
Energy-Efficient Cache Design Using

Variable-Strength Error-Correcting Codes

Alaa R. Alameldeen, Ilya Wagner, Zeshan Chishti, Wei Wu, Chris Wilkerson, Shih-Lien Lu

Intel Corporation
2111 NE 25

th
 Ave M/S JF2-04, Hillsboro, OR 97124, USA

{alaa.r.alameldeen, ilya.wagner, zeshan.a.chishti, wei.a.wu, chris.wilkerson, shih-lien.l.lu}@intel.com

ABSTRACT

Voltage scaling is one of the most effective mechanisms to improve

microprocessors‟ energy efficiency. However, processors cannot

operate reliably below a minimum voltage, Vccmin, since hardware

structures may fail. Cell failures in large memory arrays (e.g.,

caches) typically determine Vccmin for the whole processor. We

observe that most cache lines exhibit zero or one failures at low

voltages. However, a few lines, especially in large caches, exhibit

multi-bit failures and increase Vccmin. Previous solutions either

significantly reduce cache capacity to enable uniform error

correction across all lines, or significantly increase latency and

bandwidth overheads when amortizing the cost of error-correcting

codes (ECC) over large lines.

In this paper, we propose a novel cache architecture that uses

variable-strength error-correcting codes (VS-ECC). In the common

case, lines with zero or one failures use a simple and fast ECC. A

small number of lines with multi-bit failures use a strong multi-bit

ECC that requires some additional area and latency. We present a

novel dynamic cache characterization mechanism to determine

which lines will exhibit multi-bit failures. In particular, we use

multi-bit correction to protect a fraction of the cache after switching

to low voltage, while dynamically testing the remaining lines for

multi-bit failures. Compared to prior multi-bit-correcting proposals,

VS-ECC significantly reduces power and energy, avoids significant

reductions in cache capacity, incurs little area overhead, and avoids

large increases in latency and bandwidth.

Categories and Subject Descriptors

B.3.4 [Memory Structures]: Reliability, Testing, and Fault-

Tolerance. B.8.1 [Performance and Reliability]: Reliability,

Testing, and Fault-Tolerance.

General Terms: Performance, Design, Reliability.

Keywords: Cache design, error-correcting codes, variable-

strength codes, low-voltage design.

1. INTRODUCTION
Energy efficiency is becoming the key design concern for modern

computer systems. Modern processors use low-power operating

modes that optimize power in addition to the normal, high-

performance operating mode. Reducing supply voltage is one of the

most effective methods to lower power consumption. However, as

supply voltage decreases, the effects of process variations become

more pronounced, causing many circuits to fail. Such variations

restrict voltage scaling to a minimum value, Vccmin, which is the

minimum supply voltage for a die to operate reliably [27]. Failures

in large memory structures (e.g., caches) typically determine

Vccmin for the whole processor [27].

Prior work has explored techniques to enable ultra-low voltage

cache operation in the context of high memory cell failure rates

[1][2][9][22][27]. At such voltages, there is a high probability that

one or more cache lines will exhibit multi-bit failures. Consequently,

these techniques sacrifice a significant percentage of cache area (up

to 50%) to enable correcting failures at low voltages using

redundancy or error-correcting codes (ECC). This high area

overhead is necessary to account for the uniform capability to

correct multi-bit failures in any cache line. A recently proposed

solution, Hi-ECC [26], amortized the cost of multi-bit error-

correcting codes on larger (1KB) cache lines to reduce the cache

area overhead to less than 2% (in the context of reducing refresh

rates of large eDRAM caches). However, Hi-ECC suffers from

higher latency and bandwidth consumption due to reading larger

cache lines, and the need to perform a costly read-modify-write

operation on every write to update ECC bits, thereby making it less

appealing for small cache structures.

In this paper, we make the observation that the probability of a

cache line having a multi-bit error is significantly lower than the

probability of having zero or one failures. Consequently, selective

high-strength protection of a few cache lines provides a significantly

better usage of the ECC bit budget than fixed-strength, uniform

techniques. To enable an area-efficient cache design that operates

with no additional latency or bandwidth at low voltages, we propose

using multi-bit ECC only on cache lines that need such protection.

Our solution, variable-strength ECC (VS-ECC), allocates single-

error correcting, double-error detecting (SECDED) ECC to all cache

lines, while reserving a few more bits per cache set to one or more

lines that can exhibit multi-bit failures. The minimum SECDED

protection allocated to all lines ensures that our design can recover

from all single-bit non-persistent failures (e.g., due to soft errors or

erratic failures [9]). Since SECDED is a standard feature in many

existing cache designs [5][23], the area overhead of VS-ECC is

limited to the additional bits and logic needed to store and process

the strong multi-bit ECC. By providing strong protection only where

necessary, VS-ECC can reduce operating voltage compared to

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee.

ISCA’11, June 4–8, 2011, San Jose, California, USA.

Copyright 2011 ACM 978-1-4503-0472-6/11/06...$10.00.

fixed-strength ECC at the same area budget, resulting in lower

power consumption. Furthermore, since the fraction of lines using

the high-latency multi-bit ECC is small, the performance penalty of

VS-ECC is insignificant.

The main challenge for VS-ECC is to identify which cache lines

exhibit multi-bit failures at low voltage and need the extra ECC

protection. We propose a mechanism that uses multi-bit ECC to

protect a portion of the cache after the first transition to the low-

voltage mode, while comprehensively exercising the remaining lines

with a standard memory testing algorithm. As a result, our hybrid

characterization solution addresses two main constraints of online

testing: the need to extensively stress every bit (and combinations of

different bits) with pre-determined patterns, and the need to enable a

part of the cache for fast transition to the low-voltage mode with

little impact on user experience.

In this paper, we make the following main contributions:

1. We make the observation that the vast majority of cache lines,

more than 96%, only exhibit zero or one failures at voltages as

low as 500 mV.

2. We propose a novel cache architecture that uses variable-

strength ECC (VS-ECC). The cache uses a simple ECC

mechanism for the common case, while allocating a few bits

per cache set to enable multi-bit corrections for the lines that

exhibit multi-bit failures at low voltages. We propose three

alternative designs for VS-ECC with varying degrees of

hardware complexity, latency, and Vccmin reduction.

3. We propose a dynamic mechanism that characterizes a cache to

identify multi-bit failing lines at low voltages with little

performance overhead.

4. We show that, when combined with selective line disabling,

VS-ECC can achieve reliable cache operation at 500 mV for a

2 MB cache, cutting energy consumption in half compared to

SECDED ECC with little impact on performance or die area.

VS-ECC requires no additional latency and bandwidth to

access larger cache lines, and avoids the overhead of read-

modify-write operations on every cache write.

In the remainder of this paper, we discuss the impact of bit failures

on Vccmin and summarize the previously proposed schemes for

achieving reliability at lower supply voltages in Section 2. We

explain our proposed techniques in detail in Section 3, and our

error-correction strategy in Section 4. We introduce the

experimental methodology in Section 5, evaluate our design in

Section 6, and conclude the paper in Section 7.

2. BACKGROUND

2.1 VS-ECC Overview
Modern processors use a large portion of their die for SRAM

caches, which must operate free of errors for correct software

execution. However, due to variations in the manufacturing process,

some of the cache bits are weaker than others and may fail when

supply voltage is reduced to conserve power [16][27].

Consequently, a cache with no error mitigation capabilities cannot

operate reliably below a minimum voltage, Vccmin, below which at

least one cache bit fails. Simple error-correcting codes (e.g.,

SECDED) add ECC check bits for error tolerance, thus allowing the

cache to operate at a lower supply voltage while incurring a small

area overhead. However, significant voltage reductions may

introduce more errors than could be handled by SECDED.

In Figure 1, we show the bit failure data from Kulkarni, et al. [16],

indicating the probability of a single SRAM bit failure (pBitFail)

across a range of voltages. We also plot probabilities Pe of having

e=1,2,3,4 errors in a 64-byte cache line. By examining Figure 1, we

observe that the probability of two or more bit failures in a line is

very low, even at voltages as low as 500 mV. Therefore, only a

small fraction of lines would need multi-bit ECC, while SECDED

protection is sufficient for the remainder of the cache. This

motivates the need for a variable-strength technique, VS-ECC,

where the check bit budget is allocated judiciously to only a few

lines that require multi-bit protection.

We further demonstrate the benefits of VS-ECC with the following

example. Given a single set of a 16-way set-associative cache, we

can either use a fixed-strength double-error correcting, triple-error

detecting (DECTED) ECC on each line of the set, or a variable-

strength ECC, where a few lines are protected stronger than the rest

of the set. For this example, we assume that twelve of sixteen lines

in the set are protected by SECDED ECC, while the other four lines

can correct up to 4 errors (12-SECDED+4-4EC5ED). We also

assume that SRAM failures are random in nature [19]. Representing

the probability of a line having e errors as Pe, we compute the

probability that a set works correctly with DECTED (PDECTED) and

the probability that a set works correctly with VS-ECC (PVS-ECC) as

follows:

l

j

je

l

i

ie

l

ECCVS

i

ieDECTED

PP
l

P

PP



































16
1

0

4

2

4

0

2

0

16

)()(
16

)(

In the second equation, l=0 computes the probability of all sixteen

lines having 0 or 1 errors:

16
1

0

016
1

0

0
4

2

)()()(
0

16

) (














 










j

je

j

je

i

ie PPP

errors1or0havelinesallP

On the other hand, for l=1,2,3,4 we calculate the probability of

having l lines with 2 to 4 errors each and the remaining lines having

0 or 1 errors. The probability of a set failure is then calculated

trivially as:

ECCVSfailECCVSDECTEDfailDECTED PPPP   1 1 __ and

Sweeping a range of voltages and bit failure probabilities, we

observe that PDECTED_fail is always higher than PVS-ECC_fail for voltages

above 450 mV (Figure 2). While we used a single set in this

Figure 1. Probability of a single bit failure and probability Pe

of e failures in a 64B cache line.

1.E-18

1.E-15

1.E-12

1.E-09

1.E-06

1.E-03

1.E+00

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85Vcc
P

ro
b

a
b

il
it

y

pBitFail

P(e=1)

P(e=2)

P(e=3)

P(e=4)

example for simplicity, this result can be extrapolated for the whole

cache (Section 6). Thus, a VS-ECC-protected cache is able to

operate reliably at a voltage lower than the failure point of a

DECTED cache. For an entire cache with thousands of sets, the gap

between the two techniques widens super-linearly. In Section 4, we

demonstrate that the 12-SECDED+4-4EC5ED technique requires

fewer check bits than a full DECTED ECC solution, further

motivating the choice of VS-ECC. It is also worth noting that this

analysis does not consider error clustering, which would benefit VS-

ECC much more than a fixed-strength ECC design.

2.2 Related Work
Traditional approaches to tolerate bit defects in caches have used

row/column level redundancy by adding spare rows/columns to the

cache [24]. These approaches remap a row/column with one or more

bit defects to a spare row/column. While this coarse-grain

remapping is effective in dealing with relatively low error rates

encountered during high-voltage mode, it cannot mitigate defects in

thousands of cache lines during low-voltage operation.

Wilkerson, et al. [27], and Roberts, et al. [22], proposed techniques

to enable reliable low-voltage operation by sacrificing a portion of

the cache to save the locations of defects and the values of correct

data. ZerehCache employs fine granularity re-mapping of faulty bits

to tolerate high failure rates, and relies on additional manufacturing-

time testing to identify the locations of defects on sub-cache line

granularities before solving a graph coloring problem to find the

best re-mapping of defects to spare lines [2]. These techniques incur

performance overheads at low voltages due to the smaller cache

capacity, higher latency, and the need to access a fault map in

parallel. They also rely on manufacturing-time testing to pinpoint

the location of bit defects, which would not help with soft errors.

Circuit-level approaches have been proposed to improve bit cell

reliability by either upsizing transistors or using alternative SRAM

cell designs, such as eight-transistor (8T) or ten-transistor (10T)

cells [16]. These approaches incur significant area overhead and

higher leakage during both the high-voltage and low-voltage modes.

In particular, the work in [27] shows that a 10T cell would achieve a

comparable operating voltage to our VS-ECC but with a much

larger area overhead (100% overhead for the 10T cell vs. less than

4% overhead for VS-ECC).

Many previous papers have proposed the use of error-correcting

codes (ECC) to improve cache reliability [9][14][26]. Kim, et al.

[14], proposed two-dimensional ECC to correct multi-bit errors. 2D-

ECC is tailored towards clustered bit defects and is less effective in

dealing with high rates of random defects. Chishti, et al. [9],

proposed multiple-bit segmented ECC (MS-ECC) at fine sub-cache

line granularities to tolerate high failure rates. MS-ECC sacrifices a

large portion of the cache (25-50%) to store ECC check bits for the

rest of the lines, which leads to performance loss during the low-

voltage mode. Furthermore, MS-ECC requires 25-50% of the cache

to be flushed and ECC check bits to be computed for the rest of the

cache every time we switch from the high-voltage to the low-voltage

operating mode. Yoon and Erez proposed reducing the cost of

storing error-correcting codes for the last level cache by partitioning

the code between the cache and memory [28]. Our previous work,

Hi-ECC, uses multi-bit ECC in an eDRAM cache to reduce refresh

power [26]. Hi-ECC reduces the storage cost of multi-bit ECC by

saving check bits over large cache line granularities (1 KB), and

reduces the latency cost by separating the common case of zero or

one bit failures from the uncommon case of multi-bit failures.

However, large cache lines (used in Hi-ECC) result in higher

dynamic power. The approach presented in this paper uses variable-

strength error protection, differing from all the previous ECC-based

cache reliability techniques that allocate fixed ECC budgets to all

cache lines.

Variable-strength protection schemes have been studied extensively

in the communication theory context, since some parts of the

transmitted data have much higher importance for system stability.

For instance, an error in a control or in a routing field of a message

header may have much worse consequences than a bit flip in the

payload. Fujiwara presents a comprehensive overview of these

techniques [10]. The only cache-related study was performed by

Kim and Somani [15]. They provided ECC capability for some, but

not all, L1 cache lines to protect against soft errors, and considered

frequently accessed lines to be most vulnerable. Compared to Kim

and Somani‟s study, our proposal targets both transient and

persistent errors at low voltages, provides a minimum level of

protection for all lines, and allocates more protection to cache lines

with a higher number of persistent errors. To the best of our

knowledge, this paper is the first to use variable-strength error

correction for energy-efficient cache design.

3. VARIABLE-STRENGTH ECC
The key idea behind VS-ECC is to employ error-correcting codes of

different strengths for different cache lines, based on the number of

failing bits in each line in the low-voltage mode. VS-ECC uses fast

SECDED ECC for the common case of lines with zero or one

errors, and resorts to a slower multi-bit correction only in the rare

case of two or more errors. However, VS-ECC requires cache lines

to be classified based on the number of bit failures. In this section,

we discuss three variations of VS-ECC that could be implemented

on top of a baseline SECDED cache. In Section 3.1, we describe the

cache organization. We then discuss the cache characterization and

low-voltage operation in Section 3.2 and Section 3.3, respectively.

3.1 Cache Organization
We illustrate VS-ECC with the example of a 16-way set-associative

cache shown in Figure 3. The tag and data arrays are logically

organized similar to traditional set-associative caches. Tags in this

setup occupy only a small fraction (~10%) of the cache area and are

assumed to be protected by either upsized cells or SECDED as

proposed in [9] and [27]. Each cache line has an associated

SECDED ECC field which contains check bits (of length lSECDED) to

correct one and detect two errors in the line. To support multi-bit

errors, we propose the following three designs:

Figure 2. Probability of a single set persistent failure in a

16-way cache with DECTED or VS-ECC.

1.E-15

1.E-12

1.E-09

1.E-06

1.E-03

1.E+00

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85Vcc (V)
P

ro
b

a
b

il
it

y

P(DECTED_fail)

P(VS-ECC_fail)

 1. VS-ECC-Fixed augments each cache set with four extended

ECC (eECC) fields, each containing (lMULTI-BIT - lSECDED) bits, where

lMULTI-BIT is the number of check bits required to correct a multi-bit

failure in a line (Figure 3a). The four eECC fields enable the cache

to use a strong ECC code for any four of the 16 ways in each cache

set. To distinguish lines that use multi-bit correction from lines that

use SECDED ECC, we add an extra status bit to each tag, called

„Extended ECC bit‟ or E-bit. If a cache line is classified as having

multi-bit failures, the E-bit is set to 1, otherwise it is reset to 0. We

also extend the cache with a separate multi-bit ECC

encoder/decoder in addition to a SECDED encoder/decoder. We

discuss the area and logic complexity of this design in Section 4.

2. VS-ECC-Disable: This design (Figure 3b) is similar to VS-ECC-

Fixed with the addition of one status bit with each cache tag. This

„Disable‟ or D-bit is used to indicate that the corresponding cache

line is not in use, or is always in the invalid state. This design

provides better soft error coverage by using SECDED as a minimum

level of protection for lines with no persistent failures, while using

multi-bit ECC to protect lines with one or two persistent failures.

For lines with more than two persistent failures, we set the D-bit and

the line is no longer used in the low-voltage mode. Using at least 3-

bit correction for the multi-bit ECC protects all lines from single-bit

soft errors, while sacrificing a small fraction of cache capacity due to

the disabled lines.

16-way set-associative cache

...

...

...

Cache line tag
Extended ECC

(E) bit

Cache tag array ...

S
e

t

...

...

Way 0 Way 1 Way 15

...

Cache line data
SECDED
ECC bits

Extended ECC

Cache data array ... Extended
ECC array

Way 15Way 1Way 0

(a) VS-ECC with a fixed number of regular and extended ECC Ways

16-way set-associative cache

...

...

...

Cache line tag

Extended ECC (E) bit

Cache tag array ...

S
e

t

...

...

Way 0 Way 1 Way 15

...Disabled

Cache line data
SECDED
ECC bits

Extended ECC

Cache data array ... Extended
ECC array

Way 15Way 1Way 0

(b) VS-ECC with line disable capability + a fixed number of regular and extended ECC Ways

16-way set-associative cache

...

...

...

Cache line tag
Number of ECC
blocks (2 bits)

Cache tag array ...

S
e

t

...

...

Way 0 Way 1 Way 15

...

Cache line data
SECDED
ECC bits

OR 1
st
 chunk of

larger ECC

Extended ECC

Cache data array ...
Extended

ECC blocks
(12 extra 10-bit blocks)

Way 0

(c) VS-ECC with a variable number of correction bits (1 to 4) for all ways in a cache set

Disable (D) bit

...

...

Pointer to Extended

ECC block (4 bits)

Way 1 Way 15

Figure 3. VS-ECC Cache organization with three alternative designs.

3. VS-ECC-Variable: In this design (Figure 3c), we use the

SECDED bits associated with each cache line either as regular

SECDED code or as the first eleven bits of a multi-bit ECC. We add

two status bits per cache tag to indicate the number of ECC blocks

for the corresponding cache line. This determines the line‟s level of

protection, from 1: SECDED to 4: 4EC5ED. During cache

characterization, we assign SECDED to lines with no failures, and

we assign a number of ECC blocks for other lines to cover both

persistent failures and soft errors.

3.2 Cache Characterization
Before VS-ECC in any of its variations can be turned on in the low-

voltage mode, cache lines need to be classified on the basis of the

number of bit failures. We classify cache lines by running a special

runtime characterization phase during the first transition to the low-

voltage mode. We chose runtime characterization over

manufacturing-time testing since we want to cover a variety of

persistent failures that are not present at time zero (e.g., aging

faults). Furthermore, manufacturing-time characterization is

expensive and requires on-die non-volatile storage to store the fault

map data. The goal of the runtime testing is to extensively analyze a

fraction of the cache using traditional memory characterization

algorithms, while leveraging the eECC bits on the remainder of the

lines to minimize the impact on system performance and user

experience. In this section, we discuss characterization for the VS-

ECC-Fixed configuration, but this mechanism can be trivially

extended to the other VS-ECC variants. Since we have only four

eECC fields per cache set, only four lines can be active and contain

protected live data, while the rest of the cache is inactive and under

test. Note that errors can also be discovered in the active portion,

however, eECC allows us to mitigate them and to mark E-bits for

active lines with multi-bit failures.

Before entering the characterization phase, we reset all the E-bits to

zero, reset valid bits for inactive cache blocks, write back all the

dirty data, and reduce the processor voltage to the target Vccmin.

The four eECC fields then become associated sequentially with the

first four ways (ways 0, 1, 2 and 3) in each set. We deactivate the

remaining ways (4 through 15) by modifying the cache replacement

algorithm so that it does not allocate any new blocks to them. Even

though we sacrifice 75% of the capacity, we ensure that the

available eECC is enough to correct any multi-bit failure in the

active portion of the cache. Note that a complete cache flush on a

voltage transition is not strictly required, and one can design an

algorithm with lower performance impact, albeit higher complexity,

where the first four ways remain in the cache and strong ECC is

generated for them, while the rest of the lines are flushed.

In the active ways, on each cache write during characterization, we

send the data being written to the multi-bit ECC encode logic. We

split the generated multi-bit ECC between the cache line‟s SECDED

field and its eECC field. On a read access, we send the stored data

and the strong ECC to the multi-bit ECC decoder, which then

outputs the corrected line data, as well as the number of encountered

errors. If the number of errors is more than one, we set the line‟s E-

bit, marking it as a line with a multi-bit failure. In this design we

assume that the entire cache must operate in a single voltage domain

and, consequently, high-strength protection is required for the active

region. In a more sophisticated setup without this constraint, voltage

can be reduced only in the portion under test, while the active

portion is kept error-free at a high voltage.

In parallel, we conduct a traditional memory test on the inactive

portion of the cache in the spare cycles when it is not used. Lines are

written with pre-defined patterns and read back in a particular order.

The testing engine, implemented in hardware as a part of the cache

controller, can then identify any discrepancies between the expected

and observed patterns and derive the location of failing bit(s) in each

line. If a multi-bit failure is detected, we set the line‟s E-bit,

implying that it will need extended ECC during regular operation.

On the other hand, if there is only a single error, we write its

location (9-bits for a 512-bit cache line) into the line‟s tag. In the

remainder of the test, if a single-bit failure occurs again in the same

line, we compare its location with the one stored in the tag using the

tag matching hardware. Consequently, a „hit‟ in the tag array would

indicate the repetition of the same error, while a „miss‟ signifies a

multi-bit failure, upon which we would set the line‟s E-bit. The

process continues until the testing algorithm completes or until we

discover a set (spanning both active and inactive regions) with 5 or

more E-bits set to 1 or a line with five errors. This situation indicates

a case where we cannot use the entire cache in low-voltage mode

because the available ECC is not enough to correct all lines with

multi-bit failures, thus the cache is switched to a higher voltage and

eECC fields are disabled for power savings. Alternatively, we can

restart the characterization at a slightly higher voltage (e.g., 10 mV

above target Vccmin). Finally, if the cache passes the test, we move

live data from the active to the inactive portion and activate the

latter. Testing of the previously active region is then started.

Figure 4. Cache operation in low voltage mode for VS-ECC-Fixed.

Hit Miss

Writeback
needed?

N Y

Cache line fill

Tag lookup and

E-bit decode

Access

Access
type

ECC type
SECDED eECC

SECDED ECC compute

Write line and ECC

Multi-bit ECC compute

Write line and ECC

WriteRead

ECC type
SECDED eECC

SECDED ECC check

Send line to CPU

Multi-bit ECC check

Send line to CPU

Victim

ECC type

SECDED eECC

SECDED ECC compute

Writeback victim line

Multi-bit ECC compute

Writeback victim line

For VS-ECC-Variable, in addition to classifying the lines into

single-bit and multi-bit failing lines, we need to know the exact

number of erroneous bits so we can assign a sufficient number of

ECC blocks. This can be done by conducting the test on one quarter

of the cache at a time. Tags that belong to the portion of the cache

under characterization are used to store the locations of up to three

distinct errors for each of the tested lines. Note that we do not

overwrite other tag status bits when we store the error locations.

Thus, after a quarter of the cache is tested, the ECC block pointer

bits in the tags for this portion are preserved and the test of another

portion starts. While VS-ECC-Variable requires high testing

accuracy to identify the exact number of persistent failures in each

cache line, VS-ECC-Fixed requires a much lower accuracy since it

does not differentiate between lines with 1-, 2-, and 3-bit failures.

VS-ECC-Disable uses the same testing algorithm as VS-ECC-

Variable since we need to know which lines have no failures, one or

two failures, and more than two failures. However, this technique

would still function correctly even with a lower testing accuracy.

To compute the overhead of characterization we investigated several

well-known testing algorithms, including MARCH B, MARCH SS,

GALPAT, and pseudo-random algorithms for testing Active

Neighborhood Pattern Sensitive Faults (ANPSFs) [11][13]. In

particular, we considered a deterministic (100% coverage) ANPSF

algorithm and a pseudo-random coupling fault detection technique

with 99.9% coverage. ANPSF (k=5) can detect an error caused by

the interaction of up to five neighboring cells, while the coupling

fault detection technique discovers erroneous interactions of any two

cells in the entire cache. Based on our cache parameters (Section 5),

performance data of testing algorithms, and accounting for

additional testing overheads, we calculate the worst-case testing

time to be below 50 seconds. This penalty, however, is incurred by

our characterization only once during the first transition to the low

power mode and it can be further amortized using non-volatile

storage to save testing results (E-bits and eECC fields) between

system reboots.

It should be noted that VS-ECC-Disable has an advantage over

other VS-ECC configurations since it does not require testing with

perfect coverage. It should also be noted that all VS-ECC variants

are orthogonal to the exact testing algorithm used; they allow using

more complex patterns at the cost of increased testing time. All VS-

ECC variants mitigate the impact of runtime memory testing on

system performance. Our hybrid characterization scheme ensures

execution with a virtually unnoticeable penalty by keeping a portion

of the cache protected and operational. The hardware overhead of

characterization is trivial compared to the cache size, and involves a

simple state machine with tens of state elements and a few gates.

3.3 Cache Operation
The algorithm for regular cache operation in the low-voltage mode

for VS-ECC-Fixed is illustrated in Figure 4. When the cache

receives a request from the processor, the cache controller first

decodes the set number from the data address and reads all tags and

E-bits corresponding to that set. In parallel with tag matching, we

use a small decoder that determines which lines in the set use multi-

bit ECC based on the values of the E-bits. Since the eECC fields

associated with a set are used in the order of increasing way

numbers, the decoder can quickly determine which eECC field is

associated with a particular cache line by examining all the E-bits

for a set. Thus, when a tag lookup completes, the cache controller

knows if the line is present in the cache (hit/miss), its ECC type

(SECDED or multi-bit), and which of the four eECC fields store

that line‟s check bits.

On a read hit to a cache line that requires multi-bit ECC (E-bit = 1),

the eECC bits associated with that line are sent to the multi-bit ECC

decoder, in addition to the data and SECDED ECC check bits. The

multi-bit decoder corrects all the errors in the line before sending it

to the processor. Similarly, on a read hit to a line that requires only

SECDED ECC (E-bit = 0), data and SECDED ECC check bits are

sent to the SECDED decoder. On a write hit or cache fill, new ECC

check bits need to be generated. If the cache line requires multi-bit

ECC (E-bit = 1), then the data being written is sent to the multi-bit

encoder to generate all the check bits. The first lSECDED bits are

written in the SECDED ECC field of the line, while the remaining

check bits are written to the appropriate eECC field. Similarly, if the

written cache line uses SECDED ECC, data is sent to the SECDED

encoder and the generated check bits are written in the SECDED

ECC field for that line.

If an access results in a cache miss and the replacement algorithm

selects a dirty block for eviction, then any errors in the block need to

be corrected before it is written back to the next cache level (or

memory). Such evictions are conducted in a manner similar to a read

request: we first check the E-bit for the victim line to decide what

kind of ECC it uses. If the E-bit is set, then we send the data and the

appropriate ECC bits to the multi-bit decoder. Otherwise, we send

the data and the SECDED ECC bits to the SECDED decoder. After

the dirty line is written back, the new line is read from the next

cache level (or memory) and a fill then proceeds similar to a write

request. VS-ECC-Disable and VS-ECC-Variable operate very

similarly, with the difference that VS-ECC-Disable completely

avoids using lines with D-bit set, and VS-ECC-Variable looks up

the pointer and the size of the ECC block upon a tag match instead

of using a single E-bit.

During regular operation, cache lines with zero or one failures do

not incur any latency overhead, relative to a baseline cache with

SECDED ECC. Lines with multi-bit errors incur an additional

latency due to the higher complexity of the multi-bit encode/decode

logic. However, this logic can be pipelined to speed up the operation

at a higher area cost, as we describe in Section 4.

We note that VS-ECC-Disable avoids some multi-bit ECC

overheads during normal cache operation by disabling lines with

three or more failures. However, it still requires our dynamic

characterization that relies on multi-bit error correction. Another

alternative could forego hybrid characterization altogether and

subject the entire cache to thorough testing, which would have an

unreasonable impact on performance and user experience.

4. MULTI-BIT ERROR CORRECTION

ANALYSIS
The most popular choice for ECC in memories belongs to the class

of binary linear block codes [7][20], used commonly for soft-error

protection. Alternatively, iterative encoding/decoding designs use

much less hardware but require a higher latency [25]. Prior work has

investigated fast, parallel designs for simple codes such as SECDED

and DECTED [18][25]. Memory structures that can tolerate high

latencies (e.g., FLASH) use stronger ECC to correct multi-bit errors

[20]. As previously discussed, our solution protects the common

case where cache lines have zero or one failures with simple

SECDED ECC, while protecting lines with multiple failures using

stronger, 4-bit-correcting, 5-bit detecting (4EC5ED) codes. In this

section, we explain the ECC algorithm and analyze its complexity

for both SECDED and 4EC5ED.

4.1 Multi-Bit BCH Codes
Binary BCH codes are a class of linear cyclic block codes that are

widely used for correcting random bit-errors [20]. The simplest

block code, Hamming code, is a special type of BCH code that can

correct only one random error [7]. In general, a binary BCH code is

defined over a finite Galois Field GF(2m), which is defined by an

irreducible polynomial p(x) of degree m over GF(2). The field is the

set of polynomials modulo p(x). If α denotes the root of p(x), the set

of field elements can also be represented as {0, 1, α, α2,…, α2^m-2}.

Each element αi has a distinct representation as a polynomial with

degree less than or equal to m, or simply is an m-tuple vector with m

binary coefficients of the polynomial.

BCH code words are produced using a generating matrix G based

on a set of generator polynomials. Checking a code word for errors

involves using the H matrix (parity matrix) to obtain syndromes and

check whether data has been corrupted. The detailed proof and

generation of the H matrix is beyond the scope of this paper and can

be found in [12][20]. Figure 5 shows a high-level block diagram for

BCH error correction logic consisting of two components, the

encoder and the decoder:

ECC Encoder. Input to the encoder is a k-bit data word d,

represented as a vector. The encoding process is simply the

multiplication of d and the generator matrix G. If the code is

selected in a systematic form (i.e., part of the G matrix is the identity

matrix), then data bits are not changed and will be concatenated with

r check bits to obtain the final code word.

ECC Decoder. The decoder detects and corrects potential errors in

the stored code word. The error-correcting logic will pinpoint the

locations of all corrupted bits (if any) within the capability of the

code, and then corrects them. The decoding procedure can be further

divided into three steps [20]:

Step 1: Syndrome calculation. The syndrome S is the product of

retrieved code word (v) and the transpose of the parity matrix H,



































)12)(1()12(3)12(2)12(

)1(3963

)1(32

1231

1

1

1

11111

),,,,(

tnttt

n

n

T

t

v

HvSSSParityS



















According to the code definition, a valid codeword v must have its

resulting syndrome equal to zero. Any non-zero syndrome indicates

the occurrence of one or more errors. Suppose the set of error

locations is {i1, i2, …, it}. More precisely, each syndrome element Sj

is represented as Sj = (αi1) j+ (αi2) j +… + (α it) j. If the syndrome S is

non-zero, we need to locate all errors in the codeword by first

determining the error-locator polynomial and then solving it to

pinpoint and correct errors.

Step 2: Determining the error-locator polynomial. The error-

locator polynomial σ(x) is defined such that the roots are given by

the inverse of error elements αi1
, α

i2,…, αit
 , respectively: σ(x) = 1+

σ1x + σ2x
2… + σtx

t = (1- αi1x)(1- αi2x)…(1-αitx). Berlekamp and

Massey‟s iterative algorithm is used to obtain the σi from Sj by

solving Newton‟s identities of the polynomial σ(x) [3][17].

Step 3: Finding the error locations and correction. Solving the

error-locator polynomial includes substituting the field elements αi

into σ(x). Those substitutions that make the equation equal to zero

are roots of the polynomial. Correction is done by flipping the

corresponding data bits using XOR gates.

4.2 ECC Overhead Analysis
Lower latency can be achieved by parallelizing the ECC encoding

and decoding algorithm. Previous studies have investigated the area

and latency tradeoffs for bit-parallel binary BCH decoders [25].

Both ECC encoding and syndrome calculation (step 1 of the

decoder algorithm) are based on matrix multiplication. In a

completely bit-parallel implementation of the latter, each syndrome

bit is obtained by a separate XOR tree with inputs taken from code

words. The selection of the input bits is determined by the values in

the H matrix, which is 50% full on average (half of the matrix

entries are „1‟). So each XOR tree‟s fan-in is half the number of

input bits. Having a stronger correction capability does not affect the

depth and latency of each tree, only increasing the number of trees.

The Berlekamp-Massey Algorithm (BMA) [6] is the best known

technique to find coefficients for the error-locator polynomial (Step

2 of the decoder). BMA is based on a t-step recursive procedure,

which cannot be parallelized completely. Each iteration involves a

Galois field inversion that takes 2m steps [4]. An inversionless

BMA proposed in [6] uses double the number of multiplications,

but performs them in parallel and off the critical path [21].

Chien‟s search [8] is an elegant algorithm for Step 3 of the decoding

algorithm. It leverages the cyclic nature of BCH codes, and corrects

one bit per cycle with a simple linear feedback shift register.

However, its latency is too high for a large data input. A faster

alternative is to check all elements in parallel, which requires a large

number of gates [25]. An area and latency tradeoff can be done by

splitting the data bits into r chunks, so that k/r bits are tested in each

cycle and the algorithm requires a total of r cycles to finish. A few

additional registers, occupying negligible storage, are needed to

store intermediate results.

Table 1 lists the cost for both SECDED and 4EC5ED for a 64B

cache line. We implement Step 2 in a pipelined, fully-parallel and

unrolled structure based on the inversionless BMA algorithm. For

4EC5ED, the algorithm takes three iterations. The first iteration

takes a single cycle, and the last two iterations are split in half to fit

in a clock cycle. The maximum critical path includes one GF

multiplication, two GF additions and two multiplexers, for a total of

five-cycle latency for this step. For Step 3, we list the overhead for

two different implementations. The first approach is fully-

parallelized and tests 64 bytes together, taking only one cycle. The

second approach, which we use in our simulations, corrects 8 bytes

per cycle. It reuses the correcting logic and reduces area overhead,

but incurs a latency of eight cycles for a 64-byte line. The fully

parallelized SECDED design is simple and fast, with only 14k gates

of hardware and one cycle for either the encoding or the decoding

process. On the other hand, the 4EC5ED design needs about 50k

Figure 5. Overview of a BCH-based error-correcting design.

==0

Error Locator

Polynomial

Data Out

(k bits)

Error/No_Error

Calculate

Syndrome

v x H

k

r

SiReceived

Codeword

 v(x)

{ Bit

Correction

Encoder

d x G
Data d

(k bits) Check bits

(r bits)

Data

} Codeword u(x)
Encoder :

Decoder :

gates and a 14-cycle latency. An additional cycle may be needed to

check whether we need multi-bit correction (total of 15 cycles).

Assuming a gate is equal to twice the area of a cache cell, 4EC5ED

has a logic area overhead of ~0.6% for a 2MB cache.

Storage Overhead. Higher error-correcting capability requires a

higher storage overhead for check bits: To correct t-bit errors and

detect (t+1)-bit errors, a BCH code requires t*m+1 check bits [20].

For a certain length of data input (e.g., k-bits), the rank m is the

smallest possible number that makes the total code length

(k+t*m+1) less than the number of non-zero elements in GF(2m).

For a 64B (512 bit) cache line, m is equal to 10, as 210 > 512 + 10+1

> 29. So a 64B (512 bit) cache line requires 11 check bits for

SECDED ECC.

Consequently, in our baseline configuration with SECDED ECC on

all lines to recover from soft, non-persistent errors, we have

(512+11)*16 = 8368 bits per set for a 16-way cache. In our

evaluation, we use VS-ECC-Fixed (12x1, 4x4) which needs twelve

11-bit SECDED codes and four 41-bit 4EC5ED codes for each set,

in addition to one status bit per line. VS-ECC-Fixed therefore

requires a total of 30*4+16*1 = 136 bits per set more than SECDED

(1.6% overhead). This overhead is smaller than using a uniform

DECTED code with 21-bits (10-bits more than SECDED) for every

cache line (1.9% overhead). VS-ECC-Disable has an additional

disable bit per cache line, so the total number of additional bits per

set is 136+16=152 (1.8% overhead vs. SECDED). VS-ECC-

Variable needs an additional six bits per cache line, for a total of

152+16*6 = 248 bits per set (3% overhead over SECDED).

5. SIMULATION METHODOLOGY
Simulation baseline configuration. We use a cycle-accurate,

execution-driven simulator running IA32 binaries. The simulator is

micro-operation (uOp) based, executes both user and kernel

instructions, and models a detailed memory subsystem. As a

baseline, we model an out-of-order superscalar processor similar to

a single core of the Intel® Core™ i7 processor running in a single

voltage domain at 2 GHz. Our memory system includes a 32 KB, 8-

way set-associative L1 instruction cache, a 32KB, 8-way set-

associative L1 data cache, and a 2MB, 16-way set-associative

unified L2 cache. All caches in our system are configured to have

64-byte lines. Our baseline configuration uses SECDED ECC to

guarantee recovery from single-bit soft errors and other non-

persistent failures.

Benchmarks. We simulate ten categories of benchmarks. For each

individual benchmark, we carefully select multiple sample traces

that are representative of its behavior. Table 2 lists the number of

traces and example benchmarks included in each category. We use

instructions per cycle (IPC) as the performance metric. The IPC of

each category is the geometric mean of IPCs of all traces within that

group. We normalize the IPC of each category to the baseline for

performance comparison, and use the average IPC and the operating

voltage as inputs to a power model to estimate energy consumption.

Simulated configurations. Our baseline configuration (BASE) has

SECDED ECC and a 12-cycle L2 hit latency in addition to one

cycle for SECDED correction. In addition to the baseline, we model

two fixed-strength ECC configurations, three variable-strength ECC

configurations, and the previously proposed multi-bit segmented

ECC configuration (MS-ECC) [9]. Fixed-strength configurations

(DECTED, 4EC5ED) model an L2 cache augmented with ECC

codes that correct two and four errors, respectively. Since we

provide a recovery guarantee for all single-bit non persistent

failures, DECTED can only recover from a single persistent failure

per line while 4EC5ED can only recover from up to three failures

per line. DECTED has the same latency as our baseline SECDED,

while 4EC5ED incurs an additional latency of 15 cycles. We also

simulate variations of our VS-ECC mechanism with SECDED on

Table 1. Logic and Latency Overheads.

SEC

DED
4EC5ED

Storage
(per 512-

bit data)

11

bits
41 bits

Gate

Count
Encode

2k

XOR
10k XOR

Decoder

(Step 1)

2k

XOR
11k XOR

Decoder

(Step 2)

512

XOR

3.5k XOR+4k AND+300

Flip-flops

Decoder

(Step 3)

9.2k

AND

1) 123k XOR + 5.3k OR +

3.2k AND

2) 15k XOR + 640 OR +

400 AND + 640 Flip-flops

 Detection
10

XOR
40 XOR

 Total 13.7k ~160k / ~50k

Latency Encode
8

XOR
9 XOR (1 cycle)

 Decoder

(Step 1)

8

XOR
10 XOR (1 cycle)

 Decoder

(Step 2)

1

XOR
65 XOR (5 cycle)

 Decoder

(Step 3)

5

AND
1 cycle or 8 cycle

 Detection 4 OR 6 OR

 Decoder

Total

1

cycle
7 or 14 cycles

Table 2. Benchmarks.

Category
Number

of traces
Example benchmarks

Digital home (DH) 9
H264 decode/encode,

flash

SPECINT2006

(ISPEC)
8 www.spec.org

SPECFP2006

(FSPEC)
9 www.spec.org

Games (GM) 19 Doom, quake

Multimedia (MM) 24 Photoshop, ray tracer

Office (OFF) 29
Spreadsheet/word

processing

Productivity (PROD) 17
File compression,

Winstone

Server (SERV) 14 SQL, TPC-C

Workstation (WS) 7 CAD, bioinformatics

Kernels (KERN) 7
Streaming, random

access microbenchmarks

ALL 143

http://www.spec.org/
http://www.spec.org/

all lines, and multi-bit correction on a few lines per set: VS-ECC-

Fixed (12x1, 4x4) has four lines per set with 4EC5ED code while

the remaining lines have SECDED; VS-ECC-Variable has

SECDED for all lines and 12 extra 10-bit ECC blocks; VS-ECC-

Disable is the same as VS-ECC-Fixed with the ability to disable

lines with multi-bit failures. All VS-ECC designs were simulated in

the regular operation mode assuming multi-bit failing lines have

been identified. We model MS-ECC with a 4-bit error-correcting

code for each 64-bit segment of a cache line. To provide the same

guarantee against non-persistent faults, each segment only protects

against three persistent failures. Since MS-ECC uses the latency-

efficient but area-inefficient Orthogonal Latin Square Codes to

implement error correction, the L2 cache configuration effectively

changes to a 1 MB 8-way cache with one cycle added to the latency

for cache hits [9].

6. RESULTS
In this section, we present the experimental results for our proposed

technique. Section 6.1 compares the cache failure probability for

VS-ECC with previously proposed solutions for reducing Vccmin.

Section 6.2 evaluates the performance of VS-ECC in the low-

voltage mode. Section 6.3 analyzes the power and energy-efficiency

of VS-ECC and compares it with previously published techniques.

6.1 Reliability
Figure 6 shows Vccmin results for both persistent failures and soft

errors. We use the persistent failure model for 6T cells measured by

Kulkarni, et al. [16], in addition to the soft error model proposed by

Chishti, et al. [9]. All designs can tolerate a single bit failure due to

soft errors or other non-persistent failures, so lines covered by

SECDED cannot tolerate any persistent failures. We set a design‟s

Vccmin at a point when 999 out of 1000 caches will not fail due to

persistent errors (intersection with the 1.E-03 line in the Figure 1).

Our SECDED baseline has a 830 mV Vccmin, below which it does

not satisfy the yield requirements. Fixed-strength error correction

techniques are successful in lowering the voltage, as more failures

can be tolerated: DECTED ECC lowers Vccmin to 675 mV; while

4EC5ED cuts it down to 565 mV. As more error-correction

capability is introduced, Vccmin can be lowered even further.

However, due to the exponential nature of the bit failure probability

curve, we see diminishing returns when we increase error-correction

capability beyond 4EC5ED.

Figure 6 also shows that variable-strength ECC can be successful at

lowering Vccmin with a fraction of the overhead of fixed-strength

solutions. For example, using SECDED on all lines, while using 4-

bit correction on only four lines per 16-line set, i.e., VS-ECC-Fixed

(12x1, 4x4) reduces Vccmin to 590 mV. VS-ECC-Variable reduces

Vccmin to 565 mV (the same as 4EC5ED); while VS-ECC-Disable

has a 500 mV Vccmin. VS-ECC-Disable can disable cache lines

that have multi-bit failures, and its Vccmin is set at a point to

guarantee that we have at least two functioning lines in every set (so

we can only disable up to 14 ways in a single L2 set). On average,

VS-ECC-Disable only disables 0.4% of all cache lines (i.e., all lines

with three or more failures at 500 mV in Figure 1). The best

previously published mechanism, MS-ECC [9], achieves a Vccmin

of 540 mV at the cost of sacrificing half of the capacity and

doubling the number of cache accesses.

6.2 Performance
In this section, we evaluate performance overheads for different

cache designs in the low-voltage mode. Figure 7 shows IPC,

normalized to the performance of a 2 MB L2 cache baseline with

SECDED ECC. For each benchmark category, we show the

geometric mean of normalized IPC for the baseline, VS-ECC, and

two fixed-strength designs: 4EC5ED and MS-ECC. The 4EC5ED

configuration adds a 15-cycle penalty on every cache hit due to the

ECC processing, resulting in a 3% drop in IPC on average. MS-

ECC, on the other hand, has the same hit latency as SECDED, but

also uses half the cache ways to store ECC, resulting in a 50%

reduction in size and associativity, and a 6% performance loss. Note

that we only show the performance impact of L2 design changes,

while keeping the L1 constant.

Compared to the baseline, our VS-ECC designs show a negligible

drop in performance (less than 0.1%) across all benchmark

categories. This performance loss is significantly lower than that of a

fixed-strength 4EC5ED scheme, because VS-ECC-Fixed and VS-

ECC-Variable incur the additional 15-cycle penalty only for the

0.1% lines that require multi-bit ECC decoding at 590 and 565 mV

(Figure 1). Conversely, all other lines only observe only a single

cycle latency for SECDED ECC decoding. VS-ECC-Disable has a

negligible performance penalty due to disabling 0.4% of cache lines

on average (lines with three or more failures at 500 mV in Figure 1),

while a negligible fraction of the remaining lines (less than 3.3%)

require multi-bit ECC decoding due to having two persistent

failures, or a multi-bit combination of persistent and non-persistent

failures. Furthermore, the area overhead of our most area-intensive

1.E-15

1.E-12

1.E-09

1.E-06

1.E-03

1.E+00

0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 Vcc (V)

C
a
c
h

e
 f

a
il

u
re

 p
ro

b
a
b

il
it

y

SECDED

DECTED

4EC5ED

MS-ECC

VS-ECC-Fixed

VS-ECC-Variable

VS-ECC-Disable

Vccmin set at 1E-3

failure probability

Figure 6. Failure probability for persistent failures and soft errors as a function of supply voltage for different configurations.

implementation, VS-ECC-Variable, represents less than 3% of the

total cache area, compared to 1.9% overhead for DECTED and

5.7% for 4EC5ED. Compared to the SECDED baseline, VS-ECC

achieves a much lower Vccmin at almost the same performance.

Relative to DECTED, VS-ECC achieves a much lower Vccmin and

the same performance at a slightly lower area overhead. Compared

to 4EC5ED, VS-ECC-Variable achieves the same Vccmin, and VS-

ECC-Disable achieves a much lower Vccmin, while getting better

performance and using less area.

6.3 Energy Efficiency
Table 3 summarizes the achievable Vccmin, power consumption,

energy per instruction (EPI) and energy-delay products of different

cache designs during the low-voltage operating mode. We normalize

the power and energy results for each design to the baseline, while

showing absolute results for Vccmin and frequency. For power

calculations, we assume that dynamic power scales quadratically

with supply voltage and linearly with frequency. We also assume

that static power scales with the cube of supply voltage, and use

circuit simulations to model the impact of Vccmin changes on

processor frequency [27].

Our VS-ECC-Disable design achieves lower power and lower

energy per instruction (EPI) compared to all alternative cache

designs. Compared to fixed-strength ECC mechanisms, VS-ECC-

Disable is consistently better, reducing power and EPI by 84%

and 50%, respectively, vs. SECDED; by 67% and 31%,

respectively, vs. DECTED, by 47% and 15%, respectively vs.

4EC5ED; and by 26% and 11%, respectively vs. MS-ECC [9].

Conversely, the recently-published Hi-ECC [26] has a Vccmin of

595 mV on our 2MB baseline cache due to using large 1KB cache

lines, but incurs significant additional activity due to read-modify-

write operations and reading larger lines that significantly increase

dynamic power. Combined with cache line disabling, Hi-ECC

achieves the same Vccmin as our VS-ECC-Disable, but requires

disabling most cache lines (compared to disabling 0.4% of lines

for VS-ECC-Disable with 64B lines).

7. CONCLUSIONS
In this paper, we observe that only a few cache lines experience

multi-bit failures at low voltages, while the vast majority of lines

exhibit zero or one errors, especially for large caches. We propose a

novel cache architecture that relies on variable-strength error-

correcting codes (VS-ECC) for error tolerance. The common case of

lines with no failures is handled with simple and fast SECDED

codes to guarantee recovery from soft errors. A small number of

lines with persistent failures can use a strong 4-bit error-correcting

code or a variable-length code that requires some additional area

and incurs a latency penalty. Each cache set uses a few additional

bits to support multi-bit error-correcting codes on a small number of

its lines. We also propose a mechanism to dynamically characterize

the cache after the processor first transitions to the low-voltage

mode to determine which lines will exhibit multi-bit failures and

allocate additional ECC bits to them. This algorithm is targeted

specifically to alleviate two main drawbacks of online testing: the

need for comprehensive testing with pre-set patterns and the need to

minimize the impact on end-user experience. Finally, our

experimental evaluation demonstrates that compared to fixed-

strength ECC techniques, VS-ECC avoids significant decreases in

cache capacity, incurs minimal additional area overhead, and avoids

unnecessary increases in latency and bandwidth advocated by some

current proposals that use large lines. When combined with selective

cache line disabling, our VS-ECC design achieves an 84% power

reduction and a 50% energy reduction compared to SECDED ECC,

and achieves a 26% power reduction and an 11% energy reduction

compared to previously published MS-ECC technique, without

losing half the cache capacity at low voltages.

8. ACKNOWLEDGMENTS
We thank the anonymous reviewers for their valuable feedback. Ilya

Wagner was partially supported by the National Science Foundation

under Grant #0937060 to the Computing Research Association for

the CIFellows Project.

0.80

0.84

0.88

0.92

0.96

1.00

DH FSPEC ISPEC GM MM OFF PROD SERV WS KERN GMEAN

N
o

rm
a

li
z
e

d
 I
P

C

2MB Base VS-ECC 4EC5ED MS-ECC

Figure 7. Normalized IPC for different benchmark categories (vs. 2MB Baseline).

Table 3. Energy characteristics of different 2MB cache designs.

Design
Vccmin

(mV)

Frequency

(MHz)

Norm.

Power

Norm.

EPI

Baseline (SECDED) 830 2000 1.00 1.000

DECTED 675 1350 0.49 0.722

4EC5ED 565 940 0.26 0.570

MS-ECC 540 830 0.22 0.562

VS-ECC-Fixed 590 1040 0.31 0.587

VS-ECC-Variable 565 940 0.26 0.555

VS-ECC-Disable 500 650 0.16 0.499

9. REFERENCES
[1] Jaume Abellà, Javier Carretero, Pedro Chaparro, Xavier Vera

and Antonio González, “Low Vccmin Fault-Tolerant Cache

with Highly Predictable Performance”, International

Symposium on Microarchitecture, pp. 111-121, Dec. 2009.

[2] Amin Ansari, Shantanu Gupta, Shuguang Feng and Scott

Mahlke, “ZerehCache: Armoring Cache Architectures in High

Defect Density Technologies”, International Symposium on

Microarchitecture, pp. 100-110, Dec. 2009.

[3] Elwyn. R. Berlekamp, Algebraic coding theory, New York:

McGraw-Hill, chapter 7, 1968.

[4] Hannes Brunner, Andreas Curiger and Max Hofstetter, “On

computing multiplicative inverses in GF(2m)”, IEEE

Transactions on Computers, vol. 42, pp. 1010-1015, Aug.

1993.

[5] Douglas Bossen, Joel Tendler and Kevin Reick, “Power4

System Design for High Reliability”, IEEE Micro, vol. 22, No.

2, pp. 16-24, Mar. 2002.

[6] Herbert O. Burton, “Inversionless decoding of binary BCH

codes”, IEEE Transactions on Information Theory, vol. IT-17,

pp. 464-466, 1971.

[7] C. L. Chen and M. Y. Hsiao, “Error-correcting codes for

semiconductor memory applications: A state-of-the-art-

review”, IBM Journal of Research Development, vol. 28, no. 2,

pp. 124-134, Mar. 1984.

[8] Robert T. Chien, “Cyclic decoding procedures for Bose-

Chaudhuri-Hocquenghem codes”, IEEE Transactions on

Information Theory, vol. 10, no. 4, pp. 357-363, Oct. 1964.

[9] Zeshan Chishti, Alaa R. Alameldeen, Chris Wilkerson, Wei

Wu and Shih-Lien Lu, “Improving Cache Lifetime Reliability

at Ultra-low Voltages”, International Symposium on

Microarchitecture, pp. 89-99, Dec. 2009.

[10] Eiji Fujiwara, Code Design for Dependable Systems: Theory

and Practical Applications, Wiley-Interscience, 2006.

[11] A. J. van de Goor, Testing Semiconductor Memories: Theory

and Practice, John Wiley & Sons, Inc., NY 1991.

[12] Hideki Imai and Y. Kamiyanagi, “A construction method for

double error correcting codes for application to main

memories”, Transactions of the IECE Japan, vol. J60-D, pp.

861-868, Oct. 1977.

[13] Niraj K. Jha and Sandeep Gupta, Testing of Digital Systems,

Cambridge University Press, New York, NY 2002

[14] Jangwoo Kim, Nikos Hardavellas, Ken Mai, Babak Falsafi and

James Hoe, “Multi-bit Error Tolerant Caches Using Two-

Dimensional Error Coding”, International Symposium on

Microarchitecture, pp. 197-209, Dec. 2007.

[15] Seongwoo Kim and Arun K. Somani, "Area Efficient

Architectures for Information Integrity in Cache Memories,"

International Symposium on Computer Architecture, pp. 246-

255, Jun. 1999.

[16] Jaydeep Kulkarni, Keejong Kim and Kaushik Roy, “A 160 mV

Robust Schmitt Trigger Based Subthreshold SRAM”, IEEE

Journal of Solid-State Circuits, vol. 42, no. 10, pp. 2303-2313,

Oct. 2007.

[17] James Lee Massey, “Step-by-step decoding of the Bose-

Chaudhuri-Hocquenghem codes”, IEEE Transactions on

Information Theory, vol. 11, no. 4, pp. 580-585, Apr. 1965.

[18] Tomako Matsushima, Toshiyasu Matsushima, and Shigeichi

Hirasawa, “Parallel encoder and decoder architecture for cyclic

codes”, IEICE Trans. on Fundamentals, vol. E79A, no. 9, pp.

1313-1323, 1996.

[19] Saibal Mukhopadhyay, Hamid Mahmoodi and Kaushik Roy,

“Modeling of failure probability and statistical design of

SRAM array for yield enhancement in nanoscaled CMOS,”

IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, vol.24, no.12, pp. 1859-1880, Dec. 2005

[20] Thammavarapu R.N. Rao, Eiji Fujiwara, Error-control coding

for computer systems, Prentice-Hall, Inc., NJ, 1989.

[21] Irving S. Reed, Ming-Tang Shih, and Trieu-Kien Truong,

“VLSI design of inverse-free Berlekamp–Massey algorithm”,

Proc. IEE Proceedings E on Computers and Digital

Techniques, vol. 138, pp. 295-298, Sept. 1991.

[22] David Roberts, Nam Sung Kim and Trevor Mudge, “On-Chip

Cache Device Scaling Limits and Effective Fault Repair

Techniques in Future Nanoscale Technology”, Digital System

Design Architectures, Methods and Tools, pp. 570-578, Aug.

2007.

[23] Stefan Rusu, Harry Muljono and Brian Cherkauer, “Itanium 2

Processor 6M: Higher Frequency and Larger L3 Cache”, IEEE

Micro, vol. 24, No. 2, pp. 10-18, Mar. 2004.

[24] Stanley Schuster, “Multiple Word/Bit Line Redundancy for

Semiconductor Memories”, IEEE Journal of Solid-State

Circuits, vol. 13, no. 5, pp. 698-703, Oct. 1978.

[25] Dmitri Strukov, “The area and latency tradeoffs of binary bit-

parallel BCH decoders for prospective nanoelectronic

memories,” in Asilomar Conference on Signals Systems and

Computers, pp. 1183-1187, Oct. 2006.

[26] Chris Wilkerson, Alaa R. Alameldeen, Zeshan Chishti, Wei

Wu, Dinesh Somasekhar and Shih-Lien Lu, “Reducing Cache

Power with Low Cost, Multi-bit Error-Correcting Codes”,

International Symposium on Computer Architecture, pp. 83-

93, Jun. 2010.

[27] Chris Wilkerson, Hongliang Gao, Alaa R. Alameldeen, Zeshan

Chishti, Muhammad Khellah and Shih-Lien Lu, “Trading off

Cache Capacity for Reliability to Enable Low Voltage

Operation”, International Symposium on Computer

Architecture, pp. 203-214, Jun. 2008.

[28] Doe Hyun Yoon and Mattan Erez, “Memory Mapped ECC:

Low-Cost Error Protection for Last Level Caches”,

International Symposium on Computer Architecture, pp. 116-

127, Jun. 2009.

http://www.ece.utexas.edu/~merez/mme_isca09.pdf
http://www.ece.utexas.edu/~merez/mme_isca09.pdf

