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Abstract

Consider a relay cascade, i.e. a network where the source, tiogl sink node and a certain number of intermediate relay
nodes are arranged in a line. We assume that adjacent nadeapaiconnected by error-frée + 1)-ary pipes. The following
communication scenario is treated. The source and a subgbe agelays wish to communicate independent informatiora to
common sink under the condition that each relay in the castatalf-duplex constrained. We introduce a simple chanrael
for half-duplex constrained links and provide a coding sehevhich transfers information by an information-dependaon-
deterministic allocation of the transmission and recepsiots of the relays. The coding scheme requires synctatoiz on the
symbol level through a shared clock. In the case of a relagackswith a single source, the coding strategy is capacktie@ang.
Numerical values for the capacity of cascades of variougtlenare provided, and it turns out that the capacities grefiantly
higher than the rates which are achievable with a detertiiniisne-sharing approach. If the cascade includes a soamncea
certain number of relays with their own information, theattgy achieves the cut-set bound when the rates of the relages
fall below individual thresholds. Hence, a partial chagsizgation of the boundary of the capacity region followsr Eascades
composed of an infinite number of half-duplex constrainddyseand a single source, we derive an explicit capacity esgion.
Remarkably, the capacity far= 1 is equal to the logarithm of the golden ratio. We finally shtwattthe proposed coding strategy
is superior to network coding in the case of the wirelesd-thahlex constrained butterfly network.

Index Terms

Half-duplex constraint, relay networks, network codinimihg, constrained coding, capacity, capacity region,hroétof types,
golden ratio.

I. INTRODUCTION

A relay cascade is a network where the source node, the sid& aod a certain number of intermediate relay nodes are
arranged in a line. In this paper we consider the problem ghaburce node and an arbitrary but fixed number of relay
nodes from the cascade wish to communicate independentgessso a common sink under the condition that each relay is
half-duplex constrained, i.e. is not able to transmit areére simultaneously. Throughout the paper, we assumethatent
node pairs are connected by error-f(get 1)-ary pipes. This approach allows us to gain a better undetistg of half-duplex
constrained transmission without having to distinguishiciwheffects are due to channel noise and which result from the
half-duplex constraint. Moreover, the problem becomesenieasible since combinatorial arguments can be used thstea
statistical arguments.

How could we construct an efficient coding scheme which takeshalf-duplex constraint into account? A first approach
would probably be to define a protocol such that the timesiivi schedule is determined a priori. Under this assumptian
capacity or rate region of various half-duplex constraingldy channels [2],[[3] and networks! [4] has been determiiéel
will show that time-sharing falls considerably short of theoretical optimum or, conversely, higher rates are piesdy an
information-dependent, non-deterministic allocatiortte# transmission and reception slots of the relays.

The meaning of information-dependent allocation schemifluistrated in following example. LeWW, = {0,...,7} be a
message set. In each block 1,2,. .. of length4, the source wishes to communicate a randomly chosen meggédes W,
to the destination via a single half-duplex constraine@yeiode. The alphabet of both source and relays edfials, N}
where “N” indicates a channel use without transmission énd } is a ¢ = 2-ary transmission alphabet. Let (i) be the
codeword chosen by the source encoder to represg} in block i and letx; (i) indicate the codeword chosen by the relay
encoder for representingy(z — 1) in block . The coding scheme is illustrated in Talble I. The source @ecmaps each
messageu, (i) to x((¢) by allocating the corresponding binary representatiowg(f), i.e. three bits, to four time slots. The
precise allocation of the three bits to four slots is deteediby the first two binary digits of codewosg (i — 1). Based on
the first two binary digits of the noiselessly received codel, (i), the relay encoder determines which time slot to use for
transmission inx; (¢ + 1). The binary value to be transmitted 31 (¢ + 1) is equal to the third bit ik (7). Hence, the relay
encodes a part of its information in the timing of the trarssign symbols. Since the source encoder knows the scherde use
to determine the relay’s transmission slot, it can allodat¢éhree new bits inky (i + 1) to those slots in which the relay is able
to listen. The sink then determines the message from thévezteelay codeword using both the position of the transimiss
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symbol and its value. In this example, a rate0of5 bit/use is achievable. By allowing arbitrarily long codeds, we will
show that the strategy approache$389 bits per use which is also the capacity of the single relagades with half-duplex
constraint when the transmission alphabet is binary.

R = 0.75 bit per use
block ¢ wo(7) xo(2) | x1(2) | wo(%)
1 =1 1 (001) | OOIN | NNNN -
=2 2 (010) | NoO10 INNN
1 =3 4 (100) | INOO NONN
i1 =4 7 (111) | 1IN1 NNON

M

TABLE |
THE RELAY ENCODES A PART OF THE INFORMATION BY THE POSITION OFHE TRANSMISSION SYMBOLS

The example suggests that information encoding by mearnisofg is beneficial in the context of half-duplex constraline
transmission. A similar example fgr= 1 was shown in[[b]. In[[6], Kramer applied the achievable decadd forward rates
of the relay channel due to Cover and ElI Gamal [7] to a halflekuponstrained relay channel and noticed that higher rates
are possible when the transmission and reception time sfotse relay are random. The randomness results from the fact
that one can send information through the timing of opegatirodes. Timing is not a new idea in the information theoattic
literature and has already been used in conjunction withuiggechannels. Anantharam and Verdd showed [8] that engodi
information into the distances of arrival to the queue agtgethe capacity of the single server queue with exponesgiaice
distribution. The analog in discrete-time was analyzed9h [

In Sectiorl we introduce a channel model which captureshdil&duplex constraint in a simple way. A capacity achigvin
coding strategy based on allocating the transmission arapti®n time slots of a node relying on the node’s previousteived
data is introduced in Sectignllll. The proposed strategyireg synchronization on the symbol level through a shaleckcIn
Sectior 1V, the performance of the coding strategy is arelyyielding several capacity results. In the case of a redsgade
with a single source, it will be shown that the coding strategcapacity achieving, i. e. approaches a rate equal to

Cm-1(¢) = max min H(Y;|X;) (1.1)
PXg..Xm 1<i<m
wherem — 1 indicates the number of relays in the cascade &ndndY; are the sent and received symbol of relayf the
cascade includes a source and a certain number of relaygheithown information, the strategy achieves the cut-semlo
given that the rates of the relay sources fall below indigidhresholds. Hence, a partial characterization of thendauy of
the capacity region follows. For cascades composed of amitanfiumber of half-duplex constrained relays, we show thet

capacity is given by
1++4g+1
O (q) = log, (+

Remarkably,C.. (1) is equal to the logarithm of the golden ratio. In Sectioh V tapacity results are applied to various
special cases. In particular, we transfofml(l.1) into a exneptimization program with linear objective and providenerical
solutions forC,,,_1(q) for different values ofn andg. In the case of a single relay channel with a source and a selasce,
an explicit expression of the cut-set bound and of the aahievsegment on the cut-set bound will be stated. We finathysh
that the proposed coding strategy is superior to networkngpth the case of the wireless, half-duplex constrainedebily
network.

) bits per use (1.2)

II. NETWORK MODEL

We consider a discrete memoryless relay cascade as depickég.[1. The underlying topology corresponds to a directed
path graph in which each node is labeled by a distinct numtzen ¥ = {0,...,m} with m > 0. The integerd) andm
belong to source and sink, respectively, while all remajrimtegersl to m — 1 represent half-duplex constrained relays, i. e.
relays which cannot transmit and receive at the same time.cbmnectivity within the network is described by the set of
edgest = {(i,i+1): 0 <4i<m—1}, i.e. the ordered paifi, i + 1) represents the communications link from nade node
¢ + 1. The output of theth node, which is the input to channgli + 1) is denoted as{; and takes values on the alphabet
X ={0,...,q—1}U{N} whereQ = {0,...,q — 1} denotes the-ary transmission alphabet while “N” is meant to signify a
channel use in which nodeis not transmitting. The input of thah node, which is the output of channgl 1, ) is denoted
asY;. Each messagey, sent via multiple hops from nodeto m at a transmission rat&y, is uniformly drawn from the
index setW, = {1, 2,..., 2”30} wheren is the block length of the coding scheme. Besides forwargimyiously received
information, an arbitrary but fixed number of relay node®aist as sources, i. e. each relag V, intends to transmit its
own messages at rate, ., from W, = {1,2, .. .,2"Ra<v)} to the destination, wher¥, summarizes all relays with their
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Fig. 1. A noiseless relay cascade (top) and the link modadtilated by means of feedback. If relays transmitting, the switch is in positioh otherwise
in position 2.

own messages and source nddeéNote that the bijectiony : V, — {0,...,|Vs| — 1} numbers the elements df; according
to the order in which they appear in the cascade. Again, tiesinission involves a multi-hop scheme since the infoomati
flow associated with a particular messagg..,, € Wy, has to pass all nodes between the corresponding (relayyesour
and the destination.

The output symbol of channél — 1,4) is given by

(X, fXi=N
Yi= { X, X, eQ (I1-1)

wherel < i < m. Our channel model[ (I111) captures the half-duplex constras follows. Assume relay is in transmission
mode, i.ex; € Q. Then relayi hears itself ¥; = X;) but cannot listen to relay— 1 or, equivalently, relay and relay; — 1 are
disconnected. However, if relayis not transmitting, i. ex; = N, it is able to listen to relay — 1 via a noise-fredq + 1)-ary
pipe (Y; = X;_1). The sink listens all the time, i. e, is always equal to N, and therefore its input is givenhy = X,,, ;.
Another interpretation of the channel model is that the outd relayi controls the position of a switch which is placed at
its input. If relay: is transmitting, the switch is in positioh otherwise it is in positior2 (see Fig[lL). Since a pair of nodes
is either perfectly connected or disconnect, we obtain ardenistic network withp(y1, ..., ym|zo, ..., 2m) € {0,1}.

Ill. A TIMING CODE FORLINE NETWORKS WITHMULTIPLE SOURCES
A. General Idea and Codebook Sizes

A coding strategy is introduced which relies on the obséwahat information can be represented not only by the vafue
code symbols but also by timing the transmission and reaesiots of the relay nodes. The strategy requires syncreitian
on the symbol level through a shared clock.

The encoding technique applied at the source and the retags ifollows. The source uses(a+ 1)-ary alphabett
for encoding without transmitting information in the tingirof the symbols while relay represents information by taking
n; transmission symbols per block from tlgeary transmission alphab& combined with allocating the; symbols to the
transmission block. Then, at magt—-! (nn:’ ) different sequences,,,_; of lengthn can be generated by relay — 1 where
g"™—' denotes the number of distinct sequences wherythgy symbols are located at fixed slots wh(le ) denotes the
number of possible slot allocations. Due to the half-dupderstraint, the effective codeword length of rebay— 2 reduces
to n — n,,—1. This results from the fact that relay — 1 cannot pay attention to relay. — 2 when relaym — 1 transmits and,
therefore, the number of lengthsequences producible by relay— 2 is at mostg™m-2 (" Tom = 1) The same argument holds

Mm —2

for each relay in the cascade. In general, relay{1,. — 1} is able to generate™ (” "”1) distinct sequences where
= 0 since the sink listens all the time. Finally, the effecueelgth of the source codewordis— n; which enables the
source to generatgy + 1)"~™ different sequences.
Next, the maximum size ofVp, Wi,..., W)y, |1 is given. Since the node with the smallest number of avalabbjuences
is obviously a bottleneck in the cascade from source to m#bn, we immediately obtain an upper bound|bv)| which is

IWolémin{(q+1)"”1 min q”*‘(n_ni“)}. (1.1)

1<i<m—1 n;

Both the source and the relay sources choose their messatiesrnly and independent of each other. Hence, relay source
is required to have}_[o‘(” |[W;| sequences available in order to represent an arbitraryf setieing messages together with its
own message. Consequently, for ale V; \ {0} we obtain

a(v)—1

Wawl < || TT Wil min g™ (n_"i“) (11.2)

. v<i<m-—1 n;
=0

where the minimization in[{IlTJ2) yields the bottlenecki. the least number of available sequences, between relmgeso
and the destination.



The transmission rat&,,,, of (relay) sourcev € V; is defined (in the standard way) &&,(,) = 1og|Wa(U)|/n. Assume
the cascade containg > 2 nodes with their own information. Further, assume @%:(gH R; > 0 whereV, >v >0, i.e.
relay sourcev has to forward external information. Then the externaliimfation, which flows from node — 1 to nodewv in
block b — 1, has to determine the slot allocation used by node block b, i.e. the transmission pattern selected by nods
not allowed to depend om,, . (b). Otherwise, node — 1 would not know when transmission in blodkis possible without
collision where collision means that at least one trandomsef two adjacent nodes occurs in the same time slot. Thngs, t
message sets have to satisfy forak V; \ {0}

n i a(v)-1
q, if> g  Ri>0
< v . .
|Wa(v)| = { qnv (n—:ll:Jrl)’ else (”l 3)

Note that the bottom constraint is already contained ind)!!

B. Example

We now illustrate the ideas introduced in the previous eadbly constructing a code for a relay cascade wits {0, .. ., 3}
andV; = {0, 2}. The transmission alphabet is binary, ige= 2, and the code parameters are- 4, n; = 1, no = 2. According
to (ILI) to (L3), the maximum size of the message setdg| = W, | = 4, which corresponds to a sum rate lobit per
use. Tablé]l depicts possible codebodksC;, C» for nodes0, 1 and2, respectively. The codewords in the first row are used
for representing source indéX the codewords in the second row for representing souraexihdand so forth. The last row
emphasizes that a codewaxd (i) € Ci, which is sent in block by nodek, represents a messagg(i — k) injected by the
source encoder in block— &k with k € {0,1,2}.

Let us first conside€,. Four out of six possible transmission patterns are showerevh binary transmission slot is marked
with B € {0,1}. Node 2 uses each transmission pattern for representing a partisource message, € W,. Node2's
messagav; € W, is encoded by the transmission symbols B. Each transmigsttern is identified with a unique color
r € {a,b,c,d}.

wo Co G Co
0 |[NONNe ONNNf ONNNg | ONNN (a,e) NONN (5,7) ONNN (c,e) NONN (d, f) NBNB «
1 || NINNe INNNF INNNg | INNN (a,e) NINN (b, f) INNN (c,e) NINN (d, f) BNBN b
2 || NNONe NNON f NONNg | NNON (a,g) NNNO (b,g) NNNO (c,g) NNON (d, g) NBBN c¢
3 || NNINe NNINF NINNg | NNIN (a,g) NNNI (b,g) NNNI (c,g) NNIN (d,q) BNNB d
wo (%) — x0(2) wo(t — 1) — x1(2) wo (i — 2) — x2(7)

TABLE Il
EXAMPLE CODEBOOKS FOR SOURCERELAY AND RELAY SOURCE.

Next,C; is considered. Since nodeknows the message, to be forwarded by nod2 as well as codeboak;, it can always
figure out both time slots; and¢. in which node2 listens. Letzy,, 214, € {0, 1, N} denote the symbols used by node ¢,
andt, for encoding a particular source message. The followingpimpwg — (z14, , Z1¢,) IS chosen0 — (0,N), 1 — (1,N),
2+— (N,0), 3 — (N,1). By allocating each of the four values 0f,,, , z1,,) to the listen slots of pattern € {a, b, ¢,d} and,
further, by requiring that nodé is quiet when node@ sends a binary symbol B, we obtain the codewordg,irwhich are
colored by(r, s). Color s € {e, f, g} labels the resulting transmission pattern<in Color » helps nodel to pick the new
codeword from the correct column, i.e. when ndadases a pattern with color nodel uses in the same transmission block
a codeword whose first color is equivalentrto

Finally, we considet,. In each transmission block, source nddean use three time slots, t2 andts for encoding since
nodel sends once per block. Lety,, zo,, zots € {0,1,N} denote the symbols used by no@dor encoding a particular
messagev, € W,. We use a similar mapping as before, iu@.— (zoy, , Zot,, Tots ) IS given by0 — (0,N,N), 1 — (1,N,N),

2 +— (N,0,N), 3 — (N, 1,N). Now, by allocating all possible values ¢fo;,, zo:,, o, ) t0 the listen slots of codewords in
C; whose second color is and, further, by requiring that nodeis quiet when nodd transmits, we obtain all codewords
in Cy which are colored withs. It should be noted that merely four froBY possible sequences are used in the mapping
wo — (Zot, , Tot,, Tots ). HENCE,Cy could be designed such that nodlés able to send27/4] additional messages to a sink
at nodel at a rate 0f0.6462 bit per use. In summary, the source encoder applies thewfioigpstrategy. Based on message
wop (i — 2), the first colorr of codewordx; (i) is determined. Subsequently, based on this informatiansthurce determines
the second colos of x; (i) by means ofwg(i — 1). This color tells nod# from which column the new codeword has to be
picked, namely from a column whose codewords are colorel sviThe precise choice within the picked column depends on
the new source message ().



C. Rate Region

We now turn towards gaining an achievable rate regirirom the expressions derived in section 1ll-A. The follogin
abbreviations are used for the portion of time in which relajstens or transmitsp; = n=(n — n;),0 < n; < n, and
pi = 1 —p; wherep; = px,(N), 1 <i<m.

The method of types [10] provides important tools for relgtcombinatorial expressions to information theoreticregpions.
An example very useful for the problem considered here i Tl 1.4.5]

n~!log (:) =H (p;) +o(l) forn— oo (11.4)

where H (p;) denotes the binary entropy function evaluategat n=1(n — n;). By (IL4) and R; = log |W;|/n, we obtain
from (IL.I) to (IL.3) for n — oo

Ry < min {pl log(q + 1), 1<£21£71 (ﬁi log g + piv1 H (Pipy) + 0(1))} (11.5)
a(v)
>R < min {pilogq+piri H (pip;y) +o(1)}, Vv eV, \{0} (111.6)
=0 -
a(v)—1
Rowy < pologg, if Y R; >0, WveV.\{0} (111.7)
=0

Further simplifications are possible by taking into accotinat optimal structure of the marginal distributiops, x,, . - -,
px,._,x,, as shown in TableETlll and1V. The zero probabilities in TaHléand [IV] result from following consideration.

Xy

X, 0 - g-1 N
0 0 0 p1/(g+1)
g—1 0o .. 0 :
N pi/qg -+ Pi1/qg p1/(g+1)
TABLE Il
OPTIMAL px,x, -
X;
0 - q-1 N
Xi 1
0 0 0 Di—1/4
g—1 0 0 Pi—1/4
N pifg -+ Pi/q  pi—DPi-1

TABLE IV
OPTIMAL px, ,x; FOR2 < i < m. NOTE THAT pp, = 1.

Assume relay is transmitting, i. ex; € Q. According to the underlying channel model, refaig not able to detect the input
of node: — 1 and, consequently, node- 1 should not transmit when noderansmits. Or, to be more precise, a channel input
pair (x;—1, ;) is negligible if it produces the same channel output gairy; 1) as another channel input pair and this with
the same probabilities. Hence only one non-zero entry nesrai each of the firsy columns of Tabl€Tll and 1V whereas the
assignment of the non-zero entry within a column is not uaiffom an information theoretic viewpoint. However, from an
engineering point of view, the assignment as depicted ih battles is reasonable since nade 1 should not transmit and,
therefore, waste transmit power when its input cannot bectied by nodeé. As a simple consequence of the zero probability
assignment, we have the relatipg, , x,(N, k) = px,x,,,(k,N) forall k € Q and1 < i <m — 1.

Let us now address the remaining values in Table Il @od IVstFconsider the time slots in which the first relay listens.
During this fraction of time, the source should make optimuse of the channel by encoding with uniformly distributegun
symbols. Hencepx, x, (k,N) = px,x, ({,N) for all k,I € X. By taking the relative frequency of the transmission sylsbo
into account, we havex,x, (k,N) = p1/(¢ + 1). Moreover, in order to achieve the maximum information floanfi relay
1 — 1 to node: or, likewise, from the fact that a permutation of the trarssign symbols:;_; € Q obviously yields the same
information flow, we can choosex, ,x,;(k,N) =px, ,x,(l,N) forall k,1 € Q. Due to the relative frequency of transmission
symbols within a block, we havex, ,x,(k,N) = p;_1/q for all k € Q where2 <i <m.



It is now fairly easy to check that the following equalitiesldh

H(Y1|X1) = pilog(g+1) (111.8)
H(Yi11|Xit1) = pilogg+piiH (pipiy), 1<i<m-—1. (1.9)

From [IIL5) to (TIL.7) together with[{II.B) and[(T[.B), & obtain

R = Co U =» (111.10)

whereR,, for n — oo is given bl

a(v)
R,= {R: kz_o Ry < Uﬁg?gmH(mXi)’ Yo € V,
- .11
a(v)—1 ( )
(SR : Raw) <pologgV > Ri=0, YveV,\{0}
=0

and Co(—) denotes the convex hull, i.e. takes timesharing into accdumte thatR. is aV,-dimensional rate vector witk®;
as itsith entry.

IV. CAPACITY RESULTS
In this section we shall investigate the optimality of theliog strategy.

Theoreml: A part C’ of the capacity regior€ of a noise-free relay cascade with,| sources andn — 1 half-duplex
constrained relays is given by

a(v)
I . 3 . .

= |J {R:D R< Lmin H(Y|X), YoeV, (IV.1)

PXq... Xm k=0 -
i.e. if the elements oR. satisfy
a(v)—1
R: Ro() <pologqVv Y Ri=0, VveV,\{0} (IV.2)
=0

then [IV1) yields the corresponding boundary point€dbr some joint distributiorpx,. . x,, -

Proof: We first show which subset of the network cuts is sufficienttfar considered line network. Recall that an upper

(e

bound on the sum ratgk(:”g Ry, is given by [12, chap. 14.10]

a(v)
> Ry < max min I(X,, Xgo; Vs, YVin| Xs), (IV.3)
=0 PXy...Xm SEM
where M = P({v+1,...,m —1}) and S¢ is the complement of in {v + 1,...,m — 1}. Since our network model is
deterministic, [TV.B) simplifies to
a(v)
Ry < in H(Ys, Y| Xs). V.4
kzzo ¢ max  min H(Ys, Y| Xs) (IV.4)
Now assume thaf is nonempty and let € {v+1,...,m— 1} denote the smallest integer # By the chain rule for entropy,
we can expand? (Ys, Y,,|Xs) as
H(Ys,Yin|Xs) = H(Yi|Xs)+ H(Ys\(iy|Xs,Yi) + H(Yn|Xs,Ys) (IV.5)
> H(Yi|Xs).

For each cutS with smallest entryi, a cut here calleds; can be found such thatf(Ys,,Y,,|Xs,) is less than or equal to
H(Ys, Y| Xs). Simply chooseS; := {i,...,m — 1}. This eliminates the second and third term on the rhg_of {I¥life to
the underlying channel model. Further, singe&C S; we haveH (Y;|Xs) > H(Y;|Xs,) and, thus, each non-empty céitwith

INote that the Landau symbols are neglected for the sake @flesinotation.



smallest element is dominated bysS; in terms of delivering a smaller entropy value. Finalfy= @ has to be considered in
(V2); S = 0 yield§] H(Y;,). To sum up,zg(:”o) Ry, is upper bounded by

(v)
> R, < max min H(Yj[Xs,) (IV.6)
k=0 PXy...Xm v+1<i<m

< max min H(Y;|X;) (IV.7)

PXy.. Xm v+1<i<m

where the last inequality follows from the fact that conmtiing reduces entropy. Therefore, the cut-set batiisl given by

a(v)
c= U {R Y Ri < H@%mﬂ(mxi), Yo € vs} . (IV.8)
PXqg...Xm k=0
Let C denote the capacity region, i€.C C. If we focus on rate vectorR whose elements satisfiy (IV.2), thé¥ defined as
R= U R (IV.9)
P:=PXqy...Xm
(i.e. R from (III0) and [IIT.11) without the timesharing pointsjualsC. Thus, R’ = C under constrain{{IV}2). [ |

Corollary 1: The capacity of a noise-free relay cascade with a singleceedestination pair and — 1 half-duplex constrained
relays is given by
Cm-1(¢g) = max min H(Y;|X;) (IV.10)

PXy...xXm 1<i<m

whereq equals the number of transmission symbols.
The capacity of a single source line network with an infinikenber of half-duplex constrained relays is stated in Thad@e

Theoren2: Form — oo, i. €. for an unbounded number of relays, aniansmission symbols, the capacity of the noise-free
and half-duplex constrained relay cascade with a singlecsedestination pair is given by

(1+\/W
B (i e S
2

Coo(q) = log > bits per use (IV.11)

Proof: Theoren{® is proved in the Appendix. [ ]

Remarks:
i) In order to achieve®.(q) it follows from equation[(A.b) that each relay has to trartsmpercentage of the time where

5 <1 _ \/ﬁ) , (IV.12)

i) Cx(1) =0.6942 bit per use is equal to the logarithm of tigelden ratia Also remarkable(C',(2) is exactlyl bit per
use.

iii) The maximum achievable rates with time-sharing andistmo timing, are given by, (¢) = log, /¢ + 1 bits per use.
For ¢ = 1,2 we have0.5 and 0.7925 b/u, respectively. Sinc€',,(¢) is obviously a lower bound on the capacity of
each finite length cascade, a comparison of the time-shaateg withC», (1) and C(2) shows that time-sharing falls
considerably short of the theoretical achievability foratintransmission alphabets. For very large transmissiphaets
the gap between the rates due to time-sharing and timingmesmegligible, i.elim,_.. (Coc(q) — Rts(q)) = 0.

V. NUMERICAL EXAMPLES

In this section we shall provide numerical capacity resfatsvarious scenarios by means of Theofgdm 1 and Cordllarn 1. |
particular, we show how to obtain the capacity of a half-éxptonstrained relay cascade with one source-destinaiorfqy
an arbitrary number of relays. Further, in case of a singyreascade with source and relay source, an explicit exjonmes
of the region due to Theorelm 1 is derived. Throughout theiggcthe base of the logarithm is assumed to be two.

°Note thatH (Yy) = H (Yo |Xm).
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Fig. 2. Graphical solution of optimization problefn (V.1).

A. One Source

Let us first consider a relay cascade with= {0, 1,2}, Vs = {0} andg = 2, i. e. source nodé intends to communicate
with sink node2 via the half-duplex constrained reldy By Corollary[1 and the optimum input pmf stated in Tablé Vil
have

C1(2) = max min{px,(N)log,3, H(X1)}. (V.1)
PXogX1Xo
Problem [[V.1) exhibits a single degree of freedom. Sincentlaximum does not occur in the maximum of one of the two
(concave) functions, the problem is readily solved by figdapx, (N) which satisfiepx, (N)log, 3 = H(X;) (see Fig[R).
The optimum value fopx, (N) equals0.7185 which yields

C1(2) = 1.1389 bits per use (V.2)

Remarks:

i) Assume the relay does not have the capability to decidelveinéhe source has transmitted or not, ipg, x, (N, N) = 0.
In this case an identical approach shows that the capaditsl®0.8295 bit per use, which is still greater than the time-
sharing rate ofog, v/3 bit per use.

iy For ¢ =1, the outlined procedure yields; (1) = 0.7729 bit per use achieved hyx, (N) = 0.7729. The capacity value of
this specific case has also been obtained_in [13]. Thereinfatus was not on half-duplex constrained transmission but
on finding the capacity of certain classes of determinigiay channels. I |5], the same channel model was considered
and the author noticed that the capacity is greater thaubit per use though a half-duplex constrained relay is matlele
A simple coding scheme was outlined which approachysbit per use.

In order to compute”,,,_1(q) for m > 2, we transform[(IV.ID) into a convex program with linear chstction H (Y7|X;)
and convex equality constrainf$(Y; | X;) — H(Y;41|X;1) = 0 for all i € {1,...,m — 1}8. The resulting program reads as

maximize  pjlog(q+1)

subject to i log(g + 1) + pilog —— + (piy1 — ) log PP = ¢ (V:3)
qpi+1 Pi+1
i+1
1-> p; <0
j=i
pi € [O, 1]

By adopting a standard algorithm for constrained optini@aproblems, the capacit¢',,—1(¢) was computed for various
values ofm. A brief summary is given in TablelV.

3See proof in the Appendix why the constraints are satisfigt wguality.



m [ Coi() [ Coi(® ]
2 0.7729 b/u | 1.1389 b/u
3
4

0.7324 b/u | 1.0665 b/u
0.7173 b/u | 1.0400 b/u
5 0.7099 b/u | 1.0271 b/u
11 0.6981 b/u | 1.0066 b/u
21 0.6954 b/u | 1.0020 b/u
41 0.6946 b/u | 1.0006 b/u
101 0.6943 b/u | 1.0001 b/u
=) 0.6942 blu 1 blu

[ TS | 05bu_[ 0.7925blu
TABLE V

CAPACITY RESULTS FOR VARIOUS CASCADES COMPOSED O — 1 HALF-DUPLEX CONSTRAINED RELAYS THE TRANSMISSION ALPHABET IS EITHER
UNARY OR BINARY. ROW “TS” SHOWS THE CORRESPONDING TIMESHARING RATES.

B. Two Sources

The considered relay network is characterizedlby- {0, 1,2}, V, = {0,1} and¢ = 2. By Theoren(lL, a parf’ of the
capacity region is given

Ry < H(Xo|X1) (V.4)
Ro+ R < H(X)) (V.5)
Ry < p1, ifRy>0 (V.6)

for somepx, x,. We will first derive an explicit expression for the boundafyC which is characterized by {¥.4) an@(V.5).
Subsequently}¢’ andR are given.

Two cases have to be considered depending on whether anuoptinput pmf for the source or the relay source is used.
An optimum input pmf for the relay source is shown in Tdblé Nlyields a maximum sum raté (X) of log, 3 bits per use
for all valid y (i.e.y € [0,1/6]). Wheny varies from0 to 1/6 all points onR; = log, 3 — Ry for 0 < Ry < %Iogz3 result.

X, 0 1 N
0 0 0 v
1 0 0 y
N /3 1/3 1/3-2y
TABLE VI

OPTIMAL RELAY PXxox,; WHICH YIELDS A SUM RATE OFlog, 3 BITS PER USE

It remains to focus on the interv%llogrﬁ < Ry < 1.1389 bits per use. Under consideration of the optimum input pmf fo
source nodé) (Table[Ill) and [TIL.8), we can expresB; = H(X1) — Ry as shown in the second line ¢f(V.7). Hence, the
boundary ofC is given by

R logy 3 — R, 0< Ry < %10g23 V.7)
L H(ﬁ§—3)+(1—1§—3) — Ry, Llogy3< Ry < 1.1389 '

In order to determin€’, (\.g) has to be taken into account. F&g > 0 (\V.6) yields an upper bound oR; or, equivalently,
a lower bound onRy. This lower bound is given by the right hand side of

H(Xo|X1) 2 H(X1) — p1 (V.8)

SinceH (Xy|X1) is linear inp; while H(X;)—p; is concave imp,, the smallest value for the lower bound follows by finding a
p1 which achieves equality i (M.8). We obtain = 0.6091 what givesR > 0.9654 and R; < 0.3909 bit per use. IfRq = 0,
(\L6) is not valid anymore and we hav® < log, 3. Thus, the boundary @’ is given by [V.T) for0.9654 < Ry < 1.1389 bits
per use together with the rate vecRr= (0, log, 3) bits per useR follows fromC’ by taking the convex hull. In particular, all
points on the connecting line betweéh log, 3) and (0.9654,0.3909) bits per use are added. The three regions are depicted
in Fig.[3.

The derivation reveals the following interesting fact. Ewehen the source transmits at a rate beyond the time-shaiag
of log, v/3 bit per use, the relay is still able to send its own informatit a non-zero rate.

4H(X1) is not considered on the right hand side [0 1V.4) since itaalyeappears i {V5)
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R; (bits per use)

0 0.2 0.4 0.6 0.8 1 1.2 1.4
Ry (bits per use)

Fig. 3. C, ¢’ and R are depicted. The points marked with a star and a circle spored to(0, log, 3) and (0.9654, 0.3909) bits per useC equals the
region bounded by the solid curvé! is the region bounded by the dotted line and the fraction efsblid curve to the right 0f0.9654, 0.3909) together
with the isolated point0, log, 3). R is the union ofC’ and the region bounded by the dash dotted line.

V1. EXTENSION TO OTHERNETWORKS

Relay cascades are fundamental building blocks in commatioit networks. Therefore, the results derived in the jonevi
sections may be instrumental in order to determine the dégpat half-duplex constrained networks with more elaberat
topologies.

A. Wireless Trees

Consider, for instance, the tree structured network degiat Fig.[4. The root (nodé) wants to multicast information to
all leaves (nodeg to 8) via four half-duplex constrained relays. We assume nbise-bit pipes (i. eq = 1) and broadcast
behavior at nodes with more than one outgoing arrow. Theicaglt capacity is limited by the capacity of the longest path
in the tree which goes from nodeto node7 or 8. Hence, the multicast capacity in the considered exampégigl to the
capacity of a cascade containing two intermediate relayesod e.C2(1) = 0.7324 bit per use (see Table]V).

1

we
ot

Fig. 4. A wireless binary tree. The multicast capacity isado C2(1) = 0.7324 bit per use.

B. Wireless Butterfly

Another example for a wireless butterfly networkl[14] is shaw Fig.[3. Nodesl and2 intend to multicast information to
sink nodest and5 via both a direct link and a half-duplex constrained relaga®. Like before, broadcast transmission and
bit pipes are assumed. All nodes with two incoming arrowsaletaccording to a collision model, i. e. received informiis
erased if there was a transmission on both incoming linksmBgns of network coding (NC2,/3 bit per use are achievable at
the sink nodes, as is illustrated in Fig. 5 (a). The (wellikknpstrategy is to send in the first time slot a binary symibolia
broadcast: to nodes3 and4, in the second time slot a binary symhal via broadcasb to nodes3 and5 and, subsequently,
in the third time slotu; @ uy via broadcast to both sinks. However, under the usage of timing, at |€aB129 bit per
use is achievable as is illustrated in Fig. 5 (b). This restiom the fact that information originating from nodecan be
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sent by means of timing at a rate 6f (1) = 0.7729 bit per use (see Table]V) concurrently on path$l, 3),3,(3,4),4
and1,(1,3),3,(3,5),5. Equivalently, information originating from nodecan also be sent by means of timing at a rate of
C1(1) = 0.7729 bit per use concurrently on patl?s(2,3),3,(3,4),4 and 2, (2, 3), 3, (3,5),5. Hence, time-sharing of both
source nodes yields a multicast rate®7729 bit per use. It should be noted that the direct lifks4) and (2,5) are not
necessary in order to achiev® = R, = 0.7729 bit per use, which suggests that the multicast capacity és darger.

1 2 1 2 1 2

® ® L ®

7 7

Qa / b | / |

T T

3y 3 3,

[ ] | [ ] [ ) |

C | BN N, |

I ;7 N I

| 7 \ |

v Qv v 4 » v

[ ] [ J [ ] [ J [ ] [ J

4 5 4 5 4 5
(a) With NC (b) With Timing

Fig. 5. The wireless binary butterfly network. With networbding 2/3 bit per use are achievable. Timing yield§ (1) = 0.7729 bit per use.

VII. CONCLUSION

The half-duplex constraint is a property common to many ke networks. In order to overcome the half-duplex coimgtra
practical transmission protocols deterministically ssfilie time of each network node into transmission and regepgeriods.
However, this is not optimum from an information theoretigirg of view, as is demonstrated in this paper by means of
noise-free relay cascades of various lengths with one otipleilsources. We show that significant rate gains are plessib
when information is represented by an information-depahden-deterministic allocation of the transmission aadeption
slots of the relays. Moreover, we provide a coding strateiclvrealizes this idea and, based on the asymptotic behatio
the strategy, we establish capacity expressions for thifesreht scenarios. These results may be instrumental tividg the
capacity of half-duplex constrained networks with a mowelate topology.

APPENDIX

Proof of Theorem2:1t is first shown that|px, ,x, — Px,x:11||ec — 0 if m — oo for all 2 <i < m — 1. The capacity
series(C,,(q))men is bounded (e. g. b§ andC;(q)) and monotonically decreasing what follows from the faetttbach new
relay causes an additional constraint in the corresponclimgex program[(VI3). Hencé(,, (q))men iS convergent, i. e. for
everye > 0 there exists anV € N such that

|Cm(Q) - Cm+1(q)| <e€ (Al)

forall m > N.

Further, the capacity achieving input pmf, . x,, in (M10) yields H(Y;|X;) = H(Y;|X,) for all 1 <4, j < m. Assume
this is wrong, i. e. there exist indices;j such thatH (Y;|X;) > H(Y;|X;). However,H(Y;|X;), i.e. the transmission rate
from nodei — 1 to nodei, can be decreased without forcing any of the remaining ntaleecrease their transmission rates.
Simply reduce the fraction of a block used by nade1 for encoding until the desired rate is achieved and fill thraaiming
slots of the block with quiet symbols N.

Hence, assuming the capacity achieving input pmf, we havenkianceC,,(q) = H(X,,) and Cp,1+1(q) = H(Xm+1).
Then, by [A1)

|H(Xm) - H(Xm+l)| <e€ (A2)

for all m > N where

1 —
H(X}y) = —prlogpr — (1 — px) log qpk, k=m,m+1 (A.3)

(see Fig[R for a plot off (X},) for ¢ = 2). Two cases can appear [n_(A.2) wheapproaches zerg,,, andp,,; are arbitrarily
close to a common point or p,, andp,,+1 are arbitrarily close to two distinct points, p”.

We note that if the second case occursy+ p” is not allowed to be smaller than one since otherwise negativbability
masses would result (see Tablé 1V). Howeyés; p” is always smaller than one what can be seen as follows. R, that the
maximum ofH (X}) is at1/(g+1). Hence, without restriction we can assume fifat 0.5 andp” > 0.5 (otherwisep’ +p” < 1
a priori). Since the first derivative off (X}) is point symmetric with respect t.5, — logq), we have0.5 —p’ > p” — 0.5
what yieldsp’ + p” < 1.
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Hence, only the first case is valid, i. @,, — pm+1| — 0 asm — oo. But this implies||px,_, x, — px, x.,|lcc — 0 for all
ie€{2,...,m—1} and, thus|H(X;_1|X;) — H(X,;-1|X;)| — 0forall 2<i,j <m—1asm — oo.
In the final step of the proof, we show that the capacity(q) is equal to the maximum ip of

1-—- 2p—1
H(Xi-1|X:) = (1 —p)log —2 — (2p—1)log T—. (A.4)
qp p
wherei > 1. Elementary calculus yields
1+ /4 1
max H(Xi_1|X;) = log (%) (A.5)
p

achieved at ) )
=1 — . A.6
P 2<+,/4q+1) (A.6)

It remains to show thal (X,|X;) evaluated ap*, i. e.

1 1
H(XolX1)|pr == (1+ ——=]1 1 A7
ol =5 (14— ) oata + 1) (A7)
is always greater or equal to_(A.5). This is satisfied if
(1t V
(q+1) (=) >1tvigtl 24”1 (A.8)
or, more strictly,
- 1+2yg+1
(q+1) ( Wﬁ)z; 2‘” . (A.9)
Using the substitution )
= —— A.10
BN == (A.10)
in (A9) yields i
(29)77>q+1. (A.11)

(A1) is satisfied for allj € [0,0.2] what can be seen as follows. First note that (A.11) is sadistie § = 0 and g = 0.2.
Since(2G)~7 is concave due to a non-positive second derivative in theidered domain[ (A1) is valid for afl € [0,0.2].
Thus, [A38) is true for ally > 5. The validity of [A.8) for the remaining € {1,...,5} can be easily checked. [ |
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