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ABSTRACT 

Voltage scaling is one of the most effective mechanisms to improve 

microprocessors‟ energy efficiency. However, processors cannot 

operate reliably below a minimum voltage, Vccmin, since hardware 

structures may fail. Cell failures in large memory arrays (e.g., 

caches) typically determine Vccmin for the whole processor.  We 

observe that most cache lines exhibit zero or one failures at low 

voltages. However, a few lines, especially in large caches, exhibit 

multi-bit failures and increase Vccmin. Previous solutions either 

significantly reduce cache capacity to enable uniform error 

correction across all lines, or significantly increase latency and 

bandwidth overheads when amortizing the cost of error-correcting 

codes (ECC) over large lines. 

In this paper, we propose a novel cache architecture that uses 

variable-strength error-correcting codes (VS-ECC). In the common 

case, lines with zero or one failures use a simple and fast ECC. A 

small number of lines with multi-bit failures use a strong multi-bit 

ECC that requires some additional area and latency. We present a 

novel dynamic cache characterization mechanism to determine 

which lines will exhibit multi-bit failures. In particular, we use 

multi-bit correction to protect a fraction of the cache after switching 

to low voltage, while dynamically testing the remaining lines for 

multi-bit failures. Compared to prior multi-bit-correcting proposals, 

VS-ECC significantly reduces power and energy, avoids significant 

reductions in cache capacity, incurs little area overhead, and avoids 

large increases in latency and bandwidth.  

Categories and Subject Descriptors 

B.3.4 [Memory Structures]: Reliability, Testing, and Fault-

Tolerance. B.8.1 [Performance and Reliability]: Reliability, 

Testing, and Fault-Tolerance. 

General Terms: Performance, Design, Reliability. 

Keywords: Cache design, error-correcting codes, variable-

strength codes, low-voltage design. 

 

1. INTRODUCTION 
Energy efficiency is becoming the key design concern for modern 

computer systems. Modern processors use low-power operating 

modes that optimize power in addition to the normal, high-

performance operating mode. Reducing supply voltage is one of the 

most effective methods to lower power consumption. However, as 

supply voltage decreases, the effects of process variations become 

more pronounced, causing many circuits to fail. Such variations 

restrict voltage scaling to a minimum value, Vccmin, which is the 

minimum supply voltage for a die to operate reliably [27]. Failures 

in large memory structures (e.g., caches) typically determine 

Vccmin for the whole processor [27]. 

Prior work has explored techniques to enable ultra-low voltage 

cache operation in the context of high memory cell failure rates 

[1][2][9][22][27]. At such voltages, there is a high probability that 

one or more cache lines will exhibit multi-bit failures. Consequently, 

these techniques sacrifice a significant percentage of cache area (up 

to 50%) to enable correcting failures at low voltages using 

redundancy or error-correcting codes (ECC). This high area 

overhead is necessary to account for the uniform capability to 

correct multi-bit failures in any cache line. A recently proposed 

solution, Hi-ECC [26], amortized the cost of multi-bit error-

correcting codes on larger (1KB) cache lines to reduce the cache 

area overhead to less than 2% (in the context of reducing refresh 

rates of large eDRAM caches). However, Hi-ECC suffers from 

higher latency and bandwidth consumption due to reading larger 

cache lines, and the need to perform a costly read-modify-write 

operation on every write to update ECC bits, thereby making it less 

appealing for small cache structures.  

In this paper, we make the observation that the probability of a 

cache line having a multi-bit error is significantly lower than the 

probability of having zero or one failures. Consequently, selective 

high-strength protection of a few cache lines provides a significantly 

better usage of the ECC bit budget than fixed-strength, uniform 

techniques. To enable an area-efficient cache design that operates 

with no additional latency or bandwidth at low voltages, we propose 

using multi-bit ECC only on cache lines that need such protection. 

Our solution, variable-strength ECC (VS-ECC), allocates single-

error correcting, double-error detecting (SECDED) ECC to all cache 

lines, while reserving a few more bits per cache set to one or more 

lines that can exhibit multi-bit failures. The minimum SECDED 

protection allocated to all lines ensures that our design can recover 

from all single-bit non-persistent failures (e.g., due to soft errors or 

erratic failures [9]). Since SECDED is a standard feature in many 

existing cache designs [5][23], the area overhead of VS-ECC is 

limited to the additional bits and logic needed to store and process 

the strong multi-bit ECC. By providing strong protection only where 

necessary, VS-ECC can reduce operating voltage compared to 
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fixed-strength ECC at the same area budget, resulting in lower 

power consumption. Furthermore, since the fraction of lines using 

the high-latency multi-bit ECC is small, the performance penalty of 

VS-ECC is insignificant.  

The main challenge for VS-ECC is to identify which cache lines 

exhibit multi-bit failures at low voltage and need the extra ECC 

protection. We propose a mechanism that uses multi-bit ECC to 

protect a portion of the cache after the first transition to the low-

voltage mode, while comprehensively exercising the remaining lines 

with a standard memory testing algorithm. As a result, our hybrid 

characterization solution addresses two main constraints of online 

testing: the need to extensively stress every bit (and combinations of 

different bits) with pre-determined patterns, and the need to enable a 

part of the cache for fast transition to the low-voltage mode with 

little impact on user experience.  

In this paper, we make the following main contributions: 

1. We make the observation that the vast majority of cache lines, 

more than 96%, only exhibit zero or one failures at voltages as 

low as 500 mV.  

2. We propose a novel cache architecture that uses variable-

strength ECC (VS-ECC). The cache uses a simple ECC 

mechanism for the common case, while allocating a few bits 

per cache set to enable multi-bit corrections for the lines that 

exhibit multi-bit failures at low voltages. We propose three 

alternative designs for VS-ECC with varying degrees of 

hardware complexity, latency, and Vccmin reduction. 

3. We propose a dynamic mechanism that characterizes a cache to 

identify multi-bit failing lines at low voltages with little 

performance overhead. 

4. We show that, when combined with selective line disabling, 

VS-ECC can achieve reliable cache operation at 500 mV for a 

2 MB cache, cutting energy consumption in half compared to 

SECDED ECC with little impact on performance or die area. 

VS-ECC requires no additional latency and bandwidth to 

access larger cache lines, and avoids the overhead of read-

modify-write operations on every cache write. 

In the remainder of this paper, we discuss the impact of bit failures 

on Vccmin and summarize the previously proposed schemes for 

achieving reliability at lower supply voltages in Section 2. We 

explain our proposed techniques in detail in Section 3, and our 

error-correction strategy in Section 4. We introduce the 

experimental methodology in Section 5, evaluate our design in 

Section 6, and conclude the paper in Section 7. 

2. BACKGROUND 

2.1 VS-ECC Overview 
Modern processors use a large portion of their die for SRAM 

caches, which must operate free of errors for correct software 

execution. However, due to variations in the manufacturing process, 

some of the cache bits are weaker than others and may fail when 

supply voltage is reduced to conserve power [16][27]. 

Consequently, a cache with no error mitigation capabilities cannot 

operate reliably below a minimum voltage, Vccmin, below which at 

least one cache bit fails. Simple error-correcting codes (e.g., 

SECDED) add ECC check bits for error tolerance, thus allowing the 

cache to operate at a lower supply voltage while incurring a small 

area overhead. However, significant voltage reductions may 

introduce more errors than could be handled by SECDED.  

In Figure 1, we show the bit failure data from Kulkarni, et al. [16], 

indicating the probability of a single SRAM bit failure (pBitFail) 

across a range of voltages. We also plot probabilities Pe of having 

e=1,2,3,4 errors in a 64-byte cache line. By examining Figure 1, we 

observe that the probability of two or more bit failures in a line is 

very low, even at voltages as low as 500 mV. Therefore, only a 

small fraction of lines would need multi-bit ECC, while SECDED 

protection is sufficient for the remainder of the cache. This 

motivates the need for a variable-strength technique, VS-ECC, 

where the check bit budget is allocated judiciously to only a few 

lines that require multi-bit protection. 

We further demonstrate the benefits of VS-ECC with the following 

example. Given a single set of a 16-way set-associative cache, we 

can either use a fixed-strength double-error correcting, triple-error 

detecting (DECTED) ECC on each line of the set, or a variable-

strength ECC, where a few lines are protected stronger than the rest 

of the set. For this example, we assume that twelve of sixteen lines 

in the set are protected by SECDED ECC, while the other four lines 

can correct up to 4 errors (12-SECDED+4-4EC5ED). We also 

assume that SRAM failures are random in nature [19]. Representing 

the probability of a line having e errors as Pe, we compute the 

probability that a set works correctly with DECTED (PDECTED) and 

the probability that a set works correctly with VS-ECC (PVS-ECC) as 

follows: 
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In the second equation, l=0 computes the probability of all sixteen 

lines having 0 or 1 errors:  
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On the other hand, for l=1,2,3,4 we calculate the probability of 

having l lines with 2 to 4 errors each and the remaining lines having 

0 or 1 errors. The probability of a set failure is then calculated 

trivially as: 

ECCVSfailECCVSDECTEDfailDECTED PPPP   1   1 __   and  

Sweeping a range of voltages and bit failure probabilities, we 

observe that PDECTED_fail is always higher than PVS-ECC_fail for voltages 

above 450 mV (Figure 2). While we used a single set in this 

Figure 1. Probability of a single bit failure and probability Pe 

of e failures in a 64B cache line. 
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example for simplicity, this result can be extrapolated for the whole 

cache (Section 6). Thus, a VS-ECC-protected cache is able to 

operate reliably at a voltage lower than the failure point of a 

DECTED cache. For an entire cache with thousands of sets, the gap 

between the two techniques widens super-linearly. In Section 4, we 

demonstrate that the 12-SECDED+4-4EC5ED technique requires 

fewer check bits than a full DECTED ECC solution, further 

motivating the choice of VS-ECC. It is also worth noting that this 

analysis does not consider error clustering, which would benefit VS-

ECC much more than a fixed-strength ECC design. 

2.2 Related Work 
Traditional approaches to tolerate bit defects in caches have used 

row/column level redundancy by adding spare rows/columns to the 

cache [24]. These approaches remap a row/column with one or more 

bit defects to a spare row/column. While this coarse-grain 

remapping is effective in dealing with relatively low error rates 

encountered during high-voltage mode, it cannot mitigate defects in 

thousands of cache lines during low-voltage operation.   

Wilkerson, et al. [27], and Roberts, et al. [22], proposed techniques 

to enable reliable low-voltage operation by sacrificing a portion of 

the cache to save the locations of defects and the values of correct 

data. ZerehCache employs fine granularity re-mapping of faulty bits 

to tolerate high failure rates, and relies on additional manufacturing-

time testing to identify the locations of defects on sub-cache line 

granularities before solving a graph coloring problem to find the 

best re-mapping of defects to spare lines [2]. These techniques incur 

performance overheads at low voltages due to the smaller cache 

capacity, higher latency, and the need to access a fault map in 

parallel. They also rely on manufacturing-time testing to pinpoint 

the location of bit defects, which would not help with soft errors.  

Circuit-level approaches have been proposed to improve bit cell 

reliability by either upsizing transistors or using alternative SRAM 

cell designs, such as eight-transistor (8T) or ten-transistor (10T) 

cells [16]. These approaches incur significant area overhead and 

higher leakage during both the high-voltage and low-voltage modes. 

In particular, the work in [27] shows that a 10T cell would achieve a 

comparable operating voltage to our VS-ECC but with a much 

larger area overhead (100% overhead for the 10T cell vs. less than 

4% overhead for VS-ECC). 

Many previous papers have proposed the use of error-correcting 

codes (ECC) to improve cache reliability [9][14][26]. Kim, et al. 

[14], proposed two-dimensional ECC to correct multi-bit errors. 2D-

ECC is tailored towards clustered bit defects and is less effective in 

dealing with high rates of random defects. Chishti, et al. [9], 

proposed multiple-bit segmented ECC (MS-ECC) at fine sub-cache 

line granularities to tolerate high failure rates. MS-ECC sacrifices a 

large portion of the cache (25-50%) to store ECC check bits for the 

rest of the lines, which leads to performance loss during the low-

voltage mode. Furthermore, MS-ECC requires 25-50% of the cache 

to be flushed and ECC check bits to be computed for the rest of the 

cache every time we switch from the high-voltage to the low-voltage 

operating mode. Yoon and Erez proposed reducing the cost of 

storing error-correcting codes for the last level cache by partitioning 

the code between the cache and memory [28]. Our previous work, 

Hi-ECC, uses multi-bit ECC in an eDRAM cache to reduce refresh 

power [26]. Hi-ECC reduces the storage cost of multi-bit ECC by 

saving check bits over large cache line granularities (1 KB), and 

reduces the latency cost by separating the common case of zero or 

one bit failures from the uncommon case of multi-bit failures. 

However, large cache lines (used in Hi-ECC) result in higher 

dynamic power. The approach presented in this paper uses variable-

strength error protection, differing from all the previous ECC-based 

cache reliability techniques that allocate fixed ECC budgets to all 

cache lines.       

Variable-strength protection schemes have been studied extensively 

in the communication theory context, since some parts of the 

transmitted data have much higher importance for system stability. 

For instance, an error in a control or in a routing field of a message 

header may have much worse consequences than a bit flip in the 

payload. Fujiwara presents a comprehensive overview of these 

techniques [10]. The only cache-related study was performed by 

Kim and Somani [15]. They provided ECC capability for some, but 

not all, L1 cache lines to protect against soft errors, and considered 

frequently accessed lines to be most vulnerable. Compared to Kim 

and Somani‟s study, our proposal targets both transient and 

persistent errors at low voltages, provides a minimum level of 

protection for all lines, and allocates more protection to cache lines 

with a higher number of persistent errors. To the best of our 

knowledge, this paper is the first to use variable-strength error 

correction for energy-efficient cache design.   

3. VARIABLE-STRENGTH ECC 
The key idea behind VS-ECC is to employ error-correcting codes of 

different strengths for different cache lines, based on the number of 

failing bits in each line in the low-voltage mode. VS-ECC uses fast 

SECDED ECC for the common case of lines with zero or one 

errors, and resorts to a slower multi-bit correction only in the rare 

case of two or more errors. However, VS-ECC requires cache lines 

to be classified based on the number of bit failures. In this section, 

we discuss three variations of VS-ECC that could be implemented 

on top of a baseline SECDED cache. In Section 3.1, we describe the 

cache organization. We then discuss the cache characterization and 

low-voltage operation in Section 3.2 and Section 3.3, respectively.   

3.1 Cache Organization 
We illustrate VS-ECC with the example of a 16-way set-associative 

cache shown in Figure 3. The tag and data arrays are logically 

organized similar to traditional set-associative caches. Tags in this 

setup occupy only a small fraction (~10%) of the cache area and are 

assumed to be protected by either upsized cells or SECDED as 

proposed in [9] and [27]. Each cache line has an associated 

SECDED ECC field which contains check bits (of length lSECDED) to 

correct one and detect two errors in the line. To support multi-bit 

errors, we propose the following three designs:  

Figure 2. Probability of a single set persistent failure in a 

16-way cache with DECTED or VS-ECC. 
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 1. VS-ECC-Fixed augments each cache set with four extended 

ECC (eECC) fields, each containing (lMULTI-BIT - lSECDED) bits, where 

lMULTI-BIT  is the number of check bits required to correct a multi-bit 

failure in a line (Figure 3a). The four eECC fields enable the cache 

to use a strong ECC code for any four of the 16 ways in each cache 

set. To distinguish lines that use multi-bit correction from lines that 

use SECDED ECC, we add an extra status bit to each tag, called 

„Extended ECC bit‟ or E-bit. If a cache line is classified as having 

multi-bit failures, the E-bit is set to 1, otherwise it is reset to 0. We 

also extend the cache with a separate multi-bit ECC 

encoder/decoder in addition to a SECDED encoder/decoder. We 

discuss the area and logic complexity of this design in Section 4. 

2. VS-ECC-Disable: This design (Figure 3b) is similar to VS-ECC-

Fixed with the addition of one status bit with each cache tag. This 

„Disable‟ or D-bit is used to indicate that the corresponding cache 

line is not in use, or is always in the invalid state. This design 

provides better soft error coverage by using SECDED as a minimum 

level of protection for lines with no persistent failures, while using 

multi-bit ECC to protect lines with one or two persistent failures. 

For lines with more than two persistent failures, we set the D-bit and 

the line is no longer used in the low-voltage mode. Using at least 3-

bit correction for the multi-bit ECC protects all lines from single-bit 

soft errors, while sacrificing a small fraction of cache capacity due to 

the disabled lines.  
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Figure 3. VS-ECC Cache organization with three alternative designs. 



3. VS-ECC-Variable: In this design (Figure 3c), we use the 

SECDED bits associated with each cache line either as regular 

SECDED code or as the first eleven bits of a multi-bit ECC. We add 

two status bits per cache tag to indicate the number of ECC blocks 

for the corresponding cache line. This determines the line‟s level of 

protection, from 1: SECDED to 4: 4EC5ED. During cache 

characterization, we assign SECDED to lines with no failures, and 

we assign a number of ECC blocks for other lines to cover both 

persistent failures and soft errors.  

3.2 Cache Characterization 
Before VS-ECC in any of its variations can be turned on in the low-

voltage mode, cache lines need to be classified on the basis of the 

number of bit failures. We classify cache lines by running a special 

runtime characterization phase during the first transition to the low-

voltage mode. We chose runtime characterization over 

manufacturing-time testing since we want to cover a variety of 

persistent failures that are not present at time zero (e.g., aging 

faults). Furthermore, manufacturing-time characterization is 

expensive and requires on-die non-volatile storage to store the fault 

map data.  The goal of the runtime testing is to extensively analyze a 

fraction of the cache using traditional memory characterization 

algorithms, while leveraging the eECC bits on the remainder of the 

lines to minimize the impact on system performance and user 

experience. In this section, we discuss characterization for the VS-

ECC-Fixed configuration, but this mechanism can be trivially 

extended to the other VS-ECC variants. Since we have only four 

eECC fields per cache set, only four lines can be active and contain 

protected live data, while the rest of the cache is inactive and under 

test. Note that errors can also be discovered in the active portion, 

however, eECC allows us to mitigate them and to mark E-bits for 

active lines with multi-bit failures.  

Before entering the characterization phase, we reset all the E-bits to 

zero, reset valid bits for inactive cache blocks, write back all the 

dirty data, and reduce the processor voltage to the target Vccmin. 

The four eECC fields then become associated sequentially with the 

first four ways (ways 0, 1, 2 and 3) in each set. We deactivate the 

remaining ways (4 through 15) by modifying the cache replacement 

algorithm so that it does not allocate any new blocks to them. Even 

though we sacrifice 75% of the capacity, we ensure that the 

available eECC is enough to correct any multi-bit failure in the 

active portion of the cache. Note that a complete cache flush on a 

voltage transition is not strictly required, and one can design an 

algorithm with lower performance impact, albeit higher complexity, 

where the first four ways remain in the cache and strong ECC is 

generated for them, while the rest of the lines are flushed.  

In the active ways, on each cache write during characterization, we 

send the data being written to the multi-bit ECC encode logic. We 

split the generated multi-bit ECC between the cache line‟s SECDED 

field and its eECC field. On a read access, we send the stored data 

and the strong ECC to the multi-bit ECC decoder, which then 

outputs the corrected line data, as well as the number of encountered 

errors. If the number of errors is more than one, we set the line‟s E-

bit, marking it as a line with a multi-bit failure. In this design we 

assume that the entire cache must operate in a single voltage domain 

and, consequently, high-strength protection is required for the active 

region. In a more sophisticated setup without this constraint, voltage 

can be reduced only in the portion under test, while the active 

portion is kept error-free at a high voltage.  

In parallel, we conduct a traditional memory test on the inactive 

portion of the cache in the spare cycles when it is not used. Lines are 

written with pre-defined patterns and read back in a particular order. 

The testing engine, implemented in hardware as a part of the cache 

controller, can then identify any discrepancies between the expected 

and observed patterns and derive the location of failing bit(s) in each 

line. If a multi-bit failure is detected, we set the line‟s E-bit, 

implying that it will need extended ECC during regular operation. 

On the other hand, if there is only a single error, we write its 

location (9-bits for a 512-bit cache line) into the line‟s tag. In the 

remainder of the test, if a single-bit failure occurs again in the same 

line, we compare its location with the one stored in the tag using the 

tag matching hardware. Consequently, a „hit‟ in the tag array would 

indicate the repetition of the same error, while a „miss‟ signifies a 

multi-bit failure, upon which we would set the line‟s E-bit. The 

process continues until the testing algorithm completes or until we 

discover a set (spanning both active and inactive regions) with 5 or 

more E-bits set to 1 or a line with five errors. This situation indicates 

a case where we cannot use the entire cache in low-voltage mode 

because the available ECC is not enough to correct all lines with 

multi-bit failures, thus the cache is switched to a higher voltage and 

eECC fields are disabled for power savings. Alternatively, we can 

restart the characterization at a slightly higher voltage (e.g., 10 mV 

above target Vccmin). Finally, if the cache passes the test, we move 

live data from the active to the inactive portion and activate the 

latter. Testing of the previously active region is then started.  

Figure 4. Cache operation in low voltage mode for VS-ECC-Fixed. 

 

Hit Miss

Writeback 
needed?

N Y

Cache line fill

Tag lookup and 

E-bit decode

Access

Access
type

ECC type
SECDED eECC

SECDED ECC compute

Write line and ECC

Multi-bit ECC compute

Write line and ECC

WriteRead

ECC type
SECDED eECC

SECDED ECC check

Send line to CPU

Multi-bit ECC check

Send line to CPU

Victim 

ECC type

SECDED eECC

SECDED ECC compute

Writeback victim line

Multi-bit ECC compute

Writeback victim line



For VS-ECC-Variable, in addition to classifying the lines into 

single-bit and multi-bit failing lines, we need to know the exact 

number of erroneous bits so we can assign a sufficient number of 

ECC blocks. This can be done by conducting the test on one quarter 

of the cache at a time. Tags that belong to the portion of the cache 

under characterization are used to store the locations of up to three 

distinct errors for each of the tested lines. Note that we do not 

overwrite other tag status bits when we store the error locations. 

Thus, after a quarter of the cache is tested, the ECC block pointer 

bits in the tags for this portion are preserved and the test of another 

portion starts. While VS-ECC-Variable requires high testing 

accuracy to identify the exact number of persistent failures in each 

cache line, VS-ECC-Fixed requires a much lower accuracy since it 

does not differentiate between lines with 1-, 2-, and 3-bit failures. 

VS-ECC-Disable uses the same testing algorithm as VS-ECC-

Variable since we need to know which lines have no failures, one or 

two failures, and more than two failures. However, this technique 

would still function correctly even with a lower testing accuracy. 

To compute the overhead of characterization we investigated several 

well-known testing algorithms, including MARCH B, MARCH SS, 

GALPAT, and pseudo-random algorithms for testing Active 

Neighborhood Pattern Sensitive Faults (ANPSFs) [11][13].  In 

particular, we considered a deterministic (100% coverage) ANPSF 

algorithm and a pseudo-random coupling fault detection technique 

with 99.9% coverage. ANPSF (k=5) can detect an error caused by 

the interaction of up to five neighboring cells, while the coupling 

fault detection technique discovers erroneous interactions of any two 

cells in the entire cache. Based on our cache parameters (Section 5), 

performance data of testing algorithms, and accounting for 

additional testing overheads, we calculate the worst-case testing 

time to be below 50 seconds. This penalty, however, is incurred by 

our characterization only once during the first transition to the low 

power mode and it can be further amortized using non-volatile 

storage to save testing results (E-bits and eECC fields) between 

system reboots. 

It should be noted that VS-ECC-Disable has an advantage over 

other VS-ECC configurations since it does not require testing with 

perfect coverage.  It should also be noted that all VS-ECC variants 

are orthogonal to the exact testing algorithm used; they allow using 

more complex patterns at the cost of increased testing time. All VS-

ECC variants mitigate the impact of runtime memory testing on 

system performance. Our hybrid characterization scheme ensures 

execution with a virtually unnoticeable penalty by keeping a portion 

of the cache protected and operational.  The hardware overhead of 

characterization is trivial compared to the cache size, and involves a 

simple state machine with tens of state elements and a few gates. 

3.3 Cache Operation 
The algorithm for regular cache operation in the low-voltage mode 

for VS-ECC-Fixed is illustrated in Figure 4. When the cache 

receives a request from the processor, the cache controller first 

decodes the set number from the data address and reads all tags and 

E-bits corresponding to that set. In parallel with tag matching, we 

use a small decoder that determines which lines in the set use multi-

bit ECC based on the values of the E-bits. Since the eECC fields 

associated with a set are used in the order of increasing way 

numbers, the decoder can quickly determine which eECC field is 

associated with a particular cache line by examining all the E-bits 

for a set. Thus, when a tag lookup completes, the cache controller 

knows if the line is present in the cache (hit/miss), its ECC type 

(SECDED or multi-bit), and which of the four eECC fields store 

that line‟s check bits.  

On a read hit to a cache line that requires multi-bit ECC (E-bit = 1), 

the eECC bits associated with that line are sent to the multi-bit ECC 

decoder, in addition to the data and SECDED ECC check bits. The 

multi-bit decoder corrects all the errors in the line before sending it 

to the processor. Similarly, on a read hit to a line that requires only 

SECDED ECC (E-bit = 0), data and SECDED ECC check bits are 

sent to the SECDED decoder. On a write hit or cache fill, new ECC 

check bits need to be generated. If the cache line requires multi-bit 

ECC (E-bit = 1), then the data being written is sent to the multi-bit 

encoder to generate all the check bits. The first lSECDED bits are 

written in the SECDED ECC field of the line, while the remaining 

check bits are written to the appropriate eECC field. Similarly, if the 

written cache line uses SECDED ECC, data is sent to the SECDED 

encoder and the generated check bits are written in the SECDED 

ECC field for that line.  

If an access results in a cache miss and the replacement algorithm 

selects a dirty block for eviction, then any errors in the block need to 

be corrected before it is written back to the next cache level (or 

memory). Such evictions are conducted in a manner similar to a read 

request: we first check the E-bit for the victim line to decide what 

kind of ECC it uses. If the E-bit is set, then we send the data and the 

appropriate ECC bits to the multi-bit decoder. Otherwise, we send 

the data and the SECDED ECC bits to the SECDED decoder. After 

the dirty line is written back, the new line is read from the next 

cache level (or memory) and a fill then proceeds similar to a write 

request. VS-ECC-Disable and VS-ECC-Variable operate very 

similarly, with the difference that VS-ECC-Disable completely 

avoids using lines with D-bit set, and VS-ECC-Variable looks up 

the pointer and the size of the ECC block upon a tag match instead 

of using a single E-bit.  

During regular operation, cache lines with zero or one failures do 

not incur any latency overhead, relative to a baseline cache with 

SECDED ECC. Lines with multi-bit errors incur an additional 

latency due to the higher complexity of the multi-bit encode/decode 

logic. However, this logic can be pipelined to speed up the operation 

at a higher area cost, as we describe in Section 4. 

We note that VS-ECC-Disable avoids some multi-bit ECC 

overheads during normal cache operation by disabling lines with 

three or more failures. However, it still requires our dynamic 

characterization that relies on multi-bit error correction. Another 

alternative could forego hybrid characterization altogether and 

subject the entire cache to thorough testing, which would have an 

unreasonable impact on performance and user experience.  

4. MULTI-BIT ERROR CORRECTION 

ANALYSIS 
The most popular choice for ECC in memories belongs to the class 

of binary linear block codes [7][20], used commonly for soft-error 

protection. Alternatively, iterative encoding/decoding designs use 

much less hardware but require a higher latency [25]. Prior work has 

investigated fast, parallel designs for simple codes such as SECDED 

and DECTED [18][25]. Memory structures that can tolerate high 

latencies (e.g., FLASH) use stronger ECC to correct multi-bit errors 

[20]. As previously discussed, our solution protects the common 

case where cache lines have zero or one failures with simple 

SECDED ECC, while protecting lines with multiple failures using 

stronger, 4-bit-correcting, 5-bit detecting (4EC5ED) codes. In this 

section, we explain the ECC algorithm and analyze its complexity 

for both SECDED and 4EC5ED. 



4.1 Multi-Bit BCH Codes 
Binary BCH codes are a class of linear cyclic block codes that are 

widely used for correcting random bit-errors [20]. The simplest 

block code, Hamming code, is a special type of BCH code that can 

correct only one random error [7]. In general, a binary BCH code is 

defined over a finite Galois Field GF(2m), which is defined by an 

irreducible polynomial p(x) of degree m over GF(2). The field is the 

set of polynomials modulo p(x). If α denotes the root of p(x), the set 

of field elements can also be represented as {0, 1, α, α2,…, α2^m-2}. 

Each element αi has a distinct representation as a polynomial with 

degree less than or equal to m, or simply is an m-tuple vector with m 

binary coefficients of the polynomial.  

BCH code words are produced using a generating matrix G based 

on a set of generator polynomials. Checking a code word for errors 

involves using the H matrix (parity matrix) to obtain syndromes and 

check whether data has been corrupted. The detailed proof and 

generation of the H matrix is beyond the scope of this paper and can 

be found in [12][20].  Figure 5 shows a high-level block diagram for 

BCH error correction logic consisting of two components, the 

encoder and the decoder: 

ECC Encoder. Input to the encoder is a k-bit data word d, 

represented as a vector. The encoding process is simply the 

multiplication of d and the generator matrix G. If the code is 

selected in a systematic form (i.e., part of the G matrix is the identity 

matrix), then data bits are not changed and will be concatenated with 

r check bits to obtain the final code word.  

ECC Decoder. The decoder detects and corrects potential errors in 

the stored code word. The error-correcting logic will pinpoint the 

locations of all corrupted bits (if any) within the capability of the 

code, and then corrects them. The decoding procedure can be further 

divided into three steps [20]:  

Step 1: Syndrome calculation. The syndrome S is the product of 

retrieved code word (v) and the transpose of the parity matrix H,  
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According to the code definition, a valid codeword v must have its 

resulting syndrome equal to zero. Any non-zero syndrome indicates 

the occurrence of one or more errors. Suppose the set of error 

locations is {i1, i2, …, it}. More precisely, each syndrome element Sj 

is represented as Sj = (αi1) j+ (αi2) j +… + (α it) j. If the syndrome S is 

non-zero, we need to locate all errors in the codeword by first 

determining the error-locator polynomial and then solving it to 

pinpoint and correct errors. 

Step 2: Determining the error-locator polynomial. The error-

locator polynomial σ(x) is defined such that the roots are given by 

the inverse of error elements αi1
, α

i2,…, αit
 , respectively: σ(x) = 1+ 

σ1x + σ2x
2… + σtx

t = (1- αi1x)(1- αi2x)…(1-αitx). Berlekamp and 

Massey‟s iterative algorithm is used to obtain the σi from Sj by 

solving Newton‟s identities of the polynomial σ(x) [3][17]. 

Step 3: Finding the error locations and correction. Solving the 

error-locator polynomial includes substituting the field elements αi 

into σ(x). Those substitutions that make the equation equal to zero 

are roots of the polynomial. Correction is done by flipping the 

corresponding data bits using XOR gates. 

4.2 ECC Overhead Analysis 
Lower latency can be achieved by parallelizing the ECC encoding 

and decoding algorithm. Previous studies have investigated the area 

and latency tradeoffs for bit-parallel binary BCH decoders [25]. 

Both ECC encoding and syndrome calculation (step 1 of the 

decoder algorithm) are based on matrix multiplication. In a 

completely bit-parallel implementation of the latter, each syndrome 

bit is obtained by a separate XOR tree with inputs taken from code 

words. The selection of the input bits is determined by the values in 

the H matrix, which is 50% full on average (half of the matrix 

entries are „1‟). So each XOR tree‟s fan-in is half the number of 

input bits. Having a stronger correction capability does not affect the 

depth and latency of each tree, only increasing the number of trees.  

The Berlekamp-Massey Algorithm (BMA) [6] is the best known 

technique to find coefficients for the error-locator polynomial (Step 

2 of the decoder). BMA is based on a t-step recursive procedure, 

which cannot be parallelized completely. Each iteration involves a 

Galois field inversion that takes 2m steps [4]. An inversionless 

BMA proposed in [6] uses double the number of multiplications, 

but performs them in parallel and off the critical path [21]. 

Chien‟s search [8] is an elegant algorithm for Step 3 of the decoding 

algorithm. It leverages the cyclic nature of BCH codes, and corrects 

one bit per cycle with a simple linear feedback shift register. 

However, its latency is too high for a large data input. A faster 

alternative is to check all elements in parallel, which requires a large 

number of gates [25]. An area and latency tradeoff can be done by 

splitting the data bits into r chunks, so that k/r bits are tested in each 

cycle and the algorithm requires a total of r cycles to finish. A few 

additional registers, occupying negligible storage, are needed to 

store intermediate results.   

Table 1 lists the cost for both SECDED and 4EC5ED for a 64B 

cache line. We implement Step 2 in a pipelined, fully-parallel and 

unrolled structure based on the inversionless BMA algorithm. For 

4EC5ED, the algorithm takes three iterations. The first iteration 

takes a single cycle, and the last two iterations are split in half to fit 

in a clock cycle. The maximum critical path includes one GF 

multiplication, two GF additions and two multiplexers, for a total of 

five-cycle latency for this step. For Step 3, we list the overhead for 

two different implementations. The first approach is fully-

parallelized and tests 64 bytes together, taking only one cycle. The 

second approach, which we use in our simulations, corrects 8 bytes 

per cycle. It reuses the correcting logic and reduces area overhead, 

but incurs a latency of eight cycles for a 64-byte line. The fully 

parallelized SECDED design is simple and fast, with only 14k gates 

of hardware and one cycle for either the encoding or the decoding 

process. On the other hand, the 4EC5ED design needs about 50k 

Figure 5. Overview of a BCH-based error-correcting design. 
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gates and a 14-cycle latency. An additional cycle may be needed to 

check whether we need multi-bit correction (total of 15 cycles). 

Assuming a gate is equal to twice the area of a cache cell, 4EC5ED 

has a logic area overhead of ~0.6% for a 2MB cache. 

Storage Overhead. Higher error-correcting capability requires a 

higher storage overhead for check bits: To correct t-bit errors and 

detect (t+1)-bit errors, a BCH code requires t*m+1 check bits [20]. 

For a certain length of data input (e.g., k-bits), the rank m is the 

smallest possible number that makes the total code length 

(k+t*m+1) less than the number of non-zero elements in GF(2m). 

For a 64B (512 bit) cache line, m is equal to 10, as 210 > 512 + 10+1 

> 29. So a 64B (512 bit) cache line requires 11 check bits for 

SECDED ECC. 

Consequently, in our baseline configuration with SECDED ECC on 

all lines to recover from soft, non-persistent errors, we have 

(512+11)*16 = 8368 bits per set for a 16-way cache. In our 

evaluation, we use VS-ECC-Fixed (12x1, 4x4) which needs twelve 

11-bit SECDED codes and four 41-bit 4EC5ED codes for each set, 

in addition to one status bit per line. VS-ECC-Fixed therefore 

requires a total of 30*4+16*1 = 136 bits per set more than SECDED 

(1.6% overhead). This overhead is smaller than using a uniform 

DECTED code with 21-bits (10-bits more than SECDED) for every 

cache line (1.9% overhead). VS-ECC-Disable has an additional 

disable bit per cache line, so the total number of additional bits per 

set is 136+16=152 (1.8%  overhead vs. SECDED). VS-ECC-

Variable needs an additional six bits per cache line, for a total of 

152+16*6 = 248 bits per set (3% overhead over SECDED). 

5. SIMULATION METHODOLOGY 
Simulation baseline configuration. We use a cycle-accurate, 

execution-driven simulator running IA32 binaries. The simulator is 

micro-operation (uOp) based, executes both user and kernel 

instructions, and models a detailed memory subsystem. As a 

baseline, we model an out-of-order superscalar processor similar to 

a single core of the Intel® Core™ i7 processor running in a single 

voltage domain at 2 GHz. Our memory system includes a 32 KB, 8-

way set-associative L1 instruction cache, a 32KB, 8-way set-

associative L1 data cache, and a 2MB, 16-way set-associative 

unified L2 cache. All caches in our system are configured to have 

64-byte lines. Our baseline configuration uses SECDED ECC to 

guarantee recovery from single-bit soft errors and other non-

persistent failures. 

Benchmarks. We simulate ten categories of benchmarks. For each 

individual benchmark, we carefully select multiple sample traces 

that are representative of its behavior. Table 2 lists the number of 

traces and example benchmarks included in each category. We use 

instructions per cycle (IPC) as the performance metric. The IPC of 

each category is the geometric mean of IPCs of all traces within that 

group. We normalize the IPC of each category to the baseline for 

performance comparison, and use the average IPC and the operating 

voltage as inputs to a power model to estimate energy consumption.  

Simulated configurations. Our baseline configuration (BASE) has 

SECDED ECC and a 12-cycle L2 hit latency in addition to one 

cycle for SECDED correction. In addition to the baseline, we model 

two fixed-strength ECC configurations, three variable-strength ECC 

configurations, and the previously proposed multi-bit segmented 

ECC configuration (MS-ECC) [9]. Fixed-strength configurations 

(DECTED, 4EC5ED) model an L2 cache augmented with ECC 

codes that correct two and four errors, respectively. Since we 

provide a recovery guarantee for all single-bit non persistent 

failures, DECTED can only recover from a single persistent failure 

per line while 4EC5ED can only recover from up to three failures 

per line. DECTED has the same latency as our baseline SECDED, 

while 4EC5ED incurs an additional latency of 15 cycles. We also 

simulate variations of our VS-ECC mechanism with SECDED on 

 

Table 1. Logic and Latency Overheads. 
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Table 2. Benchmarks. 

Category 
Number 

of traces 
Example benchmarks 

Digital home (DH) 9 
H264 decode/encode, 

flash 

SPECINT2006 

(ISPEC) 
8 www.spec.org 

SPECFP2006 

(FSPEC) 
9 www.spec.org 

Games (GM) 19 Doom, quake 

Multimedia (MM) 24 Photoshop, ray tracer 

Office (OFF) 29 
Spreadsheet/word 

processing  

Productivity (PROD) 17 
File compression, 

Winstone 

Server (SERV) 14 SQL, TPC-C 

Workstation (WS) 7 CAD, bioinformatics 

Kernels (KERN) 7 
Streaming, random 

access microbenchmarks 

ALL 143  
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all lines, and multi-bit correction on a few lines per set: VS-ECC-

Fixed (12x1, 4x4) has four lines per set with 4EC5ED code while 

the remaining lines have SECDED; VS-ECC-Variable has 

SECDED for all lines and 12 extra 10-bit ECC blocks; VS-ECC-

Disable is the same as VS-ECC-Fixed with the ability to disable 

lines with multi-bit failures. All VS-ECC designs were simulated in 

the regular operation mode assuming multi-bit failing lines have 

been identified. We model MS-ECC with a 4-bit error-correcting 

code for each 64-bit segment of a cache line. To provide the same 

guarantee against non-persistent faults, each segment only protects 

against three persistent failures. Since MS-ECC uses the latency-

efficient but area-inefficient Orthogonal Latin Square Codes to 

implement error correction, the L2 cache configuration effectively 

changes to a 1 MB 8-way cache with one cycle added to the latency 

for cache hits [9].  

6. RESULTS 
In this section, we present the experimental results for our proposed 

technique. Section 6.1 compares the cache failure probability for 

VS-ECC with previously proposed solutions for reducing Vccmin. 

Section 6.2 evaluates the performance of VS-ECC in the low-

voltage mode. Section 6.3 analyzes the power and energy-efficiency 

of VS-ECC and compares it with previously published techniques. 

6.1 Reliability 
Figure 6 shows Vccmin results for both persistent failures and soft 

errors. We use the persistent failure model for 6T cells measured by 

Kulkarni, et al. [16], in addition to the soft error model proposed by 

Chishti, et al. [9]. All designs can tolerate a single bit failure due to 

soft errors or other non-persistent failures, so lines covered by 

SECDED cannot tolerate any persistent failures. We set a design‟s 

Vccmin at a point when 999 out of 1000 caches will not fail due to 

persistent errors (intersection with the 1.E-03 line in the Figure 1). 

Our SECDED baseline has a 830 mV Vccmin, below which it does 

not satisfy the yield requirements. Fixed-strength error correction 

techniques are successful in lowering the voltage, as more failures 

can be tolerated: DECTED ECC lowers Vccmin to 675 mV; while 

4EC5ED cuts it down to 565 mV. As more error-correction 

capability is introduced, Vccmin can be lowered even further. 

However, due to the exponential nature of the bit failure probability 

curve, we see diminishing returns when we increase error-correction 

capability beyond 4EC5ED. 

Figure 6 also shows that variable-strength ECC can be successful at 

lowering Vccmin with a fraction of the overhead of fixed-strength 

solutions. For example, using SECDED on all lines, while using 4-

bit correction on only four lines per 16-line set, i.e., VS-ECC-Fixed 

(12x1, 4x4) reduces Vccmin to 590 mV. VS-ECC-Variable reduces 

Vccmin to 565 mV (the same as 4EC5ED); while VS-ECC-Disable 

has a 500 mV Vccmin. VS-ECC-Disable can disable cache lines 

that have multi-bit failures, and its Vccmin is set at a point to 

guarantee that we have at least two functioning lines in every set (so 

we can only disable up to 14 ways in a single L2 set). On average, 

VS-ECC-Disable only disables 0.4% of all cache lines (i.e., all lines 

with three or more failures at 500 mV in Figure 1). The best 

previously published mechanism, MS-ECC [9], achieves a Vccmin 

of 540 mV at the cost of sacrificing half of the capacity and 

doubling the number of cache accesses.  

6.2 Performance 
In this section, we evaluate performance overheads for different 

cache designs in the low-voltage mode. Figure 7 shows IPC, 

normalized to the performance of a 2 MB L2 cache baseline with 

SECDED ECC. For each benchmark category, we show the 

geometric mean of normalized IPC for the baseline, VS-ECC, and 

two fixed-strength designs: 4EC5ED and MS-ECC. The 4EC5ED 

configuration adds a 15-cycle penalty on every cache hit due to the 

ECC processing, resulting in a 3% drop in IPC on average. MS-

ECC, on the other hand, has the same hit latency as SECDED, but 

also uses half the cache ways to store ECC, resulting in a 50% 

reduction in size and associativity, and a 6% performance loss. Note 

that we only show the performance impact of L2 design changes, 

while keeping the L1 constant. 

Compared to the baseline, our VS-ECC designs show a negligible 

drop in performance (less than 0.1%) across all benchmark 

categories. This performance loss is significantly lower than that of a 

fixed-strength 4EC5ED scheme, because VS-ECC-Fixed and VS-

ECC-Variable incur the additional 15-cycle penalty only for the 

0.1% lines that require multi-bit ECC decoding at 590 and 565 mV 

(Figure 1). Conversely, all other lines only observe only a single 

cycle latency for SECDED ECC decoding.  VS-ECC-Disable has a 

negligible performance penalty due to disabling 0.4% of cache lines 

on average (lines with three or more failures at 500 mV in Figure 1), 

while a negligible fraction of the remaining lines (less than 3.3%) 

require multi-bit ECC decoding due to having two persistent 

failures, or a multi-bit combination of persistent and non-persistent 

failures. Furthermore, the area overhead of our most area-intensive 
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implementation, VS-ECC-Variable, represents less than 3% of the 

total cache area, compared to 1.9% overhead for DECTED and 

5.7% for 4EC5ED.  Compared to the SECDED baseline, VS-ECC 

achieves a much lower Vccmin at almost the same performance. 

Relative to DECTED, VS-ECC achieves a much lower Vccmin and 

the same performance at a slightly lower area overhead. Compared 

to 4EC5ED, VS-ECC-Variable achieves the same Vccmin, and VS-

ECC-Disable achieves a much lower Vccmin, while getting better 

performance and using less area.  

6.3 Energy Efficiency 
Table 3 summarizes the achievable Vccmin, power consumption, 

energy per instruction (EPI) and energy-delay products of different 

cache designs during the low-voltage operating mode. We normalize 

the power and energy results for each design to the baseline, while 

showing absolute results for Vccmin and frequency. For power 

calculations, we assume that dynamic power scales quadratically 

with supply voltage and linearly with frequency. We also assume 

that static power scales with the cube of supply voltage, and use 

circuit simulations to model the impact of Vccmin changes on 

processor frequency [27].  

Our VS-ECC-Disable design achieves lower power and lower 

energy per instruction (EPI) compared to all alternative cache 

designs. Compared to fixed-strength ECC mechanisms, VS-ECC-

Disable is consistently better, reducing power and EPI by 84% 

and 50%, respectively, vs. SECDED; by 67% and 31%, 

respectively, vs. DECTED, by 47% and 15%, respectively vs. 

4EC5ED; and by 26% and 11%, respectively vs. MS-ECC [9]. 

Conversely, the recently-published Hi-ECC [26] has a Vccmin of 

595 mV on our 2MB baseline cache due to using large 1KB cache 

lines, but incurs significant additional activity due to read-modify-

write operations and reading larger lines that significantly increase 

dynamic power. Combined with cache line disabling, Hi-ECC 

achieves the same Vccmin as our VS-ECC-Disable, but requires 

disabling most cache lines (compared to disabling 0.4% of lines 

for VS-ECC-Disable with 64B lines).  

7. CONCLUSIONS 
In this paper, we observe that only a few cache lines experience 

multi-bit failures at low voltages, while the vast majority of lines 

exhibit zero or one errors, especially for large caches. We propose a 

novel cache architecture that relies on variable-strength error-

correcting codes (VS-ECC) for error tolerance. The common case of 

lines with no failures is handled with simple and fast SECDED 

codes to guarantee recovery from soft errors. A small number of 

lines with persistent failures can use a strong 4-bit error-correcting 

code or a variable-length code that requires some additional area 

and incurs a latency penalty. Each cache set uses a few additional 

bits to support multi-bit error-correcting codes on a small number of 

its lines. We also propose a mechanism to dynamically characterize 

the cache after the processor first transitions to the low-voltage 

mode to determine which lines will exhibit multi-bit failures and 

allocate additional ECC bits to them. This algorithm is targeted 

specifically to alleviate two main drawbacks of online testing: the 

need for comprehensive testing with pre-set patterns and the need to 

minimize the impact on end-user experience. Finally, our 

experimental evaluation demonstrates that compared to fixed-

strength ECC techniques, VS-ECC avoids significant decreases in 

cache capacity, incurs minimal additional area overhead, and avoids 

unnecessary increases in latency and bandwidth advocated by some 

current proposals that use large lines. When combined with selective 

cache line disabling, our VS-ECC design achieves an 84% power 

reduction and a 50% energy reduction compared to SECDED ECC, 

and achieves a 26% power reduction and an 11% energy reduction 

compared to previously published MS-ECC technique, without 

losing half the cache capacity at low voltages.  
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Figure 7. Normalized IPC for different benchmark categories (vs. 2MB Baseline). 

Table 3. Energy characteristics of different 2MB cache designs. 

Design 
Vccmin 

(mV) 

Frequency 

(MHz) 

Norm. 

Power 

Norm. 

EPI 

Baseline (SECDED) 830 2000 1.00 1.000 

DECTED 675 1350 0.49 0.722 

4EC5ED 565 940 0.26 0.570 

MS-ECC 540 830 0.22 0.562 

VS-ECC-Fixed 590 1040 0.31 0.587 

VS-ECC-Variable 565 940 0.26 0.555 

VS-ECC-Disable 500 650 0.16 0.499 
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