
Improved Matchmaking Algorithm for Semantic Web Services
Based on Bipartite Graph Matching

Umesh Bellur, Roshan Kulkarni
Kanwal Rekhi School of Information Technology, IIT Bombay

umesh@it.iitb.ac.in, roshan@it.iitb.ac.in

Abstract

The ability to dynamically discover and invoke a
Web Service is a critical aspect of Service Oriented
Architectures. An important component of the discovery
process is the matchmaking algorithm itself. In order
to overcome the limitations of a syntax-based search,
matchmaking algorithms based on semantic techniques
have been proposed. Most of them are based on an
algorithm originally proposed by M. Paolucci, et al. [21].

In this paper, we analyze this original algorithm and
identify some correctness issues with it. We illustrate
how these issues are an outcome of the greedy approach
adopted by the algorithm. We propose a more exhaustive
matchmaking algorithm, based on the concept of matching
bipartite graphs, to overcome the problems faced with the
original algorithm. We analyze the complexity of both the
algorithms and present performance results which show
that our algorithm performs as well as the original.

1 Introduction

Loose Couplingis an important principle underlying
Service Oriented Architectures. One aspect of loose
coupling is the ability to invoke a service provider with little
(or no) prior knowledge about it. Thepublish-find-bind
architecture is intended to facilitate this process. Service
providers create WSDL [9] descriptions and publish them
to UDDI [8] registries. Clients search the registry to locate
providers of the desired service. Today, in most cases,
the WSDL is compiled into client-stubs and the service is
invoked. This approach, however, has several limitations.

The WSDL is a specification of the messaging syntax
between the client and the provider. It is necessary for a
human to interpret the WSDL and then invoke the client-
stub with the correct parameters.

The search capabilities of UDDI are limited to a syntax-
based search. A client can search the registry for astring

in the service description or it can search the service
classification hierarchy (like NAICS [3]) in the TModel.
Neither of these techniques are sufficient, for a client, to be
able to autonomously choose a service provider and invoke
it without human intervention.

In order to overcome these limitations, techniques for
semantic description and matchmaking of services have
been proposed in recent literature. These techniques use
semantic concepts fromOntologiesto describe the Inputs,
Outputs, Pre-conditions and Effects (IOPE) of a service.
The discovery process involves the matchmaking of the
semantic descriptions offered by the client and the provider.

In this paper we analyze the semantic matchmaking
algorithm proposed by Paolucci, et al. [21]. We have
considerable interest in this algorithm because it has been
cited extensively in recent literature and several subsequent
proposals ([13], [22], [16], [14]) are based on it.

The outline of the paper is as follows: First, we present
the algorithm by Paolucci [21]. We then present counter-
examples where this algorithm does not generate correct
outcomes. We describe our own matchmaking algorithm
which overcomes these correctness issues. Finally, we
analyze the complexity of the two algorithms and present
some experimental results in order to compare their
performance.

2 Background and Related Work

Ontologiesare used in order to incorporate semantics
in web service descriptions. AnOntologymodels domain
knowledge in terms ofConceptsandRelationshipsbetween
them. OWL [12] [11] has evolved as a standard for
representation of ontologies on the Web.

OWL-S [18] [11], formerly called DAML-S [10], defines
an ontology for semantic web services. OWL-S describes a
service in terms of itsService Profile, Process Modeland
Grounding. TheService Profilemodels the Inputs, Outputs,
Pre-conditions and Effects (IOPE) of the service. The
Inputs and Outputs in theService Profilerefer to concepts

in ontologies published on the Web. ServiceAdvertisements
and searchQueriesare both expressed in terms of OWL-S
descriptions.

An ontology reasoner is an important component in
the process of semantic matchmaking. A reasoner can
infer additional information which has not been explicitly
stated in an ontology. Subsumption, concept satisfiability,
equivalence and disjointness are some examples of
reasoning operations. Many of these operations are used
in the semantic matchmaking process. DAML-S is based
on a logic formalism calledDescription Logics(DL).
Description Logics and its reasoning are explored in detail
by [15] and [19]. Racer [7] and Pellet [5] [23] are some
implementations of DL-Reasoners.

The Service Profilecontains enough information for
a matchmaker to determine if a service satisfies the
requirements of a client. In fact, several matchmaking
algorithms rely only on the matching of Inputs and Outputs
of the Service Profiles. One such algorithm has been
proposed by M. Paolucci, et al., in [21]. Several extensions
to this algorithm have been subsequently proposed by [13]
[22] [16] and [14].

Phatak [22] addsontology mappingsand QoS constraints
to the algorithm from [21]. Choi [13] expands the search
scope of [21] by the use of analogous terms from an
ontology server. It also makes use of a rule-based search
in order to apply user restrictions and to rank search
results. It computes fine-grained rankings by the use
of concept similarity (horizontal and vertical closeness
between concepts). Jaeger [16] extends the work from [21]
by using matching over thepropertiesand over theService
Profile hierarchy. It offers a better (fine-grained) ranking
scheme as compared to [21].

2.1 Semantic Matchmaking Algorithm

This section describes the algorithm by Paolucci [21].
The algorithm takes a OWL-SQuery from the client as
input and iterates over every OWL-SAdvertisementin its
repository in order to determine a match. AnAdvertisement
and aQuerymatch if their Outputs and Inputs, both, match.
The algorithm returns a set of matching advertisements
sorted according to the degree of match.

Let Queryout andAdvtout represent thelist of output
conceptsof the Query and Advertisementrespectively.
Matching the outputs requires the matching between two
concept-lists, Queryout andAdvtout, as follows:

∀c ∈ Queryout, ∃d ∈ Advtout,
s.t.match(c, d) 6= Fail

Let Queryin and Advtin represent the list of input
Conceptsof the Query and Advertisementrespectively.
Matching the inputs requires:

∀c ∈ Advtin, ∃d ∈ Queryin,
s.t.match(c, d) 6= Fail.

Note that the order ofQuery and Advt has been
transposed between the two expressions above. Suppose
outQ ∈ Queryout andoutA ∈ Advtout are two concepts.
In case of output matching, thematch(outQ, outA)
function acceptsoutQ andoutA as inputs and returns the
degree of match between them. Four degrees of match are
defined between a them:

• Exact: If outA is an equivalent concept tooutQ or
outA is a superclass ofoutQ. In case of a superclass
relationship, it is assumed that the service provider has
agreed to supporteverypossible subclass ofoutA.
• Plugin: If outA SubsumesoutQ. The relation

betweenoutA andoutR is weaker as compared to the
previous case since subsumption is indirectly inferred
by the reasoner. It is assumed that the provider has
agreed to supportsomesub-concepts ofoutA. We
hence infer thatoutA can beplugged in place ofthe
requiredoutR.
• Subsume: If outQ SubsumesoutA. The set of

individuals defined by the concept,outA, is a subset
of the set of individuals defined by the conceptoutR.
• Fail: If none of the above conditions are satisfied.

These four degrees as ranked as:Exact > Plugin >

Subsumes> Fail. Here,x > y indicates thatx is ranked
higher (is a more desirable match) thany.

Greedy Approach: The algorithm adopts a greedy
approach towards matching the concept-lists. For example,
in the case of output matching, for each concept in
the Queryout, it determines a corresponding concept in
Advtout to which it has amaximumdegree of match. Once
all such max-matchings are computed, the minimum match
amongst them is theoverall degree of matchbetween the
Queryand theAdvertisement.

3 Analysis

In this section we analyze the algorithm [21] from the
perspective of correctness. We present counter-examples
where the algorithm does not generate correct outcomes.

3.1 Degree of Match

[21] assumes that if an advertisement claims to output a
certain concept, it commits itself to output everySubClass
of that concept. We believe that such an assumption is
detrimental to the effectiveness of the matchmaker because
of the following reasons:

2

• In a real-world scenario, a provider for, sayVehicle, is
likely to sell sometypes ofVehicle, but noteverytype
of vehicle.
• This assumption encourages the advertisers to

advertise more generic concepts. For instance,
an advertiser claiming to outputEverything –
e.g. owl:Thing – will have a Plugin match with
every Query. This is undesired since a malicious
advertiser can poison the search results. The genuine
advertisements will be overwhelmed by the large
number of such malicious advertisements.
• In the present architecture, the semantic notions exist

only in the matchmaking layer. Subsequent stages, like
grounding or service invocation, deal with syntax.

Consider an advertisementA, which claims to output
Vehicle. Assume that this provider can indeed output
every type ofVehicle.

A query Q is searching for a service which offers a
StationWagon. Let us assume that the ontology defines
StationWagonas a subclass ofVehicle. The algorithm
returns‘A’ as an Exact match to‘Q’ , using the rules
presented earlier.

Now, the service providerGrounds the concept,
V ehicle, to a concrete XML message. However, there
does not exist any invocation mechanism by which the
client can automatically express to the provider that it
wants aStation Wagoninstead of a genericVehicle.

Due to the arguments presented above, we subscribe
to an alternative procedure for computing thematch()as
shown in Algorithm-1. This algorithm inverts the concepts
of Plugin and Subsumes.

Algorithm 1 PROCEDURE match(outA, outQ)
1: if outA = outQthen
2: return Exact
3: else ifoutQ superclass of outAthen
4: return Plugin
5: else ifoutQ subsumes outAthen
6: return Plugin
7: else ifoutA subsumes outQthen
8: return Subsumes
9: else

10: return Fail
11: end if

A similar approach has also been proposed in [13]. In
this section, we have offered stronger arguments in favour
of this approach.

3.2 False Positives and False Negatives

In this section, we present some counter-examples where
the results from the matchmaking algorithm of [21] are
incorrect. In the description below, we have considered the
process of matchingQueryoutputs. Similar arguments can
also be given for the process of matching the inputs.

The algorithm from [21] iterates over the list of output
concepts of theQueryand it tries to find a max-match to
an output concept in theAdvertisement. Initially, every
output concept of theAdvertisementis a candidate for
such a match. We call this set of output concepts of the
Advertisementas acandidate list.

The original algorithm does not specify whether a
concept from thecandidate listis removed once it has been
matched. We analyse both the scenarios – with and without
the removal of concepts. Both of them yield some incorrect
results.

3.2.1 False Positives

Suppose a concept from theAdvertisementis not removed
from the candidate list after it has been matched.

Consider anAdvertisementfor a travel-agent who
booksAccomodationfor their customers in the specified
Destination. The Advertisementhas the following Inputs
and Outputs:

Inputs: Destination

Outputs: Accommodation, Cost

The conceptsDestination, Accommodation, Cost,are
defined in a travel ontology. Some parts of the ontology
are illustrated in Fig-1. Consider aQuery from a client
who is planning a vacation. The client wants to make
reservations for aHotel and a Campground at the
specified destination.Hotel andCampground, both, are
subclasses of the conceptAccomodation. TheQuery has
the following Inputs and Outputs:

Inputs: Destination

Outputs: Hotel, Campground

• The initial candidate list is{Accommodation, Cost}.
• The algorithm tries to compute a max-match for

Hotel. Using the rule -outA SuperclassoutQ

- this will be flagged as an Exact match with
Accommodation.
• The algorithm tries to compute a max-match for

Campground. Using the same rule, this will be
flagged as an Exact match withAccommodation

In reality, theAdvertisement indeed does not satisfy
theQuery. Such a match is a false positive result.

3

Figure 1. Travel Ontology

Such false positive outcomes can be expected whenever
two or more concepts from theQuery match a single
concept in theAdvertisement.

3.2.2 False Negatives

We now consider a scenario where a concept is removed
from the candidate list after it has been matched with a
concept from theQuery.

Consider anAdvertisement for a travel-agent who
reserves tickets for two kinds of activities at a holiday
destination. The inputs and outputs of theAdvertisement

are given below:

Inputs: Destination

Outputs: Entertainment, Sport

A client is planning a vacation and desires to make
reservations for the following two activities: (i)Bowling

(ii) MovieShow. The inputs and outputs of theQuery are
given below:

Inputs: Destination

Outputs: Bowling, MovieShow

The concepts used above are defined in the travel
ontology shown in Fig-1. The solid lines indicate the
explicitly asserted relationships. The dotted lines indicate
the relationships inferred by the reasoner.

• The algorithm will first attempt to compute
a max-match for Bowling. The candidate
list of the Advertisement outputs is:
{Entertainment, Sport}. The following matches
are inferred:

Bowling subclassEntertainment⇒ Exact
Bowling subsumed bySport⇒ Plugin

• Bowling has a max-match withEntertainment.
HenceEntertainment is removed from the candidate
list.
• The algorithm now attempts to match the next concept:

MovieShow. SinceMovieShow ∩ Sport = ∅, the
match fails.

We now transpose the order of concepts in the output
of the Queryand analyse the behaviour of the algorithm.
Consider an alternativeQuery as:

Inputs: Destination

Outputs: MovieShow, Bowling

• The algorithm first computes a max-match for
MovieShow. The initial candidate list is:
{Entertainment, Sport }

MovieShow subclassEntertainment⇒ Exact
{MovieShow ∩ Sport = ∅} ⇒ Fail

• MovieShow has a max-match withEntertainment.
HenceEntertainment is removed from the candidate
list.
• The algorithm now attempts a match forBowling.

SinceBowling is subsumed bySport, it is a Plugin
match. The final outcome is thus a Plugin match.

In this scenario we see that the outcome of the
matchmaker depends on the order of the concepts in the
Query. Semantic matchmaking should be agnostic of the
syntactic ordering of the concepts in theAdvertisements

andQueries. We therefore believe that a more exhaustive
matchmaking process is desired, instead of the greedy
approach adopted by this algorithm.

4 Proposed Algorithm

In this section, we propose our matchmaking algorithm
based on the notion of matching bipartite graphs. We
present some basic concepts on bipartite graphs and then
look at the proposed algorithm. Finally, we offer a
complexity analysis of the algorithm.

4.1 Bipartite Graphs and Matching

• Bipartite Graph: A Bipartite Graphis a graphG =
(V, E) in which the vertex set can be partitioned into
two disjoint sets,V = V0 ∪ V1,such that every edge
e ∈ E has one vertex inV0 and another inV1. Fig-2
shows aweightedbipartite graphG.

• Matching: A matchingof a bipartite graphG =
(V, E) is subgraphG′ = (V, E′), E′ ⊆ E, such that
no two edgese1, e2 ∈ E′ share the same vertex. We
say that a vertexv is matchedif it is incident to an edge
in the matching. Fig-2 also shows one such matching
G′ for the graphG.

Given a bipartite graphG = (V0 + V1, E) and its
matchingG′, the matching iscompleteif and only if,
all vertices inV0 are matched. The matchingG′ in
Fig-2 is not a compete matching since vertexx is not
matched.

4

Figure 2. Bipartite Graph and its Matching

4.2 Modelling Semantic Matchmaking as
Bipartite Matching

Consider aQueryQ andAdvertisementA. We model the
problem of matching their outputs as a problem of matching
over a bipartite graph. This involves two steps:

• Constructing a Bipartite Graph: Let Qout andAout

be the set of output concepts inQ andA respectively.
These constitute the two vertex sets of our bipartite
graph. Construct graphG = (V0 + V1, E), where,
V0 = Qout andV1 = Aout.

Consider two conceptsa ∈ V0 and b ∈ V1. Let R

be the degree of match (Exact, Plugin, Subsume, Fail)
between conceptsa andb. If R 6= Fail, we define an
edge(a, b) in the graph and label this edge asR.

• Defining a Matching Criteria: We compute a
complete matchingof this bipartite graph. A complete
matching will ensure that every concept in the output
of theQueryis matched to some concept in the output
of theAdvertisement. We consider the following cases:

– Complete matching does not exist:We infer that
the match between theAdvertisementand the
Queryhas failed.

– Multiple complete matchings exist:We should
choose a complete matching which isoptimal.
So far we have not defined any optimality criteria
from the perspective of a semantic match. We
shall define this below.

We assign a numerical weight to every edge in the
bipartite graph. The weight of an edge,e = (a, b), is a
function of the degree of match between conceptsa andb.

Degree of Match Weight of edge

Exact w1

Plugin w2

Subsumes w3

Also, w1 < w2 < w3

Figure 3. Bipartite Graph of Output Concepts

Fig-3 illustrates a bipartite graphG constructed from
Qout andAout using the procedure described earlier.G′

is a complete matching ofG.
Let max(wi) denote the maximum weighted edge inG′.

The maximum weighted edge represents the worst degree
of match between the two vertex sets inG′. This is similar
to the notion ofglobal degree of matchdefined in [21]. We
therefore say thatmax(wi) denotes theoverall degree of
matchfor G′.

Consider a scenario in which several different matchings
exist for the given bipartite graph. Anoptimal matching,
from the perspective of semantic matchmaking, is a
complete matching in whichmax(wi) is minimized.

For example, in Fig-3,G′ and G′′ are two complete
matchings ofG as shown in the figure. We can now infer
the following:

Matching max(wi) Overall Match

G′ w3 ⇒ Subsume
G′′ w2 ⇒ Plugin

Our algorithm chooses the matching in whichmax(wi)
is minimized. Sincew2 < w3, G′′ (Plugin) is chosen over
G′ (Subsume) as the match.

Our discussion so far has only considered the matching
of output concepts. The matching of input concepts is a
similar process. In case of outputs, every concept inQout

needs to be matched. Whereas in case of inputs, every
concept inAin needs to be matched. Hence we construct
a bipartite graph whereV0 = Ain andV1 = Qin.

So far we have constructed the graph and defined the
matching criteria. In the next section, we shall see how the

5

matching is actually computed.

4.3 Computing the Optimal Matching

The Hungarian algorithm ([17], [20]) computes a
complete matching of the bipartite graph such that the
sum of weights of the edges in the matching,Σwi, is
minimized. The use of Hungarian algorithm for matching
bipartite graphs is desired due to its strong polynomial time
bound. If|V | is the number of vertices in the graph, the time
complexity of the Hungarian algorithm isO(|V |3). This
is more efficient than the combinatorial complexity of any
brute-force algorithm.

In our current problem, we wish to compute a matching
such that themax(wi) is minimized. This optimization
criteria is different than the one assumed by the hungarian
algorithm.

This difference is illustrated in the example from Fig-3.
Consider the assignment of weights as:w1 = 1, w2 = 2,
w3 = 3. G′ andG′′ are the two matchings of the graph. We
can now compute:

Matching max(wi) Σwi

G′ 3 (Subsume) 5
G′′ 2 (Plugin) 6

Our optimization criteria would chooseG′′, whereas the
hungarian algorithm would chooseG′ as the optimal match.
As a result, the hungarian algorithm cannot be directly used
to compute the matching that we desire.

We hence propose a different technique for the
assignment of edge weights such that the followinglemma
holds true:

Lemma: A matching in whichΣwi is minimized, is
equivalent to a matching in whichmax(wi) is minimized

If the above lemma holds true, we can indeed use
the hungarian algorithm to compute the matching that we
desire. We first look at the technique for assignment of edge
weights. We then prove that the abovelemmaholds true for
the proposed assignment.

In G = (V0 + V1, E), the values of the edge weights are
computed as follows:

Degree of Match Weight
Exact⇒ w1 = 1
Plugin⇒ w2 = (w1 ∗ |V0|) + 1
Subsume⇒ w3 = (w2 ∗ |V0|) + 1

|V0| = Cardinality of setV0

We note the following properties, which will be used in
the subsequent proof:

• The maximum number of edges in any complete
matching of the graphG will be equal to|V0|

• The following relation holds true:w1 < w2 < w3

• The above computation of weights enforces that a
single edge of a higher weight will be greater than a
set of|V0| edges of lower weights taken together:

wi ≥ wj × |V0|, ∀j < i (1)

Proof: We use a proof-by-contradictionmethod to prove
the lemmastated earlier.

• Given a graphG, let M be a complete matching in
which Σwi is minimized. Let(d1, d2, d3, ...) denote
the set of edges inM .
• Let M ′ be a complete matching in whichmax(wi) is

minimized. Let(e1, e2, e3, ...) denote the set of edges
in M ′ and letemax denote the maximum weight edge
in this set.
• Assume that the lemma is untrue. Hence,M 6= M ′.
• Now, there will be at least one edge,dM ∈ M , such

thatw(dM) > w(emax). This is because:

– M 6= M ′

– M ′ is a matching in which max(wi) is
minimized. emax is the maximum weight edge
in M ′

• w(dM) > w(emax)⇒ w(dM) > w(ei), ∀ei ∈M ′

• The maximum number of edges inM ′ is bounded by
|V0|. Using previous results and Equation-1 from the
previous section:

w(dM) > w(ei), ∀ei ∈M ′

⇒ w(dM) > Σw(ei)
⇒ Σw(dj) > Σw(ei)

HereΣw(ei) andΣw(dj) denote the sum of weights
of all edges inM andM ′ respectively.
• Σw(di) > Σw(ei) contradicts our assumption that

M is a matching having the minimal sum of weights.
The contradiction holds as long as we assume that
M 6= M ′. We can hence infer that bothM andM ′

are equivalent.

4.4 Our Algorithm

Algorithm-2 defines thesearch() procedure. It accepts
a Query as input and tries to match it with each
advertisement in the repository. A match is computed for
both, output and input concepts. If the match is not aFail,
it appends the advertisement to the result set. Finally the
sorted result set is returned to the client.

The match() procedure in Algorithm-3 accepts two
concept-lists as inputs and constructs a bipartite graph using

6

them. It then invokes a hungarian algorithm to compute a
complete matchingon the graph. Thematch() procedure
is invoked twice insearch(). The order ofQuery and
Advertisement in each call is however swapped.

The computeWeights() function computes the values
of w1, w2, w3, depending on the number of concepts
in V0. It uses the formulae presented in the section
“Computation of Edge Weights”to compute the values.
The degreeOfMatch() function is a call to the reasoner
in order to determine the relationship between the two
conceptsa andb.

4.5 Complexity Analysis

Let N denote the number of advertisements in the
repository. The average number of input and output
concepts in theQuery are denoted by|Qin| and |Qout|
respectively. Similarly, the average number of input and
output concepts in theAdvertisementare denoted by|Ain|
and|Aout| respectively. The complexity of the algorithm is
analyzed as follows:

• Search involves iteration over eachAdvertisementin
the repository.

• Weightsw0, w1, w2 are computed based on|V0|. This
is anO(1) operation.

• The graph is constructed by comparing every pair of
concepts(a, b), a ∈ Qout, b ∈ Aout. This operation
has a complexity ofO(|Qout| × |Aout|).

• The time complexity of hungarian algorithm is
bounded by|Qout|3

The above matching is done twice: Once for outputs,
once for inputs. We can thus compute the time complexity
of a search as:

N ×
{

(|Qout| × |Aout|+ |Qout|
3) +

(|Ain| × |Qin|+ |Ain|
3)

}

We can now approximate,|Qout| = |Aout| = |Qin| =
|Ain| = m. Here, m is independent of the number of
advertisements in the repository and is likely to take small
integer values (usually 1 to 15). We can hence considerm to
be a constant. The time complexity of search is simplified:

O
(

N × 2× {m2 + m3}
)

= O
(

N
)

(2)

Although the time complexity expressed here isO(N),
the constant factors involved are quite high. Form = 10,
for instance,m3 = 1000.

Algorithm 2 search(Query)
1: Result = Empty List
2:

3: for eachAdvt in Repositorydo
4: outMatch = match(Queryout, Advtout)
5: if (outMatch = Fail) then
6: SkipAdvt. Take nextAdvt.
7: end if
8:

9: inMatch = match(Advtin, Queryin)
10: if (inMatch = Fail) then
11: SkipAdvt. Take nextAdvt.
12: end if
13:

14: Result.append(Advt, outMatch, inMatch)
15: end for
16:

17: return sort(Result)

Algorithm 3 match(List1, List2)

1: Graph G = Empty Graph(V0 + V1, E)
2: V0 ← List1
3: V1 ← List2
4: (w1, w2, w3)← computeWeights(|V0|)
5:

6: for each concepta in V0 do
7: for each conceptb in V1 do
8: degree = degreeOfMatch(a, b)
9: if degree 6= Fail then

10: Add edge(a, b) to G

11: if (degree = Exact)then w(a, b) = w1

12: if (degree = Plugin)then w(a, b) = w2

13: if (degree = Subsume)then w(a, b) = w3

14: end if
15: end for
16: end for
17:

18: GraphM = hungarianMatch(G)
19: if (M = null) then
20: No complete matchingexists
21: return Fail
22: end if
23:

24: Let (a, b) denote Max-Weight Edge inG
25: degree← degreeOfMatch(a, b)
26: return degree

7

4.5.1 Complexity Comparison

The algorithm from [21] iterates over all the advertisements
in the repository and performs matching over both, inputs
and outputs. If we assume that concepts are not removed
from thecandidate-listafter a match, the time complexity
of the algorithm can be expressed as:

N ×
{

(|Qout| × |Aout|) + (|Ain| × |Qin|)
}

Using simplifications similar to the above, we get:

O
(

N × 2× {m2}
)

= O
(

N
)

(3)

Comparing (2) and (3) we conclude that both (the
original and the proposed algorithms) have linear time
complexity. However the constants involved in our
proposed algorithm are larger.

5 Implementation

The following algorithms were implemented in Java in
order to compare their correctness and performance:

1. OurBipartite Matchingalgorithm
2. Greedy matchmaking algorithmby Paolucci [21]
3. Brute-Forcematching algorithm

TheBrute-Forcealgorithmexhaustivelycompares every
possible matching between the concept lists. It then chooses
a matching with the best overall degree of match. The
Brute-Forcealgorithm, due to its exhaustive nature, will
serve as a reference model to compare the correctness of
theGreedyand theBipartitealgorithms.

Our implementation is illustrated in Fig-4. The Protege
editor [6] is used to browse and edit OWL ontologies. We
load the OWL ontologies into theKnowledgeBasedefined
by the Mindswap OWL-S API [2]. This API is also used to
parse the OWL-SQueriesandAdvertisements. We use the
Pelletreasoner [5] [23] toclassifythe loaded ontologies.

The Jena API [1] is used to query the reasoner for
concept relationships. In order to compute matchings for
bipartite graphs, we use an implementation of the Munkres-
Kuhn (Hungarian) algorithm by [20].

6 Correctness and Performance Comparison

The OWLS-TC (service retrieval test collection from
SemWebCentral) [4] is used to compare the algorithms. We
use 7 ontologies (2449 concepts) from OWLS-TC in our
KnowledgeBase. About 350 advertisements from OWLS-
TC were loaded into our advertisement repository.

OWL-S
Advt.
Repository

 Pellet
Reasoner Knowledge Base

 OWL
Ontologies

Matchmaking
 Engine

Client

OWL-S
Query

 Results

Figure 4. Implementation

6.1 Correctness

False Positives: We first test the occurence of false
positives. In this case, we use a greedy algorithm which
does not remove concepts from thecandidate list. The
following Query from OWLS-TC is matched against the
advertisement repository:

Inputs: Book

Outputs: TaxedPrice, Price

The number of matches flagged by the three algorithms
is shown below:

- Exact Plugin Subs. Fail Total
Greedy 1 0 5 344 350
Brute F. 1 0 0 349 350
Bipartite 1 0 0 349 350

The results of theBipartite and the Brute-Force
algorithm are identical. TheGreedyalgorithm has flagged
5 subsume matches. These matches are the false positive
outcomes. These matches have conditions identical to those
illustrated in section 3.2.1 earlier.

False Negatives:We now test the occurence of false
negatives. For this purpose, we use a greedy algorithm
which removes concepts from thecandidate list. OWLS-
TC did not have anyQuerieswhich flagged false negatives.
We could however construct a few suchQueriesfor the
purpose of illustration. At first, 3Querieswere constructed
using the ontologies in OWLS-TC. Then, 3 additional
Querieswere constructed by merely swapping the order of
concepts in the first 3Queries.

Since we search for 6 Queries over 350 advertisements,
there would be a total of 6 x 350 = 2100 matchings. Ideally,
we expect all the 6 queries to match their corresponding
advertisements. The actual results are shown below:

- Exact Plugin Subs. Fail Total
Greedy 0 0 3 2097 2100
Brute F. 0 0 6 2094 2100
Bipartite 0 0 6 2094 2100

8

As seen in the results above, theBipartite algorithm
matches all 6Queries. The Greedy algorithmhowever
generates 3 false negatives.

We have thus tested that theGreedyalgorithm indeed
generates false positive and negative outcomes. On the
other hand, the outcomes of theBipartite matchingare
identical to that of theBrute Forcereference model.

6.2 Performance

We determine the search-time of the three algorithms
with respect to the number of advertisments in the
repository. This is presented in Fig-5 below.

 0

 50

 100

 150

 200

 250

 300

 350

 0 50 100 150 200 250 300 350

S
ea

rc
h

T
im

e(
m

s)

Number of Advertisements

Brute Force
Bipartite
Greedy

Figure 5. Query Search Time

We observe that the search time of theBipartite matching
algorithm is higher than that of theGreedy algorithm
but less than that of theBrute force algorithm. The
search time is linear w.r.t. the number of advertisements
in the repository. Moreover, the slope of the graph for
Bipartite matchingis slightly higher than that for theGreedy
algorithm. This is because theO(N) expression, in the
complexity analysis, has a higher multiplying constant for
the Bipartite matchingalgorithm. These results ascertain
the claims made in the complexity analysis section earlier.

7 Conclusion

In this paper we have identified the problems with the
matchmaking algorithm from [21] and offered an alternative
algorithm to resolve these problems. We have also tested the
correctness of our proposed algorithm as compared to [21].
Moreover, theBipartite matchingalgorithm offers a much
better performance as compared to that of theBrute-Force
technique.

Our future work is focused on improving the efficiency
of this algorithm. In particular, we would like to reduce

the time complexity of the algorithm by reducing the time
required for construction of the bipartite graphs.

References

[1] JENA: Java Framework for Building Semantic Web
Applications.http://jena.sourceforge.net/.

[2] MINDSWAP: Maryland Information and Network
Dynamics Lab Semantic Web Agents Project, OWL-S API.
http://www.mindswap.org/2004/owl-s/api/.

[3] North American Industry Classification System.
http://www.naics.com/.

[4] OWL-S Service Retrieval Test Collection. Version 2.1.
http://projects.semwebcentral.org/projects/owls-tc/.

[5] Pellet: An OWL DL Reasoner.http://pellet.owldl.com/.
[6] Protege: Ontology Editor and Knowledge-base framework.

http://protege.stanford.edu/.
[7] RacerPro: OWL Reasoner and Inference Server for the

Semantic Web.http://www.racer-systems.com/.
[8] Universal Description Discovery and Integration (UDDI).

http://uddi.org/.
[9] Web Services Description Language (WSDL).

http://www.w3.org/TR/wsdl.
[10] A. Ankolekar et al. DAML-S Coalition. DAML-S: Web

Service Description for the Semantic Web.ISWC, 2002.
[11] G. Antoniou et al. Web Ontology Language: OWL.

Handbook on Ontologies in Information Systems, 2003.
[12] S. Bechhofer et al. OWL Web Ontology

Language Reference. W3C Recommendation:
http://www.w3.org/TR/owl-ref/, 2004.

[13] O. Choi et al. Extended Semantic Web Services Model for
Automatic Integrated Framework.NWESP, 2005.

[14] R. Guo et al. Capability Matching of Web Services Based
on OWL-S.Proceedings of 16th International Workshop on
Database and Expert Systems Applications, 2005.

[15] I. Horrocks. Reasoning with Expressive Description Logics:
Theory and Practice. 18th International Conference on
Automated Deduction, 2002.

[16] M. Jaeger et al. Ranked Matching for Service Descriptions
using DAML-S. Proceedings of CAiSE’04 Workshops,
2004.

[17] H. Kuhn. The Hungarian Method for the Assignment
Problem.Naval Research Logistic Quarterly, 1955.

[18] D. Martin et al. OWL-S: Semantic Markup for Web
Services. Technical Report, Member Submission, W3C
http://www.w3.org/Submission/2004/07/, 2004.

[19] D. McGuinness et al. The Description Logic Handbook:
Theory, implementation and applications. Cambridge
University Press, 2003.

[20] K. Nedas. Implementation of Munkres-Kuhn (Hungarian)
Algorithm. http://www.spatial.maine.edu/ kostas, 2005.

[21] M. Paolucci et al. Semantic Matching of Web Service
Capabilities. Springer Verlag, LNCS, International
Semantic Web Conference, 2002.

[22] J. Phatak et al. A Framework for Semantic Web Services
Discovery.WIDM, 2005.

[23] E. Sirin et al. Pellet: An OWL DL Reasoner.Journal of Web
Semantics, 2005.

9

