
Admissible Heuristics for Optimal PlanningPatrik HaslumDepartment of Computerand Information ScienceLink�oping UniversityS-58183 Link�oping, Sweden H�ector Ge�nerDepartamento de Computaci�onUniversidad Sim�on Bol��varAptdo 89000, Caracas 1080-AVenezuelaAbstracthsp and hspr are two recent planners that search thestate-space using an heuristic function extracted fromStrips encodings. hsp does a forward search from theinitial state recomputing the heuristic in every state,while hspr does a regression search from the goal com-puting a suitable representation of the heuristic onlyonce. Both planners have shown good performance,often producing solutions that are competitive in timeand number of actions with the solutions found byGraphplan and sat planners. hsp and hspr, however,are not optimal planners. This is because the heuris-tic function is not admissible and the search algorithmsare not optimal. In this paper we address this problem.We formulate a new admissible heuristic for planning,use it to guide an ida� search, and empirically eval-uate the resulting optimal planner over a number ofdomains.The main contribution is the idea underlying theheuristic that yields not one but a whole family ofpolynomial and admissible heuristics that trade ac-curacy for e�ciency. The formulation is general andsheds some light on the heuristics used in hsp andGraphplan, and their relation. It exploits the factored(Strips) representation of planning problems, mappingshortest-path problems in state-space into suitably de-�ned shortest-path problems in atom-space. The for-mulation applies with little variation to sequential andparallel planning, and problems with di�erent actioncosts. Introductionhsp and hspr are two recent planners that search thestate-space using an heuristic function extracted fromStrips encodings (Bonet & Ge�ner 1999). hsp doesa forward search from the initial state computing theheuristic in every state, while hspr does a regressionsearch from the goal, computing a suitable representa-tion of the heuristic only once. Both planners haveshown good performance, often producing solutionsthat are competitive in time and number of actions withthe solutions found by Graphplan and SAT planners(McDermott 1998).Copyright c
 2000, American Association for Arti�cial In-telligence (www.aaai.org). All rights reserved.

hsp and hspr, however, are not optimal planners. Thisis because the heuristic is not admissible and the searchalgorithms are not optimal.1 Graphplan (Blum & Furst1995) and Blackbox (Kautz & Selman 1999) are opti-mal parallel planners that guarantee a minimal numberof time steps in the plans found. While optimality isnot always a main concern in planning, the distinctionbetween optimal and non-optimal algorithms is relevantin practice and is crucial in theory where optimal andapproximate versions of the same problem may belongto di�erent complexity classes (Garey & Johnson 1979).The goal of this paper is to address this issue. Forthis, we formulate a new domain-independent admis-sible heuristic for planning and use it for computingoptimal plans. The new heuristic is simple and general,and can be understood as mapping the shortest-path(planning) problem in state-space into a suitably de-�ned shortest-path problem in atom-space. This idea isimplicit in a number of recent planners, e.g., (Blum& Furst 1995; McDermott 1996; Bonet, Loerincs, &Ge�ner 1997); here we make it explicit and general.The formulation applies with little variation to prob-lems with di�erent action costs and parallel actions,and suggests extensions for other classes of problemssuch as problems with actions with di�erent durations(e.g., (Smith & Weld 1999)).The new heuristic is based on computing admissibleestimates of the costs of achieving sets of atoms fromthe initial state s0. When the size of these sets is 1, theheuristic is equivalent to the hmax heuristic consideredin (Bonet & Ge�ner 1999). When the size is 2, for paral-lel planning, the heuristic is equivalent to the heuristicimplicit in Graphplan. The computation of the heuris-tic, however, does not build a layered graph nor does itrely on `mutex relations'. On the other hand, its timeand space complexity is polynomial in Nm, where N isthe number of atoms in the problem and m is the sizeof the sets considered.For the experiments in this paper, we use the heuris-tic that results from sets of sizem = 2 (atom pairs). To1A heuristic is not admissible when it may overestimateoptimal costs, while a search algorithm is not optimal whenit does not guarantee the optimality of the solutions found(Nilsson 1980; Pearl 1983).

avoid the recomputation of the heuristic in every state,we take the idea from hspr and compute the heuris-tic once from the initial state and use it to guide aregression search from the goal.2 The search is per-formed using the optimal algorithm ida� (Korf 1985).We call the resulting optimal planner hspr�. With thecurrent implementation, hspr� produces good results insequential domains like Blocks World and the 8-puzzle,but weaker results on parallel domains like rockets orlogistics. This is in contrast with the non-optimal hsprplanner that solves these problems very fast. We dis-cuss these results, try to identify its causes, and drawsome conclusions.The paper is organized as follows. We cover �rstthe relevant background including the heuristics usedin hsp and Graphplan (Sect. 2). Then we introduce thenew heuristic (Sect. 3), review the basic and enhancedversion of the ida� algorithm that we use (Sect. 4),and report results over a number of sequential domains(Sect. 5). Last we consider the extensions and resultsfor parallel planning (Sect. 6) and close with a summaryand discussion (Sect. 7).BackgroundHSPhsp maps Strips planning problems into problems ofheuristic search (Bonet & Ge�ner 1999). A Strips prob-lem is a tuple P = hA;O; I;GiwhereA is a set of atoms,O is a set of ground operators, and I � A and G � Aencode the initial and goal situations. The state spacedetermined by P is a tuple S = hS; s0; SG; A(�); f; ciwhere1. the states s 2 S are collections of atoms from A2. the initial state s0 is I3. the goal states s 2 SG are such that G � s4. the actions a 2 A(s) are the operators op 2 O suchthat Prec(op) � s5. the transition function f maps states s into statess0 = s�Del(a) +Add(a) for a 2 A(s)6. the action costs c(a) are assumed to be 1hsp searches this state-space, starting from s0, with anheuristic function h derived from the Strips represen-tation of the problem. A similar approach was usedbefore in (McDermott 1996) and (Bonet, Loerincs, &Ge�ner 1997).The heuristic h is derived as an approximation of theoptimal cost function of a `relaxed' problem P 0 in whichdelete lists are ignored. More precisely, h(s) is obtainedby adding up the estimated costs gs(p) for achievingeach of the goal atoms p from s. These estimates arecomputed for all atoms p by performing incrementalupdates of the formgs(p) := mina2O(p)[gs(p); 1 + gs(Prec(a))] (1)2The heuristic can also be used in the context of hsp.However, the overhead of computing the heuristic in everystate does not appear to be cost-e�ective in general.

starting with gs(p) = 0 if p 2 s and gs(p) = 1 oth-erwise, until the costs gs(p) do not change. In (1),O(p) stands for the set of operators that `add' p andgs(Prec(a)) stands for the estimated cost of the set ofatoms in Prec(op).In hsp, the cost gs(C) of sets of atoms C is de�nedas the sum of the costs gs(r) of the individual atoms rin the set. We denote such cost as gadds (C):gadds (C) def= Xr2C gs(r) (additive costs) (2)The heuristic h(s) used in hsp, that we call hadd(s), isthen de�ned as: hadd(s) def= gadds (G) (3)The de�nition of the cost of sets of atoms in (2) as-sumes that `subgoals' are independent. This is not truein general and as a result the heuristic may overestimatecosts and is not admissible.An admissible heuristic can be obtained by de�ningthe costs gs(C) of sets of atoms asgmaxs (C) = maxr2C gs(r) (max costs) (4)The resulting `max heuristic' hmax(s) = gmaxs (G) is ad-missible but is not as informative as hadd(s) and is notused in hsp. In fact, while the `additive' heuristic com-bines the costs of all subgoals, the `max' heuristic con-siders the most di�cult subgoals only.In hsp, the heuristic h(s) and the atom costs gs(p)are computed from scratch in every state s visited. Thisis the main bottleneck in hsp and can take up to 85% ofthe computation time. For this reason, hsp relies on aform of hill-climbing search for getting to the goal withas few state evaluations as possible. Surprisingly thisworks quite well in many domains. In the AIPS98 Plan-ning Contest, for example, hsp solved 20% more prob-lems than the Graphplan and SAT planners (McDer-mott 1998). In many cases, however, the hill-climbingsearch �nds poor solutions or no solutions at all.HSPrhspr (Bonet & Ge�ner 1999) is a variation on hsp thatremoves the need to recompute the atom costs gs(p)in every state s. This is achieved by computing thesecosts once from the initial state and then performinga regression search from the goal.3 In this search, theheuristic h(s) associated with any state s is de�ned interms of the costs g(p) = gs0(p) computed from s0 ash(s) =Xp2s g(p)3Refanidis and Vlahavas propose a di�erent way foravoiding these recomputations. Rather than calculating theheuristics by forward propagation and using it in a back-ward search, they compute the heuristic by backward prop-agation and use it to guide a forward search. See (Refanidis& Vlahavas 1999).

Since node evaluation in hspr is faster than in hsp,hspr uses a more systematic search algorithm that of-ten produces better plans than hsp in less time.4 Forexample, hspr solves each of the 30 logistic problems inthe blackbox distribution in less than 3 seconds each(Bonet & Ge�ner 1999). hspr, however, is not betterthan hsp across all domains as the information resultingfrom the recomputation of the heuristic in certain casesappears to pay o�. In addition, the regression searchoften generates states that cannot lead to any solutionas they violate basic invariants of the domain. To alle-viate this problem, hspr identi�es atoms pairs that areunreachable from the initial state (atemporal mutexes)and prunes the states that contain them. This is anidea adapted from Graphplan.GraphplanPlanning in hspr consists of two phases. In the �rst, aforward propagation is used to compute the measuresg(p) that estimate the cost of achieving each atom froms0, in the second, a regression search is performed us-ing an heuristic derived from those measures. Thesetwo phases are in correspondence with the two phasesin Graphplan (Blum & Furst 1995), where a plan graphis built forward in the �rst phase, and is searched back-ward in the second. As argued in (Bonet & Ge�ner1999), the parallel between the two planners goes fur-ther. Graphplan can also be understood as an heuristicsearch planner based on precise heuristic function hGand a standard search algorithm. The heuristic hG(s)is given by the index j of the �rst level in the graph thatcontains the atoms in s without a mutex, and the searchalgorithm is a version of Iterative Deepening a� (ida�)(Korf 1985) where the sum of the accumulated cost andthe estimated cost hG(n) is used to prune nodes n whosecost exceed the current threshold (actually Graphplannever generates such nodes).5While Graphplan and hspr can both be understoodas heuristic search planners they di�er in the heuristicand algorithms they use. In addition, hspr is concernedwith (non-optimal) sequential planning while Graph-plan is concerned with (optimal) parallel planning.A new admissible heuristichsp and hspr can be used to �nd good plans fast but notprovable optimal plans. This is because they are basedon non-admissible heuristics and non-optimal searchalgorithms. For �nding optimal plans, an admissible4The search algorithm in hspr is complete but is not op-timal. Optimal algorithms such as a� are not used becausethey take more time and space, and since the heuristic isnot admissible they still don't guarantee optimality.5Without memoization, the search algorithm in Graph-plan is standard ida�. With memoization, the search algo-rithm is a memory-extended version of ida� (Sen & Bagchi1989; Reinfeld & Marsland 1994) where the heuristic of anode is updated and stored in a hash-table after the searchbeneath its children completes without a solution (given thecurrent threshold).

heuristic that can safely prune large parts of the searchspace is needed.The non-admissible heuristic hadd used in hsp is de-rived as an approximation of the optimal cost functionof a relaxed problem where deletes lists are ignored.This formulation raises two problems. First, the ap-proximation is not very good as it ignores the positiveinteractions among subgoals that can make one goalsimpler after a second one has been achieved (this re-sults in the heuristic being non-admissible). Second,the relaxation is not good as it ignores the negativeinteractions among subgoals that are lost when deletelists are discarded. These two problems have been ad-dressed recently in the heuristic proposed by Refanidisand Vlahavas (99). The proposed heuristic is more ac-curate but it is still non-admissible and largely ad-hoc.Here we aim to formulate an heuristic that addressesthese limitations but which can be given a clear justi-�cation. The idea is simply to approximate the cost ofachieving any set of atoms A from s0 in terms of the es-timated costs of achieving sets of atoms B of a suitablesmall size m. When m = 1, we approximate the cost ofany set of atoms in terms of the estimated cost of theatoms in the set. When m = 2, we approximate thecost of any set of atoms in terms of the estimated costof the atom pairs in the set, and so on. In the �rst casewe will obtain the heuristic hmax; in the second, theGraphplan heuristic, etc. We make these ideas precisebelow.The new heuristic is de�ned in terms of a relaxedproblem, but the `original' and `relaxed' problems areformulated in a slightly di�erent way than before. Theoriginal problem is seen now as a single-source shortest-path problem (Bertsekas 1995; Ahuja, Magnanti, & Or-lin 1993). In a single-source shortest path problem oneis interested in �nding the shortest paths from a givensource node to every other node in a graph. In ourgraph, the nodes are the states s, the (directed) linksare the actions a that map one state into another, andthe link costs are given by the action costs c(a) > 0.The source node is the initial state s0, and the (di-rected) paths that connect s0 with a state s correspondto the plans that achieve s from s0.A way to solve this shortest-path problem is by �nd-ing the optimal cost function V � over the nodes s, whereV �(s) expresses the cost of the optimal path that con-nects s0 to s. This function V � can be characterized asthe solution of the Bellman equation:6V �(s) = minhs0;ai2R(s)[c(a) + V �(s0)] (5)where V �(s0) = 0 and R(s) stands for the state-actionpairs hs0; ai such that a maps s0 into s (i.e., a 2 A(s0)and s = f(a; s0)).6For V � to be well-de�ned when some states are notreachable from s0, it su�ces to assume `dummy' actionswith in�nite costs that connect s0 with each state s.

The shortest-path problem de�ned by (5) can besolved by a number of algorithms resulting in a heuris-tic function V � that perfectly estimates the distance ofany state s from s0. Of course, there are two problemswith this idea: �rst, the solution of (5) is polynomialin jSj but exponential in the number of atoms; and sec-ond, the function V � cannot be used (directly) to guidea regression search from the goal. This is because thegoal G does not denote a single state but a set of statessG such that G � sG. Thus for guiding a regressionsearch from the goal, a cost function must be de�nedover sets of atoms A understood as representing the setof states that make A true.So we turn to a slightly di�erent shortest-path for-mulation de�ned over sets of atoms and let G� standfor the optimal cost function in that space. For a set ofatomsA, G�(A) stands for the optimal cost of achievingthe set of atoms A from s0 or alternatively, the optimalcost of achieving a state s where A holds. The equationcharacterizing the function G� isG�(A) = minhB;ai2R(A)[c(a) +G�(B)] (6)where G�(A) = 0 if A � s0 and R(A) refers to the setof pairs hB; ai such that B is the result of regressingA through a. Formally, this set is given by the pairshB; ai such that A \ Add(a) 6= ;, A \Del(a) = ;, andB = A�Add(a) + Prec(a). We call such set R(A) theregression set of A.In the new shortest-path problem the nodes are thepossible sets of atoms A and each pair hB; ai in R(A)stands for a directed link B ! A in the graph with costc(a). Such links can be understood as expressing thatAcan be achieved by the action a from any state s whereB holds. This shortest-path problem is not simpler thanthe problem (5) but has two bene�ts: �rst the functionG� can be used e�ectively to guide a regression search,and second, admissible approximations of G� can beeasily de�ned.Let G stand for a function with the same domainas G� and let's write G � G� if for any set of atomsA, G(A) � G�(A). It's simple to check that if G isthe optimal cost function of a modi�ed shortest pathproblem obtained by the addition of `links', G � G�must hold. Likewise, G � G� must hold if links B ! Aare replaced by links B0 ! A of the same cost whereB0 is such that G�(B0) � G�(B). We can regard bothmodi�cations as `relaxations' that yield cost functionsG that are lower bounds on G�.With these considerations in mind, let's consider therelaxation of the shortest-path problem (6) where thelinks B ! A for `large' sets of atoms B, i.e., sets withsize jBj > m for some positive integer m, are replacedby links B0 ! A where B0 is a subset of B with sizejB0j = m. Since B0 � B implies G�(B0) � G�(B), itfollows from the arguments above that the optimal costfunction Gm of the resulting problem must be a lowerbound on G�.This lower bound functionGm is characterized by the

following equations:Gm(A) = 0 if A � s0 (7)Gm(A) = minhB;ai2R(A)[c(a) +Gm(B)] (8)if jAj � m & A 6� s0, andGm(A) = maxB�A;jBj=mGm(B) if jAj > m (9)For any positive integer m, the complexity of com-puting Gm is a low polynomial in the number of nodes(the number of atom sets A with size jAj equal to orsmaller than m) (Bertsekas 1995; Ahuja, Magnanti, &Orlin 1993). Gm is thus a polynomial and admissibleapproximation of the optimal cost function G�. Theapproximation is based on de�ning the cost of `large'sets of atoms A in Equation 9, in terms of the costsof its `smaller' parts. Equations 7 and 8, on the otherhand, are common to both Gm and G�.For any positive integer m, we de�ne the heuristicshm as hm(A) def= Gm(A) (10)The heuristics hm, for m = 1; 2; : : : are all admissible,and they represent di�erent tradeo�s between accuracyand e�ciency. Higher-order heuristics are more accu-rate but are harder to compute. For any �xed value ofm, the computation of the heuristic hm is a low polyno-mial in Nm, whereN is the number of atoms. Below weconsider the concrete form of these heuristics for m = 1andm = 2. In both cases, we use the Strips representa-tion of actions to characterize the regression set R(A)in equation (8) which is the key equation de�ning thefunctions Gm.The Max-atom heuristicFor m = 1, the heuristic hm reduces to the heuristichmax considered above. Indeed, for sets A = fpg ofsize 1, the regression set R(fpg) is given by the pairshPrec(a); ai for a 2 O(p), where O(p) stands for theset of actions that `add' p. As a result, equation (8) forGm becomesG1(fpg) = mina2O(p)[c(a) +G1(Prec(a))]The resulting shortest-path problem can be solvedby a number of label-correcting algorithms (Bertsekas1995; Ahuja, Magnanti, & Orlin 1993), in which esti-mates g1(fpg) are updated incrementally asg1(fpg) := mina2O(p)[g1(fpg) ; c(a) + g1(Prec(a))]until they do not change, starting with g1(fpg) = 0if p 2 s0 and g1(fpg) = 1 otherwise, Following (7)and (9), g(;) is set to 0 and g1(A) for jAj > 1 isset to maxp2A g1(fpg). When the updates terminate,the estimates g1 can be shown to represent the func-tion G1 that solves equations (7-9) (Bertsekas 1995;Ahuja, Magnanti, & Orlin 1993). The complexity ofthese algorithms varies according to the order in which

the updates are performed, yet it's always a low poly-nomial in the number of nodes (atoms sets A with sizejAj � m).The computation of the heuristic hmax describedabove corresponds to this procedure, and thus hmax =h1. In other words, hmax is the heuristic obtained byapproximating the cost of sets of atoms by the cost ofthe most costly atom in the set. The heuristic is ad-missible but is not su�ciently informative. The choicein hsp and hspr was to approximate the cost of sets ofatoms in a di�erent way as the sum of the costs of theatoms in the set. This approximation yields an heuris-tic that is more informative but is not admissible. Theoption now is to consider the heuristics hm for highervalues of m.The Max-pair heuristicIf we let O(p&q) refer to the set of actions that addboth p and q, and O(pjq) to the set of actions that addp but do not add or delete q, the equation (8) form = 2and A = fp; qg becomesG2(fp; qg) = min f mina2O(p&q)[c(a) +G2(Prec(a))];mina2O(pjq)[c(a) +G2(Prec(a)[fqg)];mina2O(qjp)[c(a) +G2(Prec(a)[fpg)]gwhile the equation for A = fpg becomesG2(fpg) = mina2O(p)[c(a) +G2(Prec(a))]As before these equations can be converted into updatesfor computing the value of the function G2 over all setsof atoms with size less than or equal to 2. This compu-tation remains polynomial in the number of atoms andactions, and can be computed reasonably fast in mostof the domains we have considered. We call the heuris-tic h2 = G2, the max-pairs heuristic to distinguish itfrom the max-atom heuristic h1.The consideration of atom pairs for the computationof the heuristic h2 is closely related to the considerationof mutex pairs in the computation of the heuristic hGin Graphplan. A distinction between h2 and hG is thatthe former is de�ned for arbitrary action costs and se-quential planning, while the latter is de�ned for unitarycosts and parallel planning. Later on, we will introducea de�nition analogous to h2 for parallel planning thatis equivalent to Graphplan hG.Higher Order HeuristicsEquations 7{10 de�ne a family of heuristics hm = Gmfor m � 1. For each value of m, the resulting heuris-tic is admissible and polynomial, but the complexity ofthe sequence of heuristics hm grows exponentially withm. The experiments we have performed are limited tohm with m = 2. Certainly, it should be possible toconstruct domains where higher-order heuristics would

be cost-e�ective but we haven't explored that. A simi-lar situation exists in Graphplan with the computationof higher-order mutexes (Blum & Furst 1995). Higher-order heuristics may prove e�ective in complex domainslike the 15-puzzle, Rubik, and Hanoi where subgoals in-teract in complex ways. The challenge is to computesuch heuristics e�ciently and use them with little over-head at run time. AlgorithmsBelow we use the heuristic h2 in the context of an ida�search (Korf 1985). The ida� algorithm consists of a se-quence of depth-�rst searches extended with an heuris-tic function h and an upper bound parameter UB. Dur-ing the search, nodes n for which the sum of the accu-mulated cost g(n) and predicted cost h(n) exceed theupper bound UB are pruned. Initially, UB is set to theheuristic value of the root node, and after a failed trialUB is set to the cost g(n) + h(n) of the least-cost nodethat was pruned in that trial.ida� is guaranteed to �nd optimal solutions when theheuristic h is admissible, but unlike a� it is a linear-memory algorithm. Memory-enhanced versions of ida�have been de�ned for saving time such as those relyingon transposition tables (Reinfeld & Marsland 1994). Inthe experiments below we report the results of ida�with and without transposition tables.The performance of ida� is often sensible to the orderin which the children of a node are selected for expan-sion (this a�ects the last iteration of ida�). In someof the experiments we use an arbitrary node orderingwhile in others we choose the ordering determined bythe additive heuristic hadd from hsp.Commutativity PruningIn planning problems, it is common for di�erent actionsequences to lead to the same states. Linear-memoryalgorithms like ida� do not detect this and may endup exploring the same fragments of the search space anumber of times. This problem can often be alleviatedby exploiting certain symmetries.Let's say that two operators a and a0 are commuta-tive if neither one deletes atoms in the precondition oradd list of the other, and that a set of actions is com-mutative when all the actions in the set are pairwisecommutative. Commutative actions thus correspond tothe actions that can be done in parallel in Graphplan orBlackbox, and can be recognized e�ciently at compiletime.Clearly the order in which a set of commutative ac-tions is applied is irrelevant to the resulting outcome.A simple way to eliminate the consideration of all or-derings except one, is by imposing a �xed ordering `�'on all actions (e.g., see (Korf 1998)). A branch con-taining a contiguous sequence of commutative actionsa1, a2, . . . , an is then accepted when it complies withthis ordering (i.e., when a1 � a2 � � � � � an) and isrejected otherwise. This means that a branch in the

search tree can be pruned as soon as it contains a se-quence of two consecutive commutative actions ai, ai+1such that ai � ai+1. We refer to this form of pruningas commutativity pruning.ResultsWe call the planner obtained by combining the h2heuristic with the ida� algorithm, hspr�. hspr� is anoptimal sequential planner. The current implementa-tion is in C. The results below were obtained on a SunUltra 10 running at 440 Mhz with 256 RAM. In the�rst experiments, we consider a number of (mostly) se-quential domains and compare hspr� with two state-of-the-art planners: stan 3.0 (Long & Fox 1999) andblackbox 3.6 (Kautz & Selman 1999). Both of theseplanners are optimal parallel planners, so they mini-mize the number of time steps but not necessarily thenumber of actions.Table 1 shows results over instances from the blocksworld, 8-puzzle, grid, and gripper domains. The for-mulation of the blocks-world is the one with the three`move' actions. The notation blocks-i denotes an in-stance with i blocks. The 8-puzzle is a familiar domain(Nilsson 1980; Pearl 1983). The maximum distance be-tween any two (reachable) con�gurations is 31. Thegrid and gripper instances correspond to those used inthe AIPS Planning Contest (McDermott 1998).In the table, #S and #A stand for the number oftime steps and the number of actions in the plan. Forsequential planners we report the number of actionswhile for parallel planners we report both.The numbers in Table 1 show that over these domainsthe performance of hspr� is comparable with stan andslightly better than blackbox. These numbers, how-ever, are just an illustration as the planners can be runwith a number of di�erent options (stan was run withthe default options; blackbox was run with the com-pact simpli�er and the satz solver). An important dif-ference between the three planners is the use of memory.stan and blackbox use of a lot of memory, and whenthey fail, most often is due to memory. In hspr�, mem-ory does not appear to be such a problem. In grid-2,for example, hspr� ran for almost eight hours until it�nally found an optimal solution. This is not good timeperformance, but illustrates the advantages of using lin-ear memory. stan proved superior to both hspr� andblackbox in the gripper domain where it apparentlyexploits some of the symmetries in the domain (Fox &Long 1999).The results for hspr� in these experiments were ob-tained using the three enhancements of ida� discussedin the previous section: commutativity pruning , atransposition table with 105 entries, and node-orderinggiven by the heuristic hadd. These are general enhance-ments and most often they speed up the search. Fortesting this, we ran some experiments on the blocksworld problems with all possible combinations of theseenhancements. The results are shown in Table 2, wherethe number of nodes expanded (#N) and total time (T)

are reported. While in the small problem, the enhance-ments make no di�erence, in the larger problem theydo. However, the payo�s do not always add up; for ex-ample, commutative pruning (Com) cuts the run timesigni�cantly when used in isolation but makes little dif-ference when node-ordering (Ord) and a transpositiontable (TT) are used.Table 3 displays the quality of the heuristic h2 in com-parison with the optimal cost of the problem, and thetime taken by the search with respect to the total time(that also includes the computation of the heuristic).It can be seen that the heuristic provides reasonablebounds in the block-world problems but poorer boundsin the other domains. In the 8-puzzle, the heuristicseems to be weaker than the domain-dependent Man-hattan distance heuristic but we haven't made a de-tailed comparison. In most domains, the time for com-puting the heuristic is small when compared with thesearch time. The exception is the grid domain wherethe computation of the heuristic takes most of the time.We have tried to run hspr� over standard paralleldomains like logistics and rockets but after many hourswe didn't obtain any results. The most important causefor this is that for those domains the heuristic h2, whichestimates serial cost, is a poor estimator. In paralleldomains, there are many independent subgoals, and inthat case the additive heuristic hadd produces betterestimates. Indeed, the non-optimal hspr planner thatuses the hadd heuristic solves these problems very fast(Bonet & Ge�ner 1999).7 The admissible heuristics hmde�ned in Sect. 3, however, can be modi�ed so that theyestimate parallel rather than serial cost. In that case,the estimates are tighter and can be used to computeoptimal parallel plans.Optimal Parallel PlanningHeuristics for Parallel PlanningThe de�nition of the heuristics hm can be modi�edto estimate parallel rather than serial costs by simplychanging the interpretation of the regression set R(A)appearing in the equation (8). This equation charac-terizes the cost function Gm(A) for the sets A 6� s0 andjAj � m and is reproduced hereGm(A) = minhB;ai2R(A)[c(a) +Gm(B)] (11)Recall thatR(A) contains the pairs hB; ai such thatB isthe result of regressing A through action a. For makinghm = Gm an estimator of parallel cost, all we need todo is to let a range over the set of parallel actions, wherea parallel action stands for a set of pairwise compatible(commutative) actions.We illustrate the result of this change for m = 2.We denote by Gmp the cost function associated with the7The reason for this, however, is not only the heuristicbut also the search algorithm. The non-optimal search algo-rithm in hspr can reach the goal by evaluating much fewernodes than ida�.

stan blackbox hspr�Instance Time #S #A Time #S #A Time #Ablocks-9 0.4 4 10 1.0 4 11 0.45 6blocks-11 2.0 5 14 6.9 5 15 1.29 9blocks-15 102.7 8 25 | | | 136.46 14eight-1 89.9 31 31 | | | 63.53 31eight-2 62.0 31 31 | | | 67.23 31eight-3 0.5 20 20 89.0 20 20 0.51 20grid-1 1.5 14 14 14.2 14 14 8.44 14grid-2 | | | | | | 7:55h 26gripper-1 0.0 3 3 0.0 3 3 0.07 3gripper-2 0.0 7 9 0.3 7 9 0.11 9gripper-3 0.1 12 15 55.2 11 15 30.17 15gripper-4 2.1 17 21 * * * * *Table 1: Performance comparison over sequential domains. A long dash (|) indicates that the planner exhaustedthe available memory and a star (*) indicates that no solution was found after 12 hours. All times are in seconds.Options blocks-11 blocks-15Ord TT Com #N Time #N Timeo� o� o� 1068 6.44 134680 3458.96o� o� on 640 3.65 30145 566.50o� on o� 480 3.17 29831 876.27o� on on 466 2.95 11255 236.56on o� o� 137 1.17 51241 1280.82on o� on 96 0.93 30069 591.73on on o� 93 0.98 6280 165.25on on on 87 0.93 7580 159.12Table 2: E�ects of ida� enhancements in the numberof nodes expanded and time taken by hspr�. Time inseconds.parallel problem, and let O(p; q) stand for the set ofcompatible pairs of actions a and a0 such that p and qbelong to Add(a) [Add(a0). We assume now that allprimitive and parallel actions have uniform cost c(a) =1.8 The de�nition of G2p then takes the form:G2p(fp; qg) = min f mina2O(p&q)[1 +G2p(Prec(a))];minha;a0i2O(p;q)[1 +G2p(Prec(a)[Prec(a0))];mina2O(pjq)[1 +G2p(Prec(a)[fqg)]gmina2O(qjp)[1 +G2p(Prec(a)[fpg)]gwhere the only change from the de�nition of serial G2is in the second line: the parallel action a&a0 is al-lowed to establish the pair of atoms p&q at the cost of aprimitive action. The equations for G2p(A) for sets withsize jAj 6= 2 remain the same as before. The resultingheuristic h2p = G2p, unlike the heuristic h2, is admissible8It's not clear what the cost of a parallel action shouldbe when primitive actions have di�erent costs.

Instance Opt. h(root) Nodes Time Searchblocks-9 6 5 9 0.45 0.02blocks-11 9 7 87 1.29 0.42blocks-15 14 11 6630 136.46 132.45eight-1 31 15 172334 63.53 63.34eight-2 31 15 182195 67.23 67.06eight-3 20 12 564 0.51 0.20grid-1 14 14 14 8.44 0.08gripper-1 3 3 3 0.07 0.00gripper-2 9 4 275 0.11 0.02gripper-3 15 4 371664 30.17 30.06Table 3: Results for sequential problems displaying op-timal and estimated costs, expanded nodes, and totalvs. search time. Time in seconds.for parallel planning. Actually h2p can be shown to beequivalent to the heuristic hG used in Graphplan wherehG(s) stands for the �rst layer in the plan graph thatincludes the atoms in s without a mutex. For prov-ing this, it is su�cient to show that hG complies withthe equations for G2p, and this can be done inductivelystarting with layer 0.State Space for Parallel PlanningThe simplest way to use the heuristic h2p to �nd opti-mal parallel plans is by performing a regression searchfrom the goal with an algorithm like ida� but replacingthe primitive actions with the possible parallel actions.The problem with this idea, however, is that it does notscale up; indeed, if the branching factor of the originalproblem is b, the branching factor of the `parallel' prob-lem may be 2b. While the solution length in the parallelspace will be smaller, the growth in the branching factormakes the scheme impractical.A second approach is to retain the branching struc-ture from the serial setting but change the cost struc-

ture. The cost of an action a in the serial setting is nor-mally uniform. In the parallel setting, it can be de�nedin terms of the preceding actions. The result is thattotal cost will measure time steps rather than actionoccurrences. This can be achieved by setting the costof an action to 0 when the action is compatible with the`last' actions in the search tree, and to 1 otherwise (the`last' actions de�ned in a suitable way). The problemwith this space is that it makes the heuristic h2p not ad-missible. Admissibility can be restored by subtracting1 from the value of the heuristic yet this transformationmakes the heuristic much less powerful.We have thus settled on a third alternative for �nd-ing optimal parallel plans that follows the scheme usedin Graphplan. The resulting search space can be char-acterized as follows:States: the states are triples hOld;New;Actsi,where Old and New are sets of atoms, and Acts is aset of pairwise compatible primitive actions.Branching: the children of a state hOld;New;Actsiare obtained by applying all the primitive ac-tions a that add the �rst atom p in Old andare compatible with all the actions in Acts.For each such action, the resulting state ishOld� A(a); New + P (a); Acts+ fagi, where P (a)and A(a) stand for the precondition and add list ofa respectively.No-Ops: actions No Op(p) with precondition andadd list equal to p are assumed for each atom pCosts: a dummy action that is the sole action ap-plicable in the states h;; A;Actsi is assumed. Suchaction has cost 1 and leads to the state hA; ;; ;i. Allother actions have cost 0.Heuristic: the heuristic of a state hOld;New;Actsiis given by h2p(New), which is non-overestimating.Init and Goal: the initial state of the regressionis h;; G; ;i, where G is the goal, and the goal statesare h;; A;Actsi for A � s0, where s0 is the initialsituation.In relation to Graphplan, the set of atoms Old inthe state hOld;New;Actsi can be thought as the list ofatoms in layer i that haven't been regressed yet, Newstands for the atoms in layer i � 1 that have been ob-tained from the regression so far, and Acts encodes theactions that have been used to obtain those atoms.We will refer to the planner that results from theuse of the ida� search over this space, parallel hspr� orhspr(p)�. Below we report results of this planner oversome standard parallel domains and compare it withtwo state-of-the-art parallel planners and the originalversion of Graphplan.hspr(p)� has three main aspects in common withGraphplan: the heuristic, the search space, and thesearch algorithm. On the other hand, hspr(p)� doesnot use a plan graph. The plan graph plays two rolesin Graphplan. First, and most important, it encodes

the heuristic. This aspect is captured by the use of theh2p heuristic in hspr(p)�. However, the plan graph alsostores information that makes the ida� search more ef-�cient: it makes regressions faster, it never generatesnodes that will be pruned, etc. Indeed, the ida� searchin Graphplan takes the form of a `solution extraction'algorithm in the plan graph. This second rol of the plangraph is not captured in hspr(p)�. On the positive side,hspr(p)� requires less memory and can easily be modi-�ed to use other search algorithms such as a� or wida*(Korf 1993). Such changes can be accommodated inGraphplan but provided the plan graph is used mainlyfor representing and computing the heuristic and notfor solution extraction.Results for Parallel PlanningTable 4 shows results over some standard parallel do-mains. On the `rocket' problems, hspr(p)� appears tobe slightly better than Graphplan, while in the `logis-tics' problems, Graphplan is de�nitely superior. Thesedi�erences are likely due to the use of the plan graph.As the columns for stan and blackbox show, neitherGraphplan or hspr(p)� are state-of-the-art over thesedomains. Nonetheless, stan is a Graphplan-based plan-ner that solves the logistics problems quite fast.9To further compare the speed of hspr(p)� and Graph-plan we generated approximately 45 medium-sized, ran-dom logistics instances solvable by both hspr(p)� andGraphplan. For the reasons above, we didn't expecthspr(p)� to approach the speed of Graphplan but wedid expect hspr(p)� to remain within an order of mag-nitude. In 30 of the problems, that was the case. How-ever, in 12 problems we found hspr(p)� to be from 10 to75 times slower than Graphplan, and in 3 problems wefound hspr(p)� to be between 75 and 200 times slower.These di�erences in speed are probably not only due tothe use of the planning graph in the search but also tothe node ordering used in both planners. Graphplan,for example, tries No-Op actions �rst, while hspr(p)�tries them last. Similarly, in hspr(p)� we have foundit convenient to order the atoms in Old in the statehOld;New;Actsi by increasing value of the additiveheuristic hadd. While these choices help in a numberof examples, they also hurt in others, and thus poten-tially amplify the di�erences in performance over someof the instances. DiscussionIn this paper we have formulated a framework for deriv-ing polynomial admissible heuristics for sequential andparallel planning, and have evaluated the performanceof the optimal planner that results from using one ofthese heuristics with the ida� algorithm. The worksheds light on the heuristics used in hsp and Graph-plan, and provides a more solid basis for pursuing the9For some reason, stan didn't solve the rocket problems.Apparently, this is a bug that will be �xed.

Problem hspr(p)� graphpln stan bboxrocket.a 90.5 100.0 | 1.8rocket.b 68.6 310.0 | 2.3log.a 3:12:20 0:20:35 0.4 2.1log.b * 0:9:39 2.0 10.4log.c * | 0:21:01 47.0Table 4: Time comparison over parallel domains. Along dash (|) indicates that the planner exhausted theavailable memory and a star (*) indicates that no solu-tion was found after 12 hours. In the notation h : m : s,h, m and s stand for hours, minutes, and seconds re-spectively. Otherwise, times are in seconds.`planning as heuristic search' approach. Below we dis-cuss brie
y related work and some open problems.Graphplan: In (Bonet & Ge�ner 1999), Graphplanwas described as an heuristic search planner basedon an ida� search and a heuristic hG(s) given bythe �rst layer in the plan graph that contains theatoms in s without a mutex. In this paper, we havetaken this view further, providing an explanation anda generalization of that heuristic, and evaluating apure ida� planner with respect to Graphplan. InGraphplan, the plan graph plays two roles: it's usedfor computing and representing the heuristic, and formaking the ida� search more e�cient. These usesexplain the e�ciency of Graphplan in comparison toprevious planners. On the othe hand, it's not clearwhether the plan graph will be suitable for computingand representing higher order heuristics (hm, form >2) and searching with other algorithms.Heuristics: higher-order heuristics may prove e�ec-tive in domains like the 15-puzzle, Hanoi, Rubik, etc,where subgoals interact in complex ways. The chal-lenge is to compute such heuristics fast enough andto use them with little overhead at run-time. Higher-order (max) heuristics as de�ned in this paper arerelated to the heuristics based on pattern databasesde�ned in (Culberson & Schae�er 1998). Korf andTaylor (96) discuss ways for generating hybrid heuris-tics involving both `max' and `additive' operationsthat may also prove useful in planning.Algorithms: the heuristics de�ned in this paperhave been used in the context of the ida� algorithm.In a number of domains, however, a best-�rst searchmay prove more convenient. When optimality is notan issue, variations of a� and ida� where the heuristicis multiplied by a constant W > 1 may speed up thesearch considerably (Korf 1993), making the resultingplanner competitive with the hsp and hspr plannersover domains like Hanoi and Tire-world, where theadditive heuristic is not adequate.Branching: in highly parallel domains like rocketsand logistics, sat approaches appear to do best. This

may be due to the branching scheme used (see (Rinta-nen 1998)). In sat formulations, the space is exploredby setting the value of any variable at any time point,and then considering each of the resulting state par-titions separately. In heuristic search approaches, thesplitting is commonly done by applying all possibleactions. Alternative branching schemes, however, arecommon in heuristic branch-and-bound search proce-dures (Lawler & Rinnooy-Kan 1985), and they mayprove relevant in planning.We hope to explore some of these ideas in the future.AcknowledgmentsWe thank Blai Bonet for useful discussions on the topicof this paper. Part of this work was done while H.Ge�ner was visiting Link�oping University. He thanksE. Sandewall and P. Doherty for making this visit pos-sible and enjoyable. This work has been partially sup-ported by grant S1-96001365 from Conicit, Venezuelaand by the Wallenberg Foundation, Sweden. P. Haslumis also funded by the ECSEL/ENSYMGraduate StudyProgram. ReferencesAhuja, R.; Magnanti, T.; and Orlin, J. 1993. NetworkFlows. Prentice-Hall.Bertsekas, D. 1995. Dynamic Programming and Opti-mal Control, Vols 1 and 2. Athena Scienti�c.Blum, A., and Furst, M. 1995. Fast planning throughplanning graph analysis. In Proceedings of IJCAI-95.Bonet, B., and Ge�ner, H. 1999. Planning as heuris-tic search: New results. In Proceedings of ECP-99.Springer.Bonet, B.; Loerincs, G.; and Ge�ner, H. 1997. A ro-bust and fast action selection mechanism for planning.In Proceedings of AAAI-97, 714{719. MIT Press.Culberson, J., and Schae�er, J. 1998. Patterndatabases. Computational Intelligence 14(3):319{333.Fox, M., and Long, D. 1999. The detection and ex-ploitation of symmetry in planning domains. In Proc.IJCAI-99.Garey, M., and Johnson, D. 1979. Computers andIntractability. Freeman.Kautz, H., and Selman, B. 1999. Unifying SAT-basedand Graph-based planning. In Proceedings IJCAI-99.Korf, R. 1985. Depth-�rst iterative-deepening: anoptimal admissible tree search. Arti�cial Intelligence27(1):97{109.Korf, R. 1993. Linear-space best-�rst search. Arti�cialIntelligence 62:41{78.Korf, R. 1998. Finding optimal solutions to Rubik'scube using pattern databases. In Proceedings of AAAI-98, 1202{1207.Lawler, E., and Rinnooy-Kan, A., eds. 1985. TheTraveling Salesman Problem : A Guided Tour of Com-binatorial Optimization. Wiley.

Long, D., and Fox, M. 1999. The e�cient implemen-tation of the plan-graph. JAIR 10:85{115.McDermott, D. 1996. A heuristic estimator for means-ends analysis in planning. In Proc. Third Int. Conf.on AI Planning Systems (AIPS-96).McDermott, D. 1998. AIPS-98 Planning CompetitionResults. http://ftp.cs.yale.edu/pub/mcdermott-/aipscomp-results.html.Nilsson, N. 1980. Principles of Arti�cial Intelligence.Tioga.Pearl, J. 1983. Heuristics. Morgan Kaufmann.Refanidis, I., and Vlahavas, I. 1999. GRT: A do-main independent heuristic for Strips worlds based ongreedy regression tables. In Proceedings of ECP-99.Springer.Reinfeld, A., and Marsland, T. 1994. Enhancediterative-deepening search. IEEE Trans. on PatternAnalysis and Machine Intelligence 16(7):701{710.Rintanen, J. 1998. A planning algorithm not basedon directional search. In Proceedings KR'98, 617{624.Morgan Kaufmann.Sen, A., and Bagchi, A. 1989. Fast recursive formu-lations for BFS that allow controlled used of memory.In Proc. IJCAI-89, 297{302.Smith, D., and Weld, D. 1999. Temporal planningwith mutual exclusion reasoning. In Proc. IJCAI-99.

