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Abstract—In this paper, we describe a rule based approach
to realtime motion assessment of rehabilitation exercises. We use
three types of rules to define each exercise: (1) dynamic rules,
with each rule specifying a sequence of monotonic segments of
the moving joint or body segment, (2) static rules for stationary
joints or body segments, and (3) invariance rules that dictate the
requirements of moving joints or body segments. A finite state
machine based approach is used in dynamic rule specification and
realtime assessment. In addition to the typical advantages of the
rule based approach, such as realtime motion assessment with
specific feedback, our approach has the following advantages:
(1) increased reusability of the defined rules as well as the rule
assessment engine facilitated by a set of generic rule elements; (2)
increased customizability of the rules for each exercise enabled
by the use of a set of generic rule elements and the use of
extensible rule encoding method; and (3) increased robustness
without relying on expensive statistical algorithms to tolerate
motion sensing errors and subtle patient errors.
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I. INTRODUCTION

In rehabilitative healthcare, physical exercise is a powerful
intervention. However, for a rehabilitative program to be
effective, it may require in the range of thousands of practice
repetitions and all of which must be performed exactly as
prescribed. Due to the large amount time needed and the
high cost of clinical sessions, it is imperative that a patient
carry out the bulk of practice at home. It is well known that
video based guidance is helpful in improving the chances
of the patient carrying out the prescribed exercises correctly.
However, how to perform realtime motion assessment and
provide live feedback regarding the quality of the exercise to
the patient largely remains an open issue.

A foundation for human motion assessment is gesture
recognition. The approaches to gesture recognition can be
roughly divided into two camps: (1) template based and (2)
rule based. In the template based approach, the sequence of
motions for a gesture is recorded a priori, which is then used as
an exemplar to be compared with the observed gesture directly
via dynamic time warping (DTW) [1], or is used to train a
model for the gesture, and the trained model is then used to
classify the observed gesture. The method used to train the
model varies significantly, from simple ones such as obtaining
average joint angles at a set of feature points [2], to particle
filters [3], to finite state machines [4], and to sophisticated

statistical methods such as hidden Markov models [5] and
neural networks [6]. The main benefit of the template based
approach is the automatic construction of the gesture model
using exemplar data (or making it unnecessary to construct a
model in the case of DTW). As a tradeoff, the feedback pro-
vided by these approaches often contains limited information,
which is not desirable for the purpose of rehabilitation exercise
monitoring.

The rule based approach (also referred to as the algorithmic
approach) does not require the recording of exemplars and
the dynamic construction of models. Instead, a gesture is
defined by a set of rules, created by experts, that capture the
key features of the gesture. This approach has a number of
advantages over the template based approach:

• It is less computationally intensive without the need
for model construction and comprehensive pattern
matching. Hence, it is suitable for realtime motion
assessment, which is necessary for rehabilitation ex-
ercise monitoring.

• No scaling is needed because the rules reflect the
invariance of the gesture and it is independent from the
person who performs it. This further reduces the com-
plexity and computational cost of gesture recognition,
which makes the rule based approach more attractive
for rehabilitation exercise monitoring.

• It can provide realtime feedback with much more
specific information regarding exactly how the motion
deviates from the predefined gesture. This is particu-
larly important for rehabilitation exercise monitoring.
For example, it is far more useful to inform a patient
that her leg is abducting out of the frontal plane when
the leg must stay within the plane, instead of simply
telling the patient that the current iteration is incorrect.

Hence, most existing research in rehabilitation exercise
monitoring can be categorized into this approach. Of course,
the rule based approach is not without its limitations:

• The rules for each gesture have to be carefully de-
fined by experts and expressed in an implementable
form. This would incur additional financial cost to a
gesture recognition system and prevent a regular user
from defining his/her own gestures. For rehabilitation
exercises, however, this is largely not an issue because
the clinician who prescribes an exercise is an expert
in defining the exercise. All we need is an intuitive



interface for the clinician to define an exercise using
his/her familiar terminologies.

• For sophisticated gestures, it may be difficult to define
the rules precisely. Fortunately, rehabilitation exercises
usually involve simple body movements that are easy
to define.

• The rules are often hard-coded into each applica-
tion, making it hard to extend or modify an existing
application. In the context of rehabilitation exercise
monitoring, this weakness can be problematic because
the exercises prescribed for different patients may have
to be customized to meet the specific needs of each
patient, and the rules for the same exercise for the
same patient may have to be varied during different
stages of the recovery.

• The rule based system is prone to generate false
positives (claiming that the patient’s movement is
wrong when in fact it is correct) in the presence
of motion sensing errors. For example, a rule could
dictate that a patient must move his/her leg from
one position to another continuously, in which case,
we may expect that the angle between the two legs
continuously increases or decreases until a set value.
A measurement error may indicate that the patient
suddenly starts to move in the opposite direction while
in fact moving the leg towards the correct position.
This would lead to a false positive output.

In this paper, we take the rule based approach due to
the need for realtime assessment and feedback. We aim to
address the weaknesses of the traditional rule based approach
by enabling reusability and customizability, and by increasing
the robustness of the rule enforcement engine.

• Reusability: We introduce a set of basic rule elements
that can be used to define correctness rules for com-
mon rehabilitation exercises. The rules are expressed
in terms of eXtensible Markup Language (XML) for
its extensibility and readability. Furthermore, we have
designed and implemented a rule interpretation and
enforcement engine. The rules are loaded into the
engine at the launch time or dynamically at runtime.
This enables the description and assessment of other
rehabilitation exercises beyond those used in this
study.

• Customizability: Facilitated by the XML encoding, the
rules defined for an exercise can be customizable for
different patients or for the same patient at different
stages of rehabilitation by altering the rule parame-
ters or by enabling/disabling a subset of rules. The
customization can be done at the runtime without the
need for any modification to the application code or
executable.

• Robustness: The rule enforcement engine is robust to
small measurement errors in the motion sensing device
and subtle patient errors that should be tolerated.
The robustness reduces false positive rates, which is
important not to discourage patients. Implementation-
wise, it is not trivial to ensure the robustness because
the errors cannot always be masked by smoothing

algorithms. In this paper, we introduce a simple mech-
anism that can be used to overcome these issues for
increased robustness.

II. BACKGROUND AND RELATED WORK

A. Template Based Approaches

In the template based approach, the dominating methods
for building gesture models via training data are based on
machine learning, such as hidden Markov models (HMMs)
and neural networks (NNs). This line of work in the context
of gesture recognition has been reviewed in recent surveys [5]
and [7]. Below, we highlight several studies that are closely
related to rehabilitation exercise monitoring, and/or aim to
provide realtime feedback.

In [8], a two-stage motion recognition method is proposed
for automated rehabilitation exercise analysis with near re-
altime performance. The method exploits the fact that reha-
bilitation exercises involve periodic velocity patterns such as
flexion and extension. The efficiency is achieved by identifying
candidates of motion segments based on velocity peaks and
zero velocity crossings in the measured joint angles in the first
stage prior to applying HMM on the common motion segment
in the second stage. The time it takes to segment a 40-second or
so trace is reduced to below 7 seconds compared with over 50
seconds using standard HMM or over 70 seconds using DTW.
This method is not by any means fast enough for realtime
feedback, but it does improve the efficiency drastically com-
pared with traditional machine learning methods. Furthermore,
the method is capable of identifying correct repetitions of an
exercise, but does not provide any specific feedback regarding
the incorrect iterations.

In [6], an NN based method is used to analyze the motion in
rehabilitation exercises. An NN based model is used for more
robustness against motion sensing errors due to occlusions.
Furthermore, once trained, the model is capable of detecting
an iteration that is too fast or too slow, or a wrong static joint
angle, by comparing the observed data with the predicted one
based on the model, in less than 2 seconds (it is obviously
capable of detecting correct movements). This is an important
step towards realtime feedback with specific information to
patients.

In [3], a method is designed specifically to enable gestural
interaction with realtime non-visual feedback using a motivat-
ing example of gait analysis. The characteristic of the motion
is modeled using Dynamic Movement Primitives (DMP) [9],
which are capable of capturing the nonlinear dynamics of
the motion. A major advantage of DMP models over other
machine learning methods is that the parameters for the model
possess kinematic identities important for the biomechanics of
the movement of interest such as rehabilitation exercises. Once
the model is trained, a particle filter [10] is used to provide
realtime feedback regarding a number of meaningful features
of the movement, such as the deviation from the predicted
trajectory, the probability of candidate gestures that the current
movement might belong to, and the state of the hypothesis of
the gesture identified.

A gesture may also be modeled as a finite state machine
(FSM) [4] that consists of a sequence of states in spatial-
temporal space. FSM is different from HMM in that the



number of states and state transitions are obtained dynamically
from the training data instead of predefined as in HMM.
Furthermore, FSM takes care of segmenting and aligning the
training data while producing the model for a gesture. The
most interesting feature for FSM is that gesture recognition is
done based on the current data point, instead of operating on
the entire segment of data as in HMM. This makes FSM a
promising method to provide realtime feedback.

In MotionMA [2], the model for a gesture is not based
on any statistical or machine learning algorithm. Instead, the
model consists of a collection of joint angles, which are
sufficient for rehabilitation exercise monitoring in many cases.
The training data is first filtered using a low-pass filter to
remove noise and feature data is extracted on zero-derivatives
(peaks, valleys, and inflexion points). The feature data is
merged using k-means clustering. The merged data serves
as the model for the gesture and is used to identify static
and dynamic axes. This simple model enables the system to
monitor violations in static axes continuously in realtime, and
to count the repetitions for dynamic joints.

B. Rule Based Approaches

In the context of rehabilitation exercise monitoring, rule
based approaches in general have different concerns than the
template based approaches. The rules are primarily defined to
assess the correctness of movements rather than to recognize
gestures because it is assumed that the patient knows or is
informed which particular exercise to perform. Hence, it is
not necessary for the rules to completely define an exercise
as long as they are in line with the therapeutic objectives
of the exercise and are sufficient to automatically carry out
correctness assessment and repetition count. Consequently,
most studies focus on a very small set of rules and they are
predominately expressed in terms of joint angles.

In [11] and [12], the rules are expressed in terms of the
trunk flexion angle and the distance traversed of a set of
joints for postural control, and in terms of the trunk lean
angle for gait retraining. In [13], the knee angle and the
ankle angle are used to assess the quality of sit-to-stand and
squat, and the shoulder angle is used to assess the shoulder
abduction/adduction quality. In [14], the rules are expressed
in terms of the knee angle in a robotic system for knee
rehabilitation.

In [15], two metrics are used to evaluate the quality of the
sit-to-stand exercise: (1) the minimum hip angle, in which a
younger healthier person would typically have a larger value
than an older person; and (2) the smoothness of the head
movement, which is quantified as the area of the triangle that
is determined by the second highest peak, the valley and lines
that are parallel to the axes on the head-speed-versus-time plot.

Far more comprehensive rules have been developed for
the purpose of recognizing hand gestures [16] and body
gestures [17]. In [17], a Gesture Description Language (GDL)
is introduced, in which a gesture is determined by a set of
key frames. A frame contains joint positions reported by the
motion sensing device (the Kinect sensor in this case). All
rules are expressed in terms of one or more key frames except
the final rule, which defines the gesture in terms of a sequence
of basic rules. Because GDL is designed to be based on a set

of key frames, it is resilient to motion sensing errors. However,
as a tradeoff, it lacks the support for rules that depend on the
entire trajectory of a gesture. It also lacks a guideline as to
how to identify the key frames for each gesture.

In [16], a hand gesture is defined by a sequence of
monotonic hand segments. A monotonic segment refers to a
sequence of hand configurations in which the angles of the
finger joints are either non-increasing or non-decreasing. The
key frames used in GDL [17] coincide often with the reference
configurations used in [16] to delineate monotonic segments
if the concept is extended from hand gesture to body gesture
recognition.

Our rule based approach resembles [16] in that dynamic
movements in each rehabilitation exercise are defined in terms
of monotonic segments. However, we also include rules re-
garding invariance requirements, which may not be important
for general purpose gesture recognition, but critical for the
effectiveness of rehabilitation exercises. For example, for hip
abduction, it is important that the abducting leg remain within
the frontal plane the entire time, which deserves a separate
invariance rule. We also accommodate rules that define static
poses.

III. SPECIFICATION OF CORRECTNESS RULES

We define three types of rules for each rehabilitation
exercise:

• Rules for dynamic movement. Each rule is expressed
in terms of the sequence of reference configurations
of a particular joint or body segment (such as an
arm or leg) that delineate monotonic segments1 of
each iteration. For a joint, a reference configuration
is usually expressed in terms of the joint angle, which
is defined as the angle between two adjacent body
segments, or the distance between two joints. To
describe the movement more accurately, one could
define a reference configuration in terms of the the
position of a moving body segment with respect to
the anatomical planes (i.e., the frontal, sagittal, or
transverse plane).

• Rules for static poses. Some exercises only involve
stationary poses. It is also possible for some body
parts to remain stationary at their desirable positions
while other parts are moving in some other exercises.
In these cases, static rules are needed. In general, a
rule for a static pose is also expressed in terms of the
desired angle for a particular joint, or the position of a
body segment with respect to anatomical planes. It is
also possible to describe a static pose in terms of the
distance between different joints or relative positions
of different joints.

• Rules for movement invariance, each of which defines
the requirement for a moving body segment that must
be satisfied during every iteration of the exercise. In
rehabilitation exercises, the requirement is typically

1The term “segment” in monotonic segment refers to a period of continuous
movements. It is not to be confused with the same term in body segment,
which refers to a body part.



defined in terms of the relative angle between the
moving body segment and anatomical planes.

A. Encoding of the Rules

The rules are encoded using XML for its readability and
extensibility. In this subsection, we describe how to encode
each type of rules. Listing 1 shows an outline on how the
correctness rules for each exercise are encoded. The rules start
with an ExerciseName element for identification, and then a list
of dynamic rules, each represented by a DynamicRule element,
a set of static rules grouped together as a single StaticRule
element, and a set of invariance rules grouped together as a
single InvarianceRule element.

Listing 1. The set of rules that may be defined for an exercise.
1 <CorrectnessRules>
2 <ExerciseName> . . . <ExerciseName>
3 <DynamicRule> . . . </DynamicRule>
4 <DynamicRule> . . . </DynamicRule>
5 . . .
6 <DynamicRule> . . . </DynamicRule>
7 <StaticRules> . . . </StaticRules>
8 <InvarianceRules> . . . </InvarianceRules>
9 </CorrectnessRules>

Enclosed within the DynamicRule element is a list of Con-
figuration elements, each represents a reference configuration,
as shown in Listing 2.

Listing 2. Composition of a dynamic rule.
1 <DynamicRule>
2 <Configuration> . . . </Configuration>
3 <Configuration> . . . </Configuration>
4 . . .
5 <Configuration> . . . </Configuration>
6 </DynamicRule>

The StaticRules element consists of a list of Configuration
elements, as shown in Listing 3. Each Configuration element
encodes the desirable position for a joint or a body segment,
and it has the same format as the Configuration element used
in the DynamicRule element. However, semantically it does
not represent any reference configuration (that separate two
monotonic segments).

Listing 3. Composition of static rules.
1 <StaticRules>
2 <Configuration> . . . </Configuration>
3 <Configuration> . . . </Configuration>
4 . . .
5 <Configuration> . . . </Configuration>
6 </StaticRules>

Similar to the StaticRules element, an InvarianceRules
element also consists of a list of Configuration elements, as
shown in Listing 4. Each Configuration element encodes the
restriction of a moving body segment throughout the entire
iteration. Again, it has identical format to the Configuration
element used in the DynamicRule element, but differs in
semantics.

Listing 4. Composition of invariance rules.
1 <InvarianceRules>
2 <Configuration> . . . </Configuration>
3 <Configuration> . . . </Configuration>
4 . . .
5 <Configuration> . . . </Configuration>
6 </InvarianceRules>

There are three different types of Configuration elements,
as shown in Listings 5, 6, and 7, respectively. The first type of
Configuration element is for a joint angle, which starts with
a Type element for readability and parsing. The joint angle
is defined by three joints: the current joint represented by the
CenterJoint element, and two adjacent joints represented by the
DownstreamJoint and UpstreamJoint elements. The designated
angle for the joint for the configuration is specified in the
Angle element. The Tolerance element specifies the amount
of deviation that can be tolerated (in degrees) to accommodate
motion sensing error and the tolerance of the exercise by
design.

Listing 5. A configuration in terms of a joint angle.
1 <Configuration>
2 <Type>"JointAngle"</Type>
3 <CenterJoint>"JointName"</CenterJoint>
4 <DownstreamJoint>"JointName"</DownstreamJoint>
5 <UpstreamJoint>"JointName"</UpstreamJoint>
6 <Angle>"AngleValue"</Angle>
7 <Tolerance> "ToleranceValue"</Tolerance>
8 <MaxDuration> . . . </MaxDuration>
9 <MinDuration> . . . </MinDuration>

10 </Configuration>

The second type of Configuration element describes the
required distance between a moving joint, represented by the
MovingJoint element, and a stationary one, represented by the
StationaryJoint element, shown in Listing 6. The distance and
the tolerance are represented in the Distance and Tolerance
elements, respectively.

Listing 6. A configuration in terms of the distance between two joints.
1 <Configuration>
2 <Type>"JointDistance"</Type>
3 <Joint1>"JointName"</Joint1>
4 <Joint2>"JointName"</Joint2>
5 <Distance>"Value"</Distance>
6 <Tolerance> "ToleranceValue"</Tolerance>
7 <MaxDuration> . . . </MaxDuration>
8 <MinDuration> . . . </MinDuration>
9 </Configuration>

The last type of Configuration element describes the ori-
entation of a body segment. The body segment is encoded by
two elements, DownstreamJoint and UpstreamJoint, to give
the direction of the body segment. Three angle elements,
FrontalAngle, which denotes the angle between the body
segment and the frontal plane, SagittalAngle, which denotes
the angle between the body segment and the sagittal plane,
and TransverseAngle, which denotes the angle between the
body segment and the transverse plane. Only two of the angles
are needed to uniquely determine the orientation of the body
segment. If an angle is not used, a value -1 is used. If the
Configuration element is used in an invariance rule, only one
of the three angles is used.

Listing 7. A configuration in terms of body orientation.
1 <Configuration>
2 <Type>"BoneOrientation"</Type>
3 <DownstreamJoint>"JointName"</DownstreamJoint>
4 <UpstreamJoint>"JointName"</UpstreamJoint>
5 <FrontalAngle>"AngleValue"</FrontalAngle>
6 <SagittalAngle>"AngleValue"</SagittalAngle>
7 <TransverseAngle>"AngleValue"</TransverseAngle>
8 <FrontalAngleTolerance> "ToleranceValue"

</FrontalAngleTolerance>



9 <SagittalAngleTolerance> "ToleranceValue"
</SagittalAngleTolerance>

10 <TransverseAngleTolerance> "ToleranceValue"
</TransverseAngleTolerance>

11 <MaxDuration> . . . </MaxDuration>
12 <MinDuration> . . . </MinDuration>
13 </Configuration>

Common to all three Configuration elements are a pair
of elements, MaxDuration and MinDuration, that define the
maximum and minimum duration of the monotonic segment
that begins with the current configuration. These two elements
are not used when the Configuration element is used for static
and invariance rules. If the speed of the movement in an
exercise is not important, these elements are not used either. A
value -1 for each of the elements indicates that it is not used.

B. Example Correctness Rules

We define the correctness rules for two rehabilitation
exercises, hip abduction and sit to stand, as examples.

1) Hip Abduction: For rehabilitation purposes, the hip
abduction exercise involves movement of the hip in which the
abducting leg moves away from the body in the same frontal
plane as the rest of the body. To make multiple iterations during
an exercise, hip abduction follows the abduction movement so
that the leg goes back to the midline. The correctness rules for
hip abduction are shown in Listing 8.

Listing 8. The rules for hip abduction.
1 <CorrectnessRules>
2 <ExerciseName>"Hip Abduction"<ExerciseName>
3 <DynamicRule>
4 <Configuration>
5 <Type>"BoneOrientation"</Type>
6 <DownstreamJoint>"HipCenter"

</DownstreamJoint>
7 <UpstreamJoint>"RightAnkle"

</UpstreamJoint>
8 <FrontalAngle>0</FrontalAngle>
9 <SagittalAngle>0</SagittalAngle>

10 <TransverseAngle>−1</TransverseAngle>
11 <FrontalAngleTolerance> 5

</FrontalAngleTolerance>
12 <sagittalAngleTolerance> 5

</sagittalAngleTolerance>
13 <TransverseAngleTolerance> −1

</TransverseAngleTolerance>
14 </Configuration>
15 <Configuration>
16 <Type>"BoneOrientation"</Type>
17 <DownstreamJoint>"HipCenter"

</DownstreamJoint>
18 <UpstreamJoint>"RightAnkle"

</UpstreamJoint>
19 <FrontalAngle>0</FrontalAngle>
20 <SagittalAngle>45</SagittalAngle>
21 <TransverseAngle>−1</TransverseAngle>
22 <FrontalAngleTolerance> 5

</FrontalAngleTolerance>
23 <sagittalAngleTolerance> 5

</sagittalAngleTolerance>
24 <TransverseAngleTolerance> −1

</TransverseAngleTolerance>
25 </Configuration>
26 </DynamicRule>
27 <InvarianceRules>
28 <Configuration>
29 <Type>"BoneOrientation"</Type>

30 <DownstreamJoint>"HipCenter"
</DownstreamJoint>

31 <UpstreamJoint>"RightAnkle"
</UpstreamJoint>

32 <FrontalAngle>0</FrontalAngle>
33 <SagittalAngle>−1</SagittalAngle>
34 <TransverseAngle>−1</TransverseAngle>
35 <FrontalAngleTolerance> 5

</FrontalAngleTolerance>
36 <sagittalAngleTolerance> −1

</sagittalAngleTolerance>
37 <TransverseAngleTolerance> −1

</TransverseAngleTolerance>
38 </Configuration>
39 <Configuration>
40 <Type>"JointAngle"</Type>
41 <CenterJoint>"RightKnee"</CenterJoint>
42 <DownstreamJoint>"HipCenter"

</DownstreamJoint>
43 <UpstreamJoint>"RightAnkle"

</UpstreamJoint>
44 <Angle>180</Angle>
45 <Tolerance> 5</Tolerance>
46 </Configuration>
47 </InvarianceRules>
48 </CorrectnessRules>

The rules for hip abduction include one dynamic rule and
two invariance rules. The dynamic rule concerns the movement
of the abducting leg (i.e., the right leg in our example)
and the movement is described in terms of two reference
configurations, first when the abducting leg is at the midline
of the body, and the second one when the leg is at the out-
most position (i.e., at 45 degrees off the sagittal plane in our
example). In both cases, a 5 degrees tolerance is allowed.
The first invariance rule dictates that the abducting leg must
remain within the frontal plane while moving. The second
invariance rule specifies that the abducting leg must remain
straight (i.e., the knee angle is 180 degrees).

2) Sit to Stand: A sit to stand exercise can be used as a
strengthening exercise for the large muscle groups of the legs
or it can be a motor re-learning activity, or both. A patient who
has multiple sclerosis, for example, may practice sit to stand
to improve strength and coordinated movement of the gluteus
and quadriceps muscles. That would entail having both feet
even at all times, and the hip angle, left/right knee angles, and
left/right ankle angles all at about 90 degrees of flexion at the
beginning of the exercise. The person would then lean forward
with his or her trunk, moving into more hip flexion, and stand
in a typical manner from that point. The correctness rules for
sit to stand for a typical patient are shown in Listing 9.

Listing 9. The rules for sit to stand.
1 <CorrectnessRules>
2 <ExerciseName>"Sit to Stand"<ExerciseName>
3 <DynamicRule>
4 <Configuration>
5 <Type>"JointAngle"</Type>
6 <CenterJoint>"HipCenter"</CenterJoint>
7 <DownstreamJoint>"ShoulderCenter"

</DownstreamJoint>
8 <UpstreamJoint>"Left Knee"

</UpstreamJoint>
9 <Angle>90</Angle>

10 <Tolerance>10</Tolerance>
11 </Configuration>
12 <Configuration>
13 <Type>"JointAngle"</Type>
14 <CenterJoint>"HipCenter"</CenterJoint>



15 <DownstreamJoint>"ShoulderCenter"
</DownstreamJoint>

16 <UpstreamJoint>"LeftKnee"
</UpstreamJoint>

17 <Angle>60</Angle>
18 <Tolerance>10</Tolerance>
19 </Configuration>
20 <Configuration>
21 <Type>"JointAngle"</Type>
22 <CenterJoint>"HipCenter"</CenterJoint>
23 <DownstreamJoint>"ShoulderCenter"

</DownstreamJoint>
24 <UpstreamJoint>"LeftKnee"

</UpstreamJoint>
25 <Angle>180</Angle>
26 <Tolerance>5</Tolerance>
27 </Configuration>
28 <Configuration>
29 <Type>"JointAngle"</Type>
30 <CenterJoint>"HipCenter"</CenterJoint>
31 <DownstreamJoint>"ShoulderCenter"

</DownstreamJoint>
32 <UpstreamJoint>"LeftKnee"

</UpstreamJoint>
33 <Angle>60</Angle>
34 <Tolerance>10</Tolerance>
35 </Configuration>
36 </DynamicRule>
37 <StaticRules>
38 <Configuration>
39 <Type>"BoneOrientation"</Type>
40 <DownstreamJoint>"LeftAnkle"

</DownstreamJoint>
41 <UpstreamJoint>"RightAnkle"

</UpstreamJoint>
42 <FrontalAngle>0</FrontalAngle>
43 <SagittalAngle>90</SagittalAngle>
44 <TransverseAngle>−1</TransverseAngle>
45 <FrontalAngleTolerance> 5

</FrontalAngleTolerance>
46 <sagittalAngleTolerance> 5

</sagittalAngleTolerance>
47 <TransverseAngleTolerance> −1

</TransverseAngleTolerance>
48 </Configuration>
49 </StaticRules>
50 </CorrectnessRules>

The rules shown here for sit to stand consist of one
dynamic rule and one static rule. The dynamic rule concerns
the movement of the hip angle, while the static rule dictates
the foot placement during the entire exercise. The dynamic
rule on hip angle includes 4 reference configurations, which
represent the 4 monotonic segments for each iteration. The first
configuration specifies that the hip angle must be 90 degrees
with 10 degrees tolerance in the initial pose. During the first
monotonic segment, the hip angle continuously decreases until
it reaches a minimum value of 60 degrees (with 10 degrees
tolerance), which is the second reference configuration and
the start of the second monotonic segment. During the second
segment, the hip angle continuously increases, until it reaches a
maximum of 180 degrees (i.e., the standing pose), which starts
the third monotonic segment. During the third segment, the hip
angle decreases until it reaches another minimum angle of 60
degrees, which would transition to the final monotonic segment
where the hip angle would continuously increase until the
sitting pose. The static rule specifies that the two ankles must
be positioned in parallel to the frontal plane and perpendicular
to the sagittal plane.

We should note that the rules outlined are only appropriate
for some patients. For a person who has had hip replacement
surgery and must avoid excessive hip flexion or risk disloca-
tion, he/she would practice sit to stand in order to learn the
proper and safe movement pattern, as well as to strengthen the
involved muscles. His/her starting position would be with one
leg at the same set of angles as above, but the leg involved
with the replaced hip would have the foot far forward of the
other one, the knee extended and the hip maintaining greater
than 90 degrees of flexion. He/she would scoot to the very
edge of the chair and lean a bit backwards, using primarily
the uninvolved leg and his/her arms to assist would then stand
up. For this type of patients, the rules would be very different.

IV. REALTIME ASSESSMENT OF CORRECTNESS RULES

Once the rules for an exercise are loaded in the exercise
monitoring program, the movement can be assessed in realtime
and specific feedback can be provided to the patient. It is
relatively simple to evaluate static rules and invariance rules
because they must be satisfied by every frame supplied by the
motion sensing device. The calculation of the joint distance,
joint angle, and body segment orientation is straightforward
based on 3D vector math. We here focus on how the dynamic
rules are assessed.

Each dynamic rule is assessed in realtime by a finite state
machine. The number of states are determined by the number
of monotonic segments in the rule, i.e., the number of reference
configurations. Given k reference configurations, C1, C2, ...,
Ck, there are k number of states, S1, S2, ..., Sk, and each
state Si is initiated by the detecting of the corresponding
reference configuration Ci. Hence, the finite state machine is
transitioned to si on detecting configuration Ci and it will stay
in state Si until the next reference configuration Ci+1 specified
in the dynamic rule is detected, as is illustrated in Figure 1.
Due to the repetitive nature of rehabilitation exercise, for each
iteration, the finite state machine starts and ends with the same
state S1.

On receiving a new frame containing valid motion data, the
relevant metrics are calculated based on 3D vector math from
the motion data. Then the calculated metrics are compared
against the condition specified in Ci+1 if the current state is
Si. When the finite state machine is initiated, it is in a special
Init state and each new frame is checked against the condition
in C1, and when C1 is met, the finite state machine transitions
to state S1 and proceeds forward. When the state transitions
from Sk back to S1, the current iteration is completed and the
iteration count is incremented and appropriate feedback can be
provided to the patient.

If the time range for a monotonic segment is specified
in the corresponding reference configuration, the finite state
machine takes a timestamp on transitioning into the current
state, and checks the duration in the current state on receiving
each new frame. If the duration in the current state exceeds
the MaxDuration value, the patient is not doing the exercise
correctly and a notification is generated to inform the patient
that he/she is performing the current monotonic segment too
slowly. On the other hand, when the condition for the next
configuration is met and the elapsed time is less than the
MinDuration value, the patient is informed that he/she is
performing the current monotonic segment too quickly.
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e1

e2

e3

e1

e2

Fig. 1. Finite state machine for a dynamic rule with k monotonic segments.

V. IMPLEMENTATION ISSUES

In the previous section, we implicitly assumed that the
patient would adhere to the predefined sequence of monotonic
segments and could satisfy the condition for each reference
configuration (except about movement speed) when practicing
the prescribed exercise. This obviously might not be the case.
For example, in hip abduction, if the abducting angle is smaller
than what is specified in the rule, the finite state machine
would be stuck forever at S1 if the duration for S1 is not
specified. The patient would be frustrated by the situation
(his/her iterations would not be counted, and no meaningful
feedback would be provided). Such a system is neither robust
nor desirable.

To be more resilient to patient mistakes in doing rehabili-
tation exercises, additional mechanisms must be added to the
operation of the finite state machine. A key mechanism is the
detecting of actual monotonic segments in realtime while the
patient is doing the exercise by tracking the change of the
metrics of interest (i.e., joint angle, joint distance, or body
segment orientation angles). When a change of sign in speed is
detected (i.e., from increasing to decreasing, or vice versa), the
current monotonic segment has just ended. Only at this point,
the condition for the next reference configuration is checked.
If the condition is not met, then an error is detected and the
patient will be informed via appropriate feedback. When this
happens, the finite state machine goes back to the initial state
and waits for the first frame that satisfies the condition in C1.
There are in fact two scenarios in which the error occurs:

1) The actual metric observed is smaller than the one
specified in the next reference configuration.

2) The actual metric observed is larger than the one
specified in the next reference configuration.

The feedback is generated for the patient accordingly.

Hence, at state Si, there may be three types of events as
shown in Figure 1:

• Event e1: The arrival of a frame that does not yet
satisfy the condition in Ci+1 and the elapsed time in
the current state is smaller than MaxDuration, if one is
specified. The finite state machine stays at the current
state Si upon this type of events.

• Event e2: The arrival of the first frame that satisfies the
condition in Ci+1 and the elapsed time in the current
state is larger than MinDuration, if one is specified.
The finite state machine transitions to state Si+1 as a
result of e2.

• Event e3: The detection of an error, which could be
any of the following:

◦ Elapsed time at the current state is too short
upon receiving a frame that satisfies the con-
dition for Ci+1.

◦ Elapsed time at the current state is too long.
◦ The current monotonic segment ends too early

or too late (i.e., not at the specified target
value).

Unfortunately, the addition of the mechanism to detect
the actual monotonic segments at runtime makes the system
vulnerable to motion sensing errors and small movement
errors from the patient. As shown in Figure 3, the subject
has apparent instability in the standing pose as seen from
the measured hip angle. The mechanism for monotonic seg-
ment detection would introduce artificially short segments. To
overcome this problem, an additional mechanism is used. In
our implementation, we use the simple mechanism described
below.

For each finite state machine, we keep track of the max-
imum and minimum values of the metric of interest in each
state. For a monotonic segment with increasing values, we
delay declaring the end of the segment until the current value
is smaller than the last seen maximum value by a predefined
heuristic value (for sit to stand, 5 degrees would be sufficient)
to rule out small fluctuations of the measured angles. Similarly,
for a monotonic segment with decreasing values, we delay
declaring the end of the segment until the current value is
larger than the last seen minimum value by a predefined
heuristic value. This mechanism would inevitably introduce
a small delay (less than 1 second delay for sit to stand) in
state transitions and ultimately the repetition count display.
In addition to the rule execution, the values (including the
tolerance values) used in the rules should also be carefully
tuned to accommodate the systematic errors of the motion
sensing device.

In the following, we present the experimental result for hip
abduction and sit to stand as examples and discuss how to tune
the parameters for the rules to ensure correct assessment of the
movements.

A. Hip Abduction

Figure 2 shows the three measured metrics during a correct
run of hip abduction using Microsoft Kinect, namely, hip
angle, off-frontal-plane angle, knee angle, which are needed
to assess the dynamic rule and the two invariance rules,
respectively. As can be seen, the off-frontal-plane angle varies
between 0 and 15 degrees, and the knee angle varies between
160-180 degrees. Hence, a tolerance of 15 degrees or larger
is needed for the first invariance rule to avoid false positives,
and similarly, a tolerance of 20 degrees or larger is needed.

B. Sit to Stand

Figure 3 shows the measured hip angle (for the dynamic
rule) and the ankle angle (angle formed between two ankles
and the frontal plane for the static rule) during a correct run
of sit to stand using Microsoft Kinect. As can be seen, the
measured hip angle for the sitting pose is about 140 degrees
instead of 90. Similarly, the minimum angles are about 110
and 120 degrees for C2 and C4 instead of 60 degrees. On the
other hand, the hip angle varies between 160-175 degrees for
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Microsoft Kinect sensor.
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Fig. 3. The measured various metrics for a correct sit to stand run using
Microsoft Kinect sensor.

the standing pose. The measured ankle angle fluctuates slightly
around 10 degrees. Hence, the parameters for the rules must
be set accordingly to avoid false positives.

In effect, to find the right values in the rules, the trace of
a demonstration by a clinician is needed. We plan to enhance
our system to automatically discover and set the right values
for the correctness rules as future work. In a way, it would
make our system resemble MotionMA [2], but with a much
more precise model (as represented by our rules) instead.

VI. CONCLUSION

In this paper, we argued that the rule based approach
is a good fit for rehabilitation exercise monitoring. We then
introduced a specification for defining correctness rules for
rehabilitation exercises using a set of carefully designed XML
elements. We divided the rules into three categories: (1) dy-
namic rules, with each rule specifying a sequence of monotonic
segments of the moving joint or body segment, (2) static
rules for stationary joints or body segments, and (3) invariance
rules that dictate the requirements of moving joints or body
segments. This was followed by the methodology on realtime
rule assessment. We also provided a comprehensive discussion
on practical issues with motion assessment, in which we intro-
duced several mechanisms to enhance the robustness of motion
assessment. We believe that our rule based method for rehabil-
itation exercise monitoring provides the much needed features
on reusability and extensibility of both the correctness rules
and the rule execution engine implementation. Furthermore,
the mechanisms introduced to enhance the system robustness

do not depend on expensive statistical algorithms, which is
critical for specific and realtime feedback to patients.

ACKNOWLEDGMENT

This study is supported in part by a Faculty Research
Development award, and by a Graduate Faculty Travel award,
both from the Office of Research, Cleveland State University.

REFERENCES

[1] D. J. Berndt and J. Clifford, “Using dynamic time warping to find
patterns in time series.” in Proceedings of hte Workshop on Knowledge
Discovery in Databases, vol. 10, no. 16. Seattle, WA, 1994, pp. 359–
370.

[2] E. Velloso, A. Bulling, and H. Gellersen, “Motionma: motion mod-
elling and analysis by demonstration,” in Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems. ACM, 2013,
pp. 1309–1318.

[3] Y. Visell and J. Cooperstock, “Enabling gestural interaction by means of
tracking dynamical systems models and assistive feedback,” in Systems,
Man and Cybernetics, 2007. ISIC. IEEE International Conference on.
IEEE, 2007, pp. 3373–3378.

[4] P. Hong, M. Turk, and T. S. Huang, “Gesture modeling and recognition
using finite state machines,” in Automatic Face and Gesture Recog-
nition, 2000. Proceedings. Fourth IEEE International Conference on.
IEEE, 2000, pp. 410–415.

[5] P. Turaga, R. Chellappa, V. S. Subrahmanian, and O. Udrea, “Machine
recognition of human activities: A survey,” Circuits and Systems for
Video Technology, IEEE Transactions on, vol. 18, no. 11, pp. 1473–
1488, 2008.

[6] S. Nomm and K. Buhhalko, “Monitoring of the human motor functions
rehabilitation by neural networks based system with kinect sensor,” in
Analysis, Design, and Evaluation of Human-Machine Systems, vol. 12,
no. 1, 2013, pp. 249–253.

[7] R. Poppe, “A survey on vision-based human action recognition,” Image
and vision computing, vol. 28, no. 6, pp. 976–990, 2010.

[8] J.-S. Lin and D. Kulic, “Online segmentation of human motion for
automated rehabilitation exercise analysis,” Neural Systems and Reha-
bilitation Engineering, IEEE Transactions on, vol. 22, no. 1, pp. 168–
180, 2014.

[9] S. Schaal, A. Ijspeert, and A. Billard, “Computational approaches to
motor learning by imitation,” Philosophical Transactions of the Royal
Society of London. Series B: Biological Sciences, vol. 358, no. 1431,
pp. 537–547, 2003.

[10] N. Gordon, B. Ristic, and S. Arulampalam, “Beyond the kalman filter:
Particle filters for tracking applications,” Artech House, London, 2004.

[11] R. A. Clark, Y.-H. Pua, K. Fortin, C. Ritchie, K. E. Webster, L. Denehy,
and A. L. Bryant, “Validity of the microsoft kinect for assessment of
postural control,” Gait & posture, vol. 36, no. 3, pp. 372–377, 2012.

[12] R. A. Clark, Y.-H. Pua, A. L. Bryant, and M. A. Hunt, “Validity of the
microsoft kinect for providing lateral trunk lean feedback during gait
retraining,” Gait & posture, vol. 38, no. 4, pp. 1064–1066, 2013.

[13] A. Bo, M. Hayashibe, P. Poignet et al., “Joint angle estimation in
rehabilitation with inertial sensors and its integration with kinect,”
in EMBC’11: 33rd Annual International Conference of the IEEE
Engineering in Medicine and Biology Society, 2011, pp. 3479–3483.
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