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 

Abstract— Quantitative modeling and analysis of structural 

and functional brain networks based on diffusion tensor imaging 

(DTI) and functional MRI (fMRI) data have received extensive 

interest recently. However, the regularity of these structural and 

functional brain networks across multiple neuroimaging 

modalities and also across different individuals is largely 

unknown. This paper presents a novel approach to inferring 

group-wise consistent brain sub-networks from multimodal 

DTI/resting-state fMRI datasets via multi-view spectral clustering 

of cortical networks, which were constructed upon our recently 

developed and validated large-scale cortical landmarks - 

DICCCOL (Dense Individualized and Common Connectivity-

based Cortical Landmarks). We applied the algorithms on DTI 

data of 100 healthy young females and 50 healthy young males, 

obtained consistent multimodal brain networks within and across 

multiple groups, and further examined the functional roles of 

these networks. Our experimental results demonstrated that the 
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derived brain networks have substantially improved inter-

modality and inter-subject consistency. 

 
Index Terms— DTI, fMRI, multimodal brain connectome, 

multi-view clustering 

 

I. INTRODUCTION 

TUDYING structural/functional brain networks via 

diffusion tensor imaging (DTI)/functional magnetic 

resonance imaging (fMRI) has attracted increasing interest 

recently due to their potential in elucidating fundamental 

architectures and principles of the brain [1], [2]. Taking brain 

regions as nodes and the structural connections or functional 

correlations between these regions as edges, the brain can be 

viewed as a graph, and thus can be analyzed using graph 

theory principles in computer science [3]. For instance, a 

variety of recent analysis on brain networks via graphical 

approaches have shown that both functional and structural 

networks of human brain share multiple properties with 

common complex networks (e.g., social network), including 

small-worldness, scale free (a few highly-connected hubs) and 

modularity [1], [4–10]. Furthermore, it is reported that the 

structural network modularity plays a key role in generating 

persistent and dynamic functional patterns [11] and also 

determining the hierarchical functional architectures [12], [13]. 

Thus, constructing brain networks that are structurally and 

functionally meaningful and consistent is crucial to  unveiling 

the brains’ fundamental principles [14], [15]. 

Among tremendous efforts in exploration of brain networks, 

many of them adopt the single MRI imaging technique, 

although their approaches may be different. For instance, some 

studies used information from MRI to obtain brain modules. In 

[16], six structural modules in brain that have the firm 

correspondences with brain functional regions were revealed 

by comparing brain cortical thickness measured by MRI. In 

addition, more studies used the advanced diffusion imaging 

technique such as diffusion tensor imaging (DTI) and diffusion 

spectrum imaging (DSI) to construct brain structural networks 

and obtain corresponding structural clusters. In [8], an analysis 

on large-scale brain structural networks constructed by DSI 

reveals a structural core in the posterior medial and parietal 

cerebral cortex, together with several modules. On the other 

hand, thanks to the powerful technique of fMRI, in vivo 
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analysis of human brain functional network becomes possible. 

For instance, in [17], the resting state module of human brain 

has been analyzed by comparing  fMRI BOLD signals under 

task with  the ones in resting state (R-fMRI).  

Essentially, these studies might be substantially improved 

by integrating multimodal information [2]. It has been shown 

that anatomical structural network connections play a key role 

in determining and maintaining functional patterns [1]. In 

general, better quantitative characterization of the relationship 

between multimodal brain networks and its consistency across 

individuals could significantly advance our understanding of 

the human brain architectures. However, this important issue 

has been rarely investigated due to the following challenges. 

First, the variability across individuals makes it difficult to 

define reliable regions of interest (ROIs) that has group-wise 

consistency. In general, most brain parcellation approaches 

have difficulty in establishing across-subjects 

correspondences. This problem has been overcome by warping 

brains into an atlas space via image registration algorithms and 

further use the manually-segmented regions in the atlas as 

ROIs despite of its limitations in accuracy and robustness [18]. 

Another set of methods from the functional perspective is 

using task-based fMRI to detect functionally-corresponding 

ROIs [17]. Nevertheless, the cost and time in fMRI data 

acquisition, is the major restriction in obtaining data for large-

scale networks and for large populations. Thus, it is very 

challenging to acquire large-scale group-wise consistent ROIs 

upon which to construct brain networks. Second, it is also very 

challenging to achieve the consistency between structural and 

functional brain networks that are derived from different 

imaging modality, i.e., DTI and R-fMRI, respectively. As 

shown in Fig. 1, and also as reported by Honey et al.[19], there 

is significant variability between functional and structural 

networks which makes it difficult to define and detect common 

networks between modalities. 

 
Fig. 1. An example of the constructed structural (a) and 

functional (b) brain networks. Both networks were composed 

upon the same set of 358 DICCCOL ROIs as nodes. Each sub-

figure shows a joint view of ROIs (orange dots) and their 

connections (blue lines), along with the corresponding 

connectivity matrix on the right. 

 
Fig. 2. Illustration of the computational pipeline of the 

proposed method.  

In response to the abovementioned challenges, this paper 

presents a novel approach to infer group-wise consistent brain 

networks from multimodal DTI/R-fMRI datasets via multi-

view spectral clustering of large-scale cortical landmarks and 

their connectivity graphs. Specifically, we defined network 

nodes by our recently developed and validated brain 

landmarks, namely DICCCOL (Dense Individualized and 

Common Connectivity-based Cortical Landmarks) [20]. As 

shown in Fig. 1, the DICCCOL system at the current stage is 

composed of 358 cortical landmarks, each of which was 

optimized to possess consistent group-wise DTI-derived fiber 

connection patterns across populations [20], [21]. The 

neuroscience basis is that each cortical region’s cyto-

architectonic area has an unique set of extrinsic inputs/outputs 

(called the “connectional fingerprint” [22]), which generally 

predicts the function that each cortical area could possibly 

possess. According to our extensive structural and functional 

validations [20], these landmarks possess structural and 

functional consistency and preserve correspondences across 

individuals. Based on these landmarks, we constructed both 

structural and functional brain networks using multimodal 

DTI/R-fMRI data for 150 healthy young adult brains (aged 17-

28 years old, with 100 females and 50 males) [23]. We equally 

separated these subjects into three groups (2 groups of females 

and 1 group of male) for the purpose of comparison and 

reproducibility examination. Then, we developed and applied 

an effective multi-view spectral clustering algorithm to derive 

the consistent multimodal brain networks. Specifically, we 

considered each structural or functional network in a subject as 

a separate view of the studied large-scale network, and then 

modeled the clustering of group-wise consistent multimodal 

brain sub-networks in an unified multi-view clustering 

framework, by which the substantial variability of large-scale 

brain networks across modalities (DTI and R-fMRI) and 

different individuals (50 subjects in each training group) can 

be modeled and handled by the powerful multi-view spectral 

clustering method. The prominent advantage of multi-view 

spectral clustering methodology is that it can effectively deal 

with heterogeneous features by maximizing the mutual 

agreement across multimodal clusters in different views [24]. 

This is actually the major methodological novelty and 

contribution of this paper.  

II. METHOD 

In this section, we will introduce our computational pipeline 

of the proposed algorithm, which is summarized in Fig. 2. 

First, after obtaining 358 whole-cortex dense landmarks based 

on our recently developed DICCCOL [20], we constructed the 

functional connections and structural connections between 

these DICCCOL landmarks with the R-fMRI and the DTI, 

which will be detailed in section II.A. Based on this, we 

trained each pair of connectivity matrices, subject by subject, 

to obtain the common connections across modalities while 

retaining individual information of each subject, and then 

trained and combined these pair-wise common matrices group-

wisely. The respective co-training algorithms will be 

introduced in section II.C. In the end, the final group-wise 
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multi-modality common connectomes are obtained using 

spectral clustering, as will be described in section II.B. 

A. Multimodal Brain Network Construction 

In response to the first challenge, i.e., to acquire large-scale 

group-wise consistent ROIs upon which to construct brain 

networks, we recently developed and validated 358 cortical 

landmarks that have intrinsically-established structural and 

functional correspondences in different brains [20], which 

provides the natural and ideal nodes for brain network 

construction. Based on these 358 cortical landmarks/ROIs 

(Fig. 1), we constructed both structural (Fig. 1a) and functional 

(Fig. 1b) networks for 150 healthy brains with multimodal 

DTI/R-fMRI data. Specifically, to construct structural 

connection matrix, the connection strength between each pair 

of ROIs is defined as the average FA (fractional anisotropy) 

value along the fiber bundle connecting these two ROIs. If 

there is no connecting fiber bundle between two ROIs, the 

connection strength is set to 0. As for the connectivity matrix 

of functional networks, they are constructed based on R-fMRI 

data as follows. First, we performed brain tissue segmentation 

directly on DTI data [25], and used the gray matter 

segmentation map as a constraint for R-fMRI BOLD signal 

extraction. A principal component analysis was then conducted 

for the R-fMRI time series of all gray matter voxels within an 

ROI, and the first principal component was adopted as its 

representative R-fMRI BOLD signal. Finally, the functional 

connection strength between ROIs is defined as the Pearson 

correlation of their R-fMRI BOLD signals. An example of the 

constructed structural and functional networks is shown in Fig. 

1. 

B. Spectral Clustering 

Taking a graph ),( EVG 
 

with nV 
 

nodes, the 

objective of clustering problem is to find cluster indicator 

matrix knC   such that for the i
th

 column of C, 1ijc  iff. 

the j
th

 node belongs to the i
th

 cluster. Otherwise, 0ijc . The 

spectral clustering algorithm solves this problem by solving 

the following equation [26]: 

DyyWD  )(
 (1) 

where 
nnW   is the affinity/similarity matrix of G, which is 

a semi-positive definite matrix. D is a diagonal matrix with the 

degree  


n

j iji wd
1  

for the corresponding vertex iv
 
on its 

diagonal. Meanwhile, Eq. 1 can be formulated as eigen 

problem of Laplacian matrix WDIL 1  [27]. When the 

eigenvalue of L equals to 0, the corresponding eigenvector y is 

the cluster indicator vector c of the graph. For the non-zero 

eigenvalue of L, the first k eigenvectors of L, corresponding to 

the k smallest eigenvalues, is the approximation of C that 

partitions the graph into k components. The objective of this 

solution is to partition the graph by the normalized cut (Ncut) 

[27], which is defined as: 

),(
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where VBA  , and BA .  


BvAu uvwBAcut
,

),(
 
is 

the sum of edges connecting partitions A and B, which is called 

cut in graph theory. 


Ai idVAassoc ),(
 

is the total 

connections from nodes in A, and ),( VBassoc
 
is defined in a 

similar way. By minimizing Ncut value, one tends to obtain a 

balanced partition with relatively low cut. 

In practice, the second eigenvector of graph Laplacian is 

often used to bi-partition the graph. As shown in Fig. 3, we can 

partition the nodes by their signs in the second eigenvector – 

that is, assigning the nodes with the positive value in the 

eigenvector to one cluster and the rest to the other. However, 

to achieve more meaningful result, k-means algorithm is 

applied to bi-partition the graph based on the second 

eigenvector. Then, the sub-graph can be further partitioned by 

recalculating the eigenvector of the graph Laplacian of sub-

graph if necessary. By doing so recursively, the graph will be 

partitioned into multiple clusters. Specifically, we applied Ncut 

as determinant condition for bi-partitioning. We will stop bi-

partitioning sub-graph if Ncut value is larger than the pre-set 

threshold. Thus, the number of clusters will be determined by 

the threshold we set. The outline of this partition algorithm is 

listed below, by following [26]. 

 

Algorithm 1. Spectral Clustering 

Input: Connectivity matrix W  with size nn , and the 

threshold T of Ncut for partitioning. 

Output: Clusters of nodes.  

1. Compute the normalized Laplacian L of W. 

2. Solve eigenvectors of L  with the smallest eigenvalues. 

3. Use the eigenvector with the second smallest eigenvalue to 

bi-partition the graph, and then compute the 

corresponding Ncut value. 

4. If Ncut < T, bi-partition the graph, and repeat the 

algorithm on two bi-partitioned sub-graphs. 

5. Else             Return without bi-partitioning the graph. 

  
Fig. 3. Illustration of spectral clustering. (a) The original graph 

and the corresponding affinity matrix. (b) The clustered graph 

and the corresponding affinity matrix re-arranged by clusters. 

(c) The second eigenvector of the graph after sorting. 

C. Co-Training Approach Based on Spectral Clustering 

In our research problem, we have both structural 

connectivity and functional connectivity for large-scale brain 

network clustering. To find common brain sub-networks 

across different modalities, an intuitive way is to assign a 

weight to each view or modality and then combine them 

together. However, it is difficult to define optimal weights, 

especially when there exists significant variability across 

modalities – the common connection obtained may be biased 

when the connection is strong in one modality but absent in the 
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other modality. Thus, how to fuse these multimodal networks 

to achieve the relatively consistent sub-networks becomes an 

important issue. Recently, a clustering methodology called 

multi-view clustering has been developed to solve this type of 

problem [24], [28]. In this paper, we designed a co-training 

approach based on spectral clustering to maximize, first, the 

agreement between the structural network and functional 

network, and then the agreement between subjects, to find the 

group-wise consistent multimodal connectomes of the human 

brain. 

As shown in the previous section, when the eigenvalue is 0, 

the corresponding eigenvector of normalized Laplacian of a 

graph is the cluster indicator vector. For a fully-connected 

graph, spectral clustering solved a relaxed solution of min cut 

problem. That is, the top eigenvectors carry the most 

discriminative information for graph clustering. In [24], the 

authors have shown that, by projecting the affinity matrix to 

the eigenspace of the first k eigenvectors corresponding to the 

k smallest eigenvalues, the inter-cluster details will be 

discarded and only the essential information required for 

clustering retains. Thus, we can achieve the agreement 

between two views by projecting the affinity matrix of one 

view to the eigenspace of the other view. As the eigenvectors 

are orthogonal, the affinity matrix in eigenspace can be easily 

projected back by multiplying the transpose of eigenvectors 

matrix. It should be mentioned that the post-projected affinity 

matrix obtained in this way is not symmetric. To make it 

symmetric, we added the post-projected affinity matrix with its 

transpose and then divide it by 2. The whole projection 

process can be summarized as follows: 

2/))((),( TTT WUUWUUUWproj 
 

(3) 

where knU   is the first k eigenvectors corresponding to 

the top k smallest eigenvalues of graph Laplacian of affinity 

matrix.  

To further illustrate how this approach works, we assume 

that there exist two discriminate clusters A and B in a graph G, 

and also that the affinity matrix of G has been rearranged by 

clusters as follows: 











B

T

AB

ABA

WW

WW
W

 

(4) 

where 
AA

AW



 
are the edges between nodes in cluster A, 

with BW  defined similarly. 
BA

ABW


  are the edges 

between clusters A and B. Then the corresponding cluster 

indicator matrix C is: 
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where
A

AI 1 ,
B

BI 1 . As AW  and BW
 
are the symmetric 

matrices, let’s define 
AAT

AAA IIE

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BBT
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

 1 . Then, we can get: 
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We can see that the element ijw of 
*

AW
 
is the average degree 

of entry i and entry j of sub-matrix AW , which are similarly 

done for 
*

BW  and 
*

ABW . This indicates that the projection 

process tends to fuse and smooth the inter-cluster connections 

or intra-cluster connections independently. As we know, the 

intra-cluster connections tend to be high and inter-cluster 

connections are relatively low. By smoothing inter/intra-cluster 

connections separately, we can expect the increase in intra-

cluster connection strength and vice versa. However, in 

practice, the eigenvectors obtained are approximations of 

cluster indicators, and the clusters are indicated by their signs 

approximately as shown in Fig. 3. Then, for the above affinity 

matrix W, the corresponding second eigenvector should be: 
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where 
A

P   is a vector containing the positive real 

numbers and 
B

N  is a vector containing the negative real 

numbers. Then we will have: 
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In the above equation, 
*

AW
 
can be separated into two parts. 

The first part 2/)( TT

AA

T PPWWPP 
 

is the fuse of 

connections within cluster A, and the second part 

2/)( T

BA

T

AB

T NPWWPN   is the fuse of connections between 

clusters A and B. It should be noted that the first part is all 

positive and the second part is all negative, which means 
*

AW  
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is the sum of intra-cluster connections of cluster A minus the 

inter-cluster connections between A and B. Similarly, 
*

BW  is 

the sum of connections in B minus the inter-cluster 

connections. And 
*

ABW  is the sum of inter-cluster connections 

minus the intra-cluster connections. As we know, AW
 
and BW  

are the matrices that are relatively dense with large values, and 

ABW is sparser with low values. Thus, we can expect high 

positive values evenly distributed in 
*

AW  and 
*

BW , while low 

or even negative values in 
*

ABW . Since the negative values in 

*W are caused by strong inter-cluster connections which are 

the disagreed part between the matrices and are in conflict with 

the definition of the affinity matrix, we set all negative values 

in *W to 0 after projection. 

Let   kn

kuuuU  21  be the combination of the 

first k eigenvectors, and then we will have: 





k

i
iuWprojUWproj

1

),(),(
 

(9) 

Thus, by projecting the graph affinity matrix to the 

eigenspace of top eigenvectors of corresponding graph 

Laplacian matrix, we can smooth and thus increase the intra-

cluster connections and also decrease or remove inter-cluster 

connections. Let 



k

i

T

iiuuM
1

be the projecting matrix. For 

pair-wise co-training of functional and structural connectivity 

matrices, we can project functional matrix to the spectral 

eigenspace of structural matrix and vise versa at the same time 

by using above steps iteratively. While for group-wise co-

training process, we can project the matrices of one subject to 

the spectral eigenspace of the rest subjects. The group-wise co-

training step for p subjects with single view for each subject is 

defined as follows: 

2/)))(()((),(
,1,1

T
p

ijj
ij

p

ijj
ijalli WMWMUWgproj 


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(10) 

where iW  is the affinity matrix of subject i; jU is the spectral 

eigenvector matrix of subject j; T

jjj UUM   is the 

corresponding projecting matrix of subject j. When we have 

both structural matrix and functional matrix for each subject, 

jM is re-defined as 
T

FjFj

T

SjSj UUUU  , where SjU is the 

eigenvector matrix of structural matrix spectrum, and FjU  is 

the eigenvector matrix of functional matrix spectrum. iW  is 

then either the functional matrix or structural matrix. The 

detailed algorithm for pair-wise co-training is as Algorithm 2. 

As shown previously, during the projection process, the 

within-cluster connection will be smoothed (increasing the 

positive agreement between matrices) and the disagreed 

connections will be broken (increasing the negative agreement 

between matrices). As a result, only the agreed connections 

will be retained during the iterative projection. As the 

algorithm will converge when no more agreement could be 

further achieved, the convergence could be assessed by the 

measurement of similarity between matrices. Particularly, we 

applied different measurements for different scenarios and will 

discuss this important issue in details in section I.A. 

The algorithm for group-wise co-training algorithm is 

similar to the above by replacing the pair-wise projection 

function ()proj
 
to the group-wise projection function ()gproj  

in Eq. 10. After co-training, the trained matrices are similar as 

shown in section IV.A. The final fused connection matrix can 

be obtained by calculating the average normalized matrix 

between different subjects and views. Base on fused 

connection matrix, the final multi-modal connectomes of 

human brain will be obtained directly by applying spectral 

clustering algorithm in section II.B. 

III. EXPERIMENT MATERIAL AND PARAMETER SELECTION 

A. Experiment Materials 

Our experiment was performed on 150 healthy adults (100 

females and 50 males) from the publicly released dataset by 

the Beijing Normal University, China [23]. Both DTI and R-

fMRI were acquired for each subject. The parameters are as 

follows. R-fMRI: 33 axial slices, thickness/gap = 3/0.6mm, in-

plane resolution = 64×64, TR = 2000ms, TE = 30ms, flip 

angle = 90º, FOV = 200×200mm. DTI: single-shot Echo-

Planer Imaging-based sequence, 49 axial slices, 2.5mm slice 

thickness, TR = 7200ms, TE = 104ms, 64 diffusion directions, 

b-value = 1000s/mm
2
, matrix = 128×128, FOV = 

230×230mm
2
. Preprocessing steps include tissue 

segmentation, surface reconstruction, and fiber tracking, which 

are similar to the methods in [20]. Then a set of large-scale, 

group-wise consistent ROIs were obtained for each subject 

using the method in [20]. The structural and functional 

connectome matrices were then computed using the method 

described in section II.A. Examples of ROIs and connectivity 

matrices are shown in Fig. 1. To test the reproducibility of our 

proposed method, we randomly separated the female subjects 

into two training groups: female group 1 and female group 2. 

Algorithm 2 

Input: Connectivity matrices of two views
0

2

0

1 ,WW , and 

the number of eigenvectors to consider k. 

Output: Co-trained connectivity matrices 
*

2

*

1 ,WW . 

1. Compute the initial normalized Laplacian
0

2

0

1 , LL of each 

connectivity matrix, and the first k eigenvectors 
0

2

0

1 ,UU
 

with the k smallest eigenvalues of
0

2

0

1 , LL . 

2. for i = 1 to iter 

3.    ),( 1

2

1

11

 iii UWprojW  

4.    ),( 1

1

1

22

 iii UWprojW  

5.    Compute Laplacian and the corresponding first k 

eigenvectors 
ii UU 21 ,
 
of 

ii WW 21 , . 

6.    If converge, return
ii WWWW 2

*

21

*

1 ,  . 
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Fig. 4. Illustration of parameter selection for pair-wise training. (a)-(c) Original structural and functional connections and the co-

trained connections in the 3
rd

 and 18
th

 iteration when the top 25 eigenvectors are considered. In each subfigure, the left figure is 

structural matrix; the middle figure is functional matrix; the right figure is functional connection vs. structural connection with 

each dot representing an edge. (d) Changes of PCC during co-training iteration with different numbers of eigenvectors 

considered. (e) Changes of NMI during co-training iteration with different numbers of eigenvectors considered.  

 

B. Parameter Selection 

Normalized mutual information (NMI) [29] and Pearson 

correlation coefficient (PCC) are applied as measurements to 

assess the level of agreement between two affinity matrices. 

NMI between two affinity matrices A  and B  is defined as 

follows: 

2/)]()([

),(
),(

BHAH

BAI
BANMI


  (11) 

where 
ji

ijij aPaPAH
,

)(log)()(

 

is the entropy of A. 

),( BAI
 
is the mutual information between A  and B , and is 

defined as: 


ji qp pqij

pqij

pqij
bPaP

baP
baPBAI

, , )()(

),(
log),(),(  (12) 

The values of NMI and PCC are both between 0 and 1. The 

higher the value is, the more the two matrices agree with each 

other [29]. 

 

Number of eigenvectors  

During the co-training process introduced in section II.C, 

the affinity matrix will be projected to the first k eigenvectors 

of the graph Laplacian. In ideal case, k should be set equal to 

or larger than the true cluster number. However, due to the 

lack of prior knowledge, we tested the result with different k 

values on the pair-wise training of single subject networks. As 

shown in Fig. 4(a)-(b), by using small k value, more 

information will be removed and thus the agreement between 

two views will be higher. However, small k value will cause 

the loss of useful information and results in over-training. 

Also, small k value may cause oscillation during training 

process which is vulnerable. On the other hand, large k value 

will keep too much information including the uncommon 

information between views that we want to remove and thus 

may cause under-training. Considering that the number of 

nodes in our network is 358, we set k to 25 empirically. By 

using this k value, we can ensure the useful information 

retained, and also the accuracy and smoothness during training 

process. 

 

Convergence criterion 

During the training process, our goal is to maximize the 

agreement between different views. In Fig. 4(e), we can see 

that the NMI between two networks is increasing during the 

training process. In general, PCC between two networks 

increases in the first several iterations rapidly and then 

decreases slowly. This is mainly because there is a certain 

amount of disagreement between two networks. Though the 

intra-cluster connections will be smoothed to increase the 

agreement between two matrices, some connections may still 

be relatively weak compared with other connections as 

highlighted by green arrows in Fig. 4(b)-(c). Also, as 

highlighted by the blue arrows in Fig. 4(c), we can see that, 

after training, certain sets of edges are highly correlated, but 

there may exist multiple correlation models between two views 

and thus the overall correlation is low. This indicates that, 

compared with PCC, NMI is a better measurement as the 

criterion of co-training convergence. However, the pair-wise 

trained result will be used for successive group-wise training. 

If the training process iterates for too many times, the group-

wise information will also be smoothed out at the same time, 

although we maximize the agreement between two matrices of 

each subject. Thus, we use PCC value as a convergence 

criterion for pair-wise training (Fig. 2(b)). The mean NMI 
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between each pair of subjects of each view is used as a 

convergence criterion of group-wise training (Fig. 2(c)). As 

shown in Fig. 5 and Supplemental Fig. 1, it takes about 30 

iterations for group-wise co-training algorithm to converge. 

For pair-wise training, it takes either 3 or 4 iterations to 

converge (see Supplemental Table I). 

 

 
Fig. 5. Changes of average NMI in each iteration of group-

wise co-training process for each training group. 

 

IV. RESULTS 

A. Clustered Multi-modal Networks 

We obtained 8 multi-modal clusters upon 358 DICCCOL 

landmarks using the proposed methods and the parameters 

described above. The clustering results are similar when set 

threshold of Ncut in spectral clustering algorithm from 0.2 to 

0.9, thus we set it 0.5 specifically. We randomly picked 4 

subjects in female group 1 and visualized their affinity 

matrices before and after training in Fig. 6, where the matrices 

are all rearranged by clusters. Each cluster is highlighted by a 

green box. As the connection strength of edges in certain 

cluster may be relatively higher which makes it difficult to 

visualize other clusters (Fig. 4 (d-e)), the connection strength 

of co-trained matrices are adaptively normalized for the 

purpose of visualization in the following way. First, each row 

of matrix is scaled independently such that the largest element 

in each row is 1 (i.e., by normalizing the largest connection to 

each node). Then, add the row-normalized matrix to its 

transpose to obtain the adjusted matrix (symmetrizing matrix). 

By observation, we can see that the connection matrices vary 

substantially between subjects and modalities before 

optimizations (the second row of each panel). After pair-wise 

co-training, the structural connection matrix and functional 

connection matrix of each subject are more similar to each 

other, but there still exists disagreement. However, after 

group-wise training, the matrices are similar across subjects 

and modalities. A clear boundary of eight clusters can be 

observed (at the third row of each panel). To validate the 

performance of the proposed algorithm in identifying common 

clusters, the strengths of the original structural/functional 

connections within each cluster are measured as shown in 

Table I. Obviously, both of the average structural connection 

and the average functional connection within each cluster are 

substantially higher than the average connection strength of the 

whole brain network. Similar observation can also be observed 

in the first rows of the matrices in Fig. 6 that the clusters 

inferred by the proposed algorithm have relatively stronger 

within-cluster connections than the whole network for both 

connection matrices. 

 

 

 
Fig. 6. Visualization of original and trained connection matrices of 4 randomly selected subjects from the first female group. The 

matrices are re-arranged by group-wise consistent clusters. Each cluster is highlighted by green box. The matrices are adaptively 

normalized node by node to give better visualization.  
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Table I 

AVERAGE CONNECTION STRENGTHS 

 Whole 

Brain 

Cluster 

1 

Cluster 

2 

Cluster 

3 

Cluster 

4 

Cluster 

5 

Cluster 

6 

Cluster 

7 

Cluster 

8 

Structure 0.037 0.118 0.104 0.098 0.062 0.070 0.090 0.092 0.193 

Function 0.249 0.284 0.353 0.264 0.348 0.301 0.263 0.334 0.329 

 
Fig. 7. Visualization of group-wise multimodal brain networks computed based on the female training group 1. The color-coding 

of sub-networks is provided in the right side of subfigure (d). (a)-(c) Visualization of multi-modal sub-networks on template 

cerebral cortex. The visualization was generated by ParaView [30]. (d) Visualization of average structural connections between 

ROIs. Only the top 9.17% connections (the average connection density of 150 structural matrices applied) are retained. ROIs are 

rearranged and color-coded by sub-networks and listed around the circle. Between sub-networks connections are represented by 

gray lines and within sub-network connections are represented by corresponding color lines. The visualization was generated 

using the Circos toolkit [31]. It should be noted that the short distances of the re-arranged connections in this sub-figure do not 

necessarily mean that their actual structural connections have short distances, as shown in (a). 

 

We visualized the 8 clusters trained from the female group 1 

on the cerebral cortex surface in Fig. 7(a)-(c). By observation, 

most of the clusters are composed by ROIs that are 

geometrically close to each other or structurally/functionally 

connected.  It is interesting that the parcellation of the cortical 

landmarks in Fig. 7(a)-(c) largely coincides with the recently 

published clusters obtained via genetic similarity by Chen et 

al. [32] and is consistent with current neuroscience knowledge. 

For instance, the major part of cluster 1 includes the visual 

cortex [7], [33–36]. The major part of cluster 4 includes the 

sensory-motor systems including pre- and post-central gyrus 

(BAs 1/2/3/4), and the Supplementary Motor Area (SMA) (BA 

6) [7], [34–36]. Cluster 8 includes the prefrontal cortex (BA 

11) and dorsal anterior cingulate (BA 32) [34]. Fig. 7(d) shows 

the average structural connections between clusters. More 

intra-cluster connections than inter-cluster connections can be 

observed. We can also observe connection hubs within each 

cluster such as DICCCOL #104, #170, #185, #200 in cluster 4 

as highlighted by black arrow. For details of location of these 

DICCCOL ROIs on the cerebral cortex, please refer to the 

website (http://dicccol.cs.uga.edu). 

B. Reproducibility and Between-Gender Similarity  

The female training group 2 also generated 8 clusters. The 

visualization of these 8 clusters on the template cortex surface 

is shown in Fig. 8(a). The IDs of clusters are calibrated 

according to their overlap degree with the clusters of female 

group 1. The nodes with consistent cluster labels between two 

female training groups are shown in Fig. 8(b). By observation, 

we can clearly see that these eight clusters are similar to those 

obtained from female group 1. Besides, we further computed 

the Rand Index (RI) [37] and NMI [29] between clustering 

results of these two sets of subjects. Both RI and NMI range 

between 0 and 1. The higher value indicates higher similarity 

between clustering results. As shown in Table II, the RI value 

between these two results is 0.93 and the NMI value is 0.72. 

These relatively high RI and NMI values suggest that the 

proposed method is stable and robust, and the results are 

highly reproducible across different training groups. 

The training results on male groups also gave eight similar 

clusters. As shown in Fig. 9, it is evident that the male’s multi-

modal clusters are similar to those of females. The RI and 

NMI values between the clustering results of male and female 
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groups are also high (Table II). There are 298 nodes that are 

consistent in cluster labels between two female training groups 

and 282 consistent nodes across all three training groups. As 

previous neuroscience studies suggested that there is a certain 

degree of difference in brain function and structure between 

genders [38], it is intriguing that no significant difference can 

be observed between the obtained network clusters of male 

and female. Our interpretation is that the DICCCOLs we 

applied as ROIs do not carry much gender-specific 

information [20]. To further quantitatively show this point, we 

measured the NMI between the original connection matrices 

and no significant differences between genders can be 

observed (Supplemental Fig. III). As for the network 

disagreement between females and males, it is still not clear 

whether they are caused by sexual difference, or by the 

variability in the data acquisition, preprocessing and analysis. 

However, as shown in Fig. 8(b) and Fig. 9(b), the most 

inconsistent nodes locate on the boundary region between 

clusters. It is more likely that the variability between cluster 

results is caused by the individual variability. This 

observation, together with previous results, suggests that the 

proposed multi-view spectral clustering algorithm is robust 

and powerful in identifying group-wise consistent clusters. 

 

Table II 

RI AND NMI BETWEEN CLUSTERING RESULTS 

Index Type RI NMI 

Female 1 VS. Female 2 0.93 0.72 

Female 1 VS. Male 0.94 0.77 

Female 2 VS. Male 0.93 0.74 

 

 

 
Fig. 8. Visualization of group-wise multimodal brain networks computed based on female training group 2. The visualization is 

performed on the template brain with Paraview [30]. Corresponding sub-networks are color-coded by the same color. (a) 

Networks of female training group 2. (b) Nodes with consistent clusters between two female training groups. Inconsistent nodes 

are color-coded by gray. 

 

 
 

Fig. 9. Visualization of group-wise multimodal brain networks computed based on male training group. The visualization is 

performed on the template brain with ParaView [30]. Corresponding sub-networks are color-coded by the same color. (a) 

Networks of male training group. (b) Nodes with consistent clusters across three training groups. Inconsistent nodes are color-

coded by gray. 
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Fig. 10. Visualization of clusters on matrices obtained by 

different approaches from female group 1. Matrices including 

adaptively normalized fused matrix (top row), average 

structure matrix (middle row), and average functional matrix 

(bottom row) are visualized and rearranged by corresponding 

clusters. Each cluster is highlighted by green box. In each sub-

figure, the IDs of the clusters from top-left to bottom-right are 

from 1 to n successively. (a) Fused matrix using the proposed 

group-wise multi-view co-training approach using multi-

modality matrices. (b) Group-wise co-trained matrix fused by 

the proposed method with structure connection matrices only. 

(c) Group-wise co-trained matrix fused by the proposed 

method with functional connection matrices only. (d) Average 

matrix of both connection matrices of all the subjects in the 

training group. 

 

C. Comparisons between Approaches 

For the purpose of comparison, sub-networks obtained by 

different approaches are computed. We computed the group-

wise sub-networks based only on structural information or only 

on functional information. The group-wise consistent 

connection matrix for each modality is obtained respectively 

using the proposed multi-view spectral co-training approach. 

The parameters are selected in a way similar to those described 

in section III.B. As there is only one connection matrix 

considered for each subject, group-wise co-training is 

performed directly on the original matrices without pare-wise 

co-training. On average, it took 42 iterations for structural 

matrices to converge and 36 iterations for functional matrices 

to converge. The threshold of Ncut in the spectral clustering is 

set to 0.5. Also, an average matrix of both modalities’ 

connection matrices of the training group is obtained for 

comparison. Based on the average matrix, the cluster is 

obtained by the spectral clustering method described in section 

II.B. As the matrix is more densely connected compared with 

the final fuse matrices obtained by proposed approach, the 

threshold of Ncut is set to 0.9 here. In this section, our analysis 

will mainly focus on the results of female group 1. For the 

results of other training groups, it is referred to supplemental 

Fig. 2-3.  

 
Fig. 11. Visualization of group-wise structural/functional brain 

networks computed based on female group 1. The 

visualization is performed on the template brain with 

ParaView [30]. (a) Structural networks. (b) Functional 

networks. 

 

In total, 14 structural clusters and 11 functional clusters 

were obtained. These clusters can be visually observed with 

clear boundaries in Fig. 10(b)-(c). The visualization of clusters 

on the template cortex is shown in Fig. 11. Interestingly, 

functional regions are symmetric in certain degree between the 

left and right spheres. Another intriguing observation is that, 

though structure connection matrix generated more clusters, 

these clusters are highly reproducible across three training 

groups we have. As shown in Table III, the average RI value is 

0.97 and average NMI value is 0.83, which are relatively high.  

It is evident that the derived brain sub-networks via the 

multi-view spectral clustering method have substantially 

improved inter-modality consistency in comparison with the 

clustering results by any single modality. As shown in Fig. 10, 

the clusters based only on structural connection matrices failed 

to give functional meaningful clusters. On the other side, 

functional clusters also failed to generate significant structural 

clusters. During the multi-modal co-training process, these 

single modality clusters are split and then recombined 

considering the mutual clusters between modalities. Thus, as 

shown in Fig. 10(a), the multi-modal clusters carry dense intra-

cluster connections for both structural and functional 

connections.  

However, as shown in Fig. 10(d), the average matrix failed 

to offer meaningful information for clusters, which might be 

caused by the following reasons. 1) The variability across 

individual connection matrices might be relatively high. Thus, 

by averaging individual matrices, useful information might be 

smoothed out. 2) The structural connection matrix is too sparse 

compared with functional connection matrix. Thus, the 

structural information may be overwhelmed by functional 

information. 3) The disagreement between two modalities is 

relatively high. For the edges between certain nodes, only the 

connection in one modality is strong. But the connection 

strength of these edges will still remain strong if taking the 

average value as the common connection strength. 
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Table III 

RI AND NMI BETWEEN CLUSTERING RESULTS 

 Structure Function 

Index Type RI NMI RI NMI 

Female 1 VS. Female 2 0.97 0.84 0.93 0.73 

Female 1 VS. Male 0.97 0.83 0.92 0.69 

Female 2 VS. Male 0.96 0.82 0.92 0.70 

V. DISCUSSION AND CONCLUSION 

We inferred eight group-wise consistent multi-modal brain 

sub-networks via a novel multi-view spectral clustering 

approach based on our recently developed cortical landmark 

system - DICCCOL. The DICCCOL system is composed of 

358 cortical landmarks, which are optimized and predicted via 

brain white matter connection patterns such that they possess 

correspondence between individuals. Structural/functional 

networks are composed of connections between these 

landmarks derived from DTI/R-fMRI data. Then a co-training 

framework based on the novel multi-view spectral clustering 

algorithm is applied to obtain the group-wise consistent and 

cross-modality common brain network clusters. The advantage 

of multi-view spectral clustering methodology is that it can 

effectively deal with heterogeneous features by maximizing the 

mutual agreement across clusters in different views [24]. 

Our experiment results have shown that the algorithm 

converges well on the data used. Eight multi-modal brain sub-

networks that are reproducible across different training groups 

have been identified. They are also shared by both males and 

females. Compared with clusters derived from structural 

connection or functional connection only, the sub-networks 

obtained by our proposed method have improved inter-

modality consistency significantly. 

To conclude, the major technical contribution of this work is 

the proposed novel clustering framework for multi-view brain 

networks. Based on this framework, eight sub-networks are 

derived from the DICCCOL system via connection matrices 

based on DTI/R-fMRI data. Our experimental results suggest 

that the derived sub-networks are functionally/structurally 

meaningful. Also, we demonstrated the possible usage of 

DICCCOL system in studying brain networks patterns. Further 

and intensive studies based on the DICCCOL system and those 

eight inferred multi-modal sub-networks can potentially help 

elucidate brain functions and dysfunctions in the future. 
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