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Abstract. Supervised classification is a particular data-mining taskthat forms
part of the knowledge discovery process. Its objectives areto extract accurate,
comprehensible and interesting knowledge form data. However, many existing
supervised classification approaches only focus on one of these objectives. This
paper introduces a Multi-Objective Evolutionary Rule BaseInduction System
called MERBIS that is capable of producing trade-off solutions with regard to
the accuracy and comprehensibility objectives. We utilisea superior accuracy
measure, problem-tailored genetic operators and a self-adaptive mechanism that
reduces the number of parameters. We compare MERBIS with several existing
approaches for supervised classification on a number of benchmark data sets and
show that it performs comparable while producing more comprehensible classi-
fiers.

1 Introduction

This paper is concerned with supervised classification alsoknown as classifier induc-
tion. It involves the determination of a classifierD from data that is capable of assigning
objects to a class!j from a predefined class set
 = f!1; : : : ; !Mg. Objects are often
described by features and stored within the data set. Features can be categorical (e.g.
colours, yes/no) or numerical (e.g. age).

Classifier induction has the objectives of producing comprehensible, accurate, and
interesting knowledge [17, 20] from data and is therefore a multi-objective problem
(MOP) that requires the deployment of a multi-objective optimiser (MOO). Usually
there is no unique solution for a MOP but rather a set of solutions that represent trade-
offs between the objectives [12, 19]. Indeed, there is no universally accepted definition
of ‘optimum’ for multi-objective problems and the (human) decision maker has to de-
cide what (s)he accepts as an optimum [5]. Thus an ideal MOO should be capable of
finding as many trade-off solutions as possible [12].

This paper introduces MERBIS, which stands forMulti-Objective Evolutionary
RuleBaseInductionSystem. As the name suggests, MERBIS applies a multi-objective
evolutionary algorithm (MOEA) for the task of classifier induction because MOEAs can
produce several trade-off solutions (classifiers) in a single run [5, 6, 12, 29]. To produce
several trade-off solutions in a single run has the advantage, that if the preferences of
the decision maker change, the search has not to be repeated.In addition, MOEAs can
deal with incommensurable objectives [5], search large andcomplex search spaces [29],
and are not susceptible to the distribution of the trade-offsolutions [6].



The solutions produced by MERBIS take the form of fuzzy classification rule sys-
tems (FCRBs). These are a specific type of symbolic classifierand corresponds to an
explicit knowledge representation [2, 37] that can exhibithigh comprehensibility [35].
We chose to induce FCRBs, rather than other types of classifiers, because their po-
tential comprehensibility has practical importance. In fact, some researchers argue that
only comprehensible classifiers are actually adopted in practice [30, 31, 41]. One reason
for this might be that domain experts are very wary and distrustful of incomprehensible
results generated by a computer [55].

Although there already exist several single- and some multi-objective evolutionary
approaches for the induction of FCRBs, we believe that our approach is novel in several
respects. For example, most existing approaches utilise the misclassification (error) rate,
or other measures derived from the contingency table, to measure the accuracy of the in-
duced classifiers (e.g. [1, 9, 21, 22, 26, 39, 38, 43, 45, 54]. These measures, however, are
inappropriate when the costs of misclassification and the class priors are unknown [16,
42]. This is almost always the case in practice. We thereforeuse a performance mea-
sure originally proposed by Hand et al. [23] that is based on the area under the receiver
operating characteristic curve (AUC) (e.g., [4, 16, 24]). Hand et al.’s measure has many
advantages because it does not exhibit the above-mentionedshortcomings, works with
degrees of memberships (not necessarily probabilities) and can be deployed for multi-
ple class problems. Only a few evolutionary approaches utilise an AUC based measure
for estimating the accuracy of induced classifiers. The approach by Holmes et al. [28]
is one example. However, as they induce classifier systems, this approach requires post-
processing to reduce the number of rules. The approach proposed by Sebag et al. [46]
also utilised Hand et al.’s AUC measure. Their approach is called EROL and has been
tested on several benchmark data sets. We therefore used this approach for performance
comparisons. MERBIS also deploys a self-adaptive scheme which reduces the number
of free parameters and hence makes it much more practical. Furthermore we deploy
several problem-specific genetic operators.

The remainder of this paper is organised as follows. Section2 describes how FCRBs
can be used to classify objects. Section 3 introduces the MERBIS system. Here we
provide details of the chosen representation scheme, genetic operators, and objective
functions. Section 4 provides results and we conclude in section 5.

2 Classification using Fuzzy Classification Rule Bases

This section describes how fuzzy rule bases can be used to classify objects. A rule base
consists of rules of the following form:IF ond1 AND ond2 : : : AND ondn THEN Class = !i

The antecedent (IF-part) usually consists of conjunctionsof conditions. Conditions
(e.g. ond1) are sets defined upon the domain of features (e.g. blood pressure = low,
greater(income, expenditure)). Conjunctions correspondto the logical operatorAND
which combines different sets (e.g. blood pressure = low ANDsmoking = yes). The
consequent (THEN-part) associates a class with the antecedents. A rule base can con-



tain several antecedents with the same consequent. This makes it possible to describe
multi-modal distributions within the feature space, whichcan cause problems to other
inducers [13, 20, 44]. Antecedents with the same consequents are usually combined us-
ing a disjunction (logicalOR operator). This type of rule base is also referred to as
disjunctive normal form, the most common form of rule bases [13]. Normally an an-
tecedent’s conditions correspond to classical sets that use crisp decision thresholds. For
example, the set of patients with low blood pressure could bedefined as everyone whose
blood pressure is exactly below/equal 70 mmHg. However, classical sets like this can
lead to unstable systems that may produce very different responses (classifications) to
similar inputs (objects) [14, 52]. For example, someone whohas a blood pressure of 71
mmHg would not belong to the group of patients with low blood pressure even though
her/his blood pressure is only slightly higher than 70 mmHg.One way to tackle this
limitation is the use of fuzzy sets [56]. Fuzzy sets can be described by membership
functions [33] that assign values between zero and one to each domain value, thus per-
mitting smooth decision thresholds. As fuzzy sets produce values between zero and
one, other conjunction and disjunction operators have to bedefined to combine these
sets. TheMin and theProd operators are often used instead of theAND operator
and theMax instead of theOR operator. Fuzzy sets combined via conjunctions define
high-dimensional prototypical clusters within the feature space whose boundaries do
not need to be axis parallel [40]. This is a further advantageof FCRBs.

3 The MERBIS System

Figure 1 summarises the structure of the MERBIS system. It corresponds to a general
evolutionary algorithm whose processes are: genetic operators, fitness evaluation and
selection.

Initialise
Population
Randomly

Apply Genetic
Operators

Fitness
Evaluation

Selection

Archive

Output
ArchiveTermination ? Yes

No

Fig. 1. The structure of MERBIS

In broad terms the system works as follows. Before the genetic operators are ap-
plied, a number of candidate solutions (i.e. a population ofindividuals) is randomly
initialised. In our particular case, individuals take the form of fuzzy classification rule
bases (FCRBs) (see section 3.1). After this step, genetic operators recombine and/or
slightly change a certain number of individuals within the current population (see sec-
tion 3.4). It follows the fitness evaluation during which each individual’s performance



(fitness) is determined. The fitness of an individual dependents on its performance on
the training data set and its complexity (see section 3.2). The selection process gener-
ates a new population of individuals by sampling from the current population and the
archive emulating Darwin’s principle of the survival of thefittest [11] (see section 3.3).
The archive contains the best (elite) individuals that havebeen found so far. To deploy
an archive ensures that the best individuals are preserved,as they can otherwise get
lost due to the randomness of the selection process [57]. Theuse of an archive is a
form of elitism, which increases the likelihood of creatingbetter individuals [12] and
has long been considered a beneficial component of EAs [32]. The selection process is
succeeded by the termination test, which either terminatesthe algorithm or transmits
the current population (generation) to the genetic operators process. This repeats the
above-described procedure and it is expected that better and better individuals will be
produced over time. If the algorithm terminates (e.g. aftera maximum number of gen-
erations) the individuals within the current population and the archive are evaluated on
a test data. The final output of the system is the updated set ofelite individuals within
the archive. A detailed description of the system is now presented.

3.1 The Representation Scheme

Figure 2 depicts the structure of an individual. It consistsof two parts labelled:Self-
Adaptation ComponentsandRules. The former is utilised for the self-adaptation de-
scribed in section 3.5 whereas the latter consists of a number of rules of the form de-
scribed in section 2 and a confidence value (CF1 : : : CFn) that measures a rule’s past
performance (see formula 4 in section 3.2).

Self-Adaptation Components

Bit Strings Last GOs
Action
Values

Rules

A1

An

C1

Cn

CF1

CFn

Fig. 2. The utilised representation scheme.

The number of rules is restricted by a maximum value but is notfixed. Each rule’s
antecedent (A1 : : : An) takes the form of a tree as shown in figure 3. The consequents
(C1 : : : Cn) are numbers representing possible classes.



Fig. 3. Example of an antecedent tree.

To use a tree structure for the antecedents corresponds to the representation scheme
of Genetic Programming (GP) [3, 10, 34]. However, as we do notcombine the an-
tecedents in one tree our representation scheme slightly differs from that of GP. We
keep the antecedent trees apart to simplify the applicationof problem specific genetic
operators (see section 3.4). The non-terminal nodes (depicted as circles in figure 3) can
either be theMin or theProd operator. The terminal nodes (depicted as squares in
figure 3) can be one of the fuzzy sets (membership functions) depicted in table 1.

Formula ShapeMF1(x;a; b; ) = max(min(x�ab�a ; �x�b ); 0)MF2(x;a; b; ; d) = max(min(x�ab�a ; 1; d�xd� ); 0)MF3(x;a; ) = e�(x�)22a2MF4(x; a; b; ) = 11+j x�a j2bMF5(x; a; b) = �a if x = b0 otherwise
Table 1.The membership functions utilised in MERBIS.

The membership functions are defined upon the domain of a feature. Hence, each
antecedent tree can be a conjunction of fuzzy sets (see also section 2) and describes
a cluster within the feature space. If a feature is categorical the singleton membership
function (MF5) is used because no order of the attribute’s domain values can be as-
sumed. If a feature is numeric either the triangular (MF1), trapezoidal (MF2), gaus-
sian (MF3) or the bell shaped membership function (MF4) can be deployed. There are
further restrictions that make our representation scheme very problem specific and bias
it towards comprehensibility. Each feature can only be usedonce within an antecedent
tree. Furthermore, the size of a tree, although adaptable, is also limited by a maximum
number of nodes. The trees are initialised in a top down manner (starting from the root
node). A non-terminal node is created with a ninety-percentprobability as long as the
tree’s number of nodes is less than the maximum of allowed nodes. Otherwise a termi-
nal node is created.



Because an individual can contain several rules one could argue that our system
resembles a Pittsburgh approach [50] where individuals aremade of several rules rather
than only one rule as in a Michigan approach [27]. However, because it is also possible
that an individual only consist of one rule (or several rulesthat predict only one class),
we would rather describe our system as a hybrid between theseapproaches.

When an object is presented to an individual each antecedenttree generates an out-
put between zero and one. We have mentioned in section 3.1 that there may be several
antecedents with the same associated class (consequent). If this is the case, the maxi-
mum value of those antecedents is chosen as the output value for this class. If an indi-
vidual does not contain an antecedent for a particular classthe output value for this class
is zero. In summary, the response of an individual to an object is a vector whose dimen-
sionality equals the number of classes to be predicted and each value within this vector
indicates the membership degree that an individual associates with the corresponding
class. The response vectors to a number of objects (data set)are then used to measure
an individual’s performance as described in section 3.2.

3.2 The Fitness Evaluation

As mentioned earlier, MERBIS is a multi-objective evolutionary approach capable of
optimising several objectives. Unfortunately, there is nouniversally accepted defini-
tion of ‘optimum’ for multi-objective problems [5] when therelative importance of the
objectives is unknown. Thus the definition of an individual’s fitness is not as straight
forward as in the single-objective case.

Our approach utilises the fitness assignment of SPEA2 [57] which makes use of the
Pareto dominance relation and density information to prevent premature convergence of
the algorithm. The Pareto dominance relation is the only basis on which an individual
can be said to perform better than another in the total absence of information concerning
the relative importance of the objectives [18] and it is defined as follows:

Definition 1. (Pareto Dominance Relation) A solutionx1 is said to dominate a solu-
tion x2, also expressed asx1 � x2, if x1 is at least as good asx2 in all objectives and
better with respect to at least one objective.

The Pareto dominance relation was introduced by Vilfredo Pareto in 1896 build-
ing upon the work of Francis Ysidro Edgeworth [7]. Dominating individuals are also
called trade-off solutions and are incomparable to one another. This is summarised in
the incomparability relation defined as follows:

Definition 2. (Incomparability Relation) A solutionx1 is said to be incomparable to
a solutionx2, if neitherx1 weakly dominatesx2 nor x2 weakly dominatesx1.

The incomparability relation will become important in section 3.5 and it is therefore
necessary to define it at this point. Before we explain the actual fitness assignment we
would like to introduce the different objectives that are optimised within the current
version of MERBIS. There are three objectives, the performance objective and two
comprehensibility objectives. They are described now.



The Performance Objective The performance measure (o1), which has to be min-
imised, is computed according to formula 1.o1 = 1� ( 2(� 1)Xi<j A(i; j)) (1)

Here denotes the number of classes to be predicted andA(i; j) is computed as
follows: A(i; j) = A(i j j) +A(j j i)2 (2)

Both valuesA(i j j) andA(j j i) estimate the AUC using the Mann-Whitney-
Wilcoxon (MWW) two sample test statistic. This statistic compares two one-dimensional
arrays. The first array contains the maximum responses of antecedents with the conse-
quent (class) indicated by the first index (i in A(i j j) or j in A(j j i)) to objects that
belong to this class. It therefore contains the response values to signals indicated be the
first index. Array two contains the maximum responses from antecedents with the con-
sequent (class) that is indicated by the second index (j in A(i j j) or i in A(j j i)). Thus
this array contains responses to noise. If antecedents discriminate between objects from
two different classes, the first array should contain (on theaverage) much higher values
than the second array. This can be measured using the MWW statistic. To determine the
MWW statistic, the two arrays are merged and arranged in ascending order (without
loosing the information of whether an array value originates from array one or two).
After this, equation 3 is applied.A = S0 � n0(n0 + 1)=2n0n1 (3)

HereS0 denotes the sum of the ranks of response values from the first array. The
valuesn0 andn1 denote the number of values in array one and two respectively.

As mentioned in section 2, we also determine a certainty degreeCF for each rule. It
measures the past performance of the rule [8] and is computedaccording to equation 4.CF = SjkSk (4)

HereSjk denotes to the sum of the response values from thek-th rule’s antecedent
to objects that belong to the class indicated by its consequent andSk denotes the re-
sponse values of thek-th rule’s antecedent to any object.

The Comprehensibility Objectives According to Ishibuchi et al. [26] the number
of rules (o2) and conditions (o3) within the FCRB can measure the comprehensibility
of a FCRB. Thus both objectives have to be minimised as fewer rules and conditions
improve the comprehensibility of a system.



The Fitness AssignmentThe fitnessF (i) of an individuali is computed according to
equation 5. F (i) = R(i) +D(i) (5)

HereR(i) captures dominance information (see equation 6 and 7) andD(i) captures
density information (see equation 8) associated with thei-th individual.R(i) = Xj2Pt+Pt;j�iS(j) (6)S(i) =j fj j j 2 Pt + Pt ^ i � jg j (7)

HerePt andPt refer to individuals from the population and the archive respec-
tively. The expressioni � j denotes the dominance relation between individuali andj (see definition 1). Equation 6 determines how many individuals the i-th individual
dominates withinPt andPt. Equation 6 determines the number of individuals which
are dominated by the individuals that dominate thei-th individual. If the value ofRi is
zero the individuali is non-dominated. The density information is computed according
to equation 7 and is an adaptation of thek-th nearest neighbour method [48].D(i) = 1�ki + 2 (8)

The value�ki measures the Euclidean distance between the objective values between
thek-th and thei-th individual. The value fork is equal to the square root of the sample

size:k = pN +N [48]. The valueN andN denote the number of individuals in the
population and archive respectively.

3.3 Selection

The selection process produces a new population of individuals from the current pop-
ulation and the archive. It utilises binary tournament selection [57] to generate a new
population. During binary tournament selection, two individuals are picked randomly
without replacement from either the population or the archive. The probability that an
individual is picked from the archive is determined by the elitism degree (ED). The
individual with the lowest fitness value (see equation 5) is declared as the winner and
inserted into the new population. If a tie occurs one individual is chosen randomly and
inserted into the new generation. This procedure is repeated until the new population
has reached the size of the old one. Please note that the ED parameter is adaptable and
correspond to the average of the current population’s individuals elitism degree values
(see section 3.5).

3.4 The Genetic Operators

Genetic operators (GOs) are responsible for the ‘movement’of individuals through the
search space. We distinguish between GOs that involve one individual (GO1s) or two



individuals (GO2s). The GO1s can change the structure of an individual and mimics
natural mutation. The GO2s can lead to an exchange of rules ortheir parts between two
individuals and mimic sexual recombination or crossover. We have implemented several
GOs of both types because it has been shown that an evolutionary algorithm, which
deploys several GOs, can produce to superior results [51]. This was also confirmed
empirically in an earlier study of the MERBIS approach [47].The application of several
GOs is now described. The described procedure is applied forthe GO1s and GO2s
separately.

To choose a genetic operator, we utilise the�-greedy action selection method [53].
More sophisticated methods exist but their assumptions andcomplexities can make
them impractical [53]. Each individual is equipped with an action value for each possi-
ble genetic operator (seeAction Valuesin figure 2). The action values are adapted over
time utilising a reinforcement learning approach that is described in section 3.5. An ac-
tion value indicates how successful the corresponding genetic operator has been in the
past to steer an individual to better parts of the search space. The genetic operator with
the highest action value has the probability of(1��) to be selected. Each of the remain-
ing n genetic operators can be selected with a probability of�=n. The�-greedy action
selection method is one of the simplest reinforcement learning schemes and guarantees
that the GO with the highest action value is most often applied while still leaving a
low probability for other operators to be selected. This ensures the exploitation of the
currently best GO and the exploration of other GOs and hence the search space.

Crossover involves two individuals, and therefore two setsof GO2 action values, we
have decided to choose an action value set from either individual with an equal prob-
ability. Whether a particular operator is applied depends on the value of the mutation
probability (MP ) in the case of GO1s and the value of the crossover probability (CP )
in the case of GO2s. These values are also adaptable (see section 3.5).

One Individual Genetic Operators The MERBIS approach deploys the following one
individual genetic operators:

– TheGO11 operator reinitialises each terminal (fuzzy set) within the FCRB an-
tecedents with probabilityMP .

– TheGO12 operator reinitialises each consequent of the FCRB with probabilityMP .
– TheGO13 operator can reinitialise the whole individual with probability MP . If

the individual is not reinitialises the antecedents trees and the consequents are reini-
tialised with the probabilityMP . Each node of the antecedent tree is examined with
respect toMP . If a node is mutated, a new sub-tree is created at this point fulfill-
ing the restrictions described in section 3.1. This operator resembles the standard
genetic programming mutation operator as the individual istreated as one tree.

– TheGO14 operator reinitialises the antecedents trees with probability MP after the
same principle as described above. This operator cannot reinitialise the consequents
and is therefore believed to be less destructive thanGO13.

– TheGO15 operator removes one rule from the FCRB with probabilityMP . This
operator is only applicable if there is currently more than one rule within the FCRB.



– TheGO16 operator adds one rule which is randomly drawn from the archive with
probabilityMP . This operator is only applicable if there are currently less than the
maximum number of allowed rules within the FCRB.

– TheGO17 operator removes one rule that exhibits the lowestCF value with prob-
abilityMP . This operator is only applicable if there is currently morethan one rule
within the FCRB.

– The GO18 operator slightly changes an antecedent’s condition (fuzzy set) with
probabilityMP . This means that the operator either changes the coverage1 of a
condition’s fuzzy set or it moves the fuzzy set either to the left or to the right along
the corresponding feature’s domain.

– TheGO19 operator mutates the antecedent tree that exhibits the lowestCF value
with probabilityMP .

– TheGO110 clones one rule of the FCRB, changes its antecedents fuzzy sets slightly
(seeGO18 operator), and reinserts it into the FCRB. This is done with the proba-
bility MP and only if there are less than the maximum number of rules within the
FCRB.

Two Individuals Genetic Operators The MERBIS approach deploys the following
two individuals operators:

– TheGO21 operator performs an exchange (crossover) of sub-trees between two
antecedent trees that where randomly chosen from two individuals. The exchange
takes place with probabilityCP . Figure 4 illustrates this. The crossover point is
chosen with a uniform probability. Please note that the exchange only takes place
if the constraints, described in section 3.1, are not violated.

– TheGO22 operator works after the same principle as theGO21 operator with the
difference that both randomly chosen antecedent tree must have the same conse-
quent.

– TheGO23 operator randomly exchanges one rule between two FCRBs withprob-
ability CP .

– TheGO24 operator removes rules from the first FCRB and inserts them into the
second FCRB with probabilityCP . This is done as long as the first rule system
contains more than one rules and the second individual’s number of rules is less
equal to the maximum number of allowed rules.

– The GO25 operator merges two FCRBs with probabilityMP . If the resulting
FCRBs exceed the maximum number of allowed rules, rules are randomly removed
until no constraint violation exists.

3.5 The Self-Adaptation Scheme

In an earlier study we have empirically shown that significant interactions exist between
different parameters of our system and that each data set requires different parameter
sets [47]. Due to the large number of parameters it is impractical to search for robust
parameters for each new data set. We have therefore equippedthe current version of
MERBIS with a self-adaptive mechanism in order to reduce thenumber of parameters.

1 The coverage refers to the interval of domain values to whichthe membership function of the
fuzzy sets assigns values greater than zero.
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Fig. 4. Crossover between two antecedent trees.

This may also make MERBIS more effective and efficient as the parameters can adapt
and are not static during the evolutionary process. To use static parameters may be
disadvantageous since different stages of the evolutionary search may require other
parameter values [15]. The deployment of a self-adaptive scheme is nothing new, see
for example [15, 25, 49] for reviews. We now describe the utilised self-adaptive scheme.

As mentioned in section 3.1 the part labelled ‘Self-Adaptation Components’ (see
figure 2) is utilised to make most of the parameters adaptive.The part ‘Bit Strings’
consists of five 7-bit binary strings that encode the parameters elitism degree(ED)
(see section 3.6),crossover probability(CP), andmutation probability(MP) (see sec-
tion 3.4) and two further parameters:adaptive mutation probability(AMP ) andadap-
tive crossover probability(ACP ). Each of the decoded binary strings can take a value
between zero and one. In addition, they can undergo standardbit mutation and single-
point crossover during the genetic operators process (see figure 1) whereby the mutation
probability is determined by the current value ofAMP . Since crossover involves two
individuals the crossover probability is the averaged value of the individual’sACP
values.

The ‘Self-Adaptation Components’ part of figure 2 also contains the element ‘Last
GOs’. It is a memory for which genetic operator has produced the individual. This infor-
mation is exploited by a reinforcement learning mechanism that adapts the probabilities
of a particular genetic operator to be applied (see section 3.4).

Reinforcement learning involves the discovery of the rightactions that an agent has
to take in order to maximise rewards that it receives from theenvironment over a time
period (e.g. [53]). In our particular case, an agent is an individual and to take an action
corresponds to applying a genetic operator. As mention in section 3.4, each individual
is equipped with an action value for each genetic operator. It determines how likely it
is that the corresponding genetic operator is applied to theindividual. Since crossover
involves two individuals we have decided to choose a set of action values from either
individual with an equal probability.

Each time an genetic operator has been applied to an individual the correspond-
ing action value of the individual is updated according to formula 9. This method is
appropriated for non-stationary environments [53] and wastherefore deployed.



Qk+1 = Qk + �[r �Qk℄; (9)

HereQ denotes an action value at timek ork+1, alpha is a constant set to0:1, andr is a reward. For single-objective problems the reward wouldbe positive if the applied
genetic operator has lead to an improvement in fitness. Unfortunately, as we are dealing
with a multi-objective problem, the definition of improvement is not as straightforward
as for the single-objective case as mentioned in section 3.2. We therefore utilise the
Pareto dominance relation and the incomparability relation to determine whether or not
the applied genetic operator has lead to an improvement. These relations where defined
in section 3.2.

The incomparability relation is used in addition to the dominance relation because
some genetic operators can never produce dominating individuals. This is believed to
remove biases towards genetic operators that can produce dominating individuals. For
example, the sixth ‘one individual genetic operator’ (GO16 in section 3.4) can increase
the number of rules. Hence an individual produced by this operator could never dom-
inate the original individual because one objective is deteriorated (the number of rules
has to be minimised). Still the new individual could be incomparable in comparison to
the old one. We assign a value of one to the reward if the newly produced individual
is dominating or incomparable in comparison to the old one. Otherwise the reward is
zero.

3.6 The Archive
As mentioned in section 3, an archive is an crucial componentfor a MOEA. However,
the deployment of standard archives does not automaticallyguarantee convergence to-
wards optimal solutions and diversity promotion [36]. Consequently, we utilise a new
archive strategy that was originally proposed by Laumanns et al. [36]. It ensures di-
versity and convergence and in addition limits the size of the archive. Details of this
archive strategy are beyond the scope of this paper. The interested reader is rather re-
ferred to [36].

4 Results and Discussion
In this section we compare MERBIS with two studies that evaluated different super-
vised classification approaches on several data sets from the UCI Machine Learning
Repository2. These studies have been chosen because they deploy AUC based measures
to evaluate the performance of the induced classifiers.

As MERBIS generates several trade-off solutions, we have decided to report the
solution with the best performance value on the test data as the final output of the
system. The system has two parameters, the size of the population and the number of
generations. Both parameters where fixed to a value of 100 and500 respectively. Table 2
compares MERBIS with two approaches reported in [46].

The last three columns contain the average AUC values together with their standard
deviations, computed according to Hand et al. [23]. The EROLapproach is an evolu-
tionary approach proposed in [46] and SVM is a support vectormachine approach. We
applied ten-fold stratified cross-validation to obtain thevalues for MERBIS. It can be
seen that MERBIS performs comparable to the other approaches.

2 http://www.ics.uci.edu/%7Emlearn/MLRepository.html



Data Set EROL SVM MERBIS
Bcw 67.39� 5.1067.19� 5.3097.87� 1.89
Crx 81.63� 5.6083.92� 4.4091.75� 5.12
German 71.20� 3.5069.03� 2.3074.93� 8.05
Promoters86.26� 6.8097.44� 1.6085.81� 7.34
Vehicle 99.45� 0.5399.33� 0.7286.60� 2.13
Votes 99.29� 0.4098.86� 0.5098.12� 2.53
Waveform97.07� 0.3896.31� 7.8090.20� 1.10

Table 2.A comparison of some existing classifier induction approaches with MERBIS. We report
the average AUC values (computed according to Hand et al. [23]) together with their standard
deviations.

Table 3 compares MERBIS with three other approaches reported by Fawcett in [16].
As the RL and the C4.5rules approach are capable of producingrules, the average num-
ber of generated rules is reported. Please note that all AUC values in table 3 were
computed according to Fawcett in order to allow a comparisonbetween MERBIS and
the other approaches reported in [16]. The method proposed by Fawcett, for the com-
putation of the AUC values for multiple classes, only slightly differs from that of Hand
et al. [23].

RL C4.5rules WVote MERBIS
Data Set Best Rules Naive Bayes Results Rules Results Rules
Bcw 97.6� 1.3 306.5 93.1� 5.5 97.4� 3.6 8.2 98.2� 2.2 3.9
Car 94.3� 1.4 107.6 92.3� 2.2 98.3� 0.7 78.6 91.7� 1.0 13.6
Cmc 63.9� 4.0 196.6 64.1� 5.8 66.5� 4.9 39.1 69.2� 2.5 7.9
Crx 90.2� 4.2 758.5 87.6� 4.3 90.1� 3.4 12.9 92.6� 2.4 3.5
German 71.9� 4.9 807.5 77.1� 4.5 67.9� 9.6 23.4 76.2� 3.2 3.9
Glass 74.4� 10.0 183.7 74.0� 8.7 75.7� 5.9 12.2 87.8� 6.7 9.2
Image 93.3� 1.4 811.4 95.6� 0.9 99.0� 0.5 28.6 88.8� 2.6 8.6
Kr-v-kp 92.6� 1.5 2328.3 95.1� 0.8 99.7� 0.2 26.3 95.5� 2.7 5.8
Mushroom100.0� 0.0 2362.2 99.8� 0.1 100.0� 0.0 11.5 99.2� 0.8 7.8
Nursery 97.1� 0.2 606.6 98.0� 0.2 99.8� 0.1 336.8 94.5� 1.4 8.5
Promoters83.5� 16.2 7432.2 97.7� 4.0 88.4� 12.8 8.0 77.5� 11.0 13.0
Sonar 65.8� 12.810075.7 76.1� 13.0 77.8� 13.7 9.1 73.0� 11.9 6.2
Splice 87.3� 1.6 8406.8 99.2� 0.6 97.2� 0.7 76.2 91.4� 2.8 13.1

Table 3.A comparison of some existing classifier induction approaches with MERBIS. We report
the avearge number of rules and the average AUC values (computed according to Fawcett [16])
together with their standard deviations.

It can clearly be seen that, although MERBIS does not always produce better re-
sults, it generally produces much fewer rules and thus more comprehensible classifiers.
This is believed to be much more important in practise [30, 31, 41, 55]. It is anticipated
that better results could be achieved if the number of generations and the size of the
population is increased.



5 Concluding Remarks

We have introduced a multi-objective evolutionary approach called MERBIS for the
induction of fuzzy classification rule systems from data. Wehave shown that this ap-
proach performs comparable to other existing approaches while producing much fewer
rules.
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