Improved Matchmaking Algorithm for Semantic Web Services
Based on Bipartite Graph Matching

Umesh Bellur, Roshan Kulkarni
Kanwal Rekhi School of Information Technology, IIT Bombay
umesh@it.iith.ac.in, roshan@it.iith.ac.in

Abstract in the service description or it can search the service
classification hierarchy (like NAICS [3]) in the TModel.
The ability to dynamically discover and invoke a Neither of these techniques are sufficient, for a clientgo b
Web Service is a critical aspect of Service Oriented able to autonomously choose a service provider and invoke
Architectures. An important component of the discovery it without human intervention.
process is the matchmaking algorithm itself. In order In order to overcome these limitations, techniques for
to overcome the limitations of a syntax-based search,semantic description and matchmaking of services have
matchmaking algorithms based on semantic techniquesbeen proposed in recent literature. These techniques use
have been proposed. Most of them are based on ansemantic concepts frol@ntologiesto describe the Inputs,
algorithm originally proposed by M. Paolucci, et al. [21]. Outputs, Pre-conditions and Effects (IOPE) of a service.
In this paper, we analyze this original algorithm and The discovery process involves the matchmaking of the
identify some correctness issues with it. We illustrate semantic descriptions offered by the client and the pravide
how these issues are an outcome of the greedy approach In this paper we analyze the semantic matchmaking
adopted by the algorithm. We propose a more exhaustivealgorithm proposed by Paolucci, et al. [21]. We have
matchmaking algorithm, based on the concept of matchingconsiderable interest in this algorithm because it has been
bipartite graphs, to overcome the problems faced with the cited extensively in recent literature and several subsetju
original algorithm. We analyze the complexity of both the proposals ([13], [22], [16], [14]) are based on it.
algorithms and present performance results which show The outline of the paper is as follows: First, we present
that our algorithm performs as well as the original. the algorithm by Paolucci [21]. We then present counter-
examples where this algorithm does not generate correct
outcomes. We describe our own matchmaking algorithm
1 Introduction which overcomes thgse correctness is_sues. Finally, we
analyze the complexity of the two algorithms and present

some experimental results in order to compare their
Loose Couplingis an important principle underlying performance.

Service Oriented Architectures. One aspect of loose

coupling is the ability to invoke a service provider withlt

(or no) prior knowledge about it. Thpublish-find-bind 2 Background and Related Work

architecture is intended to facilitate this process. Servi

providers create WSDL [9] descriptions and publish them Ontologiesare used in order to incorporate semantics
to UDDI [8] registries. Clients search the registry to lacat in web service descriptions. A@ntologymodels domain
providers of the desired service. Today, in most cases,knowledge in terms ofonceptandRelationshipbetween
the WSDL is compiled into client-stubs and the service is them. OWL [12] [11] has evolved as a standard for
invoked. This approach, however, has several limitations. representation of ontologies on the Web.

The WSDL is a specification of the messaging syntax ~ OWL-S[18] [11], formerly called DAML-S[10], defines
between the client and the provider. It is necessary for aan ontology for semantic web services. OWL-S describes a
human to interpret the WSDL and then invoke the client- service in terms of itService Profile Process Modeand
stub with the correct parameters. Grounding TheService Profilanodels the Inputs, Outputs,

The search capabilities of UDDI are limited to a syntax- Pre-conditions and Effects (IOPE) of the service. The
based search. A client can search the registry fstriag Inputs and Outputs in th8ervice Profilaefer to concepts

in ontologies published on the Web. Servitdvertisements Ve € Adutyy,, 3d € Queryiy,

and searclQueriesare both expressed in terms of OWL-S s.t.match(c,d) # Fail.
descriptions.
An ontology reasoneris an important component in Note that the order ofQuery and Advt has been

the process of semantic matchmaking. A reasoner cantransposed between the two expressions above. Suppose
infer additional information which has not been explicitly outQ € Queryq,: andoutA € Advt,,; are two concepts.
stated in an ontology. Subsumption, concept satisfiapility In case of output matching, thenatch(outQ,outA)
equivalence and disjointness are some examples offunction acceptsut@Q andoutA as inputs and returns the
reasoning operations. Many of these operations are usediegree of match between them. Four degrees of match are
in the semantic matchmaking process. DAML-S is based defined between a them:

on a logic formalism calledDescription Logics(DL).

Description Logics and its reasoning are explored in detail o Exact: If outA is an equivalent concept tautQ or

by [15] and [19]. Racer [7] and Pellet [5] [23] are some outA is a superclass afutQ. In case of a superclass

implementations of DL-Reasoners. relationship, it is assumed that the service provider has
The Service Profilecontains enough information for agreed to suppogverypossible subclass ofit A.

a matchmaker to determine if a service satisfies the o Plugin: If outA SubsumesoutQ. The relation

requirements of a client. In fact, several matchmaking betweervut A andoutR is weaker as compared to the

algorithms rely only on the matching of Inputs and Outputs previous case since subsumption is indirectly inferred

of the Service Profiles One such algorithm has been by the reasoner. It is assumed that the provider has

proposed by M. Paolucci, et al., in [21]. Several extensions agreed to supporsomesub-concepts obutA. We
to this algorithm have been subsequently proposed by [13] hence infer thabut A can beplugged in place othe

[22] [16] and [14]. requiredoutR.

Phatak [22] addsntology mappingand QoS constraints e Subsume: If out@ SubsumesoutA. The set of
to the algorithm from [21]. Choi [13] expands the search individuals defined by the conceptytA4, is a subset
scope of [21] by the use of analogous terms from an of the set of individuals defined by the conceptR.

ontology server. It also makes use of a rule-based search e Fajl: If none of the above conditions are satisfied.
in order to apply user restrictions and to rank search
results. It computes fine-grained rankings by the use These four degrees as ranked d&xact> Plugin >

of concept similarity (horizontal and vertical closeness Subsumes- Fail. Here,z > y indicates that: is ranked
between concepts). Jaeger [16] extends the work from [21]higher (is a more desirable match) than

by using matching over thgropertiesand over theService Greedy Approach: The algorithm adopts a greedy
Profile hierarchy. It offers a better (fine-grained) ranking approach towards matching the concept-lists. For example,
scheme as compared to [21]. in the case of output matching, for each concept in
the Query,.:, it determines a corresponding concept in
2.1 Semantic Matchmaking Algorithm Advt o,y to Which it has anaximumdegree of match. Once

all such max-matchings are computed, the minimum match

This section describes the algorithm by Paolucci [21]. amongst them is theverall degree of matchetween the
The algorithm takes a OWL-®uery from the client as Queryand theAdvertisement
input and iterates over every OWL/Avertisemenin its
repository in order to determine a match. Advertisement
and aQuerymatch if their Outputs and Inputs, both, match.
The algorithm returns a set of matching advertisements
sorted according to the degree of match. In this section we analyze the algorithm [21] from the

Let Query,,; and Advt,,; represent thdist of output perspective of correctness. We present counter-examples
conceptsof the Query and Advertisementrespectively. where the algorithm does not generate correct outcomes.
Matching the outputs requires the matching between two

concept-listsQueryy,; and Advt,, as follows: 3.1 Degree of Match

3 Analysis

\VIC € Queryouty Eld S Advt(mt: . . .
s.t.match(c,d) # Fail [21] assumes that if an advertisement claims to output a

certain concept, it commits itself to output ev&ybClass
Let Query;, and Advt;, represent the list of input of that concept. We believe that such an assumption is
Conceptsof the Query and Advertisementrespectively. detrimental to the effectiveness of the matchmaker because
Matching the inputs requires: of the following reasons:

¢ In a real-world scenario, a provider for, seghicle is 3.2 False Positives and False Negatives
likely to sell sometypes ofVehiclg but noteverytype
of vehicle. In this section, we present some counter-examples where
e This assumption encourages the advertisers tothe results from the matchmaking algorithm of [21] are
advertise more generic concepts. For instance,incorrect. In the description below, we have considered the
an advertiser claiming to outpuEverything — process of matchinQueryoutputs. Similar arguments can
e.g. owl:Thing — will have aPlugin match with also be given for the process of matching the inputs.
every Query. This is undesired since a malicious The algorithm from [21] iterates over the list of output
advertiser can poison the search results. The genuineoncepts of the€Queryand it tries to find a max-match to
advertisements will be overwhelmed by the large an output concept in thAdvertisement Initially, every
number of such malicious advertisements. output concept of theAdvertisements a candidate for
e In the present architecture, the semantic notions existsuch a match. We call this set of output concepts of the
only in the matchmaking layer. Subsequent stages, like Advertisemenas acandidate list
grounding or service invocation, deal with syntax. The original algorithm does not specify whether a
concept from theandidate lisis removed once it has been
matched. We analyse both the scenarios — with and without
the removal of concepts. Both of them yield some incorrect
results.

Consider an advertisement which claims to output
Vehicle Assume that this provider can indeed output
every type ofVehicle

A query @ is searching for a service which offers a
StationWagonLet us assume that the ontology defines 3.2.1 False Positives
StationWagoras a subclass dfehicle The algorithm
returns’A’ as an Exact match t®’, using the rules
presented earlier.

Suppose a concept from tR@vertisemenis not removed
from the candidate list after it has been matched.

Consider anAdvertisementfor a travel-agent who
books Accomodatiorfor their customers in the specified
Destination The Advertisemenhas the following Inputs
and Outputs:

Now, the service providelGrounds the concept,

Vehicle, to a concrete XML message. However, there
does not exist any invocation mechanism by which the
client can automatically express to the provider that it

wants aStation Wagotinstead of a generigehicle Inputs: | Destination

Outputs: | Accommodation, Cost

e The conceptdestination, Accommodation, Cosire
defined in a travel ontology. Some parts of the ontology
are illustrated in Fig-1. Consider Query from a client
who is planning a vacation. The client wants to make
reservations for aHotel and a Campground at the
specified destinationH otel and Campground, both, are

Due to the arguments presented above, we subscrib
to an alternative procedure for computing timatch()as
shown in Algorithm-1. This algorithm inverts the concepts
of Plugin and Subsumes.

Algorithm 1 PROCEDURE match(outA, outQ) subclasses of the concegpitcomodation. The Query has
1: if outA = outQthen the following Inputs and Outputs:
2: return Exact
3: else ifoutQ superclass of outthen Inputs: | Destination
4: return Plugin Outputs:| Hotel, Campground
5: else ifoutQ subsumes outthen
6: return Plugin e The initial candidate list i$ Accommodation, Cost}.
7: else ifoutA subsumes out@en e The algorithm tries to compute a max-match for
8 return Subsumes Hotel. Using the rule -outA Superclassout®
o: else - this will be flagged as an Exact match with
10: return Eail Accommodation.
11: end if e The algorithm tries to compute a max-match for

Campground. Using the same rule, this will be
flagged as an Exact match witlccommodation

A similar approach has also been proposed in [13]. In
this section, we have offered stronger arguments in favour In reality, the Advertisement indeed does not satisfy
of this approach. the Query. Such a match is a false positive result.

VAV
Campground

Figure 1. Travel Ontology

Such false positive outcomes can be expected whenever

two or more concepts from th@uery match a single
concept in theddvertisement.

3.2.2 False Negatives

We now consider a scenario where a concept is removed
from the candidate list after it has been matched with a

concept from th&uery.
Consider anAdvertisement for a travel-agent who

reserves tickets for two kinds of activities at a holiday

destination. The inputs and outputs of thévertisement
are given below:

Inputs: |Destz’nati0n
Outputs: | Entertainment, Sport

A client is planning a vacation and desires to make

reservations for the following two activities: (Bowling
(iiy MovieShow. The inputs and outputs of thiguery are
given below:

Inputs: |Destination
Outputs: | Bowling, M ovieShow

The concepts used above are defined in the travel
The solid lines indicate the 4.1 Bipartite Graphs and Matching

ontology shown in Fig-1.
explicitly asserted relationships. The dotted lines iatéc
the relationships inferred by the reasoner.

e The algorithm will first
a max-match for Bowling. The candidate
list of the Advertisement outputs is:
{Entertainment, Sport}. The following matches
are inferred:

Bowling subclasgintertainment = Exact
Bowling subsumed bysport = Plugin

e Bowling has a max-match withEntertainment.

HenceEntertainment is removed from the candidate

list.

e The algorithm now attempts to match the next concept:

MowvieShow. Since MovieShow N Sport = (), the
match fails.

attempt to compute

We now transpose the order of concepts in the output
of the Queryand analyse the behaviour of the algorithm.
Consider an alternativ@uery as:

Inputs: |Destination
Outputs: | M ovieShow, Bowling

e The algorithm first computes a max-match for
MovieShow. The initial candidate list is:
{Entertainment, Sport }

MovieShow subclas¥ntertainment = Exact
{MovieShow N Sport = 0} = Fail

e MovieShow has a max-match witlbntertainment.
HenceEntertainment is removed from the candidate
list.

e The algorithm now attempts a match f&owling.
Since Bowling is subsumed bysport, it is a Plugin
match. The final outcome is thus a Plugin match.

In this scenario we see that the outcome of the
matchmaker depends on the order of the concepts in the
Query Semantic matchmaking should be agnostic of the
syntactic ordering of the concepts in tAdvertisements
andQueries. We therefore believe that a more exhaustive
matchmaking process is desired, instead of the greedy
approach adopted by this algorithm.

4 Proposed Algorithm

In this section, we propose our matchmaking algorithm
based on the notion of matching bipartite graphs. We
present some basic concepts on bipartite graphs and then
look at the proposed algorithm. Finally, we offer a
complexity analysis of the algorithm.

e Bipartite Graph: A Bipartite Graphis a graphG' =
(V, E) in which the vertex set can be partitioned into
two disjoint setsV = V; U Vi,such that every edge
e € E has one vertex iy and another ifl;;. Fig-2
shows aveightedbipartite graphG.

e Matching: A matchingof a bipartite graphG =

(V, E) is subgrapi’ = (V, E’), E’ C E, such that
no two edges1,e; € E’ share the same vertex. We
say that a vertex is matchedf it is incident to an edge
in the matching. Fig-2 also shows one such matching
G’ for the graphG.
Given a bipartite graplz = (1, + V41, E) and its
matchingG’, the matching isompletef and only if,
all vertices inV, are matched. The matchin@ in
Fig-2 is not a compete matching since verieis not
matched.

a a
w W .
2 g b 3 b
X x.
y C y @®c
J 7
d d
Graph G Matching G'

Figure 2. Bipartite Graph and its Matching

4.2 Modelling Semantic Matchmaking as

Bipartite Matching

Consider Query@ andAdvertisementl. We model the
problem of matching their outputs as a problem of matching
over a bipartite graph. This involves two steps:

e Constructing a Bipartite Graph: Let Q,,; andA,,;
be the set of output conceptsd@hand A respectively.
These constitute the two vertex sets of our bipartite
graph. Construct graptd = (Vp + Vi, E), where,
Vo = Qout andVi = Agus.

Consider two concepts € Vy andb € V5. LetR

Exact wl

Plugin w2

Plugin w.

Plugin w2
Graph G
wl
w./_\.a w w2 a
% wi b X w2 b
y w3 c yw C
Matching G' Matching G"

Figure 3. Bipartite Graph of Output Concepts

Fig-3 illustrates a bipartite grapy constructed from
Qout and A,,; using the procedure described earligr!
is a complete matching af.

Let max(w;) denote the maximum weighted edgeih

be the degree of match (Exact, Plugin, Subsume, Fail) the maximum weighted edge represents the worst degree

between conceptsandb. If R # Fail, we define an
edge(a, b) in the graph and label this edge &As

Defining a Matching Criteria: We compute a
complete matchingf this bipartite graph. A complete
matching will ensure that every concept in the output
of the Queryis matched to some concept in the output
of theAdvertisementWe consider the following cases:

— Complete matching does not existe infer that
the match between thAdvertisementand the
Queryhas failed.

— Multiple complete matchings existVe should
choose a complete matching whichaptimal
So far we have not defined any optimality criteria
from the perspective of a semantic match. We
shall define this below.

We assign a numerical weight to every edge in the
bipartite graph. The weight of an edge,= (a,b), is a
function of the degree of match between concepsdb.

Degree of Match | Weight of edge

Exact w1
Plugin Wy
Subsumes w3

A|SO, w; < wg < W3

of match between the two vertex setg(fi This is similar
to the notion ofglobal degree of matctiefined in [21]. We
therefore say thatraz(w;) denotes theverall degree of
matchfor G'.

Consider a scenario in which several different matchings
exist for the given bipartite graph. Amptimal matching
from the perspective of semantic matchmaking, is a
complete matching in whichaz(w;) is minimized.

For example, in Fig-3(G’ and G” are two complete
matchings ofG as shown in the figure. We can now infer
the following:

Matching | max(w;) | Overall Match

G’ wy = Subsume
G" wo = Plugin

Our algorithm chooses the matching in whictuz (w;)
is minimized. Sincevs < ws, G’ (Plugin) is chosen over
G’ (Subsume) as the match.

Our discussion so far has only considered the matching
of output concepts. The matching of input concepts is a
similar process. In case of outputs, every conced ip;
needs to be matched. Whereas in case of inputs, every
concept in4;, needs to be matched. Hence we construct
a bipartite graph wherg, = A;, andV; = Q.

So far we have constructed the graph and defined the
matching criteria. In the next section, we shall see how the

matching is actually computed. e The maximum number of edges in any complete
matching of the grapty will be equal to| ;|

4.3 Computing the Optimal Matching e The following relation holds truew; < ws < w3
e The above computation of weights enforces that a
The Hungarian algorithm ([17], [20]) computes a single edge of a higher weight will be greater than a

complete matching of the bipartite graph such that the set of|V; | edges of lower weights taken together:
sum of weights of the edges in the matchingw;, is

minimized. The use of Hungarian algorithm for matching w; > w; X |Vol,Vj < 1)
bipartite graphs is desired due to its strong polynomia¢tim Proof: We use a proof-by-contradiction method to prove
bound. If|V] is the number of vertices in the graph, the time {helemmastated earlier.

complexity of the Hungarian algorithm 9(|V|*). This

is more efficient than the combinatorial complexity of any e Given a graphG, let M be a complete matching in

brute-force algorithm. which w; is minimized. Let(d;,d2,ds, ...) denote

In our current problem, we wish to compute a matching the set of edges iM/.
such that thenax(w;) is minimized. This optimization e Let M’ be a complete matching in whichaz(w;) is
criteria is different than the one assumed by the hungarian minimized. Let(ey, ez, €3, ...) denote the set of edges
algorithm. in M’ and lete,, .. denote the maximum weight edge

This difference is illustrated in the example from Fig-3. in this set.

Consider the assignment of weights as: = 1, wy = 2, e Assume that the lemma is untrue. Hent® # M'.
ws = 3. G’ andG” are the two matchings of the graph. We e Now, there will be at least one edgéy, € M, such
can now compute: thatw(das) > w(emas). This is because:
Matching | max(w;) | Sw; - M #M
a 3 (Subsume)] 5 — M’ is a matching in whichmaxz(w;) is
a7 2 (Plugin) 6 minimized. e,,q, IS the maximum weight edge
in M’

Our optimization criteria would choog&’, whereas the o w(dy) > wemas) = w(dy) > wle;), Ye; € M’
hungarian algorithm wquld choc_)éé asthe optimql match. e The maximum number of edges M’ is bounded by
As a result, the hungarian algorithm cannot be directly used IVo|. Using previous results and Equation-1 from the
to compute the matching that we desire. previous section:

We hence propose a different technique for the
assignment of edge weights such that the followlsrgma w(dar) > wle;), Ye; € M
holds true: = w(dy) > Sw(e;)

Lemma: A matching in whichw; is minimized, is = Zw(d;) > Xw(ei)

equivalent to a matching in whichaz(w;) is minimized Here Sw(e;) andSw(d,) denote the sum of weights

If the abovelemmaholds true, we can indeed use of all edges inM/ and M’ respectively. _
the hungarian algorithm to compute the matching that we ¢ w(di) > Yw(e;) contradicts our assumption that
desire. We first look at the technique for assignmentof edge A/ is @ matching having the minimal sum of weights.
weights. We then prove that the abdeemaholds true for The contradiction holds as long as we assume that
the proposed assignment. M # M’. We can hence infer that bottd and M’
InG = (Vo + V1, E), the values of the edge weights are are equivalent.

computed as follows: .
4.4 Our Algorithm

Degree of Match | Weight

Exact= wy = 1 Algorithm-2 defines theearch() procedure. It accepts
Plugin= wy = (wy * [Vo]) + 1 a Qu?ry as ipput and tries to match. it with each
Subsumes ws = (w2 * [Vo|) + 1 advertisement in the repository. A match is computed for

both, output and input concepts. If the match is nétad,
|Vo| = Cardinality of set; it appends the advertisement to the result set. Finally the
sorted result set is returned to the client.
We note the following properties, which will be used in The match() procedure in Algorithm-3 accepts two
the subsequent proof: concept-lists as inputs and constructs a bipartite graipigus

them. It then invokes a hungarian algorithm to compute a
complete matchingn the graph. Thenatch() procedure

is invoked twice insearch(). The order ofQuery and ~ Algorithm 2 searchQuery)
Advertisement in each call is however swapped. 1: Result = Empty List

The computeW eights() function computes the values % .]
of wi,ws, w3, depending on the number of concepts 3 for eachAdvt in Repositorydo
in 5. It uses the formulae presented in the section 4 outMatch=matchQueryous, Advtou:)
“Computation of Edge Weightsto compute the values. 5 if (outMatch = Fail)then
The degreeO f Match() function is a call to the reasoner & Skip Advt. Take nextAdut.
in order to determine the relationship between the two 7= €ndif
concepts: andb. 8:

9: inMatch = match@dvt;,, Query;,)

10: if (inMatch = Fail) then
11: Skip Advt. Take nextAduvt.
12: endif
Let N denote the number of advertisements in the 13:
repository. The average number of input and output 14: Result.appendfdut, outMatch, inMatch)

4.5 Complexity Analysis

concepts in theQuery are denoted byQ.,| and |Qout| 15: end for
respectively. Similarly, the average number of input and 16:
output concepts in thAdvertisemenare denoted byA;, | 17: return sortResult)

and|A,.:| respectively. The complexity of the algorithm is
analyzed as follows:

e Search involves iteration over eaélulvertisemenin

the repository. Algorithm 3 match(Listy, Lists)
e Weightswy, wy, wy are computed based ¢¥|. This 1: Graph G = Empty Graptly + Vi, E)
is anO(1) operation. 2: Vo « Listy
3: Vi « Listy
e The graph is constructed by comparing every pair of 4. (), w,, w3) — computeWeight${s|)
concepts(a,b),a € Qout,b € Aoy This operation 5:
has a complexity 00 (|Qout| * [Aout|). 6: for each concept in V;, do
e The time complexity of hungarian algorithm is /- for eachconceptin Vi do
bounded by Qo |* 8: degree = degreeOfMatchy, b)
9: if degree # Fail then
N . 10: Add edge(a, b) to G
The above matching is done twice: Once for outputs, 11 if (degree = Exact)then w(a, b) = w:

once for inputs. We can thus compute the time complexity

¢ has: 12: if (degree = Plugin)then w(a, b) = ws
ofa search as. 13 if (degree = Subsume)hen w(a,b) = ws
B 14: end if
N X {('Qout' X |Aout| + |Qout|)+ 15: end for
(|Azn| X |an| + |Azn|3)} 16: end for
17:
We can now approximate,.:| = |Aout| = |Qin] = 18: GraphM = hungarianMatchg)

|Ain] = m. Here,m is independent of the number of 19: if (M = null) then
advertisements in the repository and is likely to take small 20: ~ No complete matchingxists
integer values (usually 1 to 15). We can hence considter 21: return Fail

be a constant. The time complexity of search is simplified: 22: end if

23:
O(N x 2 x {m* +m®}) = O(N) (2) 24: Let (a, b) denote Max-Weight Edge i@
25: degree «— degreeOfMatchy, b)
Although the time complexity expressed herei&V), 26: return degree

the constant factors involved are quite high. Ror= 10,
for instancem? = 1000.

4.5.1 Complexity Comparison Ej OWL-S
OWL-S Advt.
«—

The algorithm from [21] iterates over all the advertisersent _ QUery pl \iorchmaking | Repository
in the repository and performs matching over both, inputs clent | ¢ Engne | | owL
and outputs. If we assume that concepts are not removed Resuls L | Ontologies
from the candidate-listafter a match, the time complexity
of the algorithm can be expressed as: N e
elle!

Reasoner Knowledge Base

N x {(|Q0ut| X |Aout|) + (|A1n| X |Q'm|)}

Using simplifications similar to the above, we get: Figure 4. Implementation

O(N x 2 x {m?*}) = O(N) (3) 6.1 Correctness

Comparing (2) and (3) we conclude that both (the
original and the proposed algorithms) have linear time
complexity. However the constants involved in our
proposed algorithm are larger.

False Positives: We first test the occurence of false
positives. In this case, we use a greedy algorithm which
does not remove concepts from tbandidate list The
following Query from OWLS-TC is matched against the

) advertisement repository:
5 Implementation

Inputs: | Book

The following algorithms were implemented in Java in Outputs:| TaxedPrice, Price
order to compare their correctness and performance:

The number of matches flagged by the three algorithms

1. OurBipartite Matchingalgorithm is shown below:
2. Greedy matchmaking algo_rithby Paolucci [21] N Exact| Plugin | Subs.| Fail | Total
3. Brute-Forcematching algorithm Greedy 1 0 5 344 350
) . Brute F. 1 0 0 349 | 350
The Brute-Forcealgorithmexhaustivelfcompares every Bipartite 1 0 0 349 | 350

possible matching between the concept lists. It then clwose
a matching with the best overall degree of match. The The results of theBipartite and the Brute-Force
Brute-Forcealgorithm, due to its exhaustive nature, will algorithm are identical. Th&reedyalgorithm has flagged
serve as a reference model to compare the correctness & subsume matches. These matches are the false positive
the Greedyand theBipartite algorithms. outcomes. These matches have conditions identical to those

Our implementation is illustrated in Fig-4. The Protege illustrated in section 3.2.1 earlier.
editor [6] is used to browse and edit OWL ontologies. We False Negatives:We now test the occurence of false
load the OWL ontologies into thknowledgeBasedefined negatives. For this purpose, we use a greedy algorithm
by the Mindswap OWL-S API [2]. This APl is also used to which removes concepts from tloandidate list OWLS-
parse the OWL-RueriesandAdvertisementsWe use the TC did not have anQuerieswhich flagged false negatives.
Pelletreasoner [5] [23] talassifythe loaded ontologies. We could however construct a few su€ueriesfor the

The Jena API [1] is used to query the reasoner for purpose of illustration. At first, ®uerieswere constructed
concept relationships. In order to compute matchings for using the ontologies in OWLS-TC. Then, 3 additional
bipartite graphs, we use an implementation of the Munkres-Querieswere constructed by merely swapping the order of
Kuhn (Hungarian) algorithm by [20]. concepts in the first ueries

Since we search for 6 Queries over 350 advertisements,
there would be a total of 6 x 350 = 2100 matchings. Ideally,
we expect all the 6 queries to match their corresponding

))) advertisements. The actual results are shown below:
The OWLS-TC (service retrieval test collection from

6 Correctness and Performance Comparison

SemWebCentral) [4] is used to compare the algorithms. We - Exact | Plugin | Subs.| Fail | Total
use 7 ontologies (2449 concepts) from OWLS-TC in our Greedy 0 0 3 2097 | 2100
KnowledgeBase About 350 advertisements from OWLS- Brute F. 0 0 6 2094 | 2100
TC were loaded into our advertisement repository. Bipartite 0 0 6 2094 | 2100

As seen in the results above, tBgpartite algorithm
matches all 6Queries The Greedy algorithmhowever
generates 3 false negatives.

We have thus tested that tli&reedyalgorithm indeed
generates false positive and negative outcomes.
other hand, the outcomes of tiBipartite matchingare
identical to that of th&rute Forcereference model.

6.2 Performance

We determine the search-time of the three algorithms
with respect to the number of advertisments in the

repository. This is presented in Fig-5 below.

350 T T T

T T T
Brute Force —+—
Bipartite -—--<---

300

250

200

150

Search Time(ms)

100

50

0
100 150 200 250

Number of Advertisements

300 350

Figure 5. Query Search Time

We observe that the search time of Bipartite matching
algorithm is higher than that of th&reedy algorithm
but less than that of th&rute force algorithm. The

search time is linear w.r.t. the number of advertisements

the time complexity of the algorithm by reducing the time
required for construction of the bipartite graphs.

References

On the

[1] JENA: Java Framework for Building Semantic Web

[2

—_—

[10]
[11]

[12]

[13]

[14]

[15]

in the repository. Moreover, the slope of the graph for [16]

Bipartite matchings slightly higher than that for th@&reedy
algorithm This is because th®(N) expression, in the

complexity analysis, has a higher multiplying constant for
the Bipartite matchingalgorithm. These results ascertain
the claims made in the complexity analysis section earlier.

7 Conclusion

[17]
(18]

[19]

In this paper we have identified the problems with the [20]

matchmaking algorithm from [21] and offered an alternative

algorithm to resolve these problems. We have also tested thd21l

correctness of our proposed algorithm as compared to [21].

Moreover, theBipartite matchingalgorithm offers a much
better performance as compared to that ofBinete-Force
technique.

Our future work is focused on improving the efficiency
of this algorithm. In particular, we would like to reduce

[22]

(23]

Applications. http://jena.sourceforge.net/

MINDSWAP: Maryland Information and Network
Dynamics Lab Semantic Web Agents Project, OWL-S API.
http://www.mindswap.org/2004/owl-s/api/
North American Industry Classification
http://www.naics.com/

OWL-S Service Retrieval Test Collection. Version 2.1.
http://projects.semwebcentral.org/projects/owls-tc/

Pellet: An OWL DL Reasonetttp://pellet.owldl.com/
Protege: Ontology Editor and Knowledge-base framework
http://protege.stanford.edu/

RacerPro: OWL Reasoner and Inference Server for the
Semantic Webhttp://www.racer-systems.com/

Universal Description Discovery and Integration (UDDI
http://uddi.orgl

System.

Web Services Description Language (WSDL).
http://www.w3.0rg/TR/wsdl
A. Ankolekar et al. DAML-S Coalition. DAML-S: Web

Service Description for the Semantic WeSWGC 2002.
G. Antoniou et al. Web Ontology Language:
Handbook on Ontologies in Information Syste2303.
S. Bechhofer et al OWL Web Ontology
Language Reference. W3C Recommendation:
http://www.w3.0rg/TR/owl-ref2004.

O. Choi et al. Extended Semantic Web Services Model for
Automatic Integrated FrameworlNWESR 2005.

R. Guo et al. Capability Matching of Web Services Based
on OWL-S.Proceedings of 16th International Workshop on
Database and Expert Systems Applicatj&@05.

I. Horrocks. Reasoning with Expressive Descriptiomlos:
Theory and Practice. 18th International Conference on
Automated Deductiqr2002.

M. Jaeger et al. Ranked Matching for Service Descriygio
using DAML-S. Proceedings of CAISE’'04 Workshops
2004.

H. Kuhn. The Hungarian Method for the Assignment
Problem.Naval Research Logistic Quarterl§955.

D. Martin et al. OWL-S: Semantic Markup for Web
Services. Technical Report, Member Submission, W3C
http://www.w3.0rg/Submission/2004/02004.

D. McGuinness et al. The Description Logic Handbook:
Theory, implementation and applications. Cambridge
University Press2003.

K. Nedas. Implementation of Munkres-Kuhn (Hungarian)
Algorithm. http://www.spatial.maine.edu/ kost&9005.

M. Paolucci et al. Semantic Matching of Web Service
Capabilities. Springer Verlag, LNCS, International
Semantic Web Conferen@902.

J. Phatak et al. A Framework for Semantic Web Services
Discovery.WIDM, 2005.

E. Sirin et al. Pellet: An OWL DL Reasonelournal of Web
Semantics2005.

OWL.

