
Sub-Exponential Algorithms for
0/1 Knapsack and Bin Packing

Thomas E. O’Neil
Computer Science Department

University of North Dakota
Grand Forks, ND, USA 58202-9015

Abstract - This paper presents simple algorithms for 0/1
Knapsack and Bin Packing with a fixed number of bins that
achieve time complexity p n⋅2Ox where x is the total
bit length of a list of sizes for n objects. The algorithms are
adaptations of a method that achieves a similar complexity
for the Partition and Subset Sum problems. The method is
shown to be general enough to be applied to other
optimization or decision problem based on a list of numeric
sizes or weights. This establishes that 0/1 Knapsack and
Bin Packing have sub-exponential time complexity using
input length as the complexity parameter. It also supports
the expectation that all NP-complete problems with
pseudo-polynomial time algorithms can be solved
deterministically in sub-exponential time.

Keywords: 0/1 Knapsack, dynamic programming, Bin
Packing, sub-exponential time, NP-complete problems.

1 Introduction

The comparative complexity of problems within the
class NP-Complete has been a recurring theme in computer
science research since the problems were defined and
cataloged in the early years of the discipline [2]. In 1990,
Stearns and Hunt [7] classified a problem to have power
index i if the fastest algorithm that solves it requires

2O ni steps. Assuming that Satisfiability has power
index 1, they argued that the Clique and Partition problems
have power index one-half. Their analysis is based on two
algorithms with time complexity p n⋅2Ox , where x is
the length in bits of the input representations and p(n) is a
polynomial function of the number of graph edges (for
Clique) or the number of integers in the input set (for
Partition). These results were interpreted to provide strong
evidence that Clique and Partition were easier problems
than Satisfiability and most other NP-Complete problems.

In a subsequent study, Impagliazzo, Paturi, and Zane
[3] presented another framework for comparison of NP-
complete problems. Instead of adopting the power index
terminology of Stearns and Hunt, they categorized problems
based on weakly exponential (2n1 

) or strongly

exponential (2n) lower bounds (assuming that
Satisfiability will one day be proven to be strongly
exponential) and sub-exponential (2o n ) upper bounds.
To avoid inconsistencies related to the characterization of
input length, they defined a family of reductions (the Sub-
Exponential Reduction Family) that would allow the
complexity measure to be parameterized. This framework
tolerated polynomial differences in the lengths of problem
instances, and there was no complexity distinction among
Clique, Independent Set, Vertex Cover or k-Sat. These
conclusions are not consistent with those of Stearns and
Hunt, where both Clique and Partition were easier than
Satisfiability. It is clear that representations and complexity
measures for problem instances play a critical role in
complexity analysis.

In classical complexity theory, the complexity measure
is the length of the input string. This parameter is formally
determined, simply by counting the bits in the string. The
advantage of using the formal measure is that it requires no
semantic interpretation of the input string, and problems
with vastly different semantics can by grouped together in
formal complexity classes. Within the class NP-complete,
we find that for many problems, the use of simple semantic
complexity measures will not clash with detailed analysis
based on the formal measure. This is generally true of
strong NP-complete problems, where the objects in the
input representing variables or nodes or set elements can be
numbered (in binary). The numbers are just labels used for
identification of the objects. There are other problems in
the class, however, where the input contains a list of weights
or values, and analysis based on semantic measures such as
the number of objects versus the sum (or maximum) of the
values can give radically different results: exponential time
with one measure, polynomial time with the other. This
collection of problems includes Partition, Subset Sum, 0/1
Knapsack, and Bin Packing, which we will refer to as the
Subset Sum family. The safest approach to analysis of these
problems is to use the formal complexity measure, which
incorporates both relevant semantic parameters, and in this
paper we show that the Subset Sum family of pseudo-
polynomial-time problems is 2O  x (which is sub-
exponential).

Stearns and Hunt [7] were apparently the first to
demonstrate that an algorithm for the Partition problem
exhibits sub-exponential time. The significance of this
result was probably obscured by the claim in the same paper
that the Clique problem is also sub-exponential, while its
dual problem Independent Set remains strongly exponential.
This apparent anomaly is a representation-dependent
distinction, and it disappears when a symmetric
representation for the problem instance is used [5]. The
complexity distinction between Partition and Satisfiability,
however, appears to have stronger credibility. In [6] it is
shown that the sub-exponential upper bound for Partition is
also valid for Subset Sum. The algorithm for Subset Sum is
a variant of dynamic programming that is much simpler and
more general than the backtracking/dynamic programming
hybrid that Stearns and Hunt designed for Partition. In this
paper, the sub-exponential Subset Sum algorithm is adapted
to 0/1 Knapsack and Bin Packing with a fixed number of
bins, establishing that these problems are also sub-
exponential with respect to the formal complexity measure
(total bit-length of input, denoted x). We also abstract from
the previous methods a lemma that identifies the property of
ordered sets of integers that is exploited to achieve sub-
exponential time.

More recent complexity studies in the research
literature for problems in the Subset Sum family do not
typically use the input length as the complexity parameter.
The current upper bound for both Subset Sum and 0/1
Knapsack is apparently 2O n/2  when the number of
objects in the list is used as the complexity measure [8]. A
lower bound of 2 n/2/n  for Knapsack has also been
demonstrated in [1]. The lower bound applies only to
algorithms within a model defined generally enough to
include most backtracking and dynamic programming
approaches. The sub-exponential bounds derived here
using the formal complexity measure complement rather
than supersede the strongly exponential bounds derived
using the number of objects in the input list (denoted n) as
the complexity parameter.

2 Generalized Dynamic Programming

The Stearns and Hunt algorithm for Partition [7]
combines backtracking with dynamic programming. Such
hybrid approaches had been previously described in
operations research literature (e.g. [4]). The input set is
ordered and divided into a denser and a sparser subset.
Backtracking is employed on the sparse subset, while
dynamic programming is used for the dense subset. The
results are combined to achieve time complexity 2O  x ,
where x is the total length in bits of the input.

In this paper we employ a simpler algorithm that
achieves the same goal. The approach was first developed
for Subset Sum and Partition [6]. Similar to conventional

dynamic programming, it represents a breadth-first
enumeration of partial solutions. The problem instance is a
list of objects, each of which has a size. The algorithm
maintains a pool of partial solutions as it processes each
object. The list of objects is ordered by size, and the largest
objects are processed first. In contrast with conventional
dynamic programming, the pool of solutions is dynamically
allocated (hence the acronym DDP, for dynamic dynamic
programming). It first grows and then shrinks as more
objects are processed. The entire pool of solutions is
traversed for each object, updating each solution by
possibly subtracting the current object's size from the
solution's remaining capacity. Each solution is also
evaluated relative to the sum of sizes of the objects yet to be
processed. The sum of remaining sizes can be used to
prune the pool of solutions depending on problem
semantics. This pruning relative to the sum of sizes of the
unprocessed objects places a sub-exponential upper bound
on the number of partial solutions in the pool.

The time analysis of the DDP method relies on a simple
lemma (abstracted from the analysis in [6]) that allows us to
bound the kth value in an ordered list as a function of its
position in the list and the total bit-length of the entire list
(see Lemma 1 below). Bounding the kth value allows us to
bound the sum of the first k values as well. This, in turn,
leads to a bound on the length of the pool of partial
solutions in DDP algorithms.

Lemma 1: Let L represent a list of n positive natural
numbers in non-decreasing order, let L[k] represent the kth

number in the list, let bk be the bit length of the kth number,
and let b be total number of bits in the entire list:

b =∑
i=1

n

bi =∑
i=1

n

1⌊ lg L[i]⌋ . Then L[k] < 2(b−k+1)/(n−k+1)+1 .

Proof: An upper bound on the value of L[k] for any list
with total bit length b is obtained by reserving as few bits as
possible for the smaller numbers in the list and as many bits
as possible for L[k] and the numbers that follow it. This is
accomplished by setting L[1] through L[k-1] to 1 and
distributing the remaining bits equally among the higher n─
k + 1 numbers. In that case, L[k] has no more than (b−k+1)/
(n−k+1) bits, establishing L[k] < 2(b−k+1)/(n−k+1)+1 .

3 The Knapsack Problem

The 0/1 Knapsack problem is defined as follows: given
a set of n objects S with sizes s[1..n] and values v[1..n], find
a subset of objects with the highest value whose size is less
than or equal to C, the capacity of the knapsack [2]. The
problem can also be expressed as a decision problem, where
we determine the existence of a subset whose value is
greater than or equal to a target value V.

3.1 The Knapsack algorithm

In adapting the DDP method to the Knapsack problem,
we can iterate either the size or the value array as the
control for the outer loop. Here we use the size array. The
algorithm keeps a pool of (capacity, value) pairs
representing partially filled knapsacks, initially containing
an empty sack represented as (C, 0), where C is the capacity
of the empty sack. For each object in S and for each sack
currently in the pool, we add a new sack representing the
current sack plus the current object. This is accomplished
by subtracting the object size from the sack's remaining
capacity and adding the object value to the sack's value.

Pseudo-code for the Knapsack algorithm is shown in
Figure 1. Lines 1-3 initialize the global Pool, the bestval
variable, and variables representing the cumulative size and
value of the remaining objects. There is one iteration of the
outer for loop (lines 4-17) for each object in the set S = {y1,
y2, ..., yn}. The size array s, in which s[i] is the size of

object yi, is assumed to be in non-decreasing order, and the
largest numbers are processed first, so object yn–i+1 is
processed during the ith iteration. The pool of partially
filled sacks is updated by the inner for loop (lines 7-15).
For each sack in the pool, s[n–i+1] is subtracted from its
capacity and v[n–i+1] is added to its value, placing the new
(capacity, value) on a second ordered sack list. The pool
and the new sack list are merged in the last step of the outer
loop (line 17). The best value for a filled sack is updated
when appropriate in lines 11 and 14, whenever an updated
sack is created. At completion of the outer loop, the best
value is returned. The algorithm does not return the
contents of the sack with the best value, but this could be
accomplished by adding a reference to a subset object to the
(capacity, value) pairs in the pool, increasing the time
complexity by no more than a factor of n.

The inner loop has two conditions that moderate the
length of the pool. Lines 8 and 9 skip sacks that can't hold
the current object. Also, in lines 10-12, sacks with enough
capacity to hold all remaining objects are removed from the
pool after updating the bestval variable. If all remaining
objects will fit in a sack, there is no process them one-by-
one.

The outer loop also has logic to control the size of the
pool. The last step in the outer loop is a sequential merge
operation that adds the new partially filled sacks to the pool.
If two sacks with the same capacity are encountered during
the merge, only the sack with the higher value is added to
the pool. Thus the capacities of all sacks in the pool are
unique.

3.2 Time Analysis of Knapsack

The time analysis closely follows the method used for
the Subset Sum algorithm in [6]. Let S = {y1, y2, ..., yn} and
assume the sizes are stored in non-decreasing order (s[i] ≤
s[i+1]). The total number of steps is determined by the size
of Pool. With each iteration of the outer for loop, Pool is
traversed and possibly extended (requiring 2 passes – one
by the inner for loop and the other by the sequential merge
step). The total amount of work is closely estimated (within
a factor of 2) by

∑
i=1

n

∣Pool i ∣ (1)

where ∣Pool i ∣ is the length of Pool at the beginning of
outer loop iteration i.

Since the merge operation eliminates duplication of
capacities, we can describe length of Pool(i) as at most
MaxC(i), the largest capacity of any sack on the list at the
beginning of iteration i. The list is actually smaller than
this, since all the capacities between zero and the maximum
are not present. We also know that the length of the list
can, at most, double with each loop iteration, so regardless

Figure 1. The Knapsack algorithm.

//* Given a set of n objects whose sizes are specified
in an array s[1..n] in non-decreasing order and whose
values are stored in an array v[1..n], find the highest
valued subset whose total size is less than or equal to
capacity C. */

public int Knapsack()
 1) bestval ← 0;

 2) sizeofrest ← ∑
i=1

n

s[i] ; valueofrest ← ∑
i=1

n

v[i] ;

 3) Pool ← {(C, 0)};
 4) for i ← 1 to n
 5) size ← s[n – i +1]; value ← v[n – i +1];
 6) NewList ← { };
 7) for each sack in Pool
 8) if (sack.capacity < size)
 9) continue;
10) else if (sack.capacity > sizeofrest)
11) bestval ← max (bestval,
 sack.value + valueofrest)
12) remove sack from Pool;
13) else
14) bestval ← max (bestval,
 sack.value + value);
15) NewList.append ((sack.capacity – size,
 sack.value + value));
 end for
16) sizeofrest ← sizeofrest – size;
 valueofrest ← valueofrest – value;
17) Pool ← merge(Pool, NewList);
 end for
18) return bestval;

of the maximum value in the list, its length cannot exceed 2i.
This gives us

∣Pool i ∣ ≤ min2i , MaxC i . (2)

The length of Pool will grow rapidly and later possibly
shrink as i approaches n. Our goal is to find an upper
bound for MaxC(i). Initially MaxC(1) = C, which is the
capacity of the empty sack. Only smaller-capacity sacks are
added to the list, and eventually the larger-capacity sacks
are removed when the condition in line 10 becomes true, so

 MaxC i ≤ ∑
j=1

n−i1

s [j] ≤ n−i1 ⋅s[n−i1]. (3)

Bounding MaxC(i) thus reduces to finding an upper
bound for s[n─ i + 1], and Lemma 1 is invoked for this
purpose. To complete the analysis, we bound the step
counts as a function of b, the total bit length of the size
array s. We consider two cases.

Case 1. n ≤ b . Here we have

 ∑
i=1

n

∣Pool i ∣≤∑
i=1

n

min2i , MaxC i≤ n⋅2b . (4)

Case 2. n > b . In this case we split the summation at
i = b .

 ∑
i=1

n

∣Pool i ∣≤∑
i=1

n

min2i , MaxC i (5)

≤ ∑
i=1

b−1

min2i , MaxC i ∑
i=b

n

min2i ,MaxC i  (6)

≤ b−1 ⋅2b−1  ∑
i=b

n

min2i , MaxC i (7)

≤ b−1 ⋅2b−1  n−b1⋅MaxC b  (8)

≤ b−1 ⋅2b−1  n−b1⋅ ∑
j=1

n−b1

s[j] . (9)

≤ b−1 ⋅2b−1  n−b12⋅s[n−b1] (10)

At this point, we employ Lemma 1 to compute the bound
for s[k] where k=n−b1 , and we continue by
replacing s [n−b1] with 2b1 :

 b−1 ⋅2b−1  n−b12⋅2b1 (11)
 bn12⋅2b1 (12)
 2n26 n2⋅2b . (13)

This establishes that the time complexity of Knapsack
is O  p n2b for a polynomial function p(n). The
argument b is the total bit length of the list of sizes. The
entire input for the problem also includes the capacity C and
a list of n values. We can't make any specific assumptions
about the relative magnitudes of the sizes and values, but we
are certain that if x is the total input length, then b will be
smaller than x, and the O  p n2b step count will also
be O  p n2x.

4 The Bin Packing Problem

The Bin Packing problem is defined as follows: given
a set of n objects S with sizes s[1..n], determine whether the
objects will fit into a fixed number of k bins, each with a
capacity of B. The problem can also be expressed as an
optimization problem in which the smallest B is determined
[2]. When B is equal to the sum of all sizes divided by k,
the problem represents a generalization of the Partition
problem.

4.1 The BinPack Algorithm

When we adapt the DDP strategy to Bin Packing, we
find a few significant differences from the Knapsack
version. The BinPack algorithm is shown in Figure 2. The
pool of partial solutions must be a list of k-tuples, where
each component of a tuple is the remaining capacity of one
of the bins (see line 2). Also, we are not searching for a
subset. All the objects in the original set S must be included
in the solution. This has implications for the logic in the
nested loops of the algorithm. Any partial solution in the
inner loop that cannot accommodate the next object can be

Figure 2. The BinPack algorithm.

/* Given a set of n objects whose sizes are specified
in an array s[1..n] in non-decreasing order, determine
whether all objects can be stored in k bins, each with
capacity B.
*/

public boolean BinPack()

 1) sizeofrest = ∑
i=1

n

s[i] ;

 2) Pool = {(B, B, …, B)};
 3) for i ← 1 to n
 4) nextsize ← s[n – i +1];
 5) NewList ← { };
 6) for each bintuple in Pool
 7) if (bintuple.capacity[1] < nextsize)
 8) continue;
 9) else if (bintuple.capacity[1] > sizeofrest)
10) return true;
11) else
12) for j ← 1 to k
13) newtuple ← update(bintuple, j, nextsize);
14) if (newtuple != null)
15) NewList.insert (newtuple);
 end for
 end for
16) Pool ← NewList;
17) sizeofrest ← sizeofrest – nextsize;
 end for
18) return false;

discarded (lines 7-8), and the pool of updated partial
solutions created by the inner loop replaces the pool from
the previous iteration of the outer loop (rather than merging
with the previous pool; see line 16). We also find that the
test enforcing the upper limit on the size of the pool
(relative to the sum of the remaining object sizes) triggers
early termination (lines 9-10). This version of the algorithm
does not specify what objects are placed in what bins, but
this information could be included by associating a
reference to a size n object to each partial solution. This
would increase the time complexity by no more than a
factor of n.

4.2 Time Analysis of BinPack

The time analysis of BinPack follows the same general
logic as the analysis for Knapsack. The major difference is
the growth rate of the pool of partial solutions. While the
pool can double in length with each iteration of the inner
loop in Knapsack, it can increase in length by a factor of k
in BinPack. Another significant difference is the cost of
suppressing duplicates in the pool of partial solutions. We
make the conservative assumption that the insertion of an
updated partial solution in the pool takes linear time in the
current length of the pool. We demonstrate below that in
spite of these significant differences, the time complexity of
the algorithm remains sub-exponential.

To proceed with the analysis, let S = {y1, y2, ..., yn}, and
assume the sizes are stored in non-decreasing order (s[i] ≤
s[i+1]). As with Knapsack, The total number of steps is
closely related to the size of Pool. With each iteration of
the outer for loop, Pool is traversed and replaced with an
updated version (called NewList). Each insertion into
NewList requires linear time. The total amount of work is
therefore estimated as

 ∑
i=1

n

∣Pool i ∣2 (14)

where ∣Pool i ∣ is the length of Pool at the beginning of
outer loop iteration i.

Since the insert operation of line 15 eliminates
duplication of capacities, we can describe length of Pool(i)
as at most MaxC(i)k. If MaxC(i) is the largest capacity of
any bin in any tuple on the list at the beginning of iteration
i, the number of distinct tuples cannot exceed this quantity
raised to the power k. This grossly overestimates the
number of tuples, since the capacities within each tuple are
in non-increasing order and since all the tuples have the
same sum. It is an interesting counting problem to
determine a tight upper bound for the number of tuples, but
the loose bound is sufficient to establish the desired
complexity result. We also know that the length of the list
can, at most, grow by a factor of k with each loop iteration,
so regardless of the maximum value in the list, its length
cannot exceed ki. This gives us

∣Pool i ∣ ≤ mink i , MaxC i k . (15)

Lines 9 and 10 assure us that the algorithm terminates if
MaxC(i) exceeds the sum of the remaining object sizes, so
we have

 MaxC i ≤ ∑
j=1

n−i1

s [j] ≤ n−i1 ⋅s[n−i1]. (16)
To complete the analysis, we bound the step counts as a

function of x, the total bit length of the size array s. As
before, we consider two cases.

Case 1. n ≤  x . Here we have

∑
i=1

n

∣Pool i∣2 ≤∑
i=1

n

mink i ,MaxC ik2 (17)

≤ n⋅kn2 ≤ n⋅k2 x≤ n⋅22 lg k  x. (18)

Case 2. n >  x . In this case we split the summation at
i =  x .

∑
i=1

n

∣Pool i∣2 ≤∑
i=1

n

mink i ,MaxC ik2 (19)

≤∑
i=1

x−1

mink i , MaxC i k 2∑
i=x

n

mink i , MaxC i k 2 (20)

≤  x−1 ⋅kx−1 n− x1⋅MaxC  xk 2 (21)
Then by Lemma 1:
  x−1 ⋅kx−1 n− x1n− x1 2x12k (22)

and by algebraic simplification:
 n  n2k 122k x1  (23)

Since k is a constant, this establishes that the time
complexity of BinPack is p n⋅2Ox for a polynomial
function p(n).

5 Conclusion
The algorithms in the previous sections demonstrate

that dynamic programming with dynamic allocation (DDP)
can be used to prove that 0/1 Knapsack and Bin Packing
with a fixed number of bins have time complexity

p n⋅2Ox where x is the total bit length of n input
numbers. This places these problems with Partition and
Subset Sum in the subclass of NP-complete problems that
have sub-exponential upper bounds on running time, when
input length is used as the complexity parameter.

The Knapsack problem was formulated as an
optimization problem above, while Bin Packing was
presented as a decision problem. It is apparent that the
Knapsack algorithm can be modified to solve the decision
version of the problem without changing its time
complexity. It is also possible to modify BinPack to find
the smallest bin capacity needed to store all objects in k
bins, as long as k is constant, without changing its time
complexity. Given the simplicity and generality of Lemma

1, which provides the foundation for the time analyses, we
expect that the DDP method can be applied to any NP-
complete problem involving a list of weighted objects that
has pseudo-polynomial time complexity.

References

[1] M. Alekhnovich, A. Borodin, J. Buresh-Oppenheim, R.
Impagliazzo, A. Magen, and T. Pitassi, “Toward a
Model for Backtracking and Dynamic Programming,”
Proceedings of the 20th Annual IEEE Conference on
Computational Complexity, pp. 308-322 (2005).

[2] M. Garey and D. Johnson, Computers and
Intractability: A Guide to the Theory of NP-
Completeness, Freeman Press, San Francisco, CA
(1979).

[3] R. Impagliazzo, R. Paturi, and F. Zane, “Which
Problems Have Strongly Exponential Complexity?,”
Journal of Computer and System Sciences 63, pp.
512-530, Elsevier Science (2001).

[4] S. Martello and P. Toth, “A mixture of dynamic
programming and branch-and-bound for the subset sum
problem,” Management Science 30(6), pp. 765-771
(1984).

[5] T. E. O'Neil, “The Importance of Symmetric
Representation,” Proceedings of the 2009
International Conference on Foundations of Computer
Science (FCS 2009), pp. 115-119, CSREA Press
(2009).

[6] T. E. O'Neil and S. Kerlin, “A Simple 2O  x

Algorithm for Partition and Subset Sum,” Proceedings
of the 2010 International Conference on Foundations
of Computer Science (FCS 2010), pp. 55-58, CSREA
Press (2010).

[7] R. Stearns and H. Hunt, “Power Indices and Easier Hard
Problems”, Mathematical Systems Theory 23 (1990),
pp. 209-225.

[8] G. J. Woeginger, “Exact Algorithms for NP-Hard
Problems: A Survey,” Lecture Notes in Computer
Science 2570, pp. 185-207, Springer-Verlaug, Berlin
(2003).

