential model EIGEN-CG03C is adopted as the
‘reference’ model that will be linked to the {C̄nm , S̄nm} coeffi-
cients in Kleusberg’s formulae. For each adjustment scenario
that will be studied, the estimated transformation parame-
ters are always consistent with the scheme GRF1 → GRF2,
where GRF1 is the reference frame of the EIGEN-CG03C
model, and GRF2 is the reference frame of every other EGM
that is tested. Hence, the values {C̄nm, S̄nm} for computing
the observation vector y always correspond to the original
SHCs of EIGEN-CG03C, whereas the values {C̄ ′

nm, S̄′
nm} are

obtained by applying the re-scaling formula of Eq. (34) to the
original SHCs of every other EGM to be tested. Based on our
selected EGMs (see Table 4) such a re-scaling is necessary for
the models ITG-GRACE02S, GGM02C, GGM02S, TUM1S,
TUM2S and EGM96.

Remark 2 The EGMs considered in this paper are all sta-
tic geopotential models. For some of them, however, time-
dependent low-degree zonal SHCs are formally given in
terms of their values at a specific epoch and their correspon-

ding ‘velocities’ (i.e. C̄2,0,
˙̄C2,0, C̄3,0,

˙̄C3,0, C̄4,0,
˙̄C4,0). In

all such cases, the time-dependent SHCs (including the C̄2,0

coefficient of EGM96) have been transformed to a common
reference epoch, t = 2006.0, for our following
tests.

Remark 3 The second-degree zonal coefficient (C̄2,0) in all
tested models is expressed in the tide-free system. In cases
where the zero-tide system was formally used for some
models (ITG-GRACE02S, GGM02C, GGM02S), the follo-
wing simplified conversion formula has been applied (e.g.
Melbourne 1983)

C̄ tide free
2,0 = C̄zero tide

2,0 + k × (1.39 × 10−8)

where the zero frequency Love number k has been set to the
conventional value 0.3; see also Ekman (1989), Rapp (1989)
and Lemoine et al. (1998, Chap. 11).

4 Numerical results

4.1 Using {C̄nm, S̄nm} and {C̄ ′
nm, S̄′

nm} for n ≥ 2

A first series of least-squares adjustment tests with
Kleusberg’s model was performed by using as ‘observations’
the SHC differences C̄ ′

nm − C̄nm and S̄′
nm − S̄nm for n ≥ 2.

The differences between the zero- and first-degree harmo-
nic coefficients, as well as their inherent uncertainty (either
due to their formal error variances or due to some standard

GM-uncertainty and EGM/geocentricity-uncertainty level)
were not taken into account for these preliminary tests.

In all cases, the SHC differences up to maximum degree
nmax = 70 were considered, although the sensitivity of the
harmonic coefficients of the gravitational potential with res-
pect to their underlying TRF is mostly limited to a lower-
degree spectral band (Pavlis 1998); see also the sensitivity
analysis in Sect. 4.4. The only exceptions are the tests per-
formed with TUM1S and TUM2S, where nmax = 60 was
used due to the limited resolution of these particular
models.

The results for the translation, rotation and scale varia-
tion parameters are shown in Tables 5, 6 and 7, respectively.
An example of the produced correlation matrix for the TRF
transformation parameters is given in Table 8, from which
we see that the correlation coefficients among all estimated
parameters are nearly negligible. This is actually expected
due to the fact that Kleusberg’s model inflicts a ‘global spa-
tial coverage’ of TRF information for the recovery of the
similarity transformation parameters. Analogous correlation
patterns have been obtained in all adjustment tests that have
been performed in the present and subsequent sections.

From the results given in Tables 5, 6, 7, the following
comments can be made:

– the translation parameters are unrealistically large due to
the exclusion of the first-degree SHC differences from the
least-squares adjustment of Kleusberg’s model. In parti-
cular, the origins of the TRFs in many of the tested EGMs
show an estimated offset from a few centimeters upto a
few meters, with respect to the origin of EIGEN-CG03C.
These results essentially reflect the effect of various sys-
tematic errors that exist in the EGMs’ harmonic coeffi-
cients (for n ≥ 2), which are ‘mapped’ to a significant
(apparent) origin inconsistency between their associated
TRFs;

– the rotation about the mean Earth rotation axis (εz) is
1–3 orders of magnitude consistently larger than the other
two rotation angles (εx , εy), with values that reach up to
a few arcsec! This may suggest that some inconsistencies
possibly exist on the constraints that have been applied
for the realization of the terrestrial zero-meridian plane
within the EGMs’ reference frames;

– the large uncertainty of εz , compared to the estimation
accuracy for εx and εy , indicates the weakness for esti-
mating this particular parameter from the non-zonal SHC
differences. Since both sets {C̄nm, S̄nm}, {C̄ ′

nm, S̄′
nm} refer

to a global gravitational field with rather small deviations
from rotational symmetry, the sensitivity of the SHCs
with respect to the rotation angle εz becomes much wea-
ker compared to the influence of the ‘equatorial’
rotation angles εx and εy . Nevertheless, it is evident from
Table 6 that the TRFs in many of the tested EGMs are
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Table 5 Translation parameters of the inherent TRFs in various EGMs, which are obtained from the least-squares adjustment of Kleusberg’s
transformation model (with respect to EIGEN-CG03C)

Model Without taking into account zero- and first-degree Taking into account first-degree
SHC differences SHC differencesa

tx (mm) ty (mm) tz (mm) tx (mm) ty (mm) tz (mm)

EIGEN-GL04C 98.3 ± 84.2 −63.5 ± 84.3 155.4 ± 46.5 5.7 ± 3.7 0.2 ± 3.7 16.0 ± 3.4

EIGEN-CG01C 56.4 ± 67.8 73.0 ± 68.0 66.4 ± 46.1 2.1 ± 6.0 2.1 ± 6.0 4.2 ± 5.5

EIGEN-CHAMP03S −27.8 ± 506.2 272.4 ± 507.8 −1449.4 ± 524.6 2.7 ± 9.4 1.0 ± 9.3 5.6 ± 8.8

ITG-GRACE02S 46.2 ± 59.7 −16.1 ± 60.0 408.8 ± 39.6 5.9 ± 6.2 0.2 ± 6.1 22.7 ± 5.5

GGM02C −45.2 ± 167.8 139.0 ± 168.7 314.4 ± 97.5 5.4 ± 7.3 0.6 ± 7.3 16.6 ± 6.6

GGM02S −32.6 ± 166.3 152.7 ± 167.1 295.7 ± 96.6 5.4 ± 7.2 0.6 ± 7.2 16.5 ± 6.5

TUM2Sb 50.5 ± 375.0 −277.5 ± 386.6 188.1 ± 287.1 5.7 ± 14.6 0.7 ± 14.6 15.8 ± 13.2

TUM1Sb −89.2 ± 390.8 651.2 ± 401.1 −525.9 ± 303.7 4.3 ± 12.8 −1.1 ± 12.7 −0.6 ± 11.5

EIGEN-GRACE02S 45.5 ± 62.8 74.5 ± 63.4 −98.9 ± 41.1 5.7 ± 4.9 1.3 ± 7.3 13.9 ± 4.4

EIGEN-GRACE01S 141.7 ± 245.1 238.3 ± 246.6 442.8 ± 168.8 5.5 ± 3.6 0.5 ± 5.4 15.4 ± 3.2

EIGEN2 −455.2 ± 127.7 230.2 ± 128.0 −2498.3 ± 131.0 4.5 ± 6.0 0.8 ± 5.9 11.3 ± 5.4

EIGEN1S −627.6 ± 2549.0 −271.7 ± 2368.7 −2651.0 ± 3691.3 5.5 ± 9.1 0.3 ± 9.0 15.2 ± 8.2

GRIM5C1 916.2 ± 476.1 389.4 ± 437.0 −7098.9 ± 891.2 9.4 ± 31.4 2.3 ± 31.2 8.2 ± 28.3

EGM96 2982.5 ± 1640.9 −1909.5 ± 1615.6 −42.9 ± 182.6 5.6 ± 9.0 0.3 ± 8.9 15.1 ± 8.1

The differences of SHCs with their error variances up to nmax = 70 have been used
a The first-degree SHCs of the reference model EIGEN-CG03C and of the tested models EIGEN-CG01C, EIGEN-CHAMP03S, TUM2S and TUM1S,
have been weighted according to the formal error estimates provided by the corresponding models. The (set-to-zero) first-degree SHCs of the tested
models EIGEN-GL04C, EIGEN-GRACE02S, EIGEN-GRACE01S, ITG-GRACE02S, GGM02C, GGM02S, EIGEN2, EIGEN1S, GRIM5C1 and
EGM96, have been assumed errorless
b The SHCs with their error variances up to nmax = 60 have been used for testing these models

Table 6 Rotation angles of the inherent TRFs in various EGMs, which are obtained from the least-squares adjustment of Kleusberg’s transformation
model (with respect to EIGEN-CG03C)

Model Without taking into account zero- and first-degree Taking into account first-degree
SHC differences SHC differencesa

εx (mas) εy (mas) εz (mas) εx (mas) εy (mas) εz (mas)

EIGEN-GL04C 5.07 ± 3.75 −0.79 ± 3.72 −69.02 ± 53.35 5.04 ± 3.75 −0.88 ± 3.73 −71.05 ± 53.35

EIGEN-CG01C −0.64 ± 4.11 −2.77 ± 4.09 92.46 ± 61.46 −0.67 ± 4.11 −2.82 ± 4.09 95.20 ± 61.38

EIGEN-CHAMP03S 16.06 ± 22.15 20.18 ± 22.00 −593.11 ± 356.74 15.97 ± 22.16 20.53 ± 22.01 −582.90 ± 356.75

ITG-GRACE02S −3.98 ± 4.41 −6.43 ± 4.40 −80.90 ± 64.33 −4.02 ± 4.45 −6.97 ± 4.44 −86.01 ± 64.81

GGM02C 17.86 ± 11.50 11.18 ± 11.11 93.64 ± 202.77 17.82 ± 11.51 10.71 ± 11.12 102.93 ± 202.41

GGM02S 10.85 ± 11.39 2.55 ± 11.34 47.13 ± 201.64 10.81 ± 11.39 2.09 ± 11.35 57.78 ± 201.26

TUM2Sb 7.84 ± 15.57 −4.05 ± 15.41 −5186.82 ± 1277.51 7.89 ± 15.56 −4.13 ± 15.40 −5380.69 ± 1249.48

TUM1Sb 109.65 ± 15.79 48.90 ± 15.69 −4558.15 ± 1331.70 109.52 ± 15.80 49.10 ± 15.70 −4099.26 ± 1303.11

EIGEN-GRACE02S −3.93 ± 6.66 −7.54 ± 6.58 −26.80 ± 99.00 −4.05 ± 6.66 −7.16 ± 6.59 −15.37 ± 98.63

EIGEN-GRACE01S 4.92 ± 27.56 −4.48 ± 27.60 −75.69 ± 218.43 4.52 ± 27.57 −5.74 ± 27.61 −69.51 ± 218.27

EIGEN2 10.82 ± 4.80 27.48 ± 4.78 1614.60 ± 236.93 10.75 ± 5.00 27.90 ± 4.96 1681.63 ± 244.16

EIGEN1S 15.92 ± 77.55 22.11 ± 85.44 1771.12 ± 2449.50 15.95 ± 77.53 22.26 ± 85.42 1766.71 ± 2444.99

GRIM5C1 35.36 ± 19.56 16.12 ± 19.94 453.23 ± 1139.51 35.18 ± 19.68 16.64 ± 20.07 616.06 ± 1131.74

EGM96 65.01 ± 5.24 15.86 ± 5.21 −1366.29 ± 2543.98 65.01 ± 5.24 15.86 ± 5.21 −1691.12 ± 2532.60

The differences of SHCs with their error variances up to nmax = 70 have been used
a The first-degree SHCs of the reference model EIGEN-CG03C and of the tested models EIGEN-CG01C, EIGEN-CHAMP03S, TUM2S and
TUM1S, have been weighted according to the formal error estimates provided by the corresponding models. The (set-to-zero) first-degree SHCs of
the models EIGEN-GL04C, EIGEN-GRACE02S, EIGEN-GRACE01S, ITG-GRACE02S, GGM02C, GGM02S, EIGEN2, EIGEN1S, GRIM5C1 and
EGM96, have been assumed errorless
b The SHCs with their error variances up to nmax = 60 have been used for testing these models

123



A study on the reference frame consistency in recent Earth gravitational models 41

Table 7 Scale change of the inherent TRFs in various EGMs, which is obtained from the least-squares adjustment of Kleusberg’s transformation
model (with respect to EIGEN-CG03C)

Model Without taking into account zero- and Taking into account first-degree
first-degree SHC differences SHC differencesa

δs (ppb) δs (ppb)

EIGEN-GL04C 91.55 ± 17.79 91.09 ± 17.81

EIGEN-CG01C 46.05 ± 23.17 45.60 ± 23.17

EIGEN-CHAMP03S 279.11 ± 103.80 280.19 ± 103.85

ITG-GRACE02S 28.21 ± 20.82 26.40 ± 21.01

GGM02C 194.95 ± 66.23 192.96 ± 66.26

GGM02S 391.72 ± 108.60 386.43 ± 108.59

TUM2S b 121.29 ± 59.31 121.13 ± 59.29

TUM1S b −177.35 ± 55.82 −176.98 ± 55.84

EIGEN-GRACE02S 39.98 ± 38.97 41.01 ± 38.97

EIGEN-GRACE01S 101.09 ± 144.33 95.28 ± 144.33

EIGEN2 530.43 ± 24.83 533.03 ± 25.75

EIGEN1S 48.80 ± 125.57 48.94 ± 125.54

GRIM5C1 −43.74 ± 105.41 −44.25 ± 106.08

EGM96 46.77 ± 54.19 46.72 ± 54.20

The differences of SHCs with their error variances up to nmax = 70 have been used
a The first-degree SHCs of the reference model EIGEN-CG03C and of the tested models EIGEN-CG01C, EIGEN-CHAMP03S, TUM2S and TUM1S,
have been weighted according to the formal error estimates provided by the corresponding models. The (set-to-zero) first-degree SHCs of the tested
models EIGEN-GL04C, EIGEN-GRACE02S, EIGEN-GRACE01S, ITG-GRACE02S, GGM02C, GGM02S, EIGEN2, EIGEN1S, GRIM5C1 and
EGM96, have been assumed errorless
b The SHCs with their error variances up to nmax = 60 have been used for testing these models

Table 8 Example of the correlation matrix for the estimated TRF transformation parameters between EIGEN-CG03C and EIGEN-CG01C

tx ty tz εx εy εz δs

tx 1.0000000 0.0010358 0.0001202 0.0003547 −0.0007009 −0.0010921 0.0154600

ty 1.0000000 −0.0003548 0.0047606 −0.0007923 −0.0501770 −0.0025186

tz 1.0000000 0.0011016 0.0100770 0.0062606 0.0072008

εx 1.0000000 −0.0012399 −0.0022621 −0.0001365

εy 1.0000000 0.0029371 0.0000217

εz 1.0000000 0.0001055

δs 1.0000000

highly inconsistent in terms of their zero-meridian
reference planes, even within a 3σ confidence level (see
the results for EIGEN2, TUM1S and TUM2S);

– the scale factor between the TRFs in the tested EGMs
appears to be of the order 10−8 – 10−7, well above the ppb
level. This mainly reflects the effect of various systematic
errors and other inconsistencies that exist in the EGMs’
harmonic coefficients (for n ≥ 2), which are ‘mapped’ to
an apparent scale variation between their inherent TRFs.
Note that, in Sect. 4.3, it is shown that most of these scale
factors drop below the ppb level through the inclusion of

the difference C̄ ′
0,0 − C̄0,0 in the least-squares adjustment

with Kleusberg’s model.

The square roots of the a posteriori variance factors for
the previous adjustment tests are shown in Table 9. In most
cases the values are close to 1, indicating that the diago-
nal weight matrix P that was formed according to Eqs. (37)
and (38) is quite realistic. The only exceptions occur for
the tests with TUM1S, TUM2S and GRIM5C1, which reveal
that the original error variances for their SHCs are rather
optimistic.
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Table 9 Square root of the a posteriori variance factor for the least-
squares adjustments corresponding to the various cases shown in
Tables 5, 6 and 7

Model Without taking into Taking into
account zero- and account first-degree
first-degree SHC SHC differences
differences

EIGEN-GL04C 0.77 0.77

EIGEN-CG01C 0.78 0.78

EIGEN-CHAMP03S 1.60 1.60

ITG-GRACE02S 1.26 1.28

GGM02C 1.50 1.51

GGM02S 1.49 1.49

TUM2S 3.02 3.02

TUM1S 2.63 2.64

EIGEN-GRACE02S 1.01 1.01

EIGEN-GRACE01S 0.73 0.73

EIGEN2 1.19 1.23

EIGEN1S 1.87 1.87

GRIM5C1 6.44 6.49

EGM96 1.85 1.85

Note that all accuracy estimates given in Tables 5, 6 and
7 have been re-scaled in order to account for the a posteriori
variance factor that was obtained in each case.

4.2 Using {C̄nm, S̄nm} and {C̄ ′
nm, S̄′

nm} for n ≥ 1

Another series of adjustment tests was performed by inclu-
ding the differences C̄ ′

1,0 − C̄1,0, C̄ ′
1,1 − C̄1,1 and S̄′

1,1 − S̄1,1

in the observation vector y. In all cases, the first-degree SHCs
C̄1,0, C̄1,1, S̄1,1 were equal to the formal non-zero values
provided by the EIGEN-CG03C model, whereas C̄ ′

1,0, C̄ ′
1,1,

S̄′
1,1 were either conventionally equal to zero (EIGEN-

GL04C, ITG-GRACE02S, GGM02C, GGM02S, EIGEN-
GRACE02S, EIGEN-GRACE01S, EIGEN2, EIGEN1S,
GRIM5C1, EGM96), or equal to their formal non-zero values
(EIGEN-CG01C, EIGEN-CHAMP03S, TUM2S, TUM1S).

The statistical weights for the three additional ‘observa-
tions’ have been determined according to Eqs. (37) and (38)
by taking into account the error variances for the corres-
ponding first-degree SHCs. In the case of EIGEN-GL04C,
ITG-GRACE02S, GGM02C, GGM02S, EIGEN-GRACE02S,
EIGEN-GRACE01S, EIGEN2, EIGEN1S, GRIM5C1 and
EGM96 (where C̄ ′

1,0, C̄ ′
1,1, S̄′

1,1 are a priori fixed to zero),
it has been assumed that σC̄ ′

1,0
= σC̄ ′

1,1
= σS̄′

1,1
= 0.

The adjustment results are shown in the corresponding
columns of Tables 5, 6, 7 and 9. The only notable difference
with respect to the results of the previous section are the
significantly smaller values for the translation parameters
and the improvement of their accuracy level. The origins
of the EGMs’ reference frames appear now to be consistent

at the cm-level, with their total shift ranging from a few mm
up to approximately 2.5 cm. This indicates that the inclu-
sion of the first-degree SHC differences in the least-squares
adjustment with Kleusberg’s model acts as an effective
‘filter’ for various systematic errors in the EGMs’ coefficients
(for n ≥ 2), which corrupted significantly the estimated
translation parameters in the previous adjustment scenario
(Sect. 4.1).

The TRF orientation and scale parameters do not
show significant variations in their estimated values when the
first-degree SHCs are taken into account, and they appear to
follow the same pattern that was indicated in Sect. 4.1. The
actual changes in the rotation angle εz are more pronounced
than the changes in the other two rotation parameters, yet
they remain within their 1σ uncertainty level.

In order to obtain a more realistic assessment of the origin
consistency between the EGMs’ reference frames, an addi-
tional series of adjustment tests was performed for the models
EIGEN-GL04C, ITG-GRACE02S, GGM02C, GGM02S,
EIGEN-GRACE02S, EIGEN-GRACE01S, EIGEN2,
EIGEN1S, GRIM5C1 and EGM96. Note that the previous
results for these particular models were based on a zero-
uncertainty assumption for their first-degree harmonics, and
thus the weights of the differences C̄ ′

1,0 − C̄1,0, C̄ ′
1,1 − C̄1,1,

S̄′
1,1 − S̄1,1 were calculated based solely on the (formal) first-

degree SHC error variances of the reference model EIGEN-
CG03C.

For the new tests, the (set-to-zero) first-degree SHCs of
the aforementioned ten models have been assigned a standard
uncertainty level of ∼ 4.526 × 10−10, which corresponds to
a uniform EGM-geocentricity accuracy of σxcm = σycm =
σzcm = ±5mm; see Eqs. (13)–(15). The results for the TRF
transformation parameters in this case are collectively given
in Table 10.

From the results in Table 10, it is seen that the estima-
ted translation parameters remain within the same order of
magnitude as in Table 5. Basically, only the tz values are
changed by a few mm for some EGMs (notable exception
is the case of GRIM5C1 where all three translation para-
meters change their values by 4, 2 and 9 mm, respectively).
The changes in the TRF rotation and scale parameters are
negligible with respect to the corresponding values shown in
Tables 6 and 7.

4.3 Using {C̄nm, S̄nm} and {C̄ ′
nm, S̄′

nm} for n ≥ 0

The difference of the zero-degree SHCs was excluded from
the input data y in all previous adjustment tests. Even if this
difference is a priori equal to zero (which is the case for EGMs
using the same conventional values for GM), the inclusion
of C̄ ′

0,0 − C̄0,0 in the least-squares adjustment of Kleusberg’s
model leads to a more realistic estimation of the scale factor
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Table 10 Similarity transformation parameters of the inherent TRFs in various EGMs obtained from the least-squares adjustment of Kleusberg’s
transformation model (with respect to EIGEN-CG03C)

Model tx (mm) ty (mm) tz (mm) εx (mas) εy (mas) εz (mas) δs (ppb)

EIGEN-GL04C 5.9 ± 5.4 0.1 ± 5.4 16.9 ± 5.1 5.04 ± 3.75 −0.88 ± 3.73 −71.04 ± 53.35 91.09 ± 17.80

EIGEN-GRACE02S 6.0 ± 7.0 1.3 ± 7.3 12.3 ± 6.6 −4.05 ± 6.66 −7.16 ± 6.59 −15.38 ± 98.63 40.99 ± 38.97

EIGEN-GRACE01S 5.5 ± 5.1 0.5 ± 5.4 15.6 ± 4.9 4.52 ± 27.57 −5.74 ± 27.61 −69.51 ± 218.27 95.28 ± 144.33

ITG-GRACE02S 6.3 ± 8.8 0.0 ± 8.8 32.1 ± 8.3 −4.02 ± 4.45 −6.96 ± 4.44 −85.90 ± 64.79 26.41 ± 21.00

GGM02C 5.3 ± 10.5 0.9 ± 10.4 18.3 ± 9.9 17.82 ± 11.51 10.72 ± 11.12 102.92 ± 202.41 192.98 ± 66.26

GGM02S 5.3 ± 10.4 0.9 ± 10.4 18.1 ± 9.8 10.81 ± 11.39 2.09 ± 11.35 57.77 ± 201.26 386.47 ± 108.59

EIGEN2 3.6 ± 8.6 1.3 ± 8.5 6.2 ± 8.2 10.75 ± 4.97 27.90 ± 4.95 1681.49 ± 244.15 533.03 ± 25.75

EIGEN1S 5.5 ± 13.0 0.3 ± 13.0 15.2 ± 12.4 15.95 ± 77.53 22.26 ± 85.42 1766.71 ± 2444.99 48.94 ± 125.54

GRIM5C1 13.5 ± 45.0 4.4 ± 44.9 −1.1 ± 43.0 35.18 ± 19.68 16.64 ± 20.07 615.31 ± 1131.81 −44.24 ± 106.08

EGM96 5.7 ± 12.9 0.2 ± 12.8 15.0 ± 12.2 65.01 ± 5.24 15.86 ± 5.21 −1691.11 ± 2532.59 46.72 ± 54.20

The differences of SHCs with their error variances up to nmax = 70 have been used, including the first-degree harmonics from all models
The first-degree SHCs of the reference model EIGEN-CG03C have been weighted according to their formal error estimates. The (set-to-zero)
first-degree SHCs of all tested models have been weighted by adopting a uniform ‘geocentricity’ accuracy of ±5 mm

δs between the EGMs’ reference frames, as we shall see from
the following results.

A crucial aspect in this case is the proper weighting of the
zero-degree SHCs, which should be based on the uncertainty
of the geocentric gravitational ‘constant’ that is adopted by
each geopotential model. Even if the underlying EGMs use
the same conventional GM, the realized scale of their asso-
ciated TRFs is affected by the physical ambiguity of its value
(Zhu et al. 2001) which is mostly concentrated on the zero-
degree harmonic term.

For the tests presented in this section, the difference C̄ ′
0,0−

C̄0,0 is included as additional observation in the least-squares
adjustment of Kleusberg’s model, with its weight set to

p = 1

σ 2
C̄ ′

0,0
+ σ 2

C̄0,0

(39)

The error variances for the zero-degree SHCs are deter-
mined from Eq. (6) using the IERS standard uncertainty of
σGM = 0.8×106 m3s−2 (McCarthy and Petit 2004). In some
of the tested models their zero-degree coefficient is already
accompanied by a formal error estimate (see Table 2). For
these cases, the value of σC̄ ′

0,0
in Eq. (39) corresponds to the

one provided by the corresponding EGM solution, and not
to the value implied by the IERS uncertainty for GM.

The treatment of the first-degree SHCs is similar to the
approach followed in the previous section. In particular, the
differences C̄ ′

1,0 − C̄1,0, C̄ ′
1,1 − C̄1,1, S̄′

1,1 − S̄1,1 are included
in the adjustment and they have been weighted according
to the formal error variances of the first-degree SHCs of the
corresponding models. In cases where the first-degree coeffi-
cients of the tested model are conventionally set to zero, their
error variances have been computed by adopting a uniform
EGM-geocentricity accuracy level of ±5 mm.

The results for the estimated TRF transformation parame-
ters and their accuracy level are given in Table 11, whereas
the square roots of the a posteriori variance factor for each
adjustment are shown in Table 12. These results should be
considered as our most representative assessment for the TRF
consistency among the 15 tested EGMs.

Based on the values in Table 11, the following comments
can be made

– the TRFs associated with most of the tested EGMs
show a scale stability at the ppb level, or better. Notable
exceptions are the models TUM1S and EIGEN2, where
the estimated scale factor reaches the values of −15.57
and 9.64 ppb, respectively;

– the translation and rotation parameters are essentially
unaffected by the inclusion of the difference C̄ ′

0,0−C̄0,0 in
the least-squares adjustment, and they practically retain
the same estimated values (and accuracy level) that were
obtained in the previous adjustment tests in Sect. 4.2.

In order to assess the effect of the estimated differences
among the EGMs’ reference frames on the height anomaly
signal computed from their SHCs, we shall consider the
datum transformation formula

ζ ′ − ζ = δζ(tx , ty, tz) + δζ(εx , εy) + δζ(δs) (40)

where the individual transformation terms are analytically
given by the equations (e.g. Rapp 1993; Kotsakis 2008)

δζ(tx , ty, tz) = tx cosϕ cosλ + ty cosϕ sinλ + tz sinϕ (41)

δζ(εx , εy)= ae2

W
(−εx sinϕ cosϕ sinλ+εy sinϕ cosϕ cosλ)

(42)

δζ(δs) = (aW + ζ )δs (43)
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Table 11 Similarity transformation parameters of the inherent TRFs in various EGMs obtained from the least-squares adjustment of Kleusberg’s
transformation model (with respect to EIGEN-CG03C)

Model tx (mm) ty (mm) tz (mm) εx (mas) εy (mas) εz (mas) δs (ppb)

EIGEN-GL04C 5.8 ± 5.4 0.1 ± 5.4 16.9 ± 5.1 5.04 ± 3.76 −0.88 ± 3.74 −71.04 ± 53.48 1.36 ± 2.18

EIGEN-CG01C 2.1 ± 6.0 2.2 ± 6.0 4.2 ± 5.5 −0.67 ± 4.11 −2.82 ± 4.09 95.21 ± 61.40 0.42 ± 2.21

EIGEN-CHAMP03S 2.7 ± 9.4 1.0 ± 9.3 5.6 ± 8.8 15.98 ± 22.18 20.52 ± 22.02 −582.88 ± 356.97 0.53 ± 4.53

ITG-GRACE02S 6.3 ± 8.8 0.0 ± 8.8 32.1 ± 8.3 −4.02 ± 4.45 −6.96 ± 4.44 −85.90 ± 64.80 0.76 ± 3.57

GGM02C 5.2 ± 10.5 0.9 ± 10.5 18.3 ± 9.9 17.83 ± 11.51 10.72 ± 11.13 102.92 ± 202.56 0.80 ± 4.27

GGM02S 5.3 ± 10.4 0.9 ± 10.4 18.1 ± 9.9 10.82 ± 11.41 2.11 ± 11.36 57.75 ± 201.49 0.59 ± 4.24

TUM2S a 5.7 ± 14.6 0.7 ± 14.6 15.8 ± 13.2 7.89 ± 15.57 −4.13 ± 15.41 −5380.53 ± 1249.97 2.29 ± 6.02

TUM1S a 4.3 ± 12.8 −1.1 ± 12.8 −0.6 ± 11.5 109.52 ± 15.81 49.10 ± 15.71 −4099.30 ± 1304.46 −15.57 ± 5.27

EIGEN-GRACE02S 5.9 ± 7.0 1.3 ± 7.3 12.3 ± 6.6 −4.05 ± 6.66 −7.16 ± 6.59 −15.38 ± 98.63 0.22 ± 2.85

EIGEN-GRACE01S 5.5 ± 5.1 0.5 ± 5.4 15.6 ± 4.9 4.53 ± 27.57 −5.74 ± 27.61 −69.52 ± 218.25 0.02 ± 2.08

EIGEN2 3.4 ± 8.9 1.3 ± 8.9 6.1 ± 8.5 10.75 ± 5.18 27.90 ± 5.16 1681.90 ± 254.12 9.64 ± 3.60

EIGEN1S 5.5 ± 13.0 0.3 ± 13.0 15.2 ± 12.4 15.95 ± 77.52 22.26 ± 85.41 1766.71 ± 2444.75 0.09 ± 5.31

GRIM5C1 13.5 ± 45.0 4.4 ± 44.9 −1.1 ± 43.0 35.18 ± 19.68 16.64 ± 20.07 615.28 ± 1131.68 −0.77 ± 12.92

EGM96 5.7 ± 12.9 0.2 ± 12.8 15.0 ± 12.2 65.01 ± 5.24 15.86 ± 5.21 −1691.20 ± 2532.53 0.43 ± 5.22

The differences of SHCs with their error variances up to nmax = 70 have been used, including the zero- and first-degree harmonics from all models
The first-degree SHCs of the reference model EIGEN-CG03C and of the tested models EIGEN-CG01C, EIGEN-CHAMP03S, TUM2S and TUM1S,
have been weighted according to the formal error estimates provided by the corresponding models. The (set-to-zero) first-degree SHCs of the
tested models EIGEN-GL04C, EIGEN-GRACE02S, EIGEN-GRACE01S, ITG-GRACE02S, GGM02C, GGM02S, EIGEN2, EIGEN1S, GRIM5C1
and EGM96, have been weighted by adopting a uniform ‘geocentricity’ accuracy of ±5 mm. The zero-degree SHC of the tested models TUM2S,
TUM1S and GRIM5C1 has been weighted according to the formal error estimate σC̄00

provided by the corresponding models. The (set-to-one)
zero-degree SHC of the reference model EIGEN-CG03C and of the tested models EIGEN-GL04C, EIGEN-CG01C, EIGEN-CHAMP03S, EIGEN-
GRACE02S, EIGEN-GRACE01S, ITG-GRACE02S, GGM02C, GGM02S, EIGEN2, EIGEN1S and EGM96, has been weighted by adopting the
IERS standard uncertainty level of the geocentric gravitational constant σGM = 0.8 × 106 m3s−2

a The SHCs with their error variances up to nmax = 60 have been used for testing these models

Table 12 Square root of the a
posteriori variance factor for the
least-squares adjustments corres-
ponding to the various cases
shown in Table 11

Model σ̂o

EIGEN-GL04C 0.77

EIGEN-CG01C 0.78

EIGEN-CHAMP03S 1.60

ITG-GRACE02S 1.28

GGM02C 1.51

GGM02S 1.49

TUM2S 3.02

TUM1S 2.64

EIGEN-GRACE02S 1.01

EIGEN-GRACE01S 0.73

EIGEN2 1.28

EIGEN1S 1.87

GRIM5C1 6.49

EGM96 1.85

Due to the rotational symmetry of the reference ellipsoid
involved in the calculation of ζ , the rotation angle εz does
not affect the transformation of the height anomaly between
different TRFs. The auxiliary quantity W corresponds to the
unitless expression

W = (1 − e2 sin2ϕ)1/2 (44)

while the length of the semi-major axis a and the squared
eccentricity e2 that appear in the previous equations define
the geometry of the adopted reference ellipsoid for the height
anomaly determination.

Using the transformation parameters from Table 11, the
statistics of the height anomaly differences due to TRF trans-
lation δζ(tx , ty, tz), TRF rotation δζ(εx , εy), and TRF scale
variation δζ(δs) have been computed over a test area enclo-
sing most of the Canadian territory (48◦ N < ϕ < 68◦ N,

240◦ W < λ < 290◦ W). Our numerical calculations have
been performed on a 1◦ × 1◦ grid within the above geogra-
phical limits, using EIGEN-CG03C as the reference model
associated with the initial ζ values with respect to the GRS80
ellipsoid. The statistics for the individual transformation
components, as well as for the total height anomaly varia-
tion, are given in Table 13.

Although the orientation differences among the EGMs’
reference frames have a negligible effect (<1 cm) on the
height anomaly signal, the combined effect of their TRF ori-
gin and scale differences can reach several cm, as it can be
seen from Table 13. In all cases, the total TRF effect appears
as an almost constant bias in the height anomaly signal, since
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Table 13 Statistics (in cm) of
height anomaly variations
induced by the EGM/TRF
transformation parameters
shown in Table 11

The calculations refer to a
uniform 1◦ × 1◦ geographical
grid, over a test area that
encloses most of the Canadian
territory (48◦N < ϕ <

68◦N, 240◦W < λ < 290◦W).
All values refer to the
differences with respect to the
height anomaly signal obtained
by EIGEN-CG03C using the
GRS80 reference ellipsoid

Model δζ(tx , ty, tz) δζ(εx , εy) δζ(δs) δζtotal

µ σ µ σ µ σ µ σ

EIGEN-GL04C 1.4 0.1 0.0 0.0 0.9 0.0 2.3 0.1

EIGEN-CG01C 0.2 0.1 0.0 0.0 0.3 0.0 0.5 0.0

EIGEN-CHAMP03S 0.4 0.1 0.1 0.1 0.3 0.0 0.9 0.1

ITG-GRACE02S 2.7 0.2 0.0 0.0 0.5 0.0 3.1 0.2

GGM02C 1.5 0.1 0.1 0.0 0.5 0.0 2.1 0.1

GGM02S 1.5 0.1 0.1 0.0 0.4 0.0 1.9 0.1

TUM2S 1.3 0.1 0.1 0.0 1.5 0.0 2.8 0.1

TUM1S 0.0 0.1 0.9 0.2 −9.9 0.0 −9.0 0.2

EIGEN-GRACE02S 0.9 0.1 0.0 0.0 0.1 0.0 1.1 0.1

EIGEN-GRACE01S 1.3 0.1 0.0 0.0 0.0 0.0 1.3 0.1

EIGEN2 0.4 0.1 0.1 0.1 6.1 0.0 6.6 0.1

EIGEN1S 1.2 0.1 0.1 0.1 0.1 0.0 1.4 0.2

GRIM5C1 −0.4 0.2 0.3 0.1 −0.5 0.0 −0.6 0.2

EGM96 1.2 0.1 0.6 0.1 0.3 0.0 2.1 0.1

the dispersion (σ ) of its values over the test area is always
well below the cm-level.

4.4 The sensitivity of the estimated TRF transformation
parameters with respect to the maximum harmonic
degree of the SHC differences {C̄ ′

nm − C̄nm} and
{S̄′

nm − S̄nm}

It is well known that the sensitivity of the geopotential SHCs
with respect to their underlying TRF is confined to the very
low-degree spectral band (Kleusberg 1980; Pavlis 1998).
An additional series of tests has been performed to explore
the reverse aspect of the previous statement, namely the
sensitivity of the estimated TRF transformation parameters
(obtained through Kleusberg’s model) with respect to the
spectral bandwidth of the used SHCs. The results shown in
the following graphs have been obtained by using Kleus-
berg’s formulae for the joint adjustment of {C̄ ′

nm − C̄nm} and
{S̄′

nm − S̄nm}, and setting successively increasing values for
the maximum harmonic degree of the ingoing SHC diffe-
rences.

As in the previous tests, EIGEN-CG03C is adopted as
the reference model with respect to which the TRF trans-
formation parameters of the other EGMs are determined.
Here, we present results for the max/degree-dependent varia-
tions in the estimated transformation parameters for EIGEN-
GRACE02S, GGM02C and EIGEN-CHAMP03S; see Figs.
3, 4, 5. The successive least-squares adjustments with
Kleusberg’s model have been based on the same general sce-
nario that was followed in Sect. 4.3 (i.e. inclusion of both
zero- and first-degree SHC differences with appropriate sta-
tistical weights for each case).

From Fig. 3 we see that the TRF translation parameters
remain practically constant after nmax ≈ 10, thus indica-
ting that the very low-degree coefficients are the ones that
essentially contribute to the estimation of tx , ty, tz through
the inversion of Kleusberg’s model. It is interesting to point
out that, in the case of EIGEN-CHAMP03S, the estimated
translation parameters change much less (as nmax increases)
compared to the other two geopotential models. The reason
for that is that both EIGEN-CG03C and EIGEN-CHAMP03S
are already accompanied by some a priori information for
their TRF origin offset with respect to the geocenter (i.e. the
first-degree SHCs of both models are not fixed to zero), and
thus the results of the least-squares adjustment likely tend
to converge to much closer values for the TRF translation
parameters, as nmax increases.

The variations for the EGMs’ reference frame rotations
are shown in Fig. 4. Notice that the estimated rotation angles
εx and εy exhibit very small variability (less than 1–2 mas)
as nmax increases, and they remain practically constant for
nmax > 40. The third rotation angle εz shows higher varia-
bility with considerably larger values for its absolute magni-
tude, yet it also remains constant for nmax > 40.

Finally, the behavior of the estimated scale factor as a
function of nmax is shown in Fig. 5, where we see that the
δs-variations are negligible (less than 0.1 ppb) over the entire
spectral band that was considered for these tests.

5 Conclusions

Using Kleusberg’s (1980) formulation for the TRF transfor-
mation of Earth’s gravitational potential SHCs, a number of
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Fig. 3 Estimated TRF
translation parameters (in mm)
between EIGEN-CG03C and
three tested geopotential models
(EIGEN-GRACE02S, GGM02C,
EIGEN-CHAMP03S) as a
function of the maximum
harmonic degree used in the
least-squares adjustment with
Kleusberg’s model
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geopotential models have been tested in terms of their TRF
consistency with respect to the reference frame underlying
the EIGEN-CG03C model. Compared to other techniques
that have been used for similar purposes (e.g. comparisons
between geometric and gravimetric geoid undulations over
control networks of GPS/leveling benchmarks), our metho-
dology solely relies on the adjustment of SHC differences,
{C̄ ′

nm − C̄nm} and {S̄′
nm − S̄nm}, according to a similarity

(linearized Helmert-type) transformation model that relates
the TRFs in the corresponding EGMs.

Based on the findings of our study, the following conclu-
sions can be stated:

– the TRFs of the tested EGMs show a consistency for
their origin position at the level of 1–2 cm or better.
Notable exception are the results obtained for ITG-
GRACE02S, which revealed a spatial origin shift

(
√

t2
x + t2

y + t2
z )of 3.3 cm with respect to EIGEN-CG03C,

mainly due to a large offset in the tz component. Note,
however, that in most cases the uncertainty of the
estimated translation parameters is considerably larger
that the actual magnitude of their values (with the excep-
tion of tz in several EGMs — see Table 11), a fact
that indicates the inherent difficulty of extracting TRF

information from geopotential models at the currently
available accuracy level of their SHCs (more comments
to follow on this issue);

– a result that requires further study is the evident bias
in the tz values, compared to the equatorial translation
components tx and ty . In most of the tested EGMs, the
TRF translation parameter tz shows systematically larger
values than the other two translation components. Note
that a similar z-shift effect has been repeatedly reported
by several authors in the context of global TRF studies
(e.g. Schaab and Groten 1979; Grappo 1980; West 1982;
Soler and van Gelder 1987; Boucher and Altamimi 2001;
Heflin et al. 2002);

– in terms of orientation stability for the mean Earth rota-
tion axis (rotation angles εx and εy), the associated TRFs
of the tested EGMs show variations in the order of
10−2–10−3 arcsec. The rotation angle εz appears to have
larger values by 1–3 orders of magnitude (up to a few
arcsec), a fact that does not necessarily suggest the exis-
tence of systematic differences in the realization of the
zero-meridian plane among the EGMs’ reference frames,
since the corresponding uncertainty of εz is, in most cases,
quite high (see Table 11). It should be kept in mind that
there is a natural deficiency involved in the precise
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Fig. 4 Estimated TRF rotation
angles (in mas) between
EIGEN-CG03C and three tested
geopotential models
(EIGEN-GRACE02S, GGM02C,
EIGEN-CHAMP03S) as a
function of the maximum
harmonic degree used in the
least-squares adjustment with
Kleusberg’s model
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estimation of εz exclusively from SHCs, due to the (almost)
rotationally-symmetric behavior of Earth’s gravitational
field;

– the TRF scale stability in most of the tested EGMs is at
the sub-ppb level, although for some models (EIGEN2,
TUM1S) scale factors δs well above the ppb-level have
been estimated. It should be also noted that the effect of
various systematic errors in the EGMs’ harmonic coeffi-
cients (for n ≥ 2) can cause an apparent scale variation
in their inherent TRFs at the level of 10−8 – 10−7 (see
Tables 7 and 10).

A few remarks about the feasibility of Kleusberg’s model
as a testing tool for the TRF consistency in different EGMs
should finally be stated. Undoubtedly, the estimated transfor-
mation parameters that we obtain through the least-squares
inversion of Kleusberg’s model do not only reflect the pos-
sible differences in the TRFs underlying each EGM solution,
but they also contain effects from other ‘error signals’ that
exist in the original SHCs. Although the random part of these
errors is effectively filtered, within the adjustment proce-
dure, through the data weight matrix P (see Sect. 3), there
still remains the risk that certain systematic-type signals will
be lumped into the estimated transformation parameters and
thus cause apparent differences in the EGM-related TRFs.

Note that the EGMs tested in this paper are mainly ‘sta-
tic’ models and they were developed from various data sets
with quite different time spanning periods, some as short as
a few months while other covering decades. Furthermore,
the determination of their SHCs imply that certain temporal
aspects of Earth’s gravitational field (e.g. tidal variations, loa-
ding effects, mass re-distribution within Earth’s system) are
modeled in a specific fashion, which is not necessarily iden-
tical for each geopotential solution. The temporal variations
of Earth’s gravitational field are inevitably averaged over the
time span of each data set, and then aliased onto the esti-
mated SHCs of each model. As a result, the transformation
parameters obtained from the inversion of Kleusberg’s for-
mulae will be partially affected by the inconsistencies that
may exist in the treatment of various temporal effects within
each ‘static’ EGM solution.

Nevertheless, it should be noted that the situation des-
cribed above is not much different from what is practically
involved in several other TRF studies. Take, for example,
the estimation of the similarity transformation parameters
between a global geodetic datum (e.g. ITRFxx) and a local
geodetic datum, based on the 3D Cartesian coordinates for
a group of terrestrial control points. In our case, instead
of common points we have a common signal (i.e. the gra-
vitational potential function V (·)) and the role of coordi-
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Fig. 5 Estimated TRF scale factor (in ppb) between EIGEN-CG03C
and three tested geopotential models (EIGEN-GRACE02S, GGM02C,
EIGEN-CHAMP03S) as a function of the maximum harmonic degree
used in the least-squares adjustment with Kleusberg’s model

nates is undertaken by the known SHCs of V (·) with res-
pect to different geopotential models, each of which carries
its own realization of an Earth-fixed reference system. In
many TRF studies, the known coordinates in the local datum
often refer to a different epoch than the available spatial posi-
tions in the global datum, without being associated with a
regional velocity model for their temporal variations. Fur-
thermore, their values are usually affected by various unk-
nown systematic errors due to the improper (sub-optimal)
processing of heterogeneous geodetic measurements, some
of which may cover an extended time period while others
may refer to more recent observation campaigns. Similar pro-
blems also arise in EGM evaluation and TRF-testing studies
using GPS/levelling heights, where the final results are often
obscured by several systematic error sources existing in the
original height data.

Let us finally underline that the SHCs of Earth’s gravita-
tional field are certainly not the most accurate sensors of TRF
information, a fact which has been reflected in our results via
the comparatively large standard deviations for the estima-
ted transformation parameters. Compared to the 3D Carte-
sian coordinates with respect to a global TRF (which can
be known with an accuracy of a few mm at a given epoch),
the relative uncertainty of the geopotential SHCs is actually
worse by 1–4 orders of magnitude. This shortcoming, howe-
ver, is partially compensated by the advantage of Kleusberg’s
model to inflict a uniform and global spatial coverage of TRF
information, as it does not rely on the Cartesian coordinates
of irregularly distributed control points over a sparse terres-
trial network, but it uses the spectral coordinates (i.e. SHCs)
of a continuous signal that is realized over the entire Earth’s
surface.
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