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Abstract

The constant increase of attacks against networks and their
resources (as recently shown by the CodeRed worm) causes
a mnecessity to protect these valuable assets. Firewalls are
now a common installation to repel intrusion attempts in the
first place. Intrusion detection systems (IDS), which try to
detect malicious activities instead of preventing them, offer
additional protection when the first defense perimeter has
been penetrated. ID systems attempt to pin down attacks by
comparing collected data to predefined signatures known to
be malicious (signature based) or to a model of legal behavior
(anomaly based).

Anomaly based systerns have the advantage of being able
to detect previously unknown attacks but they suffer from
the difficulty to build a solid model of acceptable behavior
and the high number of alarms caused by unusual but autho-
rized activities. We present an approach that utilizes appli-
cation specific knowledge of the network services that should
be protected. This information helps to extend current, sim-
ple network traffic models to form an application model that
allows to detect malicious content hidden in single network
packets. We describe the features of our proposed model and
present erperimental data that underlines the efficiency of
our systems.
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1. INTRODUCTION

Intrusion detection systems (IDS) are security tools that
are used to detect traces of malicious activities which are
targeted against the network and its resources. IDS are tra-
ditionally classified as anomaly or signature based. Signa-
ture based systems [18] act similar to virus scanners and look
for known, suspicious patterns in their input data. Anomaly
based systems watch for deviations of actual from expected

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SAC 2002, Madrid, Spain

Copyright 2002 ACM 1-58113-445-2/02/03 ...$5.00.

Thomas Toth

Distributed Systems Group
Technical University Vienna
A-1040 Vienna, Austria

ttoth@infosys.tuwien.ac.at

Engin Kirda
Distributed Systems Group
Technical University Vienna

A-1040 Vienna, Austria

ek@infosys.tuwien.ac.at

behavior and classify all ’abnormal’ activities as malicious.
As signature based designs compare their input to known,
hostile scenarios they have the advantage of raising virtu-
ally no false alarms (i.e. classifying an action as malicious
when in fact it is not). For the same reason, they have the
significant drawback of failing to detect variations of known
attacks or entirely new intrusions.

Because of the ability to detect previously unknown in-
trusions a number of different anomaly based systems have
been proposed. Depending on their source of input data,
they are divided into host based and network based designs.

Host based anomaly detection systems are among the first
intrusion detection systems built. Denning [6] describes an
approach that builds profiles based on login times and re-
sources (e.g. files, programs) that users access. Simple sta-
tistical methods are used to determine whether observed
user behavior conforms to the stored model. Unfortunately,
this behavior can suddenly change and is usually not well
predictable. As a consequence the focus was shifted from
user to program behavior. The execution of a program is
modeled as a set of system call sequences [8, 7] which oc-
cur during 'normal’ program execution. When the observed
sequences deviate from the expected behavior the program
is assumed to perform something unintended, possibly be-
cause of a successful attack (e.g. buffer overflow). Other
researchers use neural networks [9] and concentrate on the
analysis of the input data that is passed to programs.

Network based anomaly detection systems do not concen-
trate on activities at hosts (e.g. users or programs) but focus
on the packets that are sent over the network. Depending on
the type of information that is used for performing the de-
tection, one can distinguish between traffic and application
models.

Systems that use traffic models monitor the flow of pack-
ets. The source and destination IP addresses and ports are
used to determine parameters like the number of total con-
nection arrivals in a certain period of time, the inter-arrival
time between packets or the number of packets to/from a
certain machine. These parameters can be used to detect
port scans or denial-of-service attempts. Most current net-
work based systems [12, 13, 2, 17] rely on traffic models to
perform the bulk of their anomaly detection.

The application model attempts to incorporate applica-
tion specific knowledge. Unfortunately, such models [3] are
currently very simple and include mainly additional TCP
header information or count the number of bytes that are
exchanged in a session between client and server.



As stated above, traffic models can be used to detect port
scans and denial-of-service (DOS) attempts. Unfortunately,
the situation changes when one considers Remote-to-Local
attacks (R2L). The term Remote-to-Local attack has been
coined during the DARPA sponsored MIT Lincoln Labs in-
trusion detection evaluation [10] and specifies intrusion at-
tempts from remote users with the aim of getting unautho-
rized local access to the target host (typically root). Such
attacks usually exploit a vulnerability of a service at the tar-
get machine. This is done by sending invalid input which
causes a buffer overflow or an input validation error in the
code running the service. The attacker sends one (or a few)
carefully crafted packets including shell-code which is exe-
cuted at the remote machine on behalf of the attacker to
elevate his privileges. As the intruder only has to send very
few packets (most of the time a single one is sufficient), it
is nearly impossible for systems that use traffic models to
detect such anomalies.

The table below shows the results of the top three intru-
sion detection systems for the four different intrusion classes
used in the DARPA evaluation.

Detection Rates | Scans | DOS | U2R | R2L
Known Attacks | 92% | 80% | 64% | 80%
New Attacks 8% | 22% | 66% | 8%

The figure shows that less than 10% of new R2L intrusion
attempts have been detected. Known attacks describe in-
trusions that were used during the preparation phase of the
evaluation and were known to the developers of the partic-
ipating systems. New attacks describe intrusions that have
been added for the actual evaluation. Therefore the num-
bers for the new attacks are more significant in determining
the quality of IDSs. While probes or DOS attacks provide
the attacker with additional information or degrade the per-
formance of target machines, only R2L and U2R (User-to-
Root)! intrusions actually compromise a machine. There-
fore, it is important to reliably detect such attacks.

We present an anomaly based network IDS that focus on
R2L attacks and uses service (application) specific knowl-
edge to increase the detection rate of intrusions of this im-
portant type. We do not attempt to replace existing sys-
tems that detect port scans and denial-of-service attacks.
Our aim is to provide an additional tool that reliably de-
tects malicious payloads to enhance the overall security of
the protected network.

2. SYSTEM OVERVIEW

The idea of service specific anomaly detection is to extend
the application model from considering only packet header
information at the network and transport layer (i.e. TCP
flags in an application context) to include the application
payload as well. Unfortunately, the payload of IP packets
observed at a network usually varies dramatically. When
the entirety of all IP packets is considered, one can usu-
ally deduce only very little information that can be used for
statistical reasoning. Therefore we cannot process the pay-
load of packets without some knowledge of the application
that created them. This makes it necessary to partition the
network traffic and independently analyze packets sent by

!User-to-Root attacks specify intrusions where a local user
unauthorized elevates his permissions to become root. Such
attacks are not directly visible on the network.

different applications. By concentrating only on one type of
traffic (hence the term service specific), statistical data with
lesser variance can be collected. This allows to establish a
notion of 'normal traffic’ for each service.

At first glance, the vast number of different protocols
seems to make our approach undesirable. Nevertheless, one
should consider that it is not necessary to change the basic
detection code for each new service. We use a generic back-
end that is responsible for the actual statistical anomaly
detection. Service specific frontends extract data from the
network and transform it into a format suitable for the back-
end. Additionally, only a few services need to be publicly
accessible. By monitoring HTTP, DNS, SMTP and FTP
traffic most of the services that have to be available for use
by anonymous clients from the Internet are covered. The
first prototype that we have developed is currently able to
check DNS and HTTP traffic.

As stated above, anomaly detection systems detect intru-
sions by comparing observed behavior to expected behav-
ior using certain metrics that are defined by the underlying
model. The expected behavior (called profile) has to be de-
fined by the user or can be automatically deduced during
the training period. Because manual creation of expected
behavior is cumbersome and error prone most systems ex-
tract profiles from training data. It is important to point
out the difference between approaches that require classi-
fied data during the training period [11] (i.e. data samples
that are marked explicitly as normal or malicious) to build
their models and those that do not [14]. Systems that base
on classified samples extract features that basically allow the
data to be clustered into a normal and a malicious group.
New data is then analyzed according to these selected fea-
tures and mapped into one of the sets (obviously raising an
alarm when it is classified as malicious). This approach has
the drawback that classified data is rarely available in new
environments where the IDS has to be deployed. There-
fore, these systems have to utilize general models extracted
from existing sample data. In changing environments, such
designs may produce many false alarms or miss actual in-
trusion attempts. We follow the second approach that uses
observed, unclassified traffic from the place where the sys-
tem is installed to form a model of 'normal’ behavior. Any
traffic that deviates from that model is considered hostile.

Our system uses an initial, user definable training period
during which it reads packets from the network. As stated
above, this data is split into service specific traffic and forms
the input to build our profile. After that initial phase, the
system switches to detection mode in which the new traf-
fic is compared to our application model to detect anoma-
lies. When the environment changes dramatically resulting
in too many false alarms, it is simple to update the applica-
tion model by rerunning the training phase on the changed
traffic.

The following section describes the features of network
traffic that we use to build our profile and the metrics that
is used to determine the deviation of actual, observed traffic.

3. SYSTEM DESIGN

Our anomaly detection system consists of two logical mod-
ules, the packet processing unit (PPU) and the statistical
processing unit (SPU).



3.1 Packet Processing Unit (PPU)

The task of the packet processing unit is to read the net-
work traffic and extract suitable input data for the statis-
tical processing unit. Our anomaly detection bases on the
analysis of the payload that is passed as input to the differ-
ent network services. This implies that we cannot directly
operate on the packet level itself as an attacker can eas-
ily distribute his malicious payload over several datagrams.
Tools like fragrouter [16] allow to split and send data in
several IP fragments or TCP packets. Therefore the statis-
tical processing unit uses a service request as the basis for
its analysis.

A service request is the user supplied data which is sent
over the network to a certain service to perform a single
task on behalf of that user. Usually, a network service is
implemented as a daemon operating in an interactive mode
that waits for incoming connections on a well-known port.
In order to utilize its services one has to open a connection
to the daemon port and provide input data. The input data
basically consist of the exact type of desired service and
additional parameters. The daemon parses the supplied in-
formation, processes them and returns the results. It then
terminates the connection or awaits further input. We call
the user supplied input sent to the daemon in such a sin-
gle transaction a service request. Depending on the service
and its exact type, requests can have different formats and
layouts.

For a HT'TP request to a webserver, the type of service can
be GET, HEAD or POST and contains parameters like the
URL or the type of browser the user runs. In case of DNS,
a service request is usually a single packet that contains the
DNS name which should be resolved or an IP address that
needs to be mapped to a DNS name.

The PPU has to extract service requests from the stream
of packets on the wire to pass them to the SPU. The packet
processing takes place in two stages. The first one is ser-
vice independent and performs generic IP and TCP stream
reassembling. It passes complete UDP packets or acknowl-
edged segments of a TCP stream to the second stage. This
second stage needs service specific knowledge and has to ex-
tract single service requests from its input. It therefore re-
quires basic understanding of the layout of requests although
in most cases only very limited information is necessary. The
end of a request can usually be determined by watching for
an end-of-request character or character sequence (e.g. two
CTRL-LF characters in a HTTP request) or by checking a
length field in the request header (e.g. the number of fixed
size resource records in a DNS query). The type of service
is also easily determined by a string (e.g. GET in case of
HTTP) or a header value (e.g. query type and class in case
of DNS). The assignment of a type to a certain request is
not enforced by the service protocol itself. It is possible to
assign different types to requests that are considered equal
by the service protocol (and by the daemon implementing
the service). In the case of a HT'TP request, the fact that it
is a GET request may be used to perform a more detailed
analysis on the URL (e.g. one can assign different types
to requests that invoke cgi-programs or php-scripts). The
complete service request together with its type is fed into
the statistical processing unit.

3.2 Statistical Processing Unit (SPU)

The SPU is only considered with requests and their types.
As stated above, the statistical properties of requests for dif-
ferent services can be very diverse. But even different types
of requests for a single service can vary significantly. In case
of HTTP traffic, standard GET requests look very similar
but a POST request that transmits lots of data keyed in
by a user into a HTML form may be different. Therefore,
requests are divided into several groups where each group
contains requests of types with similar statistical properties.
The requests of each group are then analyzed independently.
Currently, the division of requests has to be done manually
by the developer who adds a new service (protocol) to the
IDS. We plan to develop a metrics that allows the system
to automatically find similar properties of different request
types after the initial setup period and group them accord-
ingly. Nevertheless, most requests for a certain service are
very similar and a reasonable starting point is to divide all
requests into groups according to the associated network
service.

The following properties of a request are used to determine
its anomaly score.

1. Type of Request
2. Length of Request
3. Payload Distribution

The anomaly score is compared to a threshold that can be
manually set by the security administrator. It should be set
to a value where no more than ten false alarms are reported
per day®. In Section 4 we show that this level allows our
system to detect a significant majority of attacks.

The anomaly score of a service request is the weighted sum
of the three scores computed for each of the three properties
enumerated above. A number of constant factors have been
introduced into the formulas shown below. Most of them are
used to force the scores calculated for each of the three prop-
erties above into the same order of magnitude and could be
changed (scaled appropriately) without affecting our system.
A few are needed to reflect our considerations accordingly.

3.2.1 Type of Request

Including the type of request as a property in calculat-
ing the anomaly score has the following rationale. Often,
exploits that are based on buffer overflows or input valida-
tion errors use a feature of a network service that is rarely
or infrequently requested by users. Basic services are usu-
ally well understood and have been used extensively over a
long period of time. An extra feature that has been added
for a very specific purpose or very recently is often less un-
derstood and has not been exposed to such a large number
of input data (and test cases). Therefore, it is more likely
that the implementation of these features contains security
flaws that can be exploited. The recent, well-known attacks
against the bind implementation of the domain name service
(DNS) are not targeted against the standard name transla-
tion routines but against the code that handles NXT (next
record) or TSIG (transaction signature) [4, 5] queries. When
only half of all Remote-to-Local exploits abuse infrequently
used features, the probability that such a request contains
malicious payload is much higher than that of a regular one.

2Ten false alarms per day are considered to produce an ac-
ceptable low noise level that allows the system to be used in
a production environment.



‘We therefore assign higher anomaly scores to requests that
are of types that occur less frequent. The anomaly score
(AS) is calculated as follows

ASiype = —log, (p[typ])

pltyp] is given as the probability that a certain request is
of type typ. This probability is equal to the relative fre-
quency that a request with type typ has occurred during
the training period. In order to prevent too high anomaly
scores (or even infinite values) for request types that occur
very infrequent (or not at all during the training period)
the probability of each request type is set to be at least
3.05 % 107° (yielding a maximal anomaly score of 15.0).

3.2.2 Length of Request

The length of a request can be a good indicator for the
correctness of its content. Usually, a service request con-
sists of some protocol specific information and user (or user
program) supplied input. The length of the protocol in-
formation does not vary much between requests of a certain
type. The user supplied input mostly consists of a few, short
strings (e.g. a domain name or URL) in human readable
form and does not cause much variation in the total length
either. The situation looks different when requests carry in-
put to overflow a buffer in the target service. It is necessary
to ship the shell-code itself (which has a typical length of
a few hundred bytes) and additional padding that depends
on the length of the buffer which is targeted. Instead of a
short URL or a simple domain name the user supplied part
contains several hundred bytes. This obviously increases the
total length of the request. The anomaly score is calculated
by using the mean (u) and the standard deviation (o) of the
lengths of the requests that have been monitored during the
training period. The following formula is used for a request
with the length /. The anomaly score grows exponentially
as the request length increases. In order to tolerate a rea-
sonable amount of deviation of the length values, we use 1.5
as the base and multiply o with a constant factor of 2.5.

ASpen = 1.55552
This formula has the property that it assigns anomaly scores
greater than 1.5 (the base of the exponential function) only
to requests that are longer than the average. This is consis-
tent with our assumption that malicious payload increases
the total length. The maximum value of ASj, is limited to
15.0.

3.2.3 Payload Distribution

The biggest advantage in extending the application model
to consider the payload of requests is the possibility to an-
alyze it for the occurrence of abnormal content. As we do
not intend to do signature based analysis we have to build a
model of a 'normal’ payload. Our model bases on the obser-
vation that requests mainly contain printable characters and
human readable strings. For example, a HTTP request con-
sists of several plain text lines and DNS queries contain do-
main names as strings. This implies that a large percentage
of characters in such requests are drawn from a small sub-
set of all 256 possibilities (ASCII values for letters, numbers
and a few special characters). Like in English text, those
characters are not uniformly distributed but occur with dif-
ferent frequencies. Obviously, we cannot expect that the
frequency distribution is identical to a standard text. Even
the frequency of a certain character (e.g. the frequency of

letter ’e’) varies tremendously between requests. Neverthe-
less, there are similarities between the character frequencies
in different requests. These become apparent when the rel-
ative frequencies of all possible 256 characters are sorted in
descending order (obviously, many will be 0 for a typical
request). Our payload analysis only bases on the frequency
values themselves and it does not matter whether the char-
acter with the most occurrences is an e’ or a ’>.’. We
call the sorted, relative character frequencies of a request its
character distribution.

Consider the text string ’Aaaza’ with the corresponding
ASCII byte values ’65 97 97 122 97’. The left diagram of
Figure 1 shows the absolute occurrences of the bytes that are
contained in the string above. The right diagram displays
the sorted, relative frequencies (i.e. character distribution)
which have been calculated from the absolute values (repre-
sented as a histogram).

For the payload of a regular request one can expect that
the relative frequencies slowly decrease in value when one
moves in the direction of the positive x-axis. In case of
abnormal payload the frequencies can drop extremely fast
(because of a peak caused by a very high frequency of a single
character) or barely (in case of a nearly uniform character
distribution).

The character distribution of a perfect normal packet is
called payload distribution (PD). The payload distribution
is a discrete distribution with

PD:D — P withD ={n € N0 < n < 255} and
P={peR0<p<1}

The relative frequency of the character that occurs n-most
often (0-most denoting the maximum) is given as PD(n).
When the histogram in Figure 1 is interpreted as a payload
distribution then PD(0) = 0.6 and PD(1) = 0.2.

The payload distribution is calculated during the training
period. In this period the SPU stores the character distri-
butions of all received requests. The payload distribution
is then approximated as the mean of all character distribu-
tions. This is done by setting PD(n) to the mean of the
frequencies for the n-most frequent character of all requests.
As we have operated on relative frequencies that sum up
to 1.0, the means will do so as well (making the payload
distribution well-defined).

For each request received in detection mode, we assume
that the character distribution is a sample drawn from the
payload distribution. We use a statistical test to determine
the likelihood that the sample is really derived from the
payload distribution. For a normal request the test should
yield a high confidence in the correctness of this hypothesis
while it should be rejected for malicious payload. We use a
variant of the Pearson y>-test as our 'goodness-of-fit’ test.

For our intended statistical calculations it is not necessary
to operate on all values of PD directly. Instead, it is enough
to consider a small number of intervals. Therefore, we divide
the domain of PD into a total of six segments (as shown in
the table below).

Segment | 0 1 2 3 4 5
x-Values|0 1-3 4-6 7-11 12-15 16-255

The expected relative frequency of characters in a segment
can be easily determined by adding the values of PD for
the corresponding x-values. As the relative frequencies are
sorted in descending order we expect the values of PD(n) to
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Figure 1: Character Distributions

be more significant for our anomaly score when n is small.
This fact is clearly reflected in the division of PD’s domain.

‘When a new request arrives the absolute number of occur-
rences for each character is determined. Afterwards, these
values are sorted in descending order and combined accord-
ing to the table above (aggregating values that belong to
the same segment). The x’-test is utilized to calculate the
probability that the given sample (derived from this request)
has been drawn form the payload distribution. The standard
test requires the following steps to be performed.

1. Calculate the observed and ezpected frequencies - The
observed values O; (one for each segment) are already
given and the expected number of occurrences E; are
calculated by multiplying the relative frequencies for
each of the six segments with the length of the request.

i<6 (0;—E;)2

2. Compute the x*-value as x* = i<y ‘4

3. Determine the degrees of freedom and obtain the sig-
nificance - The degrees of freedom for the y*-test are
identical to the number of addends in the formula
above minus 1. This yields 5 in our case. The ac-
tual probability that the sample is derived from the
payload distribution (i.e. significance of the sample)
is read from a predefined table using the x2-value as
index.

The x*-values themselves increase as the likelihood that
the sample stems from the payload distribution decreases.
Therefore, it is not necessary to first perform the table lookup
in step 3 and then transform the probability back into an
anomaly score. The y2-value can be used directly for the
computation of the score. As stated above, the test op-
erates on absolute values. This results in higher absolute
x2-values for longer packets than for short ones even though
they have the same relative deviation from the payload dis-
tribution. As the packet length is already factored into our
anomaly score, we divide the x2-value by the payload length
1 to get a length independent result. This result is then mul-
tiplied by a constant factor of 15.0 (the maximum used for
both other properties) to get scaled to the correct order of
magnitude. The maximum is set to 20.0 (in contrast to 15.0
to reflect the higher importance of this property).

ASpa = X2 * ll—5
This approach is surprisingly efficient. In the following Sec-

tion 4 we show by means of experimental data that this
method is able to distinguish between normal and malicious

requests. It has the additional advantage compared to sig-
nature based systems that it cannot be fooled by some well
known attempts to hide the attacker’s payload. Signature
based systems often contain rules that cause an alarm when
long sequences of 0x90 bytes (nop operation of Intel x86
based architectures) are detected in a packet. As a con-
sequence, attackers substitute such sequences with assem-
bler instructions that act similar (e.g. add rA, rA, 0 which
adds 0 to the value in register A and stores the result back
to A). This prevents signature based systems from detect-
ing such attacks. In our case, such sequences still cause a
distortion of the request’s character distribution and result
in high anomaly scores. In addition, characters in malicious
payload are often xor’ed with constants or shifted by a fix
value (ROT-13 code). Such evasion attempts do not change
the resulting character distribution and the anomaly score
remains the same.

3.3 Anomaly Score

The anomaly score is a value that specifies the extent of
the deviation of the received request from the expected val-
ues specified by the profile. It is a compound value derived
from the factors that have been described above and calcu-
lated as follows.

AS =0.3%ASiype + 0.3 % ASiep + 0.4 % AS,q

The anomaly score for each request can be in a range from 0
to 17.00 (when each addend contributes to the sum with its
maximum). The payload anomaly score has slightly more
weight to reflect its importance. This score is compared to
a threshold that can be chosen by the security administra-
tor. The default threshold is computed during the training
phase and set to a value that would cause 10 false alarms
per day when the system would receive the training data
itself as input. A lower threshold means that is more likely
that attacks are detected with the disadvantage of an in-
creasing number of false alarms. The limit should be set to
the lowest value possible provided that the number of false
alarms is manageable. This decision depends on the type
of traffic that is seen on the network and a policy which
decides how many false alarms are considered acceptable.
The next section shows that our system managed to detect
all our attacks by setting the threshold to a value that pro-
duced significantly less than 10 false alarms per day during
our experiments.

4. EVALUATION

‘We have implemented a prototype that can process HTTP
and DNS traffic. Because of lack of space only the results
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Score | Absolute | Relative || Score | Absolute | Relative

[0,1[ | 507041 | 0.73653 || [6,7] 76 | 0.00011
[1,2] | 112319 | 0.16316 | [7,8] 14 | 0.00002
[2,3] 53204 | 0.07742 || [8,9] 6 | 0.00001
3,4] 13136 | 0.01902 | [9,10] 0| 0.00000
[4,5] 2240 | 0.00325 || [10, 11 0| 0.00000
[5,6] 262 | 0.00038 || [11,12[ 0| 0.00000

30 0 2 4 6 8
Anomaly Score
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Table 1: Absolute and Relative Distribution of Anomaly Scores

for one protocol can be presented in detail. We have chosen
DNS because the DNS protocol uses a simple compression
mechanism to shorten the length of requests by substitut-
ing substrings of domain names with pointers to previous
occurrences of these strings. This could have a negative ef-
fect on our assumption regarding the character distribution.
In contrast to that, HT'TP requests are sent in plain text.
Below, we show the results of our service specific anomaly
detection system that has been installed on the DNS server
of our department.

The service independent part of the packet processing unit
(PPU) has been realized with Snort [15]. Snort is an open-
source, signature based network intrusion detection system
that has the ability to reassemble IP and TCP traffic. It of-
fers an interface that allows developers to use custom mod-
ules as plugins. We realized the service dependent part of
our PPU as such a plugin that is inserted directly after
Snort’s IP/TCP reassembly stage. This allows us to operate
on completely reassembled UDP packets or acknowledged
chunks of TCP streams.

Usually, DNS uses a single UDP packet to transmit a re-
quest to the server. In such a case, the complete payload of
the packet can simply be passed to the statistical processing
unit (SPU). In case of a request that is transmitted over
a TCP stream, the PPU connects subsequent TCP stream
chunks which it receives from the TCP reassembler. The
simple header of the DNS request is parsed to determine
the amount of data that is transmitted. When the complete
request has been observed, it is passed to the SPU.

It is not entirely obvious how the type of a DNS request
should be determined. In order to save overhead, each re-
quest contains a number of records (called resource records)
that usually have different types. Nevertheless, each DNS
request contains a distinguished first resource record (called
question) that specifies the desired operation. We use the
type of that question resource record to calculate the type
dependent anomaly score.

The following two tables show the application model that

was built during a training period of 24 hours. A total of
75463 requests with average length (u) 39.572 and variance
(o) 31.915 have been processed. The following table shows
the absolute and relative occurrences of requests with re-
spect to their type.

Type Explanation Occurrences | relative Freq.
PTR Reverse DNS Query 57306 0.7594
A DNS Query 15963 0.2115
ANY Request all Records 1167 0.0155
AAAA | IPv6 Query 599 0.0079
MX Mail Exchange Query 317 0.0042
SOA Zone of Authority 111 0.0015
Total 75463 1.0000

The table below shows the expected character frequencies
for all six segments as determined by the payload distri-
bution. The first 32 values of the payload distribution are
displayed in the left diagram of Figure 2.

Segment L0 1 2 3 4 5
Expected Freq. | 0.117 0.257 0.185 0.199 0.117 0.1253

After the initial training period we used the resulting ap-
plication model to test our ID system on the department’s
DNS server for 10 days. During this time our system pro-
cessed 688388 DNS requests. Table 1 above shows the ab-
solute and relative number of requests with respect to their
anomaly score. In addition, the relative numbers are visu-
alized in the right diagram of Figure 2.

We have increased the default threshold of 6.97 to 7.0 and
received only 20 false alarms during the complete test period
(an average of only 2 per day). The false alarms have been
exclusively caused by very short requests that contained less
than 20 characters. As the x2-test is inaccurate for very
small samples their A,q score was the maximum possible.
Additionally, they have been of types that only occur infre-
quently. Our system could be modified to put lesser weight
on the x2-value for small samples to reflect this inaccuracy.



Seg. 2

Test Case | Seg. 0 | Seg. 1
IQuery 13 7
3 7

Tsig LSD 180 105
59 130

Tsig OWN 275 67
64 139

Infoleak 11 8
3 6

Tsig Lucy 121 69
62 135

Nxt 61 39
64 143

Seg. 3 | Seg. 4 | Seg. 5

3 4 0 0
6 5 3 3
33 35 18 138
93 102 60 65
33 40 23 108
101 108 65 69
3 2 0 0
4 5 3 3
39 53 36 215
100 106 63 67
31 46 32 348
102 112 66 70

Table 2: Expected and Actual Character Distribution of Attacks
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Figure 3: Exploit Character Distributions

In that case, the threshold of 7.0 might have resulted in no
false alarms at all.

The payload of all requests that have been received during
the test period were dumped into a file with the final size of
67.2 MB. We measured the additional load that our traffic
analysis inflicted on the DNS server by running our system
off-line on that dump file. The average runtime (after exe-
cuting the program ten times) on a Pentium 4 (1.4 GHz -
512 MB RAM - Linux 2.4.2) to process the complete file was
41.3 seconds. As 10 days worth of data could be analyzed in
under a minute the additional load on the DNS server was
negligible.

After the encouraging false alarm rate has been explored
we attacked our DNS server with several actual exploits (ob-
viously we use the latest, patched version of bind). Our tests
included five DNS exploits listed in arachNIDS [1] (a well
known exploit database) and additionally the famous but
now outdated NXT ("ADM rocks’) exploit. The arachNIDS
site lists a total of 8 offending signatures of potential attacks
against port 53 (used by DNS). Three of them describe reg-
ular requests (e.g. requesting a zone transfer) that might
be used by an attacker to get information. They are not
included in our tests because they can be used in unmodi-
fied form by authorized clients to perform legal requests and
therefore should not raise an alarm.

The following table lists properties and anomaly scores
(AS) for all six test cases. All exploits use requests of types
that have not occurred during our training phase and re-
ceived the maximum Ay, scores.

Test Case Length | Atyp | Aien Apa AS
T1 - IQuery 27 | 15.0 1.07 | 14.48 | 10.61
T2 - Tsig LSD 509 | 15.0 | 10.86 | 8.99 | 11.36
T3 - Tsig OWN 546 | 15.0 | 13.11 | 16.36 | 14.98
T4 - Infoleak 24 | 15.0 | 1.08 | 13.74 | 10.32
T5 - Tsig Lucy 533 | 15.0 | 12.27 9.43 | 11.95
T6 - Nxt 557 | 15.0 | 13.87 | 20.00 | 16.66

Table 2 above shows for each exploit request the actual
and expected character frequencies for all six segments that
have been used to calculate A,4. Figure 3 shows typical
character distributions of two exploits. The left diagram
shows a distribution with a very large slope while the dis-
tribution in the right one is too uniform.

All malicious requests have anomaly scores greater than
the threshold and have been correctly identified as attacks.
Notice that in addition to that all intrusions have anomaly
scores that are larger than those of every regular request
received during normal operation. This indicates that the
threshold could be raised without missing attacks.

5. CONCLUSION

‘We have presented an intrusion detection system that uses
statistical anomaly detection to find Remote-to-Local at-
tacks targeted at essential network services. We use a service
based approach that separates statistical data for requests
to different services to improve our detection capability. In
contrast to other systems which mainly rely on information
in the network and transport layer headers (TCP/IP) to
perform their analysis we propose an extended application
model that includes the payload as well. We have described



our method to obtain the actual application model and to
calculate anomaly scores for service requests. The feasibility
of this approach is justified by experimental data from our
DNS specific intrusion detection evaluation.
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