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Abstract. Supervised classification is a particular data-mining tifisit forms
part of the knowledge discovery process. Its objectivestarextract accurate,
comprehensible and interesting knowledge form data. Hewewany existing
supervised classification approaches only focus on oneeskthbjectives. This
paper introduces a Multi-Objective Evolutionary Rule Basduction System
called MERBIS that is capable of producing trade-off s@ing with regard to
the accuracy and comprehensibility objectives. We utiéissuperior accuracy
measure, problem-tailored genetic operators and a saffta# mechanism that
reduces the number of parameters. We compare MERBIS wittralegxisting
approaches for supervised classification on a number ofimeaik data sets and
show that it performs comparable while producing more cahpnsible classi-
fiers.

1 Introduction

This paper is concerned with supervised classification lat&wn as classifier induc-
tion. It involves the determination of a classifierfrom data that is capable of assigning
objects to a class; from a predefined class s&t = {w1,...,wa }. Objects are often
described by features and stored within the data set. Fesatiam be categorical (e.g.
colours, yes/no) or numerical (e.g. age).

Classifier induction has the objectives of producing comensible, accurate, and
interesting knowledge [17,20] from data and is therefore wtirobjective problem
(MOP) that requires the deployment of a multi-objectiveimjger (MOO). Usually
there is no unique solution for a MOP but rather a set of sohgtithat represent trade-
offs between the objectives [12, 19]. Indeed, there is nwarsally accepted definition
of ‘optimum’ for multi-objective problems and the (humar@aision maker has to de-
cide what (s)he accepts as an optimum [5]. Thus an ideal M@QIdtbe capable of
finding as many trade-off solutions as possible [12].

This paper introduces MERBIS, which stands Multi-Objective Evolutionary
Rule Basel nductionSystem. As the name suggests, MERBIS applies a multi-obgecti
evolutionary algorithm (MOEA) for the task of classifier inction because MOEAS can
produce several trade-off solutions (classifiers) in alsingn [5, 6, 12, 29]. To produce
several trade-off solutions in a single run has the advanttogt if the preferences of
the decision maker change, the search has not to be repeasettlition, MOEAS can
deal with incommensurable objectives [5], search largecamdplex search spaces [29],
and are not susceptible to the distribution of the tradesolfffitions [6].



The solutions produced by MERBIS take the form of fuzzy dfasdion rule sys-
tems (FCRBs). These are a specific type of symbolic classifidrcorresponds to an
explicit knowledge representation [2, 37] that can exHiligih comprehensibility [35].
We chose to induce FCRBs, rather than other types of classifiecause their po-
tential comprehensibility has practical importance. Ictfaome researchers argue that
only comprehensible classifiers are actually adopted iatjpea[30, 31, 41]. One reason
for this might be that domain experts are very wary and dsstaliof incomprehensible
results generated by a computer [55].

Although there already exist several single- and some robijgctive evolutionary
approaches for the induction of FCRBs, we believe that oprageh is novel in several
respects. For example, most existing approaches utiksetbclassification (error) rate,
or other measures derived from the contingency table, tsaredahe accuracy of the in-
duced classifiers (e.g. [1,9, 21, 22,26, 39, 38,43, 45, 94¢s€& measures, however, are
inappropriate when the costs of misclassification and tagsgbriors are unknown [16,
42]. This is almost always the case in practice. We therafseea performance mea-
sure originally proposed by Hand et al. [23] that is basedcheretrea under the receiver
operating characteristic curve (AUC) (e.g., [4, 16, 24]anid et al.'s measure has many
advantages because it does not exhibit the above-mentitvoettomings, works with
degrees of memberships (not necessarily probabilitied)can be deployed for multi-
ple class problems. Only a few evolutionary approachesetin AUC based measure
for estimating the accuracy of induced classifiers. The @gghr by Holmes et al. [28]
is one example. However, as they induce classifier systésspproach requires post-
processing to reduce the number of rules. The approach pegipoy Sebag et al. [46]
also utilised Hand et al.'s AUC measure. Their approachlis¢&ROL and has been
tested on several benchmark data sets. We therefore usexpitrioach for performance
comparisons. MERBIS also deploys a self-adaptive schenehwéduces the number
of free parameters and hence makes it much more practicghdfmore we deploy
several problem-specific genetic operators.

The remainder of this paper is organised as follows. Se@idescribes how FCRBs
can be used to classify objects. Section 3 introduces the BA&Rystem. Here we
provide details of the chosen representation scheme, igesygtrators, and objective
functions. Section 4 provides results and we conclude itiaes.

2 Classification using Fuzzy Classification Rule Bases

This section describes how fuzzy rule bases can be useddssifglabjects. A rule base
consists of rules of the following form:

IF condiy AND condy ... AND cond, THEN Class = w;

The antecedent (IF-part) usually consists of conjunctafreonditions. Conditions
(e.g. cond;) are sets defined upon the domain of features (e.g. bloodyres: low,
greater(income, expenditure)). Conjunctions corresgorttie logical operatoA N D
which combines different sets (e.g. blood pressure = low Adwiibking = yes). The
consequent (THEN-part) associates a class with the ardatedA rule base can con-



tain several antecedents with the same consequent. Thissnitaossible to describe
multi-modal distributions within the feature space, whaan cause problems to other
inducers [13, 20, 44]. Antecedents with the same consegaeatusually combined us-
ing a disjunction (logicaD R operator). This type of rule base is also referred to as
disjunctive normal form, the most common form of rule basE3][Normally an an-
tecedent’s conditions correspond to classical sets theattisp decision thresholds. For
example, the set of patients with low blood pressure coulidfi@med as everyone whose
blood pressure is exactly below/equal 70 mmHg. Howevessital sets like this can
lead to unstable systems that may produce very differepbreses (classifications) to
similar inputs (objects) [14, 52]. For example, someone Wa® a blood pressure of 71
mmHg would not belong to the group of patients with low bloodgsure even though
her/his blood pressure is only slightly higher than 70 mmBge way to tackle this
limitation is the use of fuzzy sets [56]. Fuzzy sets can beiilesd by membership
functions [33] that assign values between zero and one tod@main value, thus per-
mitting smooth decision thresholds. As fuzzy sets produlees between zero and
one, other conjunction and disjunction operators have tddimed to combine these
sets. TheMin and theProd operators are often used instead of thd D operator
and theM ax instead of the) R operator. Fuzzy sets combined via conjunctions define
high-dimensional prototypical clusters within the featspace whose boundaries do
not need to be axis parallel [40]. This is a further advantz#deCRBSs.

3 The MERBIS System

Figure 1 summarises the structure of the MERBIS system.rtesponds to a general
evolutionary algorithm whose processes are: genetic tpsrditness evaluation and

selection.
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Fig. 1. The structure of MERBIS
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In broad terms the system works as follows. Before the gergtérators are ap-
plied, a number of candidate solutions (i.e. a populatiomdividuals) is randomly
initialised. In our particular case, individuals take tloenh of fuzzy classification rule
bases (FCRBs) (see section 3.1). After this step, genedcatqrs recombine and/or
slightly change a certain number of individuals within therent population (see sec-
tion 3.4). It follows the fitness evaluation during which kaedividual's performance



(fitness) is determined. The fitness of an individual depatsden its performance on
the training data set and its complexity (see section 3.2¢. Selection process gener-
ates a new population of individuals by sampling from therentr population and the
archive emulating Darwin’s principle of the survival of tfitest [11] (see section 3.3).
The archive contains the best (elite) individuals that Haeen found so far. To deploy
an archive ensures that the best individuals are preseagethey can otherwise get
lost due to the randomness of the selection process [57].uSkeof an archive is a
form of elitism, which increases the likelihood of creatibetter individuals [12] and
has long been considered a beneficial component of EAs [3#] s€lection process is
succeeded by the termination test, which either termintieslgorithm or transmits
the current population (generation) to the genetic opesgioocess. This repeats the
above-described procedure and it is expected that bettebetter individuals will be
produced over time. If the algorithm terminates (e.g. aftenaximum number of gen-
erations) the individuals within the current populatioridahe archive are evaluated on
a test data. The final output of the system is the updated sdit@individuals within
the archive. A detailed description of the system is now ¢mésd.

3.1 The Representation Scheme

Figure 2 depicts the structure of an individual. It consistswo parts labelledSelf-
Adaptation Componentnd Rules The former is utilised for the self-adaptation de-
scribed in section 3.5 whereas the latter consists of a nuoflrales of the form de-
scribed in section 2 and a confidence valG&y ... CF,,) that measures a rule’s past
performance (see formula 4 in section 3.2).

Self-Adaptation Components

Action
Values

Bit Strings Last GOs

Rules

A1 — | c1 | [ cr
CAn | — | cn | crn |

Fig. 2. The utilised representation scheme.

The number of rules is restricted by a maximum value but isfimetl. Each rule’s
antecedent4; ... A,) takes the form of a tree as shown in figure 3. The consequents
(Cy ...C}y) are numbers representing possible classes.



Fig. 3. Example of an antecedent tree.

To use a tree structure for the antecedents corresponds tepihesentation scheme
of Genetic Programming (GP) [3, 10, 34]. However, as we doauwhbine the an-
tecedents in one tree our representation scheme slightgralirom that of GP. We
keep the antecedent trees apart to simplify the applicatiggroblem specific genetic
operators (see section 3.4). The non-terminal nodes (tepés circles in figure 3) can
either be theMin or the Prod operator. The terminal nodes (depicted as squares in
figure 3) can be one of the fuzzy sets (membership functioggicted in table 1.

Formula Shape

MF1(z;a,b,c) = maz(min(3=2, £=%),0) A

MF2(z;a,b,c,d) = max(min(i=2, 1, ‘é:i), 0) A
G A

MPF3(z;a,c) =e 242

MF4($J1,I),C):@ R
a ifxz="»>

ME5(w;a,b) = 0 otherwise

Table 1. The membership functions utilised in MERBIS.

The membership functions are defined upon the domain of aredtience, each
antecedent tree can be a conjunction of fuzzy sets (see ettiors 2) and describes
a cluster within the feature space. If a feature is categbtite singleton membership
function (M F'5) is used because no order of the attribute’s domain valuedeaas-
sumed. If a feature is numeric either the triangulaf{'1), trapezoidal {4/ F'2), gaus-
sian (M F'3) or the bell shaped membership functidd ¢'4) can be deployed. There are
further restrictions that make our representation scheamg problem specific and bias
it towards comprehensibility. Each feature can only be us®zk within an antecedent
tree. Furthermore, the size of a tree, although adaptabédso limited by a maximum
number of nodes. The trees are initialised in a top down nm(sterting from the root
node). A non-terminal node is created with a ninety-perpeabability as long as the
tree’s number of nodes is less than the maximum of allowe@s.00therwise a termi-
nal node is created.



Because an individual can contain several rules one cogldeathat our system
resembles a Pittsburgh approach [50] where individualse@e of several rules rather
than only one rule as in a Michigan approach [27]. Howeverahbse it is also possible
that an individual only consist of one rule (or several rulest predict only one class),
we would rather describe our system as a hybrid between dpgm®aches.

When an object is presented to an individual each antecé@engenerates an out-
put between zero and one. We have mentioned in section 3.th#v@ may be several
antecedents with the same associated class (conseqtfi¢ghif.is the case, the maxi-
mum value of those antecedents is chosen as the output walthed class. If an indi-
vidual does not contain an antecedent for a particular tfessutput value for this class
is zero. In summary, the response of an individual to an elgexvector whose dimen-
sionality equals the number of classes to be predicted astdvedue within this vector
indicates the membership degree that an individual astesciaith the corresponding
class. The response vectors to a number of objects (datarsetf)en used to measure
an individual’s performance as described in section 3.2.

3.2 The Fitness Evaluation

As mentioned earlier, MERBIS is a multi-objective evolui@wy approach capable of
optimising several objectives. Unfortunately, there isumiversally accepted defini-
tion of ‘optimum’ for multi-objective problems [5] when tirelative importance of the
objectives is unknown. Thus the definition of an individeditness is not as straight
forward as in the single-objective case.

Our approach utilises the fitness assignment of SPEA2 [5wiakes use of the
Pareto dominance relation and density information to prepeemature convergence of
the algorithm. The Pareto dominance relation is the onlysbas which an individual
can be said to perform better than another in the total alessfinformation concerning
the relative importance of the objectives [18] and it is defias follows:

Definition 1. (Pareto Dominance Relation) A solutionz; is said to dominate a solu-
tion z,, also expressed as >~ x2, if 21 is at least as good as, in all objectives and
better with respect to at least one objective.

The Pareto dominance relation was introduced by Vilfredefain 1896 build-
ing upon the work of Francis Ysidro Edgeworth [7]. Dominatiimdividuals are also
called trade-off solutions and are incomparable to onetaof his is summarised in
the incomparability relation defined as follows:

Definition 2. (Incomparability Relation) A solutionz; is said to be incomparable to
a solutionz, if neitherz; weakly dominates, nor z, weakly dominates; .

The incomparability relation will become importantin deat3.5 and it is therefore
necessary to define it at this point. Before we explain theaditness assignment we
would like to introduce the different objectives that ardimised within the current
version of MERBIS. There are three objectives, the perfarceaobjective and two
comprehensibility objectives. They are described now.



The Performance Objective The performance measure, §, which has to be min-
imised, is computed according to formula 1.

2 .
“21‘%@—DZ;W”” (1)

Here ¢ denotes the number of classes to be predictedAfidj) is computed as
follows:

AGj) — AL +AG |0

. @

Both valuesA(i | j) and A(j | ) estimate the AUC using the Mann-Whitney-
Wilcoxon (MWW) two sample test statistic. This statistiogares two one-dimensional
arrays. The first array contains the maximum responses etadents with the conse-
quent (class) indicated by the first indexrf A(i | j) orj in A(j | 7)) to objects that
belong to this class. It therefore contains the responseegab signals indicated be the
first index. Array two contains the maximum responses froteegdents with the con-
sequent (class) that is indicated by the second inflex4 (i | j) oréin A(j | 7)). Thus
this array contains responses to noise. If antecedentsrdisate between objects from
two different classes, the first array should contain (oretlrerage) much higher values
than the second array. This can be measured using the MW/atistalo determine the
MWW statistic, the two arrays are merged and arranged inreieg order (without
loosing the information of whether an array value origisate®m array one or two).
After this, equation 3 is applied.

_ So — no(no + 1)/2
N NoNny

A

3)

Here S, denotes the sum of the ranks of response values from the ffiest & he
valuesng andn; denote the number of values in array one and two respectively

As mentioned in section 2, we also determine a certaintyedgF’ for each rule. It
measures the past performance of the rule [8] and is comjetastding to equation 4.

Sk
HereSj* denotes to the sum of the response values fronkitrerule’s antecedent
to objects that belong to the class indicated by its consecared S* denotes the re-
sponse values of thieth rule’s antecedent to any object.

The Comprehensibility Objectives According to Ishibuchi et al. [26] the number
of rules -) and conditionsds) within the FCRB can measure the comprehensibility
of a FCRB. Thus both objectives have to be minimised as feulesrand conditions
improve the comprehensibility of a system.



The Fitness AssignmentThe fitnessF' (i) of an individuali is computed according to
equation 5.
F(i) = R(i) + D(i) ()

HereR(i) captures dominance information (see equation 6 and 7 gndcaptures
density information (see equation 8) associated with #eindividual.

Ri)= Y  S0) (6)
JEP 4Py, j>i
S@)=|{jliePi+PNi>j}| (7

Here P, and P; refer to individuals from the population and the archivepess
tively. The expression = j denotes the dominance relation between individusaid
j (see definition 1). Equation 6 determines how many indivisltiae i-th individual
dominates withinP; and P;. Equation 6 determines the number of individuals which
are dominated by the individuals that dominate il individual. If the value ofR; is
zero the individual is non-dominated. The density information is computed etiog
to equation 7 and is an adaptation of fhh nearest neighbour method [48].

1
crf-l—?

D(i) = (8)

The valuer? measures the Euclidean distance between the objectivesiagitween
thek-th and the-th individual. The value fok is equal to the square root of the sample
size:k = VN + N [48]. The valueN andN denote the number of individuals in the
population and archive respectively.

3.3 Selection

The selection process produces a hew population of indidinom the current pop-

ulation and the archive. It utilises binary tournament e [57] to generate a new
population. During binary tournament selection, two indiwals are picked randomly
without replacement from either the population or the arehiThe probability that an

individual is picked from the archive is determined by thiigh degree (ED). The

individual with the lowest fitness value (see equation 5)dslared as the winner and
inserted into the new population. If a tie occurs one indiads chosen randomly and
inserted into the new generation. This procedure is repeatél the new population

has reached the size of the old one. Please note that the BBetar is adaptable and
correspond to the average of the current population’s iddads elitism degree values
(see section 3.5).

3.4 The Genetic Operators

Genetic operators (GOs) are responsible for the ‘movenwdidividuals through the
search space. We distinguish between GOs that involve alddoal (GO1s) or two



individuals (GO2s). The GO1s can change the structure ohdividual and mimics
natural mutation. The GO2s can lead to an exchange of ruleemmparts between two
individuals and mimic sexual recombination or crossover.N&ve implemented several
GOs of both types because it has been shown that an evolntialgorithm, which
deploys several GOs, can produce to superior results [FiiF Was also confirmed
empirically in an earlier study of the MERBIS approach [4ifje application of several
GOs is now described. The described procedure is appliethtoGO1s and GO2s
separately.

To choose a genetic operator, we utilise thgreedy action selection method [53].
More sophisticated methods exist but their assumptionscanablexities can make
them impractical [53]. Each individual is equipped with atian value for each possi-
ble genetic operator (séection Valuesn figure 2). The action values are adapted over
time utilising a reinforcement learning approach that isalibed in section 3.5. An ac-
tion value indicates how successful the correspondingtgeaperator has been in the
past to steer an individual to better parts of the searchespdte genetic operator with
the highest action value has the probabilitf bf- ¢) to be selected. Each of the remain-
ing n genetic operators can be selected with a probability/af Thee-greedy action
selection method is one of the simplest reinforcement lagrechemes and guarantees
that the GO with the highest action value is most often agdplile still leaving a
low probability for other operators to be selected. Thisuges the exploitation of the
currently best GO and the exploration of other GOs and hdmeséarch space.

Crossover involves two individuals, and therefore two sét30O2 action values, we
have decided to choose an action value set from either ha@iwith an equal prob-
ability. Whether a particular operator is applied depenashe value of the mutation
probability (A P) in the case of GO1s and the value of the crossover probafiliP)
in the case of GO2s. These values are also adaptable (sems:6).

One Individual Genetic Operators The MERBIS approach deploys the following one
individual genetic operators:

— The GO1, operator reinitialises each terminal (fuzzy set) withie tRCRB an-
tecedents with probability/ P.

— The GO1, operator reinitialises each consequent of the FCRB wittbglodity
MP.

— The GO1; operator can reinitialise the whole individual with problap M P. If
the individual is not reinitialises the antecedents tremsthe consequents are reini-
tialised with the probability/ P. Each node of the antecedent tree is examined with
respect toM P. If a node is mutated, a new sub-tree is created at this puiilt-f
ing the restrictions described in section 3.1. This opersesembles the standard
genetic programming mutation operator as the individutbiated as one tree.

— TheGO1, operator reinitialises the antecedents trees with prdibabiif P after the
same principle as described above. This operator canmitiatise the consequents
and is therefore believed to be less destructive tHén 5.

— TheGO1;5 operator removes one rule from the FCRB with probabilifyP. This
operator is only applicable if there is currently more thae oule within the FCRB.



— The G014 operator adds one rule which is randomly drawn from the aechiith
probability M P. This operator is only applicable if there are currentlyslésan the
maximum number of allowed rules within the FCRB.

— TheGO1; operator removes one rule that exhibits the lowest value with prob-
ability M P. This operator is only applicable if there is currently mtiran one rule
within the FCRB.

— The GO1g operator slightly changes an antecedent’s condition gfuset) with
probability M P. This means that the operator either changes the coveodge
condition’s fuzzy set or it moves the fuzzy set either to gfedr to the right along
the corresponding feature’s domain.

— The GO14 operator mutates the antecedent tree that exhibits thest@#& value
with probability M P.

— TheGO1,, clones one rule of the FCRB, changes its antecedents fuzgligghtly
(seeGGO1g operator), and reinserts it into the FCRB. This is done with proba-
bility M P and only if there are less than the maximum number of ruleliwthe
FCRB.

Two Individuals Genetic Operators The MERBIS approach deploys the following
two individuals operators:

— The GO2, operator performs an exchange (crossover) of sub-treegekettwo
antecedent trees that where randomly chosen from two itha@ls. The exchange
takes place with probabilit¢’ P. Figure 4 illustrates this. The crossover point is
chosen with a uniform probability. Please note that the arge only takes place
if the constraints, described in section 3.1, are not véalat

— The GO2, operator works after the same principle as @2, operator with the
difference that both randomly chosen antecedent tree nav& the same conse-
quent.

— TheGO2;5 operator randomly exchanges one rule between two FCRBspnaibr
ability C'P.

— The GO24 operator removes rules from the first FCRB and inserts themthe
second FCRB with probabilit¢’ P. This is done as long as the first rule system
contains more than one rules and the second individual'sbeurof rules is less
equal to the maximum number of allowed rules.

— The GO2;5 operator merges two FCRBs with probability P. If the resulting
FCRBs exceed the maximum number of allowed rules, rulessawgamly removed
until no constraint violation exists.

3.5 The Self-Adaptation Scheme

In an earlier study we have empirically shown that signifi¢éateractions exist between
different parameters of our system and that each data seiresglifferent parameter
sets [47]. Due to the large number of parameters it is imralcto search for robust
parameters for each new data set. We have therefore equibpexlirrent version of
MERBIS with a self-adaptive mechanism in order to reducentivaber of parameters.

! The coverage refers to the interval of domain values to wtiehmembership function of the
fuzzy sets assigns values greater than zero.
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Fig. 4. Crossover between two antecedent trees.

This may also make MERBIS more effective and efficient as trameters can adapt
and are not static during the evolutionary process. To uscgparameters may be
disadvantageous since different stages of the evolutyosearch may require other
parameter values [15]. The deployment of a self-adaptiherse is nothing new, see
for example [15, 25, 49] for reviews. We now describe thased self-adaptive scheme.

As mentioned in section 3.1 the part labell&klf-Adaptation Componeh{see
figure 2) is utilised to make most of the parameters adapiite. part Bit Strings
consists of five 7-bit binary strings that encode the paramseditism degregED)
(see section 3.6xrossover probabilitf{CP), andmutation probability(MP) (see sec-
tion 3.4) and two further parameteesdaptive mutation probability4d M P) andadap-
tive crossover probabilityAC P). Each of the decoded binary strings can take a value
between zero and one. In addition, they can undergo stafitamtitation and single-
point crossover during the genetic operators process @@efi) whereby the mutation
probability is determined by the current value 4/ P. Since crossover involves two
individuals the crossover probability is the averaged gati the individual'sAC' P
values.

The ‘Self-Adaptation Componenfsart of figure 2 also contains the elemehtst
GOs. Itis amemory for which genetic operator has producedtidigiidual. This infor-
mation is exploited by a reinforcement learning mechantsamadapts the probabilities
of a particular genetic operator to be applied (see sectigh 3

Reinforcement learning involves the discovery of the riggtions that an agent has
to take in order to maximise rewards that it receives fromghgronment over a time
period (e.g. [53]). In our particular case, an agent is aividdal and to take an action
corresponds to applying a genetic operator. As mentiondtise 3.4, each individual
is equipped with an action value for each genetic operatdetermines how likely it
is that the corresponding genetic operator is applied tantieidual. Since crossover
involves two individuals we have decided to choose a set tibmwalues from either
individual with an equal probability.

Each time an genetic operator has been applied to an indivitie correspond-
ing action value of the individual is updated according tonfala 9. This method is
appropriated for non-stationary environments [53] and thasefore deployed.



Qi1 = Qp + afr — Q] 9)

Here( denotes an action value at tirh@r k + 1, alpha is a constant set t©.1, and
r is a reward. For single-objective problems the reward waagbositive if the applied
genetic operator has lead to an improvement in fitness. tinfately, as we are dealing
with a multi-objective problem, the definition of improveniés not as straightforward
as for the single-objective case as mentioned in sectionVBe2therefore utilise the
Pareto dominance relation and the incomparability retetiodetermine whether or not
the applied genetic operator has lead to an improvemenseTigations where defined
in section 3.2.

The incomparability relation is used in addition to the dparice relation because
some genetic operators can never produce dominating theilé. This is believed to
remove biases towards genetic operators that can produmimdting individuals. For
example, the sixth ‘one individual genetic operatéf(§1¢ in section 3.4) can increase
the number of rules. Hence an individual produced by thigatpe could never dom-
inate the original individual because one objective is detated (the number of rules
has to be minimised). Still the new individual could be ingrarable in comparison to
the old one. We assign a value of one to the reward if the nevdgyced individual
is dominating or incomparable in comparison to the old onte@vise the reward is
zero.

3.6 The Archive

As mentioned in section 3, an archive is an crucial compofoera MOEA. However,
the deployment of standard archives does not automatigaflyantee convergence to-
wards optimal solutions and diversity promotion [36]. Cegsently, we utilise a new
archive strategy that was originally proposed by Laumarired.g€36]. It ensures di-
versity and convergence and in addition limits the size efdlchive. Details of this
archive strategy are beyond the scope of this paper. Theestesl reader is rather re-
ferred to [36].

4 Results and Discussion

In this section we compare MERBIS with two studies that eatd different super-
vised classification approaches on several data sets frerd@i Machine Learning
Repository. These studies have been chosen because they deploy AUCrbeasures
to evaluate the performance of the induced classifiers.

As MERBIS generates several trade-off solutions, we hawiddd to report the
solution with the best performance value on the test datdadinal output of the
system. The system has two parameters, the size of the piopudend the number of
generations. Both parameters where fixed to a value of 106@ddespectively. Table 2

compares MERBIS with two approaches reported in [46].
The last three columns contain the average AUC values tegetith their standard

deviations, computed according to Hand et al. [23]. The ER@proach is an evolu-
tionary approach proposed in [46] and SVM is a support vetiachine approach. We
applied ten-fold stratified cross-validation to obtain tladues for MERBIS. It can be
seen that MERBIS performs comparable to the other appresache

2 http://lwww.ics.uci.edu/%7Emlearn/MLRepository.html



Data Set| EROL SVM MERBIS
Bcw 67.39+ 5.1067.19+ 5.3097.87+ 1.89
Crx 81.63+ 5.6083.92+ 4.4091.75+ 5.12
German |71.20+ 3.5069.03+ 2.3074.93+ 8.05
Promoters86.26+ 6.8097.44+ 1.6085.81+ 7.34
Vehicle |99.45+ 0.5399.33+ 0.7286.60+ 2.13
\otes 99.29+ 0.4(098.86+ 0.5098.12+ 2.53
Waveform97.07+ 0.3896.31+ 7.8090.20+ 1.1Q
Table 2. A comparison of some existing classifier induction appreachith MERBIS. We report
the average AUC values (computed according to Hand et &) {@8ether with their standard
deviations.

Table 3 compares MERBIS with three other approaches regpbpt&awcett in [16].
As the RL and the C4.5rules approach are capable of produdieg, the average num-
ber of generated rules is reported. Please note that all AblGeg in table 3 were
computed according to Fawcett in order to allow a comparisstween MERBIS and
the other approaches reported in [16]. The method propogéatvcett, for the com-
putation of the AUC values for multiple classes, only slighliffers from that of Hand
et al. [23].

RL C4.5rules WVote MERBIS
Data Set Best Rules [Naive Bayes Results [Rule§ Results |Rules
Bcw 97.6+1.3| 306.5| 93.1+5.5|97.4+ 3.6| 8.2 |98.2+2.2| 3.9
Car 94.3+1.4| 107.6| 92.3+2.2|98.3+0.7| 78.6|/91.7+ 1.0| 13.6
Cmc 63.94+4.0| 196.6 | 64.1+ 5.8 | 66.5+ 4.9| 39.1|69.2+ 25| 7.9
Crx 90.2+4.2| 758.5| 87.6+4.3|90.1+ 3.4| 12.9|/92.6+2.4| 3.5

German |71.9+4.9| 807.5|77.1+45|67.9+9.6|23.4|76.2+3.2| 3.9
Glass 74.4+ 10.0 183.7| 74.0+£8.7 | 75.7+5.9| 12.2|87.8+ 6.7| 9.2
Image 93.3+1.4| 811.4| 95.6+ 0.9 |99.0+ 0.5| 28.6|88.8+2.6| 8.6
Kr-v-kp |92.6+ 1.5|2328.3| 95.1+ 0.8 | 99.7+ 0.2| 26.3|95.5+2.7| 5.8
Mushroon}100.0+ 0.0| 2362.2| 99.8+ 0.1 {100.0+ 0.0| 11.5(/99.2+0.8| 7.8
Nursery |97.1+0.2| 606.6 | 98.0+ 0.2 | 99.8+ 0.1|336.8 94.5+ 1.4| 8.5
Promoterg83.5+ 16.2 7432.2| 97.7+ 4.0 |88.4+ 12.8 8.0 |77.5+11.0 13.0
Sonar 65.8+ 12.810075.776.1+ 13.0|77.8+ 13.7 9.1 [73.0+£11.9 6.2
Splice 87.3+ 1.6|8406.8| 99.2+ 0.6 | 97.2+ 0.7 76.2|91.4+ 2.8| 13.1
Table 3. A comparison of some existing classifier induction appreachith MERBIS. We report
the avearge number of rules and the average AUC values (deohpacording to Fawcett [16])
together with their standard deviations.

It can clearly be seen that, although MERBIS does not alwagdyte better re-
sults, it generally produces much fewer rules and thus mamgeehensible classifiers.
This is believed to be much more important in practise [3043155]. It is anticipated
that better results could be achieved if the number of gé¢ioesand the size of the
population is increased.
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Concluding Remarks

We have introduced a multi-objective evolutionary apploealled MERBIS for the

induction of fuzzy classification rule systems from data. Ng#e shown that this ap-
proach performs comparable to other existing approachdés wtoducing much fewer
rules.
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