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Abstract - This paper presents simple algorithms for 0/1 
Knapsack and Bin Packing with a fixed number of bins that  
achieve time complexity p n⋅2Ox where x is the total  
bit length of a list of sizes for n objects.  The algorithms are 
adaptations of a method that achieves a similar complexity  
for the Partition and Subset Sum problems.    The method is  
shown  to  be  general  enough  to  be  applied  to  other  
optimization or decision problem based on a list of numeric  
sizes or weights.  This establishes that  0/1 Knapsack and  
Bin  Packing  have  sub-exponential  time complexity  using 
input length as the complexity parameter.  It also supports  
the  expectation  that  all  NP-complete  problems  with  
pseudo-polynomial  time  algorithms  can  be  solved  
deterministically in sub-exponential time.

Keywords:   0/1  Knapsack,  dynamic  programming,  Bin 
Packing, sub-exponential time, NP-complete problems.

1  Introduction

The  comparative  complexity  of  problems  within  the 
class NP-Complete has been a recurring theme in computer 
science  research  since  the  problems  were  defined  and 
cataloged in the early years of the discipline [2].  In 1990, 
Stearns and Hunt [7]  classified a problem to have power 
index  i if  the  fastest  algorithm  that  solves  it  requires 

2O ni steps.   Assuming  that  Satisfiability  has  power 
index 1, they argued that the Clique and Partition problems 
have power index one-half.  Their analysis is based on two 
algorithms with time complexity p n⋅2Ox , where  x is 
the length in bits of the input representations and  p(n) is a 
polynomial  function  of  the  number  of  graph  edges  (for 
Clique)  or  the  number  of  integers  in  the  input  set  (for 
Partition).  These results were interpreted to provide strong 
evidence  that  Clique  and  Partition  were  easier  problems 
than Satisfiability and most other NP-Complete problems.

In a subsequent study, Impagliazzo, Paturi,  and Zane 
[3]  presented  another  framework  for  comparison  of  NP-
complete problems.  Instead of adopting the power index 
terminology of Stearns and Hunt, they categorized problems 
based  on  weakly  exponential  ( 2n1 

)  or  strongly 

exponential  ( 2n )  lower  bounds  (assuming  that 
Satisfiability  will  one  day  be  proven  to  be  strongly 
exponential) and sub-exponential ( 2o n  ) upper bounds. 
To avoid inconsistencies related to the characterization of 
input length, they defined a family of reductions (the Sub-
Exponential  Reduction  Family)  that  would  allow  the 
complexity measure to be parameterized.  This framework 
tolerated polynomial differences in the lengths of problem 
instances, and there was no complexity distinction among 
Clique,  Independent  Set,  Vertex  Cover  or  k-Sat.   These 
conclusions  are  not  consistent  with those  of  Stearns  and 
Hunt,  where  both  Clique  and  Partition  were  easier  than 
Satisfiability.  It is clear that representations and complexity 
measures  for  problem  instances  play  a  critical  role  in 
complexity analysis.

In classical complexity theory, the complexity measure 
is the length of the input string.  This parameter is formally 
determined, simply by counting the bits in the string.  The 
advantage of using the formal measure is that it requires no 
semantic  interpretation  of  the  input  string,  and  problems 
with vastly different semantics can by grouped together in 
formal complexity classes.  Within the class NP-complete, 
we find that for many problems, the use of simple semantic 
complexity measures will not  clash with detailed analysis 
based  on  the  formal  measure.   This  is  generally  true  of 
strong  NP-complete  problems,  where  the  objects  in  the 
input representing variables or nodes or set elements can be 
numbered (in binary).  The numbers are just labels used for 
identification of the objects.  There are other problems in 
the class, however, where the input contains a list of weights 
or values, and analysis based on semantic measures such as 
the number of objects versus the sum (or maximum) of the 
values can give radically different results: exponential time 
with one measure,  polynomial  time with the other.   This 
collection of problems includes Partition, Subset Sum, 0/1 
Knapsack, and Bin Packing, which we will refer to as the 
Subset Sum family.  The safest approach to analysis of these 
problems is to use the formal complexity measure,  which 
incorporates both relevant semantic parameters, and in this 
paper  we  show  that  the  Subset  Sum family  of  pseudo-
polynomial-time  problems  is 2O  x (which  is  sub-
exponential).



Stearns  and  Hunt  [7]  were  apparently  the  first  to 
demonstrate  that  an  algorithm  for  the  Partition  problem 
exhibits  sub-exponential  time.   The  significance  of  this 
result was probably obscured by the claim in the same paper 
that  the Clique problem is also sub-exponential,  while its 
dual problem Independent Set remains strongly exponential. 
This  apparent  anomaly  is  a  representation-dependent 
distinction,  and  it  disappears  when  a   symmetric 
representation for  the problem instance is  used [5].   The 
complexity distinction between Partition and Satisfiability, 
however, appears to have stronger credibility.  In [6] it is 
shown that the sub-exponential upper bound for Partition is 
also valid for Subset Sum.  The algorithm for Subset Sum is 
a variant of dynamic programming that is much simpler and 
more general than the backtracking/dynamic programming 
hybrid that Stearns and Hunt designed for Partition.  In this 
paper, the sub-exponential Subset Sum algorithm is adapted 
to 0/1 Knapsack and Bin Packing with a fixed number of 
bins,  establishing  that  these  problems  are  also  sub-
exponential with respect to the formal complexity measure 
(total bit-length of input, denoted x).  We also abstract from 
the previous methods a lemma that identifies the property of 
ordered  sets  of  integers  that  is  exploited  to  achieve  sub-
exponential time.

More  recent  complexity  studies  in  the  research 
literature  for  problems in  the  Subset  Sum family do  not 
typically use the input length as the complexity parameter. 
The  current  upper  bound  for  both  Subset  Sum and  0/1 
Knapsack  is  apparently 2O n/2  when  the  number  of 
objects in the list is used as the complexity measure [8].  A 
lower bound of 2 n/2/n   for Knapsack has also been 
demonstrated  in  [1].   The  lower  bound  applies  only  to 
algorithms  within  a  model  defined  generally  enough  to 
include  most  backtracking  and  dynamic  programming 
approaches.   The  sub-exponential  bounds  derived  here 
using  the  formal  complexity  measure  complement  rather 
than  supersede  the  strongly  exponential  bounds  derived 
using the number of objects in the input list (denoted n) as 
the complexity parameter.

2 Generalized Dynamic Programming

The  Stearns  and  Hunt  algorithm  for  Partition  [7] 
combines backtracking with dynamic programming.  Such 
hybrid  approaches  had  been  previously  described  in 
operations  research  literature  (e.g.  [4]).   The  input  set  is 
ordered  and  divided  into  a  denser  and  a  sparser  subset. 
Backtracking  is  employed  on  the  sparse  subset,  while 
dynamic programming is used for the dense subset.   The 
results are combined to achieve time complexity 2O  x ,
where x is the total length in bits of the input.

In  this  paper  we  employ  a  simpler  algorithm  that 
achieves the same goal.  The approach was first developed 
for Subset Sum and Partition [6].  Similar to conventional 

dynamic  programming,  it  represents  a  breadth-first 
enumeration of partial solutions.  The problem instance is a 
list  of objects,  each of which has  a  size.   The  algorithm 
maintains a  pool  of  partial  solutions  as it  processes  each 
object.  The list of objects is ordered by size, and the largest 
objects are processed first.   In  contrast  with conventional 
dynamic programming, the pool of solutions is dynamically 
allocated (hence the acronym DDP, for dynamic dynamic 
programming).   It  first  grows  and  then  shrinks  as  more 
objects  are  processed.   The  entire  pool  of  solutions  is 
traversed  for  each  object,  updating  each  solution  by 
possibly  subtracting  the  current  object's  size  from  the 
solution's  remaining  capacity.   Each  solution  is  also 
evaluated relative to the sum of sizes of the objects yet to be 
processed.   The  sum of  remaining  sizes  can  be  used  to 
prune  the  pool  of  solutions  depending  on  problem 
semantics.  This pruning relative to the sum of sizes of the 
unprocessed objects places a sub-exponential upper bound 
on the number of partial solutions in the pool.

The time analysis of the DDP method relies on a simple 
lemma (abstracted from the analysis in [6]) that allows us to 
bound the  kth value in an ordered list as a function of its 
position in the list and the total bit-length of the entire list 
(see Lemma 1 below).  Bounding the  kth value allows us to 
bound the sum of the first  k values as well.  This, in turn, 
leads  to  a  bound  on  the  length  of  the  pool  of  partial 
solutions in DDP algorithms.

Lemma 1:  Let  L represent a list of  n positive natural 
numbers in non-decreasing order, let  L[k] represent the  kth 

number in the list, let bk be the bit length of the kth number, 
and  let  b be  total  number  of  bits  in  the  entire  list: 

b =∑
i=1

n

bi =∑
i=1

n

1⌊ lg L[ i ]⌋ . Then L[k] < 2(b−k+1)/(n−k+1)+1 .

Proof:  An upper bound on the value of L[k] for any list 
with total bit length b is obtained by reserving as few bits as 
possible for the smaller numbers in the list and as many bits 
as possible for L[k] and the numbers that follow it.  This is 
accomplished  by  setting  L[1]  through  L[k-1]  to  1  and 
distributing the remaining bits equally among the higher n─ 
k + 1 numbers.  In that case, L[k] has no more than (b−k+1)/
(n−k+1) bits, establishing L[k] < 2(b−k+1)/(n−k+1)+1 .

3  The Knapsack Problem

The 0/1 Knapsack problem is defined as follows: given 
a set of n objects S with sizes s[1..n] and values v[1..n], find 
a subset of objects with the highest value whose size is less 
than or equal to  C, the capacity of the knapsack [2].  The 
problem can also be expressed as a decision problem, where 
we  determine  the  existence  of  a  subset  whose  value  is 
greater than or equal to a target value V.



3.1  The Knapsack algorithm

In adapting the DDP method to the Knapsack problem, 
we  can  iterate  either  the  size  or  the  value  array  as  the 
control for the outer loop.  Here we use the size array.  The 
algorithm  keeps  a  pool  of  (capacity,  value)  pairs 
representing partially filled knapsacks,  initially containing 
an empty sack represented as (C, 0), where C is the capacity 
of the empty sack.  For each object in S and for each sack 
currently in the pool, we add a new sack representing the 
current sack plus the current object.  This is accomplished 
by  subtracting  the  object  size  from the  sack's  remaining 
capacity and adding the object value to the sack's value.

Pseudo-code for  the  Knapsack algorithm is shown in 
Figure 1.  Lines 1-3 initialize the global  Pool, the  bestval 
variable, and variables representing the cumulative size and 
value of the remaining objects.  There is one iteration of the 
outer for loop (lines 4-17) for each object in the set S = {y1, 
y2,  ...,  yn}.  The size array s,  in which  s[i] is the size of 

object yi, is assumed to be in non-decreasing order, and the 
largest  numbers  are  processed  first,  so  object  yn–i+1 is 
processed  during  the  ith iteration.   The  pool  of  partially 
filled sacks is updated by the inner  for loop (lines 7-15). 
For each sack in the pool,  s[n–i+1] is subtracted from its 
capacity and v[n–i+1] is added to its value, placing the new 
(capacity,  value) on a second ordered sack list.  The pool 
and the new sack list are merged in the last step of the outer 
loop (line 17).  The best value for a filled sack is updated 
when appropriate in lines 11 and 14, whenever an updated 
sack is created.  At completion of the outer loop, the best 
value  is  returned.   The  algorithm  does  not  return  the 
contents of the sack with the best value, but this could be 
accomplished by adding a reference to a subset object to the 
(capacity,  value)  pairs  in  the  pool,  increasing  the  time 
complexity by no more than a factor of n.

The  inner  loop has  two conditions  that  moderate  the 
length of the pool.  Lines 8 and 9 skip sacks that can't hold 
the current object.  Also, in lines 10-12, sacks with enough 
capacity to hold all remaining objects are removed from the 
pool  after  updating the  bestval variable.   If  all  remaining 
objects will fit in a sack, there is no process them one-by-
one.

The outer loop also has logic to control the size of the 
pool.  The last step in the outer loop is a sequential merge 
operation that adds the new partially filled sacks to the pool. 
If two sacks with the same capacity are encountered during 
the merge, only the sack with the higher value is added to 
the pool.  Thus the capacities of all sacks in the pool are 
unique.

3.2 Time Analysis of  Knapsack

The time analysis closely follows the method used for 
the Subset Sum algorithm in [6].  Let S = {y1, y2, ..., yn} and 
assume the sizes are stored in non-decreasing order (s[i] ≤ 
s[i+1]).  The total number of steps is determined by the size 
of Pool.  With each iteration of the outer  for loop,  Pool is 
traversed and possibly extended (requiring 2 passes – one 
by the inner for loop and the other by the sequential merge 
step).  The total amount of work is closely estimated (within 
a factor of 2) by

∑
i=1

n

∣Pool i ∣ (1)

where ∣Pool i ∣ is the length of Pool at the beginning of 
outer loop iteration i.

Since  the  merge  operation  eliminates  duplication  of 
capacities,  we can  describe  length  of  Pool(i)  as  at  most 
MaxC(i),  the largest capacity of any sack on the list at the 
beginning of iteration  i.   The list is actually smaller than 
this, since all the capacities between zero and the maximum 
are not present.  We also know that the length of the list 
can, at most, double with each loop iteration, so regardless 

Figure 1.  The Knapsack  algorithm.

//* Given a set of n objects whose sizes are specified 
in an array s[1..n] in non-decreasing order and whose 
values are stored in an array v[1..n], find the highest 
valued subset whose total size is less than or equal to 
capacity C.  */

public int Knapsack()
  1)   bestval ← 0;

  2)   sizeofrest ← ∑
i=1

n

s[ i ] ;  valueofrest ← ∑
i=1

n

v[ i ] ;

  3)   Pool ← {(C, 0)}; 
  4)   for i ← 1 to n
  5)      size ← s[n – i +1];  value ← v[n – i +1];
  6)      NewList ←  { };
  7)      for each sack in  Pool
  8)         if (sack.capacity < size )
  9)            continue;
10)         else if (sack.capacity > sizeofrest)
11)            bestval ← max (bestval,
                                           sack.value + valueofrest)
12)            remove sack from Pool;
13)         else
14)            bestval ← max (bestval,
                                           sack.value + value);
15)            NewList.append ((sack.capacity – size,
                                                sack.value + value));
           end for
16)      sizeofrest ← sizeofrest – size;
           valueofrest ← valueofrest – value;
17)      Pool ← merge(Pool, NewList);
        end for
18)   return bestval;



of the maximum value in the list, its length cannot exceed 2i. 
This gives us

∣Pool i ∣ ≤ min2i , MaxC i . (2)

The length of Pool will grow rapidly and later possibly 
shrink as  i  approaches  n.   Our  goal  is  to  find  an  upper 
bound for  MaxC(i).   Initially  MaxC(1) =  C,  which is  the 
capacity of the empty sack.  Only smaller-capacity sacks are 
added to the list,  and eventually the larger-capacity sacks 
are removed when the condition in line 10 becomes true, so

    MaxC i ≤ ∑
j=1

n−i1

s [ j ] ≤ n−i1 ⋅s[n−i1 ]. (3)

Bounding  MaxC(i)  thus  reduces  to  finding  an  upper 
bound for  s[n─ i  + 1], and Lemma 1 is invoked for this 
purpose.   To  complete  the  analysis,  we  bound  the  step 
counts as a function of  b,  the total  bit  length of the size 
array s.  We consider two cases.

Case 1.  n  ≤ b . Here we have

     ∑
i=1

n

∣Pool i ∣≤∑
i=1

n

min2i , MaxC i≤ n⋅2b . (4)

Case 2.  n  > b . In this case we split the summation at 
i = b .

    ∑
i=1

n

∣Pool i ∣≤∑
i=1

n

min2i , MaxC i (5)

≤ ∑
i=1

b−1

min2i , MaxC i ∑
i=b

n

min2i ,MaxC i  (6)

≤ b−1 ⋅2b−1  ∑
i=b

n

min2i , MaxC i (7)

≤ b−1 ⋅2b−1  n−b1⋅MaxC b  (8)

≤ b−1 ⋅2b−1  n−b1⋅ ∑
j=1

n−b1

s[ j ] . (9)

≤ b−1 ⋅2b−1  n−b12⋅s[n−b1] (10)

At this point, we employ Lemma 1 to compute the bound 
for s[k] where k=n−b1 , and we continue by 
replacing s [n−b1 ] with 2b1 :

 b−1 ⋅2b−1  n−b12⋅2b1 (11)
 bn12⋅2b1 (12)
 2n26 n2⋅2b . (13)

This establishes that the time complexity of  Knapsack 
is O  p n2b for  a  polynomial  function  p(n).   The 
argument  b is the total bit length of the list of sizes.  The 
entire input for the problem also includes the capacity C and 
a list of n values.  We can't make any specific assumptions 
about the relative magnitudes of the sizes and values, but we 
are certain that if  x is the total input length, then b will be 
smaller than  x, and the O  p n2b step count will also 
be O  p n2x.

4  The Bin Packing Problem

The Bin Packing problem is defined as follows:  given 
a set of n objects S with sizes s[1..n], determine whether the 
objects will fit into a fixed number of  k bins, each with a 
capacity of  B.   The problem can also be expressed as an 
optimization problem in which the smallest B is determined 
[2].  When B is equal to the sum of all sizes divided by k, 
the  problem  represents  a  generalization  of  the  Partition 
problem.

4.1  The BinPack Algorithm

When we adapt the DDP strategy to Bin Packing, we 
find  a  few  significant  differences  from  the  Knapsack 
version.  The BinPack algorithm is shown in Figure 2.  The 
pool of partial  solutions must be a list of  k-tuples, where 
each component of a tuple is the remaining capacity of one 
of the bins (see line 2).  Also, we are not searching for a 
subset.  All the objects in the original set S must be included 
in the solution.  This has implications for the logic in the 
nested loops of the algorithm.  Any partial solution in the 
inner loop that cannot accommodate the next object can be 

Figure 2.  The BinPack  algorithm.

/* Given a set of n objects whose sizes are specified 
in an array s[1..n] in non-decreasing order, determine 
whether all objects can be stored in k bins, each with 
capacity B.
*/

public boolean BinPack()

  1)   sizeofrest  = ∑
i=1

n

s[ i ] ;

  2)   Pool = {(B, B, …, B)}; 
  3)   for i ← 1 to n
  4)      nextsize  ← s[n – i +1];
  5)      NewList ←  { };
  6)      for each bintuple in Pool
  7)         if (bintuple.capacity[1] < nextsize )
  8) continue;
  9)         else if (bintuple.capacity[1] > sizeofrest)
10) return true;
11)         else
12)            for j ← 1 to k
13)               newtuple ← update(bintuple, j, nextsize);
14)               if (newtuple != null)
15)                  NewList.insert (newtuple);
                 end for
              end for
16)      Pool ← NewList;
17)      sizeofrest ← sizeofrest – nextsize;
        end for
18)   return false;



discarded  (lines  7-8),  and  the  pool  of  updated  partial 
solutions created by the inner loop replaces the pool from 
the previous iteration of the outer loop (rather than merging 
with the previous pool; see line 16).   We also find that the 
test  enforcing  the  upper  limit  on  the  size  of  the  pool 
(relative to the sum of the remaining object sizes) triggers 
early termination (lines 9-10).  This version of the algorithm 
does not specify what objects are placed in what bins, but 
this  information  could  be  included  by  associating  a 
reference to a size  n object to each partial solution.  This 
would  increase  the  time  complexity  by  no  more  than  a 
factor of n.

4.2 Time Analysis of BinPack

The time analysis of BinPack  follows the same general 
logic as the analysis for Knapsack.  The major difference is 
the growth rate of the pool of partial solutions.  While the 
pool can double in length with each iteration of the inner 
loop in Knapsack, it can increase in length by a factor of k 
in  BinPack.   Another  significant  difference is  the cost  of 
suppressing duplicates in the pool of partial solutions.  We 
make the conservative assumption that the insertion of an 
updated partial solution in the pool takes linear time in the 
current length of the pool.  We demonstrate below that in 
spite of these significant differences, the time complexity of 
the algorithm remains sub-exponential.

To proceed with the analysis, let S = {y1, y2, ..., yn}, and 
assume the sizes are stored in non-decreasing order (s[i] ≤ 
s[i+1]).   As with  Knapsack,  The total number of steps is 
closely related to the size of  Pool.  With each iteration of 
the outer  for loop,  Pool is traversed and replaced with an 
updated  version  (called  NewList).   Each  insertion  into 
NewList requires linear time. The total amount of work is 
therefore estimated as

 ∑
i=1

n

∣Pool i ∣2 (14)

where ∣Pool i ∣ is the length of Pool at the beginning of 
outer loop iteration i.

Since  the  insert  operation  of  line  15  eliminates 
duplication of capacities, we can describe length of Pool(i) 
as at most  MaxC(i)k.  If  MaxC(i) is the largest capacity of 
any bin in any tuple on the list at the beginning of iteration 
i, the number of distinct tuples cannot exceed this quantity 
raised  to  the  power  k.   This  grossly  overestimates  the 
number of tuples, since the capacities within each tuple are 
in  non-increasing order  and  since  all  the tuples  have the 
same  sum.   It  is  an  interesting  counting  problem  to 
determine a tight upper bound for the number of tuples, but 
the  loose  bound  is  sufficient  to  establish  the  desired 
complexity result.  We also know that the length of the list 
can, at most, grow by a factor of k with each loop iteration, 
so regardless of the maximum value in the list,  its length 
cannot exceed ki.  This gives us

∣Pool i ∣ ≤ mink i , MaxC i k .    (15)

Lines 9 and 10 assure us that  the algorithm terminates if 
MaxC(i) exceeds the sum of the remaining object sizes, so 
we have

    MaxC i ≤ ∑
j=1

n−i1

s [ j ] ≤ n−i1 ⋅s[n−i1 ].    (16)
To complete the analysis, we bound the step counts as a 

function of  x,  the total bit length of the size array  s.   As 
before, we consider two cases.

Case 1.  n  ≤  x . Here we have    

∑
i=1

n

∣Pool i∣2 ≤∑
i=1

n

mink i ,MaxC ik2    (17)

≤ n⋅kn2 ≤ n⋅k2 x≤ n⋅22 lg k  x.    (18)

Case 2.  n  >  x . In this case we split the summation at 
i =  x .

∑
i=1

n

∣Pool i∣2 ≤∑
i=1

n

mink i ,MaxC ik2    (19)

≤∑
i=1

x−1

mink i , MaxC i k 2∑
i=x

n

mink i , MaxC i k 2 (20)

≤  x−1 ⋅kx−1 n− x1⋅MaxC  xk 2    (21)
Then by Lemma 1:
  x−1 ⋅kx−1 n− x1n− x1 2x12k  (22)

and by algebraic simplification:
 n  n2k 122k x1     (23)

Since  k is  a  constant,  this  establishes  that  the  time 
complexity  of  BinPack  is p n⋅2Ox for  a  polynomial 
function p(n).  

5  Conclusion
The  algorithms  in  the  previous  sections  demonstrate 

that dynamic programming with dynamic allocation (DDP) 
can be used to prove that 0/1 Knapsack and Bin Packing 
with  a  fixed  number  of  bins  have  time  complexity

p n⋅2Ox where  x is  the  total  bit  length  of  n input 
numbers.   This  places  these  problems with Partition  and 
Subset Sum in the subclass of NP-complete problems that 
have sub-exponential upper bounds on running time, when 
input length is used as the complexity parameter.

The  Knapsack  problem  was  formulated  as  an 
optimization  problem  above,  while  Bin  Packing  was 
presented  as  a  decision problem.   It  is  apparent  that  the 
Knapsack  algorithm can be modified to solve the decision 
version  of  the  problem  without  changing  its  time 
complexity.  It  is also possible to modify  BinPack to find 
the smallest  bin capacity needed  to store all  objects  in  k 
bins,  as  long as  k is  constant,  without  changing its  time 
complexity.  Given the simplicity and generality of Lemma 



1, which provides the foundation for the time analyses, we 
expect  that  the  DDP method can  be  applied  to  any NP-
complete problem involving a list of weighted objects that 
has pseudo-polynomial time complexity.
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